Ph.D. Disseration, Department of Electrical and Computer Engineering, University of Toronto.

Scalable Memory Management

through
Hierarchical Symmetric Multiprocessing by

Ronald C. Unrau

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Electrical and Computer Engineering
Computer Engineering Group
University of Toronto

(©Ronald C. Unrau 1993

Abstract

This dissertation examines scalability issues in the design of operating systems for large-
scale, shared-memory multiprocessors. In particular, the thesis focuses on structuring
issues as they relate to memory management.

From a set of simple, well-known queuing network formulas, we derive a set of properties
that describe sufficient conditions for an operating system to scale. From these properties
we first develop a set of guidelines for designing scalable systems, and then develop a
new structuring philosophy for shared-memory multiprocessor operating systems, called
Hierarchical Symmetric Multiprocessing (HSM).

HSM manages the system resources in clusters, using tight coupling within a cluster, and
loose coupling across clusters. Distributed systems principles are applied by distributing
and replicating system services and data objects to increase locality, increase concurrency,
and to avoid centralized bottlenecks, thus making the system scalable. However, tight
coupling is used within a cluster, so the system performs well for local interactions. HSM
maximizes locality which is key to good performance in large systems, and systems based
on HSM can easily be adapted to different hardware configurations and architectures by
changing the size of the clusters. Finally, HSM leads to a modular system composed from
easy-to-design and hence efficient building blocks.

Memory management is a particularly challenging service to implement within the
HSM framework, because it must provide the applications with an integrated and coherent
view of a single system, while distributing and replicating services in order to fully exploit
the hardware potential. We describe in detail the implementation of an HSM structured
memory management subsystem, and evaluate the performance of our implementation on
Hector, a prototype scalable shared memory multiprocessor.

Acknowledgements

First, I would like to thank Dr. Michael Stumm and Dr. Zvonko Vranesic for their
supervision and guidance throughout my doctoral work. They allowed me the freedom to
be creative and taught me the discipline necessary to complete such a large undertaking.

[believe that the HURRICANE/HECTOR project has been successful primarily because
of the quality of the people involved. I would especially like to thank Orran Krieger, who
has almost as much invested in this work as I do. Our combined but different strengths
resulted in a synergy that made our research exciting and unique. This synergy was also
apparent with the other members of the team: Ben Gamsa, Ron White, Jan Medved, Uma
Shunmuganathan, Fernando Nasser, Yonatan Hanna, and David Blythe.

I can only begin to express my gratitude to my wife Gail. She continues to be a
constant source of encouragement and understanding, and in many ways suffered more for
this degree than I did. This dissertation is dedicated to her.

Finally, I would like to thank the Natural Sciences and Engineering Council, the In-
formation Technology Research Center, and the University of Toronto for their financial
support.

Contents

1 Introduction

1.1 Target Environment
1.2 Responsibilities of Memory Management
13 Goals.00
1.4 Hierarchical Symmetric Multiprocessing .
1.5 Methodology
1.6 Contributions
1.7 Overview of the Dissertation
2 Background
2.1 Introduction
2.2 Scalable Multiprocessor Architectures . .
2.3 Memory Consistency
2.4 Virtual Memory
2.5 Related Work
3 Hierarchical Symmetric Multiprocessing
3.1 Performance Metrics
3.2 Sufficient Conditions for Scalability . . .
3.3 Design Guidelines
3.4 HSM Architecture.
3.5 HSM Applications
3.5.1 The Hurricane Kernel
3.5.2 Memory Management.
3.5.3 The File System
3.5.4 Scheduling
3.6 Super Clusters.
4 Requirements
4.1 Application Abstractions
4.2 Hurricane Interprocess Communication .
4.3 Memory Manager Interfaces

O © 00~ O O = W

—_

11
11
14
16
20

23
23
25
29
30
32
32
34
35
36
36

CONTENTS 3

5 Per-Cluster Memory Management 44
5.1 Overviewo e 44
5.2 Virtual Resource Management o L. 47
5.3 Physical Resource Management L. 49
54 The File Table 0 53
5.5 Cache Coherence 55
5.6 TLB Consistency e 58
5.7 Copy-on-Write 59
5.8 Protected Copy 61
5.9 Dirty Harry o 0 oL 63

6 Cross-Cluster Memory Management 66
6.1 Introduction 66
6.2 Managing Cluster Data Structures 68
6.3 Directories L e 70

6.3.1 Single-Level Directories oL 71
6.3.2 Multi-level Directories oo 73
6.4 Main Memory Coherence 75
6.5 Demand Paging L 78
6.6 Unmap e 81
6.7 SUMMAaTryo e e e e e 83

7 Experimental Results 85

7.1 Basic Primitives 87
7.1.1 Read Faults 87
7.1.2 Write Faults oL 88
TL3 Unmap . . . o oo oo e 89

7.2 Performance Bounds o Lo 90
7.2.1 Independent Page Faults 90
7.2.2 Concurrent Faults to Shared Pages 94
723 Unmap o 0o 97

7.3 Application Performanceo 99
7.3.1 Partial Differential Equations 100
7.3.2 Matrix Multiplyo 103
7.3.3 Two-Dimensional FFT 104

8 Conclusion 109
8.1 Overview of the Dissertation 109
8.2 Summary of Contributions oo 110

8.2.1 Conditions for Scalability 110
8.2.2 Hierarchical Symmetric Multiprocessing 110
8.2.3 HURRICANE it 111

.3 TFuture Work 112

Chapter 1

Introduction

This dissertation examines scalability issues in the design of operating systems for large
scale shared memory multiprocessors. In particular, the dissertation focuses on structuring
issues as they relate to memory management. The motivation for our research stems
from recent advances in shared-memory multiprocessor architectures, which will soon be
able to support hundreds of processors. Such multiprocessors achieve their scalability
through segmented architectures, which allow increased bandwidth as new segments are
added. Scalable architectures challenge both application and operating system designers to
develop software that can exploit their potential effectively. To meet this challenge, we have
developed a new operating system structure called Hierarchical Symmetric Multiprocessing
(HSM). The advantages of HSM are demonstrated by the memory manager of HURRICANE,
a new operating system we have developed to study issues in scalability.

In this introductory chapter, we define the basic goals and constraints of the disserta-
tion. The environment for which HURRICANE is targeted is defined in Section 1.1, followed
by a description of basic memory management responsibilities in Section 1.2. The goals
of our work are then defined in more detail in Section 1.3. Section 1.4 introduces the
basic philosophy of hierarchical symmetric multiprocessing, and Section 1.5 defends the
decision to evaluate the architecture through implementation. The chapter concludes with
an overview of the remainder of the dissertation.

1.1 Target Environment

All memory management systems have two primary responsibilities: the support of appli-
cation execution, and the management of memory resources. In meeting these responsibili-
ties, the memory manager is constrained by the needs of the applications, by the operating
system of which the memory manager is a part, and by the hardware on which the system
runs. Together, the constraints define the target environment of the memory management
subsystem. This section defines the attributes of each component that forms HURRICANE’s
target environment.

1.1. TARGET ENVIRONMENT 3

Application Workload: HURRICANE is intended to be a general-purpose, multi-user op-
erating system. The workload has typically been a mix of development tools, and
engineering and scientific applications. The memory manager sees this workload as
multiple independent programs running simultaneously, each with different memory
demands and access patterns. For example, the application mix could include inde-
pendent concurrent instances of the same program running on different processors,
or a parallel application running on several processors. In both types of workload,
the code and data are accessed in parallel on different processors, but the sharing
patterns are very different. The memory manager must balance its data structures
and management policies to respond effectively to these different workloads.

Operating System Environment: HURRICANE is based on a message-passing micro-
kernel, similar in concept to the V system [23]. The kernel is intentionally minimal,
providing support for processes, interprocess communication (IPC), and exception
handling. The memory manager runs as part of the kernel because it must handle
page faults and manage processes that are waiting for 1/O. The remainder of the
operating system services, including high level 1/O, are provided for by servers that
typically run as normal user-level programs.

The operating system also defines the memory abstraction seen by application pro-
grams. Address spaces are protected containers of virtual memory in which any
number of processes can execute. An address space is composed of multiple non-
overlapping regions, where each region is a contiguous block of memory that is bound
to a corresponding contiguous file region on secondary store. Once a binding is es-
tablished, accesses to the memory within a region behave as if they were accesses to
the file directly. This powerful abstraction is known as a single-level store or mapped
file interface.

Target Architecture: The general structuring and concepts of HURRICANE are applica-
ble to a wide range of MIMD (Multiple Instruction Multiple Data) architectures [29].
However, our research efforts have so far focused on scalable shared memory multi-
processors. These machines typically comprise multiple workstation class micropro-
cessors, each with its own hardware cache. The machines are called shared memory
multiprocessors because global physical memory is directly accessible by all pro-
cessors. Global memory is accessed through an interconnection network, although
many machines provide memory local to each processor to help reduce network traf-
fic. HURRICANE does not require that memory or cache coherence be supported in
hardware, but the machine should support paged virtual memory and some form of
atomic lock operation.

6 CHAPTER 1. INTRODUCTION

1.2 Responsibilities of Memory Management

The memory manager is responsible for the support of application level memory abstrac-
tions, and for the effective management of the physical memory resources of the machine.
Throughout the dissertation, we shall use the term virtual resource management when re-
ferring to structures or operations in support of the application interface; physical resource
management refers to structures or operations dealing with the physical memory of the
machine. The rest of this section looks at the responsibilities at both levels in more detail.

At the virtual level, the single-level store interface is actually a three-tiered abstrac-
tion. At the top level, an address space contains all the memory resources a program
may access directly. The non-overlapping regions within an address space describe the
attributes of a contiguous sequence of pages. The page is the lowest level of the hierarchy
and is the smallest unit to which attributes and mappings can be applied. The memory
manager is responsible for the maintenance and integrity of the data structures describing
these application-level abstractions and for supporting operations on them. Maintenance
includes allocation and deallocation of address spaces and regions, as well as checking and
setting access permissions. Operations on virtual memory resources include moving data
between address spaces, and sharing data within and across address spaces. The protection
semantics for these operations are defined by the HURRICANE communication protocol, so
the memory manager works with the kernel to ensure the semantics are not violated. Most
activity involving virtual resources is initiated by application requests, so the memory
manager is responsible for the call interface and for ensuring fast servicing of requests.

In a single level store system, all main memory can be considered a cache of secondary
store. Thus, the memory manager’s chief responsibility at the physical level is as a cache
manager. The cache analogy implies page placement and replacement policies, and the
mechanisms and data structures needed to support them. If cache or memory coherence is
not supported by the hardware, the memory manager must also ensure the consistency of
data items replicated within and across the levels of the storage hierarchy. Operations at
the physical level are on a per page basis and are primarily demand driven, which means
they are initiated by the hardware as the result of memory-related faults (ie. page faults
or page access violations).

1.3 Goals

The primary goal of the dissertation is to study scalability and structuring for scalability
as it relates to memory management. This work represents the first results of a larger
research effort to study scalability of operating systems in general, and eventually to extend
the findings to the application level. This section identifies several challenges facing the
architect of a scalable system, by drawing on a formal definition of scalability developed
by Nussbaum and Agarwal [48]: the scalability of a given architecture is the fraction of
the parallelism inherent in a given algorithm and problem size that can be exploited by a
machine of that architecture.

1.4. HIERARCHICAL SYMMETRIC MULTIPROCESSING 7

From the definition, the primary goal of the memory manager is to allow applications
to exploit the hardware to the full extent of the parallelism inherent in both. This implies
that a scalable memory manager must have as much inherent parallelism as either the
algorithm or the architecture. In particular, the data and control structures of the system
should not saturate before the algorithm or architecture. In many instances, the memory
manager can help reduce contention of both the interconnection network and memory by
supporting policies that allow the placement or replication of data so as to reduce average
access times.

The definition above specifies scalability in terms of a given algorithm on a given ar-
chitecture. Fach algorithm has its own characteristic memory access patterns, just as each
architecture has different resource bandwidths. The structuring and policies of the mem-
ory manager must be general enough to support different classes of applications on various
architectures, yet flexible enough to allow performance tuning for both. Given the target
workload and architectures described earlier, this goal is very challenging. In particular,
we want to support large parallel scientific applications, but not at the expense of smaller
scale parallel or sequential tasks. As for hardware, the operating system should at least run
efficiently on different configurations of a given architecture. More ideally, the operating
system should be adaptable to run efficiently on different architectures.

As a third point, we note that Nussbaum and Agarwal define scalability in relative terms
independent of the number of processors. Yet one intuitively expects that the techniques
used to manage a 16 processor system are likely to be different from those used to manage
256 processors. We expect the data structures appropriate for a large system to have a
greater potential for concurrency, but they may also have a higher constant cost compared
to the structures used for a small system. Because of the challenges this issue presents, one
of our research goals is to study the cost-concurrency trade-offs of scalable data structures.

In defining the areas addressed by the dissertation, it is equally important to identify
areas that are not addressed. For example, the dissertation does not address policy issues,
but instead focuses on structuring and mechanism as applied to memory management.
Where policies are described, it is with the purpose of showing how the underlying data
structures and mechanisms interact — the policies themselves should be viewed as examples
only. Also, while the dissertation deals with scalability and structuring for scalability, we
do not claim to prove that our design is scalable. While we can make informed arguments,
we do not know how to prove scalability and in fact, it may well be impossible to prove
that an operating system is scalable.

1.4 Hierarchical Symmetric Multiprocessing

Existing multiprocessor operating systems have typically been scaled to accommodate a
large number of processors in an ad hoc manner, by repeatedly identifying and then re-
moving the most contended bottlenecks. This is done either by splitting existing locks,
or by replacing existing data structures with more elaborate, but concurrent ones. The
process can be long and tedious, and results in a system that 1) is fine-tuned for a spe-

8 CHAPTER 1. INTRODUCTION

cific architecture and hence is not easily portable to other hardware bases with respect
to scalability; 2) is not scalable in a generic sense, but only until the next bottleneck is
reached; and 3) has a large number of locks that need to be held for common operations,
with correspondingly large overhead.

We believe that a more structured approach to designing scalable operating systems
is necessary, and propose a new technique called Hierarchical Symmetric Multiprocessing.
Our approach allows systems to scale by providing increased service bandwidth as the sys-
tem grows, and by attempting to maximize locality through the distribution and replication
of data structures and service sites. Increased service capacity is achieved by constructing
a large system out of smaller building blocks called clusters, where each cluster provides
the complete functionality of a small scale symmetric multiprocessor operating system.
Multiple clusters cooperate and communicate to give users and applications an integrated
and consistent view of a single large system. Hierarchical symmetric multiprocessing is
hierarchical because of the two-tiered decomposition of the system into clusters of pro-
cessors; it is symmetric because, within each level, no particular cluster or processor has
specialized service capabilities.

HSM incorporates structuring principles from both tightly-coupled and distributed sys-
tems, and attempts to exploit the advantages of both. On the one hand, scalability is
obtained by using the structuring principles of distributed systems, where services and
data are replicated: a) to distribute the demand, b) to avoid centralized bottlenecks, ¢) to
increase concurrency, and d) to increase locality. On the other hand, there is tight coupling
within a cluster, so the system is expected to perform well for the common case, where
interactions occur primarily between objects located in the same cluster.

Hierarchical symmetric multiprocessing is described in more detail in Chapter 3. Its
application to the HURRICANE memory management subsystem is the main focus of this
dissertation, and is described in Chapters 5 and 6.

1.5 Methodology

The results in the dissertation are based on implementation and evaluation through ex-
perimentation. This section briefly motivates our choice in the context of the other two
primary evaluation methodologies, namely analytic modeling and simulation.

Analytic models are powerful analysis tools that allow investigations into architectural
trade-offs without concern for implementation details. With proper parameterization, these
models can be used to explore a large part of the design space, including hardware varia-
tions that may better support memory management and applications. However, analytic
models are only as accurate as the assumptions on which they are based, making validation
an important part of the modeling process. As well, proper parameterization of parallel
workloads is difficult, as is modeling of transient phenomena such as program start-up, or
non-linear behavior such as hardware caches. Consequently, analytic modeling is primarily
used to quantify upper and lower bounds, to estimate average high-level behavior, and to
predict unexpected anomalies that are a consequence of the assumptions.

1.6. CONTRIBUTIONS 9

Simulation is a second valuable analysis tool that can capture transient and non-linear
behavior while still allowing the study of a broad range of parameters. Unfortunately, the
detail required to model this behavior comes at the cost of increased time, to the point
where the benefits of simulation may be completely lost. Like analytic models, simulation
also suffers from appropriate workload generation. Trace-driven studies can be difficult
to generalize to new systems, since they can contain timing dependencies inherent in the
systems from which they are derived, and artificial workloads are difficult to parameterize
adequately.

Evaluation through implementation is often criticized for providing only a single data
point in the design space, and even then the results may be clouded by implementa-
tion idiosyncrasies that hide higher level architectural issues. However, implementation
is valuable in serving as a proof of concept. It allows validation of analytic models and
simulation studies, and provides a test-bed for program development from which workload
characteristics can be derived. Also, implementation forces a detailed exploration of the
interaction between different components, often yielding insights that could not be gained
otherwise. These considerations, coupled with the ready availability of the HECTOR mul-
tiprocessor [65], have motivated our decision to ¢ hoose implementation as our research
methodology.

1.6 Contributions

This section reviews the three main contributions of the dissertation: a set of criteria
sufficient for an operating system to scale; a structuring framework, called hierarchical
symmetric multiprocessing, that incorporates the criteria for scalability; and the applica-
tion of HSM to the HURRICANE memory manager.

Our research is the first effort that we know of to address the problem of scalability
of operating systems for shared memory multiprocessors in a structured and integrated
way. To address the problem of structuring for scalability, we first had to determine what
scalability really means in the context of an operating system. Our study led to the first
major contribution of the dissertation: from a set of simple, well-known queuing network
formulas we derived a set of properties that describe sufficient conditions for an operating
system to scale. From these properties we were able to develop a set of guidelines for
designing scalable systems.

Hierarchical symmetric multiprocessing is a new structuring philosophy that evolved
out of these scalability considerations. Scalability is achieved while still maintaining an
integrated and consistent system by capitalizing on locality inherent in our target environ-
ment. The concepts of HSM can be applied not only to the components of the operating
system, but to application programs as well.

The evaluation of the HSM architecture through its implementation in HURRICANE
has turned out to be an important contribution. This is true not only because the imple-
mentation serves as proof of concept, but because it allows both system and application
developers to experiment with various trade-offs on a running system. We believe that

10 CHAPTER 1. INTRODUCTION

operating system design is and should be one of iterative refinement, and so the lessons
learned from our experiences will allow future generations of systems to scale even further.

1.7 Overview of the Dissertation

The general development of the dissertation is to present the architecture of hierarchical
symmetric multiprocessing, describe its application to memory management in HURRICANE,
and evaluate the performance of the prototype. This section outlines the progression in
more detail, on a chapter by chapter basis.

The memory manager has responsibilities to both the applications above it and the
hardware below. The systems architect must understand the behavior and interactions at
both levels because any decision must take all the factors into account. Chapter 2 provides
some background in these areas, with the aim of defining common terms and concepts
needed for later development. Towards this end, the chapter first gives an overview of
scalable architectures and some of the issues involved with them, and then describes virtual
memory hardware and techniques in some detail.

The architecture of a hierarchical symmetric multiprocessing system is developed in
Chapter 3. The architectural definition follows as the result of several properties that we
argue are sufficient for a system to scale. The properties are derived from an analysis of
scalability and the factors that affect it. The remainder of the chapter shows how the
principles of hierarchical symmetric multiprocessing can be applied to several operating
system components, including process communication and scheduling.

Chapters 5 and 6 describe the implementation of the HURRICANE memory manager in
detail. The design of the data and control structures is developed in two stages. Chapter 5
describes how virtual and physical resources are managed within each cluster; Chapter 6
shows how the structures and communication protocols are extended across clusters to
provide an integrated and consistent view of the system.

Finally, Chapter 7 evaluates the performance of our implementation on HECTOR, a
prototype scalable shared memory multiprocessor. The first set of experiments consists
of synthetic benchmarks that stress separate aspects of memory management individually.
The experiments allow the scalability of the system to be observed in a controlled envi-
ronment. The second set of experiments evaluate the over-all system performance for real
applications. Three different parallel programs with different memory resource demands
are run on different cluster configurations to assess the effects of coupling in the system.

Chapter 2

Background

2.1 Introduction

An operating system is arguably some of the most complex software that runs on any
computer system. As a resource manager, the operating system must be aware of the
hardware resources present, and their demand and service times, if management is to be
effective. As a layer between applications and hardware, the system must present a simple,
intuitive abstraction of the hardware, and must respond quickly to changing workloads.
The demands on the operating system are compounded when the dimension of parallelism
is added. The purpose of this chapter is to define common terms and illustrate basic
approaches to memory management, focusing on areas fundamental to later developments.
The discussion assumes the reader has a working knowledge of sequential computers, but
not necessarily of multiprocessors or memory management techniques.

We begin with an overview of scalable shared memory multiprocessor architectures in
Section 2.2, focusing primarily on HECTOR, the target architecture of our current imple-
mentation. Section 2.3 illustrates the memory consistency problem as it relates to mul-
tiprocessors, and reviews an important class of solutions to the problem called directory-
based coherence protocols. An overview of virtual memory is given in Section 2.4, which
concentrates on architecture and implementation issues for uniprocessor systems. With
these fundamentals in hand, the last section opens the door to virtual memory issues on
multiprocessor systems, and gives an overview of work related to this important area.

2.2 Scalable Multiprocessor Architectures

Shared memory multiprocessors have existed since the late 1950s [58] but it is only recently
that it has become practical to design and build large-scale systems. This newfound prac-
ticality has not come from any particular breakthrough, but instead from steady progress
in sequential and small-scale parallel processing technologies. Key among these has been
advances in component integration, to the point where it is now possible to put an entire
small-scale multiprocessor on a single printed circuit board. Higher levels of integration

11

12 CHAPTER 2. BACKGROUND

have reduced power and cooling requirements, and helped to shorten wire lengths, which
reduces propagation delays and transmission line effects. These technology advances have
been exploited commercially, and several companies now offer small-scale multiprocessors
based on a single shared bus [12, 44].

Single-bus systems, however, are not scalable; even with large write-back caches the
bandwidth of the bus limits their size to a small number of processors. This limitation has
spurred renewed investigations into architectures that can scale to larger systems. Cur-
rently, the complexity, cost, and increased design cycle time have limited the commercial
viability of large shared-memory multiprocessors, particularly since sequential processing
power has been advancing so rapidly. Improvements in analysis and design tools have
helped reduce the design cycle time, but much work remains before multiprocessor archi-
tectures will be able to advance as fast as their sequential counterparts. The remainder of
this section steps through several past and present attempts to meet the goal of architec-
tural scalability.

The first scalable shared-memory machines were based on omega networks [59], and
include the NYU Ultra-Computer [4], the IBM RP3 [51], and the BBN Butterfly [10].
Each processor in these systems has locally accessible memory, but can access the memory
of any other processor through the interconnection network. Because remote memory is
accessed through the network, accesses to remote memory take longer than accesses to
local memory. For this reason, these machines are called Non-Uniform Memory Access,
or NUMA, architectures. The remote to local access ratio, p, is a key parameter of these
machines, and ranges from 13 on the BBN GP1000; to 9 on the IBM RP3; to 3.5 on the
BBN TC2000, in the absence of contention. While these architectures were designed to
accommodate up to 256 processors, wiring and power constraints made it difficult to build
machines larger than 128 processors.

The next generation of architectures overcame the limits of a single bus by connecting
many shared bus multiprocessors into a ring or grid topology. The Stanford DASH [41] and
KSR [19] architectures, and the HECTOR [65] multiprocessor of Figure 2.1, are examples
of this class of architecture. In HECTOR, each processor module contains a microprocessor
and hardware cache, on-board memory, and various [/O devices. A station is composed of
a number of processor modules sharing a common bus, and several stations are connected
together via a local ring. Finally, a global ring connects the local rings together, giving the
hierarchical structure seen in the figure.

HECTOR provides a flat, global (physical) address space, where each processor module
is assigned a unique range of addresses but can transparently access the memory of any
other processor. To allow fast routing and decoding, the address assignment scheme is
kept simple: each ring is identified by the most significant r bits of the memory address;
the station is identified by the next s bits; and the slot in the station is identified by the
p least significant bits. In the current implementation, r = 2, s = 3, and p = 3, for a
maximum of 256 processors. To illustrate this addressing scheme, byte 1 on processor 1 of

2.2. SCALABLE MULTIPROCESSOR ARCHITECTURES 13

Station

PM PM | -+~ PM : ‘ PM| | PM PM
I
|
I
]

[] [
PM PM | --:.- PM PM . PM PM
I I I N ! I I I
PM PM | --:.- PM PM . PM PM
I I I .| ! I I I
Station Controller/ \

/ / Bus

Local Ring —— \)

Global Ring

Figure 2.1: The architecture of HECTOR.

station 1, ring 1, can be accessed by any processor in the system at address:

01 001 001 0000000 00000000 000000001, = 4900000146
=~~~

r s P local address

The remote to local access ratio introduced earlier is also applicable to hierarchical
architectures, although there is a different p for each level of the hierarchy. In HECTOR,
the cache and local memory of each processor module can be accessed in 1 and 10 cycles,
respectively. The memory of other processor modules within the same station can be
accessed in 4 additional cycles (due to station bus arbitration) for a first level remote to
local access ratio, p; = 1.4. A read access to a processor module on another station but on
the same ring requires this basic remote access time plus an additional cycle per station
within the ring, for a remote to local access ratio of py = (1T;+ 275+ N,)/ T}, where Tj is the
access time of local memory, T is the station arbitration time, and N is the number of
stations in the ring. The factor of 2 on T's is because the station bus must be obtained for
both the request and the reply packets. These times have all been expressed assuming no
contention; the latency is increased if the access must wait for a ring, station, or memory
that is busy at the time of the request.

14 CHAPTER 2. BACKGROUND

2.3 Memory Consistency

Memory consistency is an issue whenever replicated copies of a data item are potentially
modifiable by processes that are accessing the separate copies concurrently'. Data is
commonly replicated to increase concurrency by reducing contention on the shared item;
access latency can also be reduced if the copy is placed physically close to its access
point. Examples where data is replicated include multiple caches on a multiprocessor
and replicated records in a distributed data base. This section first demonstrates the
consistency problem by way of example, and then describes directories, a common method
of ensuring consistency. The discussion assumes a basic familiarity with cache architectures;
for an overview see Stone [59].

Main Memory
X Y
Pl / \ P2
X iy X iy

Figure 2.2: A simple multiprocessor with local caches.

The consistency problem can be demonstrated through the simple multiprocessor ex-
ample of Figure 2.2. The figure shows two processors, P1 and P2, both with local caches,
each with a cached copy of the variable X. For later discussion, the caches are assumed to
have a line size of two words, so that when X is read, its neighbor Y is loaded as well. If
P1 now modifies its copy of X, the value seen by P2 and the value in main memory are
inconsistent with respect to the value seen by P1. More formally, the discrepancy in the
value seen by P2 with respect to P1 is a loss of cache-cache coherence; the discrepancy in
the value seen by main memory with respect to P1is a loss of cache-memory coherence.

Cache-memory coherence is restored when the value cached by P1 is written back to
memory, either by a cache line ejection if P1’s cache is in write-back mode; or by the
modification itself if the cache is in write-through mode. Cache-cache consistency can be
restored by either a write-invalidate or a write-update mechanism. When P1 writes X back
to main memory, a write-invalidate protocol will invalidate the cache line containing X
in P2, so that P2 must acquire the new value by refetching the line from main memory.
Conversely, when P1 writes X back to main memory, a write-update protocol will replace

! Non-atomic updates to unreplicated data can also cause problems, but is typically solved using atomic
operations supported in hardware.

2.3. MEMORY CONSISTENCY 15

the stale value in P2 with the current value from P1. Note that while a write-through cache-
memory system will update memory immediately, this alone will not ensure cache-cache
consistency — the value in P2 must still be updated.

Returning to Figure 2.2, suppose that P1 initially reads X as before, but now P2 reads
Y. Both caches will load the cache line containing X and Y, as before. If P1 now modifies
X and a write-invalidate protocol is used, the cache line containing X will be invalidated
in P2, which will also invalidate Y. Thus, even though P2 never referenced X directly, it is
nonetheless penalized by having to refetch its value of Y. This phenomenon is known as
false sharing and can be a problem if thrashing occurs. In the current example, thrashing
refers to the repeated invalidations and reloads that would occur if X and Y are frequently
modified. Note that thrashing due to false sharing does not occur with a write-update
protocol — when P1 modifies its copy of X, the copy in P2’s cache is updated with no
direct penalty to P2, except that the processor may stall while the update is in progress.
However, bus cycles are wasted because the update is in this case unnecessary. Indeed,
the implementors of the DEC Firefly, which uses a write-update coherence protocol, found
that wasted updates could consume a large portion of the available bus bandwidth unless
special effort was made to avoid leaving unnecessary copies in the cache [63].

A key issue in coherence is how to locate those caches containing a particular cache
line so that the cache line can be updated or invalidated. Many mechanisms and architec-
tures have been proposed, but most fall under the general classifications of snooping and
directory-based. A snoopy cache contains the functionality necessary to watch the inter-
connection network for modifications to data that it is caching, so that it can know when
to invalidate or update a stale entry. In effect, each processor is responsible for keeping
its own cache consistent with memory and the caches of all the other processors. Con-
sequently, architectures based on snooping caches are not scalable, because all processors
must observe all memory transactions in case some local action is required.

Directory schemes avoid this problem by keeping the consistency state of each memory
line in a well known location, called the directory entry. In its simplest form, called a
full-map directory, each entry contains a bit per processor (the copy set) and a dirty bit
to identify whether or not an item has been modified. The entries are kept in a table at
a well-known location, so that when a processor accesses a data item it first checks the
dirty bit to see if the line can be cached. If the line is clean (and the access is a read),
the processor loads the data and adds itself to the copy set. If the data is subsequently
modified, the dirty bit is set and the caches of all the processors in the copy set (except
the modifying processor) are invalidated and their bits are cleared from the copy set.

There are many variations on the basic full-map directory approach. The primary
motivation for these variations is that the space cost of the directory as described increases
rapidly as the system grows, because there is a directory entry per memory-line, and each
entry requires a bit per processor. To reduce the memory requirements, a limited directory
keeps the sharing information for only a few processors. If the copy set is found to be
full, other processors may access the data but not cache it, or they may cache it and set
an overflow bit, which forces a broadcast invalidate to all processors whenever the data is

16 CHAPTER 2. BACKGROUND

modified. The MIT Alewife project [21] employs a hybrid hardware/software approach, in
which the hardware implements a limited directory, and overflows are extended in software
to support a full-map scheme. Still other proposals use a chain of processor identifiers to
allow variable sized copy sets [32].

It is important to note that while the examples above were developed in the context
of hardware caches in a multiprocessor environment, the same principles apply whenever
shared data is replicated. For example, directories can also be used to support virtual
shared memory in a distributed system [61].

This section has shown how concurrent accesses to replicated data can lead to incon-
sistency. We have outlined the operations needed to restore consistency, and we have
described directories, which contain the state needed to support coherence. The develop-
ment has so far avoided a discussion of consistency models themselves. Simply put, the
consistency model defines the acceptable orderings among memory requests. The strictest
form is called sequential consistency [34], and can be guaranteed by requiring a processor
to complete one memory request before it issues the next memory request [56]. This model
allows the execution of a parallel program to appear as an interleaving of the parallel
processes on a sequential machine. Sequential consistency is conceptually appealing, but
imposes a large performance penalty on memory accesses. Weak [55] and release [30] con-
sistency models relax the restrictions to allow more concurrency in memory accesses, but
they require the programmer or compiler to explicitly identify all synchronization accesses.

From the point of view of the operating system, the consistency model used depends on
the support provided by the architecture, and the consistency requirements of the applica-
tions. This is because the operating system can provide sequential consistency semantics
even if there is no hardware support for coherence at all, using software techniques de-
scribed later. Conversely, even if the hardware supports full coherence, the operating
system can often disable this feature at the request of applications that want to manage
their own data coherence. The philosophy adopted in HURRICANE is to provide a basic
coherence policy that is suitable for the common case, but which can be overridden by
sophisticated applications.

2.4 Virtual Memory

Virtual memory is a powerful concept that separates logical memory references from the
physical addressing used by the underlying hardware. Originally developed as a way to
address a storage space larger than the amount of physical memory, virtual memory tech-
niques are now applied to many demand-based memory management policies, including
copy-on-write and software memory coherence. This section gives a brief overview of the
hardware needed to support a virtual memory system on a typical uniprocessor machine.

Although addresses in a virtual memory system are disassociated from their physical
counterparts, any memory reference must eventually be resolved to the physical address at
which the data resides. The relationship between a virtual address and the corresponding
physical address is held in a translation entry. To reduce the number of translation entries,

2.4. VIRTUAL MEMORY 17

main memory is usually grouped into fixed-sized pages, where each page is a contiguous
block of 27 bytes. The v bits of a virtual address and r bits of a physical address are both
treated as having two fields: the page number is the most significant v — p bits of a virtual
address, or r — p bits of a physical address; the page displacement is the least significant
p bits of both types of address?. In a paged system, one translation entry is used for each
page. The translation entries are searched by virtual page number; the complete physical
address is formed by concatenating the page displacement to the physical page number
found in the translation entry.

The page size is an important architectural parameter. A large page size will reduce the
number of translation entries and will reduce the number of translations required, because
one translation entry serves 27 different addresses. In addition, if pages are loaded from
secondary store, a large page size can reduce the number of accesses to disk because each
access transfers a large amount of data. However, a large page size may increase fragmen-
tation if all the data in a page is not needed, effectively reducing memory utilization. As
well, permissions and translation protection are at the granularity of the page, so a large
page size may limit sharing or protection flexibility.

Many data structures have been used to maintain translation entries — the most com-
mon structure is a simple table indexed by the virtual page number, where each entry
in the array is the physical translation of the virtual page number that indexes it. This
type of translation structure is called a page table. Linear page tables tend to be space
inefficient, because they require an entry per virtual page, even if the entry for that page
is not used. Some systems address this problem by using a two-level page table, where the
first level is indexed by the high-order bits of the virtual page number, and the low-order
bits index the second level of the page table. The first-level entries contain the address of a
linear page table, which forms the second level of the structure. Two-level page tables can
save space because the second level array is not needed if the first level index is unused.
However, as processor architectures move to 64-bit addressing, even two-level page tables
have high space cost if the address range has relatively few valid translations. To overcome
the problems of linear page tables, inverted page tables only keep translation entries for
the physical pages accessed by a program. An inverted page table (IPT) consists of a hash
table keyed by virtual address, where each entry in the table is a list of virtual to physical
translation records. For sparsely populated address space ranges, an IPT can reduce the
amount of memory devoted to translation entries because entries exist only if a particular
virtual address is actually referenced by the program.

Since every virtual address must be translated before it can be used to access physical
memory, and since the table look-up requires at least one or two memory accesses to
perform the translation, the system as described has an unacceptably high overhead. To
reduce this overhead, most systems have a Translation Look-aside Buffer, or TLB, which
is a cache of recent translations. This cache is searched on every translation, so that the

2There are 2 addressable items in the virtual address space, and 2" items in the physical address
space; and typically v > r. Thus, there are 2P and 2"7? pages in the virtual and physical address spaces,
respectively, if the page size is 2P.

18 CHAPTER 2. BACKGROUND

page table look-up is needed only on a TLB miss. The TLBs must translate addresses
as fast as the processor can request them, which means the TLBs must be implemented
with fast logic (and high cost) that grows with the number of entries cached. Fortunately,
since each entry can serve an entire page of data, and since programs typically access small
groups of addresses at a time, the size of the TLB can be relatively small and still achieve
a high hit rate.

To provide protection in a multi-programmed environment, ie. when multiple programs
are executing concurrently, the virtual addresses of each program are commonly translated
from a separate set of tables. The set used to translate a given address space is called
its context. In this way, programs only share data if their virtual addresses translate,
or map, to the same physical address. For protection within an address space, most
translation entries maintain a set of access permissions for each translation entry. These
permissions may specify, for example, read-only access so that data in that page is protected
from inadvertent modifications; the permissions may also specify no access to identify an
uninitialized translation entry. These permissions are checked by the hardware on every
translation — if a violation is detected, an exception (or fault) is raised on the CPU for
handling by software. This dynamic permission checking forms the basis for demand-
driven memory management policies, which allow decisions to be deferred until a fault
occurs. Demand-driven policies are important because they allow the system to respond
dynamically to changes in memory demand.

Virtual memory was initially developed to address several problems with real memory
systems, which were based on physical memory management techniques such as overlays
and swapping [25]. Real memory systems require that the code and data segments of a
program be resident in contiguous physical memory before it can run. Often these sys-
tems have no protection between concurrently executing programs, although some provide
rudimentary protection using Bounds registers or ID tags. Consequently, architectural and
operating system specific details such as memory size and organization are visible at the
application level, which complicates program development.

In contrast, a paged virtual memory system requires only those pages actively refer-
enced by a program to be memory resident, and these logical pages may be discontiguous in
physical memory. Protection between programs is supported in hardware through multiple
page table contexts. The separation of logical storage from its physical counterpart en-
hances portability, simplifies application development, and allows memory to be managed
efficiently. These advantages are demonstrated through the examples given below.

Simplicity of application development in a VM system is demonstrated by the transpar-
ent support of programs whose data requirements exceed the size of main memory. Real
memory systems require the programmer to explicitly manage the memory of these large
programs. In contrast, the memory manager in a virtual memory system supports large
programs by keeping only the most recently referenced pages resident in memory — the
remainder of the program’s pages are left on secondary store and their translation entries
are marked invalid. If a page that is not currently resident is referenced, the translation
will fail and a page fault is generated to pass control to the operating system. The fault

2.4. VIRTUAL MEMORY 19

is handled by loading the data from secondary store into an unused physical page and
setting the translation and protection entries so that it can be accessed by the application.
This approach to memory management is called demand-paging, because the pages are not
loaded until they are referenced. If all physical pages are in use at the time of a fault, one
of the pages is selected for page-out as determined by the replacement policy. The current
contents of the page are saved to secondary store (if the data has been modified) and all
virtual translations to it are invalidated, freeing the physical page for use by other virtual
pages.

Keeping only a subset of a program’s data resident in main memory does not nec-
essarily hurt execution times, and in fact can lead to improved system response time in
multi-programmed environments. Denning argued that a program will run efficiently if its
actively accessed set of pages, its working set, is resident [27]. This principle arises from
the observation that the memory access patterns of programs exhibit temporal and spatial
locality. Temporal locality means that locations accessed recently are likely to be accessed
again in the near future; spatial locality means that locations near a recently accessed
location are likely to be accessed in the near future.

Locality is shown in common control structures such as loops or sequential execution,
and in data structures such as stacks and arrays. The working set theory maintains that
as long as the favored subset of pages remains in memory, the program will experience a
minimum number of page faults, and therefore execute efficiently. If the working set has
not yet been established or if it changes as the program executes, the fault rate will increase
until the pages of the new working set are resident. Finally, if the working set is larger
than physical memory, or the sum of the working sets of all currently executing programs
is greater than physical memory, thrashing may occur as the pages fight to remain resident.
Thrashing is a condition where the system spends all its time moving data, so that little
or no progress is made by the application [26], but note that under the same memory
requirements a real memory system will also fail®.

The principles of working set theory support the argument that virtual memory can
help increase performance in multi-programmed systems. One reason is that more working
sets can be resident at a given time than in real memory systems that must load a larger
portion of each program’s data. A second source of improvement is that the amount of
swapping in a virtual memory system is typically much less than in a real memory system.
If memory is highly utilized, a swapping system will make room for a scheduled task by
saving the entire memory image of a currently resident program to backing store. This
context must be restored to main memory before the program can be restarted. Under the
same high utilization conditions, a paged virtual system can normally avoid swapping by
freeing memory incrementally through page-outs.

Virtual memory systems have several properties that can lead to improved memory
utilization. First, virtual memory permits sharing of immutable data between programs.
Sharing is accomplished transparently by translating virtual addresses in separate address
spaces to the same physical address, and is particularly useful for code segments and shared

3Thrashing becomes less probable as memory sizes increase.

20 CHAPTER 2. BACKGROUND

libraries. Second, pages that are contiguous in virtual memory need not be contiguous in
physical memory, so memory fragmentation is limited to the size of a page and the alloca-
tion policy is greatly simplified. Third, the hardware permissions checking can be used for
optimizations such as copy-on-write [47]. This technique improves memory utilization by
sharing mutable data until it is explicitly modified, at which time a copy of the shared page
is made that reflects the modification. Copy-on-write can reduce system overhead because
if the shared page is never modified, the copy can be avoided entirely. Copy-on-write is
discussed in more detail in Section 5.7.

2.5 Related Work

Previous sections have given some background in parallel architectures and virtual mem-
ory techniques. This section ties them together by discussing issues in virtual memory
support on parallel architectures, and lists some of the research groups investigating these
issues. The advantages of virtual memory have led to its wide-spread application on multi-
programmed uniprocessor systems, and the same advantages apply in large part to mul-
tiprocessor systems. However, the added dimension of multiple processors and memories
with different access latencies creates several challenges.

First, page placement is an issue on NUMA* architectures. Page placement refers to
the decision of which physical page should be assigned to a new virtual page. On UMA
architectures, where all memory has the same access time, the physical page can be selected
solely on the basis of longest residence time since last access. On NUMA architectures, the
decision is also affected by locality considerations, since the access time and interconnect
contention can be reduced if the data is placed near where it will be used. The placement
decision is more difficult when several processors must access the page — in some instances
it may be beneficial to replicate the page to place the data close to all the processors that
access it. Page placement is further complicated by changing reference patterns, which
may force a re-evaluation of the placement or replication decision. Re-evaluation may be
required when the process that was accessing the page migrates to a different processor, or
if the data is used in a producer-consumer relationship where the producer and consumer
are on different processors. The factors that influence these replication and migration
policies have been studied by investigators at Duke [37], Rochester [17], Rice [20], and
Stanford [15].

The added dimension of multiple memories can also affect page-out decisions. If the
physical pages of a memory module are all in use, the page-out policy selects the page that
will be written to backing store to make room for a new page. On UMA architectures, the
decision is often based on temporal considerations alone, and is often implemented using a
Two-Handed Clock algorithm [40] (essentially a LRU algorithm). On NUMA architectures,

spatial factors can come into play, since the page targeted for page-out could be moved to

“Recall that NUMA Systems are systems with non-uniform memory access times. In contrast, UMA
systems have uniform memory access times.

2.5. RELATED WORK 21

a less utilized remote memory, or instead of page-out, a new page could be allocated from
a less utilized remote memory [35]. Accesses to the remote page have higher latency, but
the impact can be less than if a page has to be moved to secondary store.

As alluded to earlier, virtual memory can be used to support cache and/or memory
coherence if not implemented directly by the hardware. This technique is generally referred
to as Distributed Shared Memory [61] and has been applied to memory coherence for a
parallel environment at Rochester [24], and for a distributed environment at Yale [43],
Rice [11] and Toronto [67]. However, HURRICANE is the only system we know of that
supports both memory and cache coherence in an integrated way.

Even if the hardware supports cache or memory coherence, most machines do not
implement a TLB consistency protocol in hardware. Since the TLB is really a cache of
page table entries, and since there is usually one TLB per processor, the entries must
be kept consistent or processes that are sharing virtual memory pages may see incorrect
translations or permissions. The most common consistency protocol is called a TLB Shoot-
down [14], and several groups have published their implementations of the protocol [54, 64,
7]. HURRICANE uses a different approach with some interesting trade-offs, and is described
in Section 5.6.

The challenges of implementing virtual memory in a parallel environment described so
far have been largely functional, although they certainly have performance implications.
Another challenge, and one that we address directly, is how to maintain both function and
performance as the system scales in size. The parallel operating systems cited from Duke
and Rochester teach us little about scalability, since the efforts were focused on policy
issues. As well, the work was based on extensions to existing UMA operating systems, and
was thus constrained by the existing framework of the underlying UMA system.

The focus on scalability has been more prevalent in distributed systems, where systems
like V [23], Mach [2], Sprite [49] and Amoeba [46] have been targeted to run on hundreds
of processors. Research in these systems has been primarily concerned with scalable file
systems [31, 42] and process scheduling [9, 60].

Scalability issues in distributed shared memory have been explored by the Ivy [43]
and Munin [20] systems with a limited number of processors, and we have drawn on their
experience where possible. However, in applying distributed system principles to a shared
memory multiprocessor, a number of fundamental architectural differences force the re-
evaluation of many design decisions:

e The lower communication costs on a shared memory multiprocessor allow much
tighter coupling. This is especially important since we expect a finer granularity
of sharing by applications in a multiprocessor environment.

e Distributed systems do not have true shared memory, which restricts the data struc-
tures and communication protocols that may be used.

e The broadcast based algorithms supported by the network in distributed systems are
not generally applicable on shared memory multiprocessors, because most architec-
tures do not support broadcast in hardware.

22 CHAPTER 2. BACKGROUND

The remaining chapters of this dissertation discuss issues in scalability and describe
how HURRICANE approaches both functional and performance issues in this context.

Chapter 3

Hierarchical Symmetric
Multiprocessing

This chapter develops hierarchical symmetric multiprocessing as a structuring technique
for the design of scalable operating systems. The discussion begins in Section 3.1 with
a review of three basic performance metrics: throughput, utilization, and response time.
The behavior of the performance metrics in a large system is examined in Section 3.2, and
used to develop a set of properties sufficient for scalability. These properties form the basis
of a set of guidelines, presented in Section 3.3, for structuring a scalable operating system.
Section 3.4 describes the basic concepts of hierarchical symmetric multiprocessing, and
shows how it meets the design guidelines. The chapter concludes with examples of how
the principles of HSM are applied in the HURRICANE operating system.

3.1 Performance Metrics

This section reviews the definition of several performance metrics and discusses their prop-
erties in a scalable system. The terminology and fundamental equations are as presented
by Lazowska [38].

The discussion examines performance metrics for servicing the requests of customers
at service centers. We shall denote a particular class of customer as ¢, and a particular
service center, or resource, as k. Since a single service center can potentially support more
than one class of customer, the index ck is used to denote the customer class ¢ at center £.

The notion of customers and service centers is applied to the operating system at two
levels. At one level, applications can be considered customers of the services provided by
the operating system. For example, the operating system supports the services of creating
a new process, or handling a page fault. The second level of customers and resources
is within the operating system itself. At this internal level, the services are operations
like acquiring a lock, or allocating a descriptor for a physical page. The resources in these
examples are the lock and the list of available page descriptors, respectively. The customers
requesting the service of the internal level resources are the servers and fault handlers of

23

24 CHAPTER 3. HIERARCHICAL SYMMETRIC MULTIPROCESSING

the operating system.

Three fundamental metrics of computer performance are throughput, utilization, and
response time. The metrics are important because they are observable quantities and have
practical interpretations.

Throughput (X) is defined as the number of requests completed per unit time. An
example of throughput is the number of page faults that can be handled per second.
Throughput can be applied to any service center in the system, where a service center
is a resource as simple as a lock, or as complex as the system itself. The throughput
for a customer class depends upon the arrival rate of requests, A., and on the number
of visits to each service center, v.., that are required for the request to complete.
This dependence is expressed by the Forced Flow Law:

Xck = U¢k -)\c (31)

For a parallel operating system, we intuitively expect the request rate to increase
with the number of processors, either because there are more sequential applications,
or because the parallel applications require more resources. However, we also expect
the number of service centers to increase as more processors are added, so that the
throughput of each resource need not necessarily be higher than for a sequential
system. This consideration is important in the development of the scalability criteria
that follow.

Utilization (U) is defined as the percentage of time that a resource is busy servicing
requests. As an example, a lock that is 50% utilized is actively set half of the time.
The utilization of a particular service center is related to throughput by the following
equation:

Uck = Sck 'Xck (32)

where s, is the time required to service a request of type ¢ at resource k. Over
all customer classes, no resource can be busy more than 100% of the time, so that
1> Up =3 .Uec. This limit also constrains the throughput at that resource for each
customer class.

In any system, the resource with the highest utilization is called the primary bottle-
neck; this is the resource that is limiting further increases in throughput. Throughput
can be improved by reducing the utilization of the primary bottleneck, either by re-
ducing its service time or the number of requests it must service. These observations
are the basis of the “lock-splitting” approach to scalability described earlier, where
the most heavily utilized lock is replaced by several locks, each with (a hopefully)
lower utilization.

It is important to recognize that the utilization of a particular resource is workload
specific: the primary bottleneck for one class of applications may be different from
that of a second class of applications. The classical examples here are CPU bound

3.2. SUFFICIENT CONDITIONS FOR SCALABILITY 25

tasks, for which the processor is the primary bottleneck; and 1/O bound tasks, for
which a disk may be the most heavily used resource.

Response Time (R) is the amount of time a request must wait for completion. An
example of response time is the time it takes to run a sequential program. In parallel
environments, speedup is often given in preference to direct response times. Speedup
on n processors is given by:

S(n) = R(1)/R(n) (3.3)

where R(1) and R(n) are the response times for a given application on 1 and n
processors, respectively.

The response time at a service site seems implicitly tied to service time, and indeed
they are equal if there is no queuing. Queuing is avoided if the request is serviced
as soon as it arrives. Program speed-up (ie. S(n) > 1) is usually due not to re-
duced queuing or service time, but because more service centers are involved, so that
the n times increase in demand is serviced simultaneously at n centers, with time
proportional to that of a single center.

We conclude this section with a discussion of the terms granularity and coupling as
applied to parallel applications. Granularity is a measurable quantity that has a direct
impact on the performance of a given algorithm on a particular architecture. Granularity
can be defined as the amount of compute time between communication points; coupling
is the dual notion defined as the amount of communication per compute time. Each
process in a fine-grained or tightly-coupled program does only a small amount of local
computing (tens of instructions) before it must communicate with other processes; a coarse-
grained or loosely-coupled application performs thousands of local operations between each
communication. The form of communication can be as complex as a message send or
barrier synchronization, or as simple as setting a global variable. The important point
is that communication involves the interconnection network, and is therefore subject to
network latency and contention effects.

The concept of granularity is often applied to architectures, and usually refers to the
granularity of applications that can be run efficiently. An architecture can support fine-
grained applications if the cost of communication is low, because these applications require
low latency and a relatively large communication bandwidth to perform well. Thus, a
distributed system is considered coarse grained, because the cost of communicating over
the network is high.

3.2 Sufficient Conditions for Scalability

It is surprisingly difficult to give a formal definition that characterizes scalability in a
practical sense, especially for operating systems. For example, one of the better known

26 CHAPTER 3. HIERARCHICAL SYMMETRIC MULTIPROCESSING

formal definitions is by Nussbaum and Agarwal [48], which states: The scalability of a
machine for a given algorithm and problem size is the ratio of the asymptotic speedup
on the real machine and the ideal realization of an EREW PRAM. While the principles
embodied by the definition are important, the definition cannot be applied directly to
operating systems for several reasons. First, the operating system is specifically excluded
from consideration and is treated as an extension of the hardware.

Second, scalability is expressed in terms of inherent parallelism and asymptotic limits,
which is difficult to apply to real systems of a given size and unknown inherent parallelism.
Even if the scalability of a system could be determined, a quantitative measure yields no
insight about how to design or build a scalable system.

Finally, the definition is based on speedup, which we do not believe to be appropriate for
operating systems. For parallel systems, we intuitively do not expect the response time of
an operating system call to decrease as more processors are added; rather, we are content if
the response time remains constant as processors are added to the system. We believe that
throughput and concurrency are the dominant issues in scalable operating system design.
Since one can expect the demand on the operating system to increase in proportion to the
size of the system, the throughput must also increase proportionally. This is possible only
if the operating system has sufficient concurrency to meet the demand.

Instead of attempting to develop a more appropriate definition of our own, we instead
identify a set of properties sufficient for an operating system to scale. The discussion
assumes that the arrival rate of requests for service, A.(p), increases proportional to the
number of processors in the system, p. In addition, we assume that application service
requests are distributed across the processors over time. The assumption of distributed
requests is an implicit result of Nussbaum’s definition of scalability, because if the inherent
parallelism of the application does not match the capabilities of the machine, then the
ratio of the speedups will show a lack of scalability. By extending Nussbaum’s definition
to make the assumption of distributed requests explicit, we recognize that the hardware,
operating system, and applications must all work together if the system is to scale, and
that an imbalance in any one level can severely degrade performance.

In a parallel environment, the utilization law of Equation 3.2 can be expressed as:

1> Ui(p) = D Ualp) = 3 Xe(p) - seu(p) (3.4)

where the components of the original equation are allowed to become general functions of
the number of processors. If the system is to scale in p, then resource k& cannot saturate,
or it will become a bottleneck that potentially limits performance. This means that the
utilization of a resource must be bounded by a constant independent of the number of
processors. Similarly, the throughput and service times at resource k£ can only be functions
of p if they are inversely proportional, so that their product is a constant less than 1. In
the following, we consider the implications if

1. Sq 18 independent of p,

11. 8. increases with p, and

3.2. SUFFICIENT CONDITIONS FOR SCALABILITY 27

2121, 8., decreases with p.

The discussion considers the class specific terms (s.x, Xcx, etc.) because if any one of the
class specific products in Equation 3.4 is not constant, it will dominate the sum and cause
the resource to saturate.

Constant Service Time

We first consider the case where the operating system service time, s, is independent of
the number of processors in the system. If service times are constant, then operations such
as creating a process or mapping a page, do not take longer to complete as the system
grows. Keeping the service time constant as the system grows seems an intuitive goal,
albeit challenging to attain. It also means that the throughput, X ., must be independent
of p. From the Forced Flow Law (Equation 3.1), the throughput for customer class ¢
at resource k is proportional to both the system wide arrival rate and the visit count to
the resource. For parallel systems, we expect A. to increase linearly in the number of
processors. Since Xt is to remain constant, v, must decrease as 1/p. To see how it is
possible to have v o 1/p, define V. as the total number of visits across the system that
are needed to satisfy requests of class ¢. If there are K, resources to service this class of

Vo = > va (3.5)

K.

customers, then

Now, if all v.; within a group of resources are equal, then the summation of Equation 3.5
can be replaced by a product:

Ve
K.

V. = K. vy or vy = (3.6)
Thus, if K. grows at the same rate as A., then v, o< 1/p, assuming V. remains constant.
Equation 3.6 expresses v. as an average; it is likely not true at a given instant for a
particular resource, but it must be true on average over time (and resources) if the system
is to scale with fixed service times.

In essence, Equation 3.6 requires a system to be balanced in its service capabilities to
match the expected workload requirements. Note that to meet this requirement, much of
the burden of responsibility falls on the process scheduler to balance the load across the
system?!.

Increasing Service Time

We now consider the case where service times grow as processors are added to the system.
This situation can occur, for example, if a global unordered list is used that must be
searched linearly to service the request. Since the list is global, the number of elements,
and therefore the search time, can grow proportionally with p. The increasing service time

1Of course, a poorly designed or malicious program can always negate the best design efforts.

28 CHAPTER 3. HIERARCHICAL SYMMETRIC MULTIPROCESSING

forces the throughput at the resource to decrease if saturation is to be avoided, which from
Equation 3.6 requires that the number of resources increase faster than p. This requirement
is neither reasonable nor desirable, and data structures whose access time depends on p
must be avoided if the system is to scale.

A second scenario that may result in service times increasing with p are requests that
require a single operation on many resources. These compound services include requests
to destroy a parallel program containing many processes, or to invalidate data that has
been replicated across several processors. Because compound services are requested once
on behalf of the n processes in the program, we do not expect their arrival rate to increase
linearly in the number of processors, but rather more like X o p/n. Thus, if the service
time increases proportional to n, then the corresponding throughput, X/, can decrease by
the same amount because, from substitution of Equation 3.6 into Equation 3.1:

(3.7)

where K. is still required to grow proportional to p, as before. Optimistically, one might
hope to exploit parallelism in servicing compound requests, since there are many resources
involved. Parallelism is possible if the operating system can view the request for the
service on n different resources as n independent, but simultaneous, requests for service to
n different resources. This is only possible if the resources in the compound request are
independent. In real systems, however, they are often coupled through shared resources
such as locks. This coupling increases the demand on the shared resources, thus limiting
the speedup that can be obtained.

Decreasing Service Time

We now consider the case where service times decrease as a function of p. In this scenario,
since \. is increasing with p, the service time of operating system services, such as creating
a process or mapping a page, would have to have a service time s, o 1/p. But we argue
that this case is unrealistic. Service times can only decrease as 1/p if the operation has
speedup proportional to p. To obtain speedup proportional to p, the service must be
partitioned into p independent operations that can be executed in parallel. However, such
a partitioning is not possible unless the resources involved in servicing the request increase
with p, which is not true of the service requests under consideration.?

Another reason why it is unrealistic to have a service time s, o< 1/p is that the
assumption of increasing \. immediately precludes the possibility of applying multiple
processors to the servicing of a particular request, because each processor must be available
to service its share of the system-wide load. Even if all processors were involved in servicing
each request, so that s.. o 1/p, each processor is now involved in all A. requests, instead of

Tt is important to note that parallelism in servicing a single request is different from the compound
service requests discussed earlier, since compound requests are effectively single operations performed on
many similar resources.

3.3. DESIGN GUIDELINES 29

Ac/p requests if the requests are handled independently. This coupling is in fact precluded
by Equation 3.6, which assumes that V. is constant as the system grows. If all the processors
are involved in servicing a request, then the visit count would grow as a function of p, which
offsets the benefit obtained by increasing K.. Using parallelism in servicing single requests
has the added disadvantage of preventing applications on the other processors from making
progress while the request is serviced.

This section has argued against parallelism in the servicing of a single operating system
request. Instead, the servicing of requests should be localized, in that no processor should
unnecessarily involve other processors in the course of its duties.

Summary

The previous discussion can be summarized as follows. Assuming that the service request
rate, A, increases linearly with the number of processors in the system, p, then a system
will scale if it possesses the following properties:

1. The time spent servicing request ¢ at resource k, s.;, must be bounded by a constant
independent of p, the number of processors in the system.

2. The number of resources available to service a request of class ¢, K., must increase
proportional to p.

3. The system must be balanced in its service capabilities, so that v = V./K. on
average.

4. The servicing of individual requests must be localized and independent, such that
V. =3, ver 18 bounded by a constant.

3.3 Design Guidelines

The properties listed above clearly identify the conditions sufficient for a system to scale,
but they do not directly specify how the requirements can be met. This section translates
the requirements into a set of design guidelines that form the fundamental structuring
goals of hierarchical symmetric multiprocessing.

Preserving parallelism: The operating system must preserve the parallelism afforded by
the applications. Because we do not expect parallelism in servicing a single operat-
ing system request, and because an operating system is primarily demand driven,
parallelism within the operating system can only come from application demand. If
several threads of an executing application (or of independent applications running
at the same time) request independent operating system services in parallel, then
they must be serviced in parallel. This demand for parallel service can only be met if
the number of operating system service points increases with the size of the system,

30 CHAPTER 3. HIERARCHICAL SYMMETRIC MULTIPROCESSING

and if the concurrency available in accessing data structures also grows with the size
of the system.

Bounded overhead: The overhead for each independent operating system service call
must be bounded by a constant, independent of the number of processors [8]. This
guideline follows directly from properties 1 and 4 above. If the overhead of each ser-
vice call increases with the number of processors, the system will ultimately saturate,
so the demand on any single resource cannot increase with the number of processors.
For this reason, system-wide ordered queues cannot be used and objects must not
be located by linear searches if the queue lengths or search lengths increase with the
size of the system. Instead, structures that support search in order constant time,
such as static positioning (for example, arrays), must be used.

The principle of bounded overhead is also applied to the space costs of the operating
system data structures. While the data structures are required by property 2 to grow
proportional to the physical resources of the hardware, the principle of bounded space
cost restricts growth to be no more than linear. In particular, the size of memory
management data structures cannot depend on the number of virtual resources; their
size should depend only on the amount of physical memory [1].

Preserving locality: The operating system must preserve the locality of the applications.
It is important to consider the memory access locality in large-scale systems, because
for example, many large-scale shared memory multiprocessors have non-uniform
memory access (NUMA) times, where the cost of accessing memory is a function
of the distance between accessing processor and the target memory, and because
cache consistency incurs more overhead in large systems. Locality can be increased
a) by properly choosing and placing data structures within the operating system,
b) by directing requests from the application to nearby service points, and c) by
enacting policies that increase locality in the applications” memory accesses and sys-
tem requests. For example, policies should attempt to run the processes of a single
application on processors close to each other, place memory pages in proximity to
the processes accessing them, and direct file I/O to devices close by. Within the
operating system, descriptors of processes that interact frequently should lie close
together, and memory mapping information should lie close to the processors that
must access it to handle page faults.

3.4 HSM Architecture

Small-scale multiprocessor operating systems achieve good performance through tightly
coupled sharing and fine-grained communication. Tightly-coupled systems can scale if the
locks can be kept from saturating, which becomes increasingly difficult as the system grows.
In the framework of the design guidelines above, a saturated system fails to preserve the

3.4. HSM ARCHITECTURE 31

parallelism of the applications it is trying to support. In addition, the shared data struc-
tures common in tightly coupled systems, such as the process descriptor table, typically
increase in size with the size of the system. While these tables can be distributed across
the processors of the system, it is difficult to preserve locality, which results in increased
network contention.

Distributed operating systems appear to scale well through replicated services that dis-
tribute demand and avoid centralized bottlenecks. Data is also distributed and cached
locally to reduce the amount of remote communication needed. The high communica-
tion costs in these distributed environments dictate coarse-grained parallelism and loosely
coupled synchronization through message passing.

Both structuring approaches are appropriate for their target environment. Both ap-
proaches also offer solutions to different problems in the design of an operating system for a
large-scale multiprocessor. On large-scale multiprocessors, the relatively low cost of access-
ing remote memory should encourage fine-grained data sharing between small groups of
processors; for the system as a whole, decentralizing resources seems imperative for locality
and scalability. Hierarchical symmetric multiprocessing is a hybrid structuring approach
that adopts features of both distributed and tightly-coupled systems to achieve scalability
while still maintaining good performance.

The basic unit of structuring within HSM 1s the cluster, which consists of a symmetric
micro-kernel, memory and device management subsystems, and associated system services
such as a scheduler and file server. Data and control structures are shared by all processors
within a cluster, giving good performance through fine-grained communication. Thus, the
cluster provides the functionality of a small-scale symmetric multiprocessor operating sys-
tem. On larger systems, multiple clusters are instantiated such that each cluster manages a
unique group of “neighboring” processors, where neighboring implies that memory accesses
within a cluster are generally less expensive than accesses to another cluster. Clusters co-
operate and communicate in a loosely coupled fashion to give applications an integrated
and consistent view of the system.

By incorporating structuring principles from both ends of the performance spectrum,
hierarchical symmetric multiprocessing realizes the following advantages:

e Hierarchical symmetric multiprocessing provides a framework for managing locality,
since system services are replicated on a per cluster basis. For the common case
of small-scale parallel programs, all processes are scheduled onto the same cluster.
This enhances performance as all interactions are local. Large-scale applications are
scheduled across multiple clusters, and can benefit from the concurrency afforded
through replicated system services. Support of large applications without penalizing
small ones is one of the basic design goals of HURRICANE.

e Hierarchical symmetric multiprocessing enhances portability by allowing performance
tuning to different architectures. The appropriate cluster size for a given architec-
ture is affected by several factors, including the local-remote memory access ratio,

32 CHAPTER 3. HIERARCHICAL SYMMETRIC MULTIPROCESSING

the hardware cache size and coherence support, and the network topology. On hier-
archical multiprocessors such as HECTOR or Dash, a cluster might correspond to a
hardware station; on a local-remote architecture such as the Butterfly, a small cluster
size (perhaps even a cluster per processor) might be more appropriate. In this case,
HSM can be viewed as an extension of the fully replicated structuring typically used
on these machines.

e Finally, hierarchical symmetric multiprocessing may simplify lock structuring issues,
which can lead to improved performance and scalability. For example, Chaves [22]
reports that the fine-grained locking used in an unclustered system significantly in-
creases the time of the critical path, even when there is no lock contention. As well,
deadlock can be a problem when several fine-grained locks must be held simulta-
neously. Because contention for a lock is limited to the number of processors in a
cluster, hierarchical symmetric multiprocessing may allow coarser grained locking.

The implementation of a hierarchical symmetric multiprocessing system presents sev-
eral challenges. First, clusters should be integrated seamlessly into the system, so that the
average application need not be aware of their existence. Of course, sophisticated applica-
tions may want to exploit the presence of clusters to enhance performance. Second, it is
important that the overhead and complexity introduced by clusters be kept to a minimum.
HSM was conceived as a way to reduce overall system complexity and increase performance;
these gains may not be realized if the cost of remote communication is too high. Finally,
hierarchical symmetric multiprocessing does not by itselt guarantee scalability, rather, it
provides a framework that allows structuring for scalability. The challenge is to use this
framework to reduce system bottlenecks and provide increased system bandwidth as the
system grows.

3.5 HSM Applications

In this section, we show how hierarchical symmetric multiprocessing affects the structure
of the primary operating system components. While the principles of HSM are applicable
to many operating system philosophies, the discussion is presented using examples from
the HURRICANE operating system. In particular, the structure of four key components
of the operating system is described and related back to the design guidelines. The four
components are the kernel, the memory manager, the file system, and the scheduler, as
shown in Figure 3.1.

3.5.1 The Hurricane Kernel

The kernel is responsible for process management and communication. Processes are rep-
resented by process descriptors, which are kept in a hash table for fast access. Most
operations on processes involve the queuing and dequeuing of process descriptors to and

33

HSM APPLICATIONS

3.5.

T T
B AL E U E L E ot
S R
S e
e R
G

<
i
L

¥
b
i
¥
e
i
e
i
e
S

5

¥
R
R

Nediet

o

ch

i

1
s
L

o
i

r
e
e

ipro-

e

"
=
£

AT
R
e

o
i

=
=
o

=
i

=
o

o
i

o
T
HE

0
o

Name
Server

o,
S
ety

MicroKernel

A N,
S

O OO0 OO0 OO0 OO0 O

Processors

Fach cluster (top) provides the functionality of a small-scale symmetric mult

OO0 | OO0 | OO0 | OO0 | OO0

cessor operating system. Multiple clusters cooperate and communicate to provide an integrated

and consistent system (bottom).

Figure 3.1

34 CHAPTER 3. HIERARCHICAL SYMMETRIC MULTIPROCESSING

from different queues. For example, when a process sends a message to another process, its
descriptor (containing the message) is added to the Message Queue of the target descrip-
tor. Other queues include a Ready Queue for processes that are ready to run, and a Delay
Queue for processes waiting for a time-out. The process descriptor table and kernel queues
are local to each cluster, which preserves locality for the common case where the request
can be handled entirely within the cluster. Moreover, the number of queues increases with
the number of clusters, so that the overhead of queue operations remains bounded by a
constant.

The kernels of each cluster in the system communicate and cooperate in order to provide
the processes and users a consistent view of the system. When a process is created, it is
assigned a process identifier within which the id of the home cluster is encoded. Usually,
a process remains within its home cluster, but if it migrates, then a record of its new
location is maintained at the home cluster. As a process migrates from cluster to cluster,
its location information at the home cluster is updated each time. This home encoding
scheme allows a process to be located anywhere in the system in order constant time,
independent of the number of processors. In addition, migrated processes are represented
in process descriptors that are local to the new cluster, so that operations on them do not
require remote accesses.

Having the size of the clusters smaller than the size of the system has three key advan-
tages:

1. it localizes the kernel data structures that need to be accessed;

2. it reduces the number of process descriptors that must be managed within a cluster,
thus reducing the average length of cluster-wide queues; and

3. it limits the amount of searching for ready processes when dispatching.

On the other hand, having a cluster span more than one processor reduces the amount
of inter-cluster communication, and makes it easier to balance the load of the processors,
leading to better system throughput and reduced application response time.

3.5.2 Memory Management

The memory manager is responsible for the support of virtual resources, including address
spaces and their corresponding memory regions. Virtual resources are managed by servers
on each cluster, which accept application requests, for example, to allocate and deallo-
cate address spaces and regions. The memory manager is also for supporting physical
resources, which include the physical pages of memory and hardware memory components
(eg. caches). All memory-related operations at the physical level are on a per page basis,
and are primarily demand-driven, which means they are initiated by the hardware as the
result of translation or protection faults.

Hierarchical symmetric multiprocessing increases the locality of accesses to the data
structures of the memory manager, since each cluster maintains its own set of data struc-
tures to manage both the virtual and physical resources of local processes. This improves

3.5, HSM APPLICATIONS 35

performance, since the structures that manage private data (such as process stacks) are lo-
cal to the cluster on which the process executes. When applications share resources across
clusters, the data structures that manage these resources can typically be replicated and
cached locally, preventing bottlenecks and increasing concurrency, although the replication
introduces the issue of consistency.

HURRICANE allows pages to be replicated and uses a simple directory mechanism to
maintain the consistency of physical pages across clusters. There is one directory entry for
each valid file block currently resident in memory to identify which clusters have copies
of the page. The directory is distributed across the processors of the system, allowing
concurrent searches and balanced access demand across the system.

Clustering can also provide a framework for enacting paging policies. At this time,
the default policy is to share physical pages within a cluster, but to replicate and migrate
pages across clusters. Several research groups have shown that page-level replication and
migration policies can reduce access latency and contention for some applications [17, 24,
37]. However, the overhead of these policies must be amortized to realize a net gain
in performance. On machines where the local-remote access ratio is high, relatively few
local accesses are sufficient to recoup the cost of a page migration or replication. However,
technology advances have permitted the local-remote access differential to narrow, and have
allowed increases in hardware cache size. Both trends mean that more local accesses are
required to justify a page movement, which argues for less aggressive placement /replication
policies. Moreover, replication lowers the effective utilization of memory by increasing the
resident set size of an application, which could lead to increased disk paging when the level
of multi-programming is high. The current default policy therefore confines replication
and migration operations to pages that are shared across clusters, which reduces overhead
but still allows for the reduced latency and increased concurrency of localized accesses to
replicated data.

3.5.3 The File System

File system responsibilities can be divided into three levels: name space management; open
file state management; and the handling of 1/O. In Hurricane, these services are provided
on a per cluster basis, and all application requests are directed to local servers.

The single file system name space of HURRICANE is managed by multiple Name Server
processes. There is one Name Server per cluster in the system, and each server is respon-
sible for searching and consistency of the file names accessed by its local cluster. File
names and directories are replicated on demand to those clusters where they are accessed?®.
Consistency of replicated entries is maintained through an updating mechanism (instead
of invalidating). This approach localizes name space searches and allows them to proceed
in parallel across clusters.

Open files are seldom shared between programs, so open file state is generally main-
tained on the cluster where the file was opened. In three cases the open state may become

3Name space entries accessed only by a single process are therefore confined to a single cluster.

36 CHAPTER 3. HIERARCHICAL SYMMETRIC MULTIPROCESSING

used at other clusters, namely: 1) the process that opened the file passes the file handle
as a capability to another program, 2) several processes of a program spanning multiple
clusters are accessing the file, 3) the process accessing the file migrates to a new cluster.
In these cases the remote cluster replicates the open file state from the home cluster (the
id of which is encoded in the file handle).

For those operations that require I/O, we believe clustering can provide a framework for
balancing the load across the disks of the system. Although this part of the file system has
not yet been implemented, we believe that some files could be replicated across a number
of clusters, and other files may be migrated from one cluster to another.

In summary, the file system uses replication at all three levels to increase the number
of resources and service points available to handle service requests, and to allow these
requests to be serviced concurrently. Since the data structures are replicated local to the
cluster, the locality of the applications is preserved.

3.5.4 Scheduling

The primary purpose of the scheduling subsystem is to keep the loads on the processors
(and possibly other resources, such as memory) well balanced. As defined in scalability
property 3 (Section 3.2), this balance is crucial to scalability, in that it permits the system
to function below saturation levels. In a hierarchical symmetric multiprocessing system,
the processes of an application are scheduled to run in a single cluster, unless there are
performance advantages for a job to span multiple clusters. Hence, for parallel programs
with a small number of processes, all of the processes will run on the same cluster. For
larger-scale parallel programs that span multiple clusters, the number of clusters spanned
is minimized. These policies are motivated by simulation studies [68], which have shown
that clustering can noticeably improve overall performance?.

The scheduling decisions are divided into two levels. Within a cluster, the load between
the processors is balanced at a fine granularity through the dispatcher (in the micro-kernel).
This fixed scope limits the load on the dispatcher itself and allows local placement decisions
to be made concurrently. Cross-cluster scheduling is handled by higher-level scheduling
servers, which balance the load by assigning newly created processes to specific clusters,
and by migrating existing processes to other clusters. The coarser granularity of these
movements permits a low rate of inter-cluster communication between schedulers.

3.6 Super Clusters

A single level of clusters can be expected to effectively support moderately large systems
(in the, say, 100-200 processor range). However, for larger systems, additional levels in
the hierarchy will probably be necessary. In particular, while each cluster is structured to

4A similar structuring mechanism for scheduling has been proposed by Feitelson and Rudolph [28], and

by Ahmad and Ghafoor [3].

3.6. SUPER CLUSTERS 37

maximize locality, there is no locality in cross-cluster communication. Examples of this
are the home cluster concept for address spaces and the directory for locating pages. The
logical next step is to group clusters into super clusters. Processor load balancing is an
obvious candidate for this hierarchical clustering. A high-level process manager schedules
processes between super clusters, while lower-level managers schedule processes within a
super cluster.

The introduction of super clusters should not affect the lower levels of the system.
For example, the micro-kernel requires no changes. Super clusters can also be applied to
memory management and [/O. For example, in the memory management, the single-level
directories could be replaced with a hierarchical one, and multiple copies of the home
address descriptor may be necessary, say one per super cluster.

Chapter 4

Requirements

In this chapter, we describe the environment in which the memory manager must execute,
and the abstractions the memory manager must provide to the applications. As such,
this chapter can be considered as an informal specification of the manager as far as its
interfaces are concerned. The choices for both the operating system and the abstractions
the memory manager must support are in some sense arbitrary, but represent the state of
the art today.

4.1 Application Abstractions

Each HURRICANE application executes within a single address space, regardless of the
number of processes it uses. The address space contains all the memory resources that
the process of the application can access directly. The address space is defined by a set of
non-overlapping regions, each of which describes the attributes of a contiguous sequence
of virtual pages. Besides its virtual extent, each region specifies the attributes of the pages
within it. These attributes include initialization characteristics such as initial placement,
copy on first write, or zero on first access. Each region also identifies the file region to which
it is bound, where a file region is defined as a contiguous sequence of page-sized logical file
blocks. The one to one correspondence between a memory region and a file region is called
the single-level store, or mapped file, abstraction [39]. The single-level store abstraction
is a powerful concept that allows accesses to memory to behave as if they were accesses
to the underlying file directly, and is therefore intuitive to apply. Using the single-level
store abstraction can also lead to performance improvements, because less data copying is
needed relative to the UNIX byte stream abstraction [33].

Figure 4.1 depicts the single-level store abstraction as supported by HURRICANE. In
the example, two address spaces have regions bound to files A and B. The shaded areas of
each address space are not bound to any region. This type of address space structuring is
called “sparse”, because while every address space is capable of providing the addressable
limit supported by the hardware, only those virtual addresses that are actively bound are
accessible to the application. An address space provides protection in the sense that pro-

38

4.1. APPLICATION ABSTRACTIONS 39

Address Space 1

Backing Store

_____________________________ 7

............................. o
e”/
....... BlockN_....-
v R ‘
"""""" A File B
Pagei [[Eemmmeed e
Region 1 |romemememmmmmmmemeeeemigeindd NGO | 22— 0 e
Block 1
------- Block N _...-
________________________ | File A
Block |
Region 1

Figure 4.1: Virtual memory abstractions in HURRICANE.

cesses may not directly modify data in any address space but their own. Thus, processes in
Address Space 2 of Figure 4.1 cannot access the memory in Region 2 of Address Space
1. However, because both address spaces have regions bound to File A, modifications to
this file by either address space are immediately seen in the other.

Figure 4.1 shows that while virtual pages appear to the application as though they
are mapped directly to their corresponding file block, they are in fact mapped to physical
pages in main memory, which in turn contain the data from their corresponding file blocks
on secondary store. In this respect, the main memory of a single-level store system can be
considered a cache of secondary store.

The single-level store abstraction can be used to define the interface requirements of the
memory manager. Specifically, the memory manager must support application requests to
create an address space, to bind or unbind a region, and to manipulate the attributes of an
existing region. In the remainder of this section, we briefly review the application interface
of the HURRICANE memory manager.

A new address space is created as part of program creation:

CreateProgram(filename)
where filename is the backing file for the program, and is used for page-out of temporary,
private regions like the stack and heap. Initially, the address space contains no regions.
Regions are created by the call
BindRegion(pid, fhandle, freg start, len, mreg start, attr)
which specifies the virtual extent of the new region as [mreg start, mreg_start+len].

40 CHAPTER 4. REQUIREMENTS

The file to which the region is bound is specified by a file handle, fhandle, and the file
region extent is [freg_start, freg _start+len]. The address space in which the region is
created is specified by the process identifier (pid) of any process within the target address
space. This explicit address space specification allows a suitably privileged process to bind
regions in address spaces other than its own. For example, a Program Manager might bind
a stack and executable file for its clients.

The attr field of the BindRegion call defines the logical and physical attributes of
pages within the new region. The physical attributes of the region allow one to specify
read-only access, as well as initial placement and coherence policies. Logically, a region
may be bound either shared or private. This classification has no distinction for immutable
regions, but changes to a shared region are visible to other programs mapping the same
file region, while changes to a private region are seen only by the program modifying the
data. Private regions are implemented through a copy-on-write mechanism, described in
Section 5.7.

Other calls that pass the application interface include

UnbindRegion(pid, address)
ExtendRegion(pid, address, len)
GetRegionAttributes(pid, attr)
SetRegionAttributes(pid, address, attr)
ResetRegion(pid, address)

Like BindRegion, these calls use pid to identify the address space; the region of interest
is specified by supplying any address contained by it.

4.2 Hurricane Interprocess Communication

HURRICANE’s interprocess communication facility is described here for two reasons. First,
HURRICANE message passing is used for communication between loosely coupled servers,
and between servers and applications. Second, a generalized facility to transfer arbitrary
contiguous virtual segments of data across address space boundaries is available to appli-
cations and must be provided by the memory manager.

The basic message passing facility is based on a Send-Receive-Reply (synchronous)
message transaction identical to the facility provided by the V system [23]. The sender
executes

Send(pid, msg)
where pid is the destination process, and msg points to a message of fixed size. The
receiver, when executing
pid = Receive(msg)
blocks until a message is available, at which time the received message is copied to the
location specified by msg and the process id of the sending process is returned. The sending
process is generally referred to as the client and the receiving process is generally referred
to as the server, regardless of what roles these processes play in the system otherwise. The

4.3. MEMORY MANAGER INTERFACES 41

sending process is blocked until the receiver responds with a reply message:

Reply(pid, msg)
This causes the message pointed to by msg to be copied back to the client, where it
overwrites the message that was sent when the transaction was initiated.

The TPC facility is optimized for the synchronous passing of fix-sized messages on the
premise that RPC-style communication, where the sender blocks until it receives a reply,
will be the dominant form of communication, and is particularly suited for client-server
interaction. However, other forms of communication are also supported, including the
passing of asynchronous or real-time messages.

A number of primitives provide functionality in addition to the basic message transac-
tion. For example, the function

Forward(msg, frompid, topid)
forwards the message pointed to by msg (originally received from process frompid) to the
process specified by topid, as though it had been sent by the process frompid directly.
This function is used to forward a message to a third process, in place of replying to a
message. Forward does not block.

Processes in different address spaces can share data on a per page basis by binding to
a common file. However, for one-time or small transfers, the overhead of setting up and
tearing down such a connection will be too expensive. Examples where this may be the
case are: passing a file name to the File Server for open(); requesting the state of a process
from the kernel; or initializing a program’s arguments on start-up. These data items are
typically smaller than a page and are not normally aligned to any page boundaries, so the
page-level protection provided through virtual memory is inconvenient.

The memory manager therefore provides a facility to transfer arbitrary contiguous
virtual segments of data across address space boundaries. The application interface to
this facility is through the two calls: CopyTo, and CopyFrom. The transfer is protected
in conjunction with the HURRICANE IPC protocol as follows. When process A sends a
message to a process B, the message can specify both the access rights and the location
and size of a virtual memory segment in its address space. Consistent with these access
rights, process B may have data transferred to or from any portion of this segment through
the protected copy system calls. The permissions last until B replies to the message sent
by A.

The implementation of Protected Copy is described in Section 5.8.

4.3 Memory Manager Interfaces

The memory manager communicates with applications and the rest of HURRICANE through
four cooperating interfaces: the application interface, the kernel interface, the I/O interface,
and the hardware. Figure 4.2 shows the memory manager in relation to these entities.
Circles represent processes; processes within the same solid box share an address space.
The arrows indicate the direction of communication. This section briefly describes each
interface, focusing on the requirements implied for the memory manager.

42 CHAPTER 4. REQUIREMENTS

Application Application

Q Q File Manager

‘A v

I

Kernel Memory Manager /
| _________
| Copy

Process | Process Block

Manager | Server
| Page
| cavenger
|

A + A
Hardware

Figure 4.2: Memory Manager interfaces.

The application interface is defined by the single-level store abstraction. Applications
create and manipulate regions by directing requests to the region manager of Figure 4.2.
The copy process services application requests to transfer data across address space bound-
aries. Although not (necessarily) visible to the application programmer, communication
with the servers of the memory manager occurs through message passing.

The relationship between the file system and the memory manager is always difficult
in a server-based system. Implementing the file system above the virtual memory system
leads to an awkward design, because the virtual memory system must use the services of the
file system for paging. On the other hand, implementing the virtual memory system above
the file system makes the implementation of the virtual memory system more complex and
less efficient; for example, it requires the memory manager to verify file access permissions
with the file server when the application requests that a file region be bound into its address
space. For this reason, we have split the functionality of the file system into two levels,
one logically above the memory manager, and one below the memory manager. We are
unaware of any similar design, yet in our experience it has worked well.

At the high level, the directory server acts in a supervisory capacity, ensuring that
processes only bind to files within the permissions granted by the access rights of the file.
Hence, a BindRegion call is first directed to the directory manager for permission checking;
the request is then forwarded to the region manager. At the low level, the memory manager

4.3. MEMORY MANAGER INTERFACES 43

and Block Server communicate to transfer physical pages to and from secondary store. The
communication interface is synchronous and block-oriented, and is based on the two calls
ReadBlock and WriteBlock. These calls are used to satisfy page-fault and write-back
needs, and specify a page-sized file block and physical memory target or source address.
The file block is uniquely specified by the tuple <file_server,token,block> that is part
of all file block identifiers maintained for each physical page. Physical memory addresses
are used to specify the source or destination page to allow efficient Direct Memory Access
(DMA) by the device servers.

The kernel server and memory manager reside in the same address space, but are
kept separate by a procedural interface (the dashed line in Figure 4.2). The kernel server
is responsible for servicing requests that change the state of processes. Some examples
of the services provided are: CreateProcess, which allocates a new process descriptor
and readies it for execution; SetProcessPriority, which resets the priority of a process,
possibly changing its position in the queue of ready processes; and Delay, which suspends
a process for a specified time interval. Created processes always reside in the same address
space as their creator, unless they are created as the result of a CreateProgram call. The
address space continues to exist until all processes within it have terminated. For this
purpose, a process count is kept for each address space on a per cluster basis, which is
decremented as each process within it is destroyed. The address space itself is destroyed
and its resources released when the count reaches zero.

Finally, the memory manager must interact with the hardware base. The interface be-
tween the memory manager and the hardware is bi-directional. The memory manager com-
municates with the hardware through device-specific instructions or registers, and through
the page tables that describe virtual to physical translations and access protections. De-
vice specific instructions include operations that flush a page from the hardware cache, or
invalidate a particular TLB entry. The hardware communicates with the memory manager
by raising exceptions, such as translation or protection faults. On a fault, the processor
saves the state of the faulting process and makes it available to the memory manager. This
state information includes, among other things, the process’ registers, the virtual address
that caused the fault, and the type of access (read or write). The memory manager can
then use this state to determine what actions are needed to resolve the fault.

Chapter 5

Per-Cluster Memory Management

In a hierarchical symmetric multiprocessing system, each cluster provides the complete
functionality of a small scale symmetric multiprocessor operating system. This chap-
ter describes the data structures that support memory management functions within a
HURRICANE cluster. The data and control structures used within a cluster are important
in attaining good performance for local interactions, and because clusters serve as the base
upon which larger systems are built. Although developed independently and concurrently,
the structures used within a cluster are similar in many ways to those of other modern
memory managers, such as the memory managers of Mach [66] and Chorus [1]. However,
our approach differs significantly from that of other systems in a few areas. For example,
our copy-on-write and TLB consistency mechanisms are different from those implemented
in Mach or Chorus.

The structures used within a cluster are relatively complex, and the interactions be-
tween different structures are often subtle. Consequently, we begin with an overview of the
primary data structures, and show how they are used to service two key operations: page
faults and unmap operations. Subsequent sections examine each data structure in detail.

5.1 Overview

Figure 5.1 shows the primary data structures of the memory manager. The data structures
are shared by all processors within the cluster, in order to achieve good performance.
The responsibility of virtual resource management is to establish and maintain the logical
correlation between virtual pages and file blocks. The virtual resources are maintained on
a per address space basis, and include the address space descriptor, the region tree, and
the sub-region lists. For each address space, the relation between a virtual page and the
file block it is bound to is kept in the region descriptors of the region tree.

The responsibility of physical resource management is to establish and maintain the
correlation between file blocks and physical pages. In Figure 5.1, the data structures asso-
ciated with the management of physical memory are the page cache and page descriptors.
There is one page descriptor for each each physical page in the cluster. The page descriptor

44

5.1. OVERVIEW 45

e

— h
file
table

cow region| region tree

subregions
to support copy on write

Address

PageCache
Spaces

: page
r.a.descriptors
................................. frrssrssnnesnnennnnrnree b SRS ERERER s

hardware independent X

hardware dependent

set of

region list page tables

Figure 5.1: Per-cluster data structures.

for a particular physical page identifies the file block cached by the page; the file block is
uniquely identified by the tuple <server,token,block>.

By separating virtual and physical resource management at the level of file blocks, sev-
eral advantages are realized. First, the level of indirection introduced permits many-to-one
and one-to-many relationships between virtual and physical pages. As an example of a
many-to-one relationship, several programs can share a single physical page by binding
separate virtual pages to the same file block. This many-to-one mapping can be used to
allow sharing across programs, or to improve memory utilization. A one-to-many relation-
ship may be used when a single program spans several clusters. In this case, a single file
block can be cached by several different physical pages to reduce contention and improve
locality. The decoupling of virtual and physical responsibilities also has the advantage of
localizing the effect of changes in each layer, which improves portability and modularity.
For example, in moving from one architecture to another, the policies at the physical layer
can be tuned for better performance without affecting virtual resource management.

Operations on virtual resources are usually initiated in response to application requests.
For example, requests to bind a region or unmap the pages of a region are sent, via message-
passing, to the region manager process of the local cluster. Operations on physical resources
are usually initiated on demand in response to hardware faults. The three demand-driven
mechanisms in HURRICANE are paging, cache coherence, and copy-on-write. All three
mechanisms are able to defer their actions by relying on the hardware translation and

46 CHAPTER 5. PER-CLUSTER MEMORY MANAGEMENT

protection support.

The operations performed by the memory manager can also be classified as either main-
tenance or translation operations. Maintenance operations at one level do not affect the
other level because of the decoupling between virtual and physical resources. Maintenance
operations on virtual resources include allocation and deallocation of address spaces and
regions, as well as the checking and setting of access permissions. Maintenance operations
on physical resources include page allocation, page placement and page replacement. To
map a page' is to establish a virtual to physical translation for the page. In practice,
this involves setting an entry in the page tables. A page unmap removes the virtual to
physical translation. In practice, unmap operations are more complex than just removing
a page table entry, because cached context may also have to be invalidated from cache and
TLB entries. Because translation operations are the most common operations the system
performs, the data structuring should be such that the operations can be executed quickly.

Pages are mapped on demand through page-faults. On every memory access, the
hardware automatically checks first that the virtual address can be translated to a physical
address, and that the type of access does not violate the permissions for that address. If
either of these checks fails, an exception is raised on the processor and the memory manager
takes over. A translation can fail either because the virtual address is invalid (not within
any region of the process’ address space), or because the mapping between the virtual and
physical pages has never been established. The access check normally fails as processes
attempt to write to pages marked read-only. Pages are write protected because the region
is immutable, the page is marked for deferred copy, or as part of the memory manager’s
coherence policy. Illegal accesses are passed to the HURRICANE Exception Manager [16];
the algorithm to handle page faults is discussed briefly here.

When a translation fault is recognized, the processor saves the state of the faulting
process and passes it on to the memory manager. This state information includes, among
other things, the process’ registers, the virtual address that caused the fault, and the
type of access (read or write). With this information, the memory manager searches the
region tree to determine the region containing the address, the access permissions, and
the file block associated with the virtual address. Processing then moves to the physical
level, where the memory manager searches the page cache to determine if the file block is
already memory resident. If the file block is already memory resident, the search identifies
the page descriptor of the physical page that is caching the file block. If the file block is
not yet memory resident, a new page is allocated to hold the file block data when it arrives
from secondary store. In addition, a page descriptor for the new page is added to the page
cache. Of course, fault handling in this case must be suspended until the file block transfer
is complete. The virtual to physical translation is completed by updating the page tables
of the address space that caused the fault, and completing the instruction that caused the
fault.

Unmap operations also begin with a virtual address and address space context. Strictly

'In contrast, we use the term bind to refer to the relation between a virtual page and its corresponding
file block. Thus, an application “binds to files” and “maps pages”.

5.2. VIRTUAL RESOURCE MANAGEMEN'T 47

speaking, the translation can be removed by manipulating the page tables alone, but the
physical page descriptor is also accessed for clean-up purposes, such as freeing the page
for possible reallocation. The file table of Figure 5.1 identifies all the address spaces with
regions that bind a particular file. This table is used to determine the virtual pages that
reference a particular physical page, so that the page table entries can be reset.

The data structures of the memory manager must support the basic page fault and
unmap operations efficiently. The most common operation required of the data structures
is search. For example, the regions of an address space must be searched to find the file
block bound to a given virtual address, and the physical page descriptors must be searched
to find which page, if any, caches a particular file block. Besides search, the data structures
must support add and delete functions for use by the maintenance class of operations. Since
the data structures may be accessed concurrently by several processors needing service on
the same or different data, synchronization capabilities must be an integral part of each
structure. Synchronization is required at two levels: first to maintain the integrity of the
data structures themselves; but also to keep application data consistent across memory and
with respect to secondary store. For example, accesses to a file block must be suspended
while it is in transit from secondary store, and modifications must be delayed if the block
is currently being replicated.

Each data structure could be implemented in any number of different ways, each with
its own space/time strengths and weaknesses. The remainder of the chapter describes
the choices made in HURRICANE, and shows how they meet the basic design guidelines of
Chapter 3.

5.2 Virtual Resource Management

Figure 5.2 shows the state kept for each address space: an address space descriptor, or
ASID: a tree of bound regions; and a set of hardware dependent page tables. All processes
within a program share a single ASID record. This makes the ASID a convenient place
to keep program-wide information, such as the default backing file and memory usage
statistics.

The regions field of the address space descriptor points to a balanced binary tree of
Region records of the form shown in Figure 5.3. The start and end fields of a Region
record denote the virtual memory limits of the region; the file and cowfile structures
together define the file to which the region is bound. File regions are identified uniquely
by the tuple <server,token> and the starting file block of the region. The file region
specified by file is always the backing store for the region, however, copy-on-write regions
may temporarily override this binding to source their data from the cowfile file region.
The HURRICANE copy-on-write mechanism is discussed in more detail in Section 5.7.

The region attributes and the attributes of pages within the region are defined by the
regatt and pageatt fields. Regatt maintains the machine independent attributes of a
region, such as shared or demand-zeroed; pageatt stores the machine dependent page
attributes, such as write-back or uncached, and is copied into the page tables as each page

48

CHAPTER 5. PER-CLUSTER MEMORY MANAGEMENT

r

typedef struct subregion {
struct subregion *left, *right ;
AddrType start, end ;

} RegionElement ;

typedef struct {
ServerType server ;

TokenType token ;

BlockType start ;

} FileRegion ;

typedef struct {

RegionElement region ;
FileRegion file ;

FileRegion cowfile ;

RegionElement *subregion ;
Core *preferred ;

short regatt ;
short pageatt ;

} Region ;

ASID Regions
regions < Sl, E >
root INVALID .
Sub-regions
pgm constants file b = S E N |
pmap PRIVATE ﬁ L
+ Y Y
< So, o > < SN, En > Y
Hardware INVALID flec =< Sy, Ex >
Dependent c Ny N W
file @ file b
Page Tables
SHARED PRIVATE

v

o

Figure 5.2: The structures associated with each address space.

// Virtual addresses in this region.

// File id.

// Starting file block.

// Backing file for this region.

// Copy-on-Write file.

// Deferred copy sub-regions.

// The CPU from which to get memory.
// Machine-independent attributes.
// Machine-dependent attributes.

Figure 5.3: The data structures used to describe a virtual memory region.

5.3. PHYSICAL RESOURCE MANAGEMEN'T 49

is faulted in.

The regions are searched on each page fault, so it is imperative that the search overhead
be kept low. For this reason, the regions are structured as a balanced binary tree [57]. The
tree structure yields O(log,(NN)) worst case search times, and permits searches by several
processors to proceed concurrently under the protection of a single multiple-readers/single-
writer (MRSW) lock?. The main drawback of a balanced tree is the high cost of rebalancing
the tree after an insert or delete operation. However, these operations were observed to
be relatively infrequent, particularly in comparison with the number of search operations,
so the overhead seems justified. The rebalancing after a delete is especially difficult, so
a “lazy delete” algorithm was adopted, where a region is deleted by marking the record
invalid, and leaving it in the tree. Subsequent searches must step over the invalid record,
but their occurrence in practice is relatively rare, and they can also be re-assigned to a
new file region if an insert is performed later.

The machine dependent page tables are the third major data structure kept with each
address space. These tables record the virtual to physical address translations and access
permissions as required by the hardware. Page tables are created on demand as the pro-
cesses establish their working sets. To support software coherence, each processor has its
own independent set of page tables. The trade-offs involved in this decision are discussed
in more detail in Section 5.5.

5.3 Physical Resource Management

The structures used to manage the physical memory of each cluster include page descriptors
to maintain the state of each physical page, a Core structure to manage all the pages on a
single memory module, and a PageCache hash table to locate physical pages using the file
block identifier as a search key. Figure 5.5 shows the organization of these structures.

Each physical memory page on the machine has a page descriptor associated with it,
defined as shown in Figure 5.4. The primary purpose of the page descriptor is to identify
the file block cached by the physical page at address addr. The file block is identified
by the tuple <server,token,block>. In addition, the page descriptor field status is
used to maintain the state of the descriptor itself and of the data associated with it. The
state has two components: the coherence state consists of several bits used to describe
the cacheability of the page; and general attribute information such as IN_USE (the page
descriptor is not available for re-allocation), PINNED (the page must remain resident in
memory), or DOING_IO (the page is in transit to or from backing store).

2A previous design used a doubly-linked list sorted in order of increasing virtual address. The search
time of the list was reduced by setting the root of the list (the regions pointer) to the target region
after each search. Assuming there is some locality of access, there is a good chance that on the next page
fault the root already points to the correct region. There are two drawbacks to the list based approach:
1) resetting the root pointer after each search limits concurrency because the root must be changed within
a critical section; 2) the assumption of locality of access is not appropriate when several processes, each
with a potentially different working set, all want access to the same region list.

30 CHAPTER 5. PER-CLUSTER MEMORY MANAGEMENT

typedef struct page

{
ServerType server ; // Unique file id.
TokenType token;
BlockType block ; // The file block stored in this page.
AddrType addr ; // Physical address of the page.
unsigned short status ; // IN_USE, PINNED, etc.
unsigned short members ; // Processors caching this page.

struct page *hnext, *hprev ; // Hash list pointers.
struct page *fnext, *fprev ; // Free list pointers.
} Page ;

Figure 5.4: The page descriptor record, which is used to describe the state of each physical page
in the system.

The page descriptors for all the physical pages of a single memory module are kept in
an array called the pdarray, which is part of the Core structure of Figure 5.5. There is
one Core structure for each memory module in the cluster, and besides the pdarray and
some addressing information, each Core structure independently maintains a freelist of
pages that are available for allocation from that memory module. A page is available for
allocation if it is not VALID, or if it is valid but not IN_USE. A page is valid if the file block
it caches represents the correct value on secondary store; the page is in use if it is currently
mapped into the address space of a program in the cluster. It is important that the free
lists of different Cores be separate, so that it is possible to quickly allocate a page from
a particular memory module. This allows the implementation of various page placement
policies.

The three page placement policies currently supported are first-hit, round-robin, and
fized, and are specified on a per region basis:

First-hit: The pages of a first-hit region are allocated from the Core of the processor that

first accesses them®. This policy can improve locality for data accessed by a single
process, because the pages are allocated from the processor on which it is executing.
Stack regions and regions used for private data are examples that can benefit from

the first-hit policy.

Round-Robin: The round-robin policy cycles the pages of a region across the memory
modules of a cluster, which can help balance the memory access demand for data
that is shared by several processes. For example, code pages and regions that con-
tain common arrays can benefit from a round-robin policy. The preferred field of
the region descriptor (Figure 5.3) identifies the memory module from which to al-

3We assume here that a memory module is associated with each processor, as is the case on HECTOR.

5.3. PHYSICAL RESOURCE MANAGEMEN'T 51

Core 0 Core 1 Core N >

freelist| pdarray freelist pdarray freelist| pdarray
N Page 0 Page 0 Page 0
<sl,tl,b2> <s2,tl,b3>
/’_B TEXT | LOCKED (—— VALID|IN_USE‘<\
Page 1 " Page 1 Page 1 <.
____________________ <s1,t2,bd>
; P : VALID
Page 2 Page 2 Page 2
<s2,t1,b0> <s2,tl,b2> ____________________
r—B VALID|IN USE E DOING_IO ﬂ—‘-) ____________________
.1 Page N-1 i____?f?f__l\]_—_l_____i e Page N-1
<sl,tl,b0> ___________________
VALID :
Page N P Page N 4’ Page N
<sl,tl,b3> <s2,t2,bl> <sl,tl,b4> _)

VALID|DIRTY K—P TEXT | IN_USE IN_USE|DIRTY

Page Cache Hash Table

Figure 5.5: The structures used to manage physical memory. The page descriptors of each
memory module are grouped together into an array called pdarray, which is part of a Core
structure. There is one Core for each memory module in the cluster, and each Core has its own
LRU freelist. There is one PageCache hash table in the cluster, which is searched by file block
identifier. The chains of the PageCache therefore run freely across all the memory modules in
the cluster.

52 CHAPTER 5. PER-CLUSTER MEMORY MANAGEMENT

locate the next page?, so that the pages of different round-robin regions are cycled
independently.

Fixed: Regions bound with the fixed policy keep a core identifier from which all pages
in the region are allocated. This policy is appropriate for applications that know
their access patterns in advance, and for system servers that have special placement
requirements.

The physical pages of main memory are treated as a cache of file blocks. The relation-
ship between the file block and its location in memory is kept in the page descriptor. The
PageCache hash table permits a page to be located by searching for its corresponding page
descriptor, using the file block identifier as a search key. The basic structure and use of the
page cache is identical to the block cache described by Bach [6]: the PageCache hash table
is keyed by the file block identifier and uses doubly-linked overflow lists to resolve hash
conflicts. To support a high degree of concurrency, each bin of the PageCache hash table
has its own MRSW lock to allow searches to proceed in parallel. Also, each page descriptor
is locked separately to allow operations on different pages to proceed concurrently.

All pages in the page cache, except those whose data is in transit from secondary store,
are VALID, which means that their contents represent the most up-to- date value of the
data associated with the file block. Further, all blocks in the page cache are either IN_USE,
which means they are currently mapped into the address space of at least one program,
or they are on a free list, which means they are available for re-allocation to a different
file block. By leaving free pages in the PageCache, processes are given a “second chance”
to reuse the file block before it is reassigned, which saves having to refetch the data from
secondary store.

The free lists are maintained in approximate LRU order to increase the probability that
frequently used pages will remain in the cache. Freed pages are appended to the end of
the free list, while new pages are allocated from its head, so that each page remains in the
cache for the time it takes to move to the head of the list before its contents are reassigned.
To further enhance this caching, invalid or temporary pages are inserted at the head of the
free list so they can be reassigned before the valid pages further down the list. Pages are
invalidated as a result of a file delete or truncate; temporary pages include segment tables
and stack pages of terminated programs.

The page cache is used as follows. When a page fault must be satisfied from a file, the
cache is searched to see if the file block is already in memory. If the block is found (a cache
hit), the page containing the block is mapped to the address space of the faulting process,
and no I/0 is needed. On a cache miss, a new page is first obtained from the free list
and inserted in the cache. The placement policy of the region containing the virtual page
determines the core from which the physical page is allocated, but otherwise the pages in
the cache can be shared by all processors in the cluster. The file block is then fetched

4The field is called preferred because the memory module identified by this field may not have any
pages available for allocation.

5.4. THE FILE TABLE 33

from secondary store into the new page. While the data is in transit, the page is marked
DOING_IO so that other processes faulting on the same page know not to reissue the fetch.

The transfer from secondary store is initiated with a ReadBlock call. Because ReadBlock
is a message send to the Block Server, and because the HURRICANE IPC protocol is process
based, a process is needed to send the message. The memory manager cannot issue the
send, since it is simply exception handling code and has no associated process descriptor.
Instead, the descriptor of the faulting process is used, and is set up to appear as though the
process made the ReadBlock call directly. This approach has several advantages: it ensures
that the memory manager is never blocked waiting for 1/0; it allows multiple outstanding
page faults (by different processes); and it automatically blocks the faulting process until
the server indicates that the transfer is complete.

5.4 The File Table

To this point, the data structures have been described in the context of fault handling:
given a virtual address and address space, the region tree identifies the logical file block,
which is used to locate the physical page. The reverse information is also needed: given a
physical page, the system must determine the virtual mappings to it. This section describes
the data structures and control flow associated with the most common operations that
require this information: unmap, uncache, and invalidate.

The unmap operation removes the virtual to physical mapping for a given page, so
that it can be freed for re-use, or so that its coherence state can be reset. The invalidate
operation is similar to unmap, except that the page is removed from the page cache. Unmap
and invalidate operations are typically not demand-driven, but are initiated by the region
manager in response to program termination, at the request of a user application, or in
response to a page scavenger process that frees pages not recently accessed. In contrast,
the uncache operation is demand-driven, and is invoked when the HURRICANE default
coherence policy determines that a page is write-shared by two different processors (see
Section 5.5).

The operations described above begin with a target file block, which is obtained from a
region descriptor for unmap, and from the physical page descriptor for uncache. The next
step is to update the page table entries that reference the page corresponding to the target
file block. For example, if a page is invalidated, then all virtual to physical translations to
the page must be removed to ensure correct behavior. Updating the page table entries is
complicated by the fact that a physical page could by mapped into the address space of
many different programs.

There are several different ways to determine all the virtual to physical mappings that
exist for a particular physical page. In general, different approaches can trade search time
for space cost. For example:

o Use only the address space and region descriptors that already exist. This approach
has no space cost, but requires an exhaustive search of all address spaces and regions

54 CHAPTER 5. PER-CLUSTER MEMORY MANAGEMENT

File B

AS 3 _9} Region 1 l_B} Region 3 |

File C File A

AS 2 _B} Region 1 |
AS 1 —9} Region 1 AS 3 —B}Region 2 |

Hash Table

Figure 5.6: The FileTable.

to determine the virtual pages that reference the target physical page.

e Record all virtual mappings on a per file block basis. This approach minimizes search
time, but has a prohibitive space cost.

o Keep some information, such as a list of address spaces and regions within them that
access a particular file. This approach is used in HURRICANE. Keeping information
on a whole file basis requires less searching than an exhaustive search, and does not
have excessive space cost.

Figure 5.6 shows the structure of the FileTable used to keep the reverse mapping
information. There is one entry in this table for every file that has an active binding,
which means that some portion of the file is bound to some memory region of an address
space. For example, Figure 5.6 shows address spaces with regions bound to some segment
of files A, B, and C. The entries of the table are located through a hash table keyed by the
<server,token> fields of the target file block. Each table entry lists all the address spaces
within the cluster that specify a binding to some segment of the file, and each address space
in this list has an associated list that identifies the regions within the address space that
bind the file. In the figure, file A is referenced by region 1 of address space 2, and by region
2 of address space 3.

Given a particular file block, the table is accessed as follows. First the hash key is
applied to locate the table entry for the file. Through the address space list and associated
region lists, each entry maintains all the regions in the cluster that specify a binding to
this file. The extent of the file segment bound to each region is then checked, and if the
particular file block lies within one of these extents, the corresponding virtual address is
obtained and used to update the page table entries for the address space.

5.5. CACHE COHERENCE 55

=~ MR Any Read
Read Di = Py \

Any Write

Figure 5.7: The state transition graph for a simple coherence policy.

5.5 Cache Coherence

For those systems that do not support cache coherence in hardware, HURRICANE is ca-
pable of supporting cache coherence in software. Cache coherence is maintained on a per
cluster basis using a full-map directory protocol; the protocol is extended hierarchically to
maintain both main memory and cache coherence across clusters in Section 6.4. This sec-
tion describes the protocol and implementation for each cluster, and examines interesting
trade-offs through an example coherence policy.

Recall from Section 2.3 that each “coherence unit” in a full-map directory coherence
protocol has a directory entry associated with it, which records the state and processors
caching the data. In this case, the coherence unit is a physical page, and the page descriptor
serves as the directory entry. The status field of the page descriptor records the coherence
state, and the members field contains a bit for each processor in the cluster (see Figure 5.4).
For a given page, the ¢th bit of the members field is set if processor p; might be accessing
the contents of the page. While different coherence policies can be implemented from this
basic mechanism, this discussion will assume the simple policy represented by the state
transition graph of Figure 5.7.

A page is initially Unused, which means that it is not mapped into the address space
of any process. On first access, the page is mapped into the address space of the faulting
process and the coherence state of the page moves to either Single Reader (SR) or Single
Reader/Writer (SRW), depending on whether the access was a read or a write, respectively.
The jth bit of the members field is then set because processor p; is now referencing the page
data. The page can be safely cached in the SR and SRW states because it is referenced by
a single processor. However, an SR page must be write-protected to allow a transition to
the SRW state if necessary.

Once a page is initialized, other processes executing on the same processor (p; in Fig-

56 CHAPTER 5. PER-CLUSTER MEMORY MANAGEMENT

ure 5.7) may access the page without changing its state. For processes within the same
address space, this sharing is automatic because they all use the same page tables on a per
CPU basis. Processes in other programs may also share access to a single physical page
by binding a region to the file block cached by the page. However, while processes in two
different address spaces may share a common page, they do not share the same set of page
tables. This means that processes in both address spaces must incur a translation fault to
map the physical page into their separate address spaces.

Consider the case where another processor, p; in the figure, references the page. If the
access 1s a read and the state of the page is SR, it remains cacheable and write-protected,
and the members field is updated to reflect the access by the new processor. This is called
the Multiple Readers (MR) state, and any number of processors may cache the page as
long as no write is attempted.

The final state is called the Multiple Readers/Writers (MRW) state, and is entered if
i) any processor attempts a write to an MR page, or ii) some processor p; # p; makes a
write access to an SR page, or iii) some processor p; # p; makes any access to an SRW
page with member set p;.

On a transition to the MRW state, the page data must be invalidated from the caches
of all processors in the current member set (and flushed, if the page was SRW), and the
mapping protections must be reset to specify uncached access. Uncached access ensures
consistency by forcing each processor to go directly to main memory on each access to the
page. Once a page has become uncached, it remains in the MRW state until it is no longer
referenced or until the page is explicitly invalidated or unmapped. This simple algorithm
is sufficient to ensure consistent access to write-shared data while retaining the benefits of
caching for non-shared or read-only data.

The basic consistency protocol presents many interesting policy and implementation
issues. For example, one disadvantage of the coherence policy of Figure 5.7 is that the
decision to uncache a page is never re-evaluated. This can penalize those applications that
use one process to initialize a data structure that is then accessed read-only by several
other processes. This access pattern will result in the page being uncached, because the
initialization places the page in the SRW state, and subsequent accesses by any other
processor will move the page to the MRW state. To overcome this problem, HURRICANE
provides a ResetRegion operation, which can be called by an application to reset the
coherence state of one or more pages. Besides explicitly resetting the page state, it could
be possible to re-evaluate the decision to uncache a page by periodically invalidating it;
this returns the page to the Unused state of Figure 5.7, giving it a chance to enter a
cacheable state on subsequent accesses. Several re-evaluation policies have been proposed
by investigators at Duke [36] and Rochester [17].

Another problem is “false sharing”, which occurs when data used independently by
two different processors is co-located on the same page. Since the coherence checking is
restricted to page size granularity, these pages appear to be write-shared, and thus are
marked MRW. ResetRegion is less effective in addressing this problem, because the page
is actively shared. User level coherence and weaker consistency models hold promise for

5.5. CACHE COHERENCE 57

reducing the effects of false sharing [55, 20], but the techniques only try to reduce the
effects of false sharing, Often, sources of false sharing can be removed by managing the
address space so that pages are allocated to data with similar access patterns. Towards
this end, HURRICANE provides an “arena” allocator package that allows applications to
allocate data structures from separate pools, or arenas, of memory. The pools are typically
designated on the basis of expected access patterns. For example, each process might have
its own arena for private data, while global read-only data and locks are placed in two
other separate arenas.

The directory protocol also presents several interesting implementation issues. In par-
ticular, there are several trade-offs in the page table management strategy. Because the
processes of a parallel program share a common address space, one set of hardware de-
pendent page tables should be sufficient to provide the necessary mapping information for
the entire program. However, if cache coherence is to be supported in software, then a
separate set of page tables must be kept for each processor. This is because the hardware
support for virtual memory typically provides only two types of faults: translation faults,
which are used to move from Unused to the SR/SRW state, or from the SR to the MR
state; and protection faults, which are used to detect transitions to SRW or MRW states.
Further, the demand driven nature of the memory manager only permits state changes in
response to a fault. Consequently, to detect the state changes and maintain the member
set correctly, each processor that executes a process on behalf of a parallel program must
have its own set of hardware dependent page tables.

It is possible to support cache coherence with a single set of shared page tables, but
this approach has several disadvantages. This is because once any process has accessed
the page to establish a valid virtual to physical translation, any other process, on any
other processor, can access that page without generating a fault, since the page tables are
shared. Moreover, with a single page table, it would not be possible to differentiate all
five states of Figure 5.7. Instead, the SR and MR states would effectively be merged into
one read-shared state, and the SRW and MRW states would become a single write-shared
state. The latter differentiation is particularly important, because a page can be cached in
the SRW state but not in the MRW state.

Hence, with a single set of page tables, only one process has to fault to map the page
for all the processes sharing the address space at the cost of a loss of member information,
which leads to more pessimistic decisions about which pages could safely be cached. In
addition, the cost to move from the read-shared to the write-shared state is more expensive,
in this case, because the lack of a member set means that all processors that might be
caching the page must invalidate their caches.

Keeping separate page tables per processor therefore allows precise book-keeping, but
also increases the memory requirements of parallel programs because of the multiple page
tables, and increases the cost of memory management functions that must now deal with
multiple translation entries instead of one. In addition, the number of page faults is
increased.

Lastly, the scalability of the two approaches must be considered. Clearly, the page tables

38 CHAPTER 5. PER-CLUSTER MEMORY MANAGEMENT

for a single program cannot be shared across the entire system, because the demand on this
single resource would increase proportional to p, the number of processors in the system.
However, the tables could be shared within clusters, provided they are kept consistent
across clusters.

In summary, the trade-offs between using one shared set of page tables or one set per
processor are interesting and complex. A single shared set of page tables requires less
space and results in fewer page faults, but the lack of directory information makes the
cache coherence and TLB consistency protocols (Section 5.6) more conservative and more
costly. By using a page table per processor, it is possible to differentiate between the SRW
and MRW states, and to restrict remote interrupts for page table manipulations to exactly
those processors that are mapping the page. We feel the application performance that can
be gained by exploiting these features justify the space and complexity overheads of having
a page table per processor.

5.6 TLB Consistency

Since Translation Look-Aside Buffers are effectively caches of page table entries, and since
each processor typically has one or more TLBs, steps must be taken to keep the TLBs
consistent with each other, and to keep the TLB entries consistent with the page table
entries in memory. Inconsistent TLBs will allow invalid access as a result of a change to a
page table entry that makes the page protection more restrictive (for example, when the
protection of a page is changed from read-write to read-only). Invalid access cannot occur if
the TLB becomes inconsistent due to a change in the page table entry that makes the access
protection to a page less restrictive. At worst, a process that accesses a page with a stale
TLB entry will fault, and the memory manager will detect and correct the inconsistency
in the course of handling the fault. As a result, immediate action to re-establish TLB
consistency is only required when the page protection is made less restrictive.

Several groups have studied TLB consistency and have proposed solutions using a single
set of shared page tables [14, 54, 64, 7]. The general approach is typically called “TLB
shoot-down” and uses remote interrupts to halt all the processors so that they can invalidate
the appropriate TLB entry. The basic TLB shoot-down algorithm is overly excessive in
that all processors must be interrupted, and is therefore not scalable. All processors must
be interrupted because no information is kept about which processors are sharing the single
page table entry.

On HURRICANE, the directory information and multiple sets of page tables greatly
simplify the solution to the TLB consistency problem. First, a lock is associated with each
address space to properly serialize changes to the page table entries. When a page mapping
is changed or restricted, only the processors in the member set of the page descriptor need
to be interrupted with enough information to update their local TLB and page table entries.
The TLBs are invalidated concurrently by using a two-phase protocol. In the first phase,
the master initiates the cache operation on all the processors in the page descriptor member
set through interrupts, then performs the same operation on its own TLB if necessary. In

5.7. COPY-ON-WRITE 59

the second phase, the master waits for the other processors to set a flag signaling their
completion.

5.7 Copy-on-Write

The single-level store abstraction of HURRICANE requires that each memory region be
bound to a corresponding file region. However, certain run-time semantics and optimiza-
tions require an extension to this basic abstraction. For example, the initialized data
segment of an executable file may be modified by the program but should not change on
secondary store. Consequently, each program that binds to the initialized data segment
should get its own private copy of the file blocks in the segment. In this way, the copied
segment can be modified as needed without changing the original image on secondary
store. Also, if several programs are running the same executable file simultaneously, each
program receives its own copy of the initialized data segment, so that the modifications
made by one program are not visible to the other program instances.

To reduce the amount of copying, HURRICANE uses an optimization called copy-on-
write [62]. The key to the copy-on-write optimization is to realize that the file blocks of
the initialized data segment can be shared by the separate instances of the program as long
as they do not try to modify the data. Modifications to the file blocks can be prevented
by mapping the corresponding physical pages with read-only permissions. If one of the
programs attempts to modify the contents of the page, a protection fault is generated,
and the memory manager can make a private copy of the file block for use by the faulting
program. The advantage of copy-on-write is that file blocks that are never modified are not
copied, which reduces overhead. The disadvantage of copy-on-write is that if the page must
be copied, the program must suffer the cost of two page faults: one page fault is needed to
map the page read-only, the second (write) fault triggers the copy. If copy-on-write were
not used, only one page fault would be needed to make a copy of the page and map the
copy into the address space of the faulting program.

Recall from Section 5.2 that each region descriptor contains two FileRegion structures
that identify the files to which the region is bound. If the region attributes specify that
the data is globally shared or immutable, then only the file entry is used. On the other
hand, if the region attributes specify that the program wants its own private copy of the
data, then file is set to a temporary file used for page-out, and cowfile identifies the file
used to source the data. In this case, a sub-region list is created to manage the deferred
copy state.

Figure 5.8 shows how the sub-region list is used to shadow the blocks of the source file
that have not yet been modified. The figure shows a region descriptor with backing file A,
and copy-on-write file B. Initially, the subregion field of the region descriptor points to
a single RegionElement with the same virtual address range as the parent. Figure 5.8(a)
shows this initial state: the region is bound to blocks 1 to 3 of source file B, which is
recorded in the single sub-region element.

Read faults to the region proceed normally, except that the file block is located through

60 CHAPTER 5. PER-CLUSTER MEMORY MANAGEMENT

a) b)
File: A File: A
start: 1 start: 1
end: 3 end: 3
. tart: 1 . tart: 1 tart: 3
CoweFile: B star CowFile: B star star
end: 3 end: 1 end: 3
Region Sub-region

Figure 5.8: a) the initial state of the sub-region list when blocks 1 to 3 of file B are bound for
copy-on-write. b) the sub-region list after block 2 of file B has been copied.

the cowfile and its corresponding sub-region list. These pages are mapped read-only to
prevent modifications to the source file. On a write access, the page is removed from
the sub-region list, splitting single RegionElements into two if necessary. The contents of
the source page are copied into a private page mapped in from the temporary file with
full access permissions. This scenario is depicted in Figure 5.8(b): block 2 of file B has
been copied to its corresponding position in the backing store file, A, so the sub-region list
has been split into two single block elements. Modified pages must be removed from the
sub-region list because they may be targeted for page-out.

The region tree is then searched as follows. The appropriate region descriptor is located
as before, based on the virtual address. If the cowfile descriptor is valid, then the sub-
region is searched next. If the file block was never copied, it will be found in the sub-region
list, and is still sourced from cowfile. If the page has already been copied, it will not
be found in the sub-region list, so the file block is taken from the file descriptor of the
region.

Unlike the tree of regions, sub-regions are stored as a doubly-linked list. This data
structure was chosen because of the inherently different nature of copy-on-write regions.
Although in principle any file may be bound copy-on-write, the overwhelmingly common
use is for the initialized data section of executable programs. From the workload we have
observed on HURRICANE, these regions are relatively small (a few pages on average), and
almost all the pages are eventually modified. These findings indicate that the sub-region
lists are typically short and short-lived. As a result, the primary operation on sub-regions
is to remove a page as the result of a write, which may split a single sub-region into two.
A balanced tree is inappropriate if deletes are common, since rebalancing the tree is costly.

The idea of copy-on-write is not new, but our implementation of it is very different from
that of Mach [53], Chorus [1], and Sprite [47]. These systems allow programs to inherit
regions from their creator on fork() operations. To preserve the semantics of fork()
yet attain good performance, the regions are inherited copy-on-write so that if either the
parent or the child modify a page, a private copy is derived. If the child then creates a new
child, this new child inherits the regions of its parent, which may in turn be copy-on-write

5.8. PROTECTED COPY 61

regions inherited from some ancestor. Some of the pages in these inherited regions may
already be private to the first child, while others may still be shared with the original
parent. As the family tree grows, long, complex chains of “shadow” dependencies can arise
to keep track of which pages are shared, and by whom.

In contrast, HURRICANE programs do not inherit regions; sharing is accomplished by
binding a new region to a common file. This imposes a two-level “master-slave” depen-
dency: the pages of the original file, the master, are never modified; the copy-on-write
slaves shadow the master and receive private copies when they attempt to modify the
original. Note that the master is not modified even if it is shadowed by only one slave,
although the copy could be avoided by simply renaming the modified master block to the
corresponding file block of the slave, because this would remove the master from the page
cache; if it is then needed again (because, for example, the program is rerun) it must be
fetched from secondary store, at a cost that dwarfs the savings gained by avoiding the copy
in the first place.

We believe that the two-level approach to copy-on-write is better suited to scalable
systems. Since the master is never modified, it may be safely replicated across clusters,
which allows faster access and lowers the cost of making a private copy. Although the
sub-regions are not replicated like regular regions (see below), this only affects programs
that span multiple clusters, and intuitively seems to have lower complexity than trying to
maintain a tree of shadow dependencies across clusters.

5.8 Protected Copy

Processes in different address spaces can share data on a per page basis by binding to
a common file. However, for one-time or small transfers, the overhead of setting up and
tearing down such a connection may not be justified. Examples where this may be the case
are: passing a file name to the File Server for open(); requesting the state of a process
from the kernel; or initializing a program’s arguments on start-up. These data items are
typically smaller than a page and are not normally aligned to any page boundaries, so the
page-level protection provided through virtual memory is inconvenient. The remainder of
this section describes HURRICANE’s protected copy facility.®

The application interface to this facility is through the four calls: CopyTo, CopyFrom,
GetProcessState and SetProcessState. The first two calls allow the transfer of arbitrary
contiguous virtual segments of data across address space boundaries; the latter calls transfer
a process specific state structure between the kernel and an application process. The
transfer is protected in conjunction with the HURRICANE [PC protocol as follows. A process
(A in Figure 5.9) grants access to its address space by sending process B a message that
specifies both the access rights and the location and size of the virtual memory segment.
For illustration purposes, process A of Figure 5.9 has granted read privileges to the segment

>The contents of this section and the next are not central to the thesis — and may be skipped by the
casual reader — they are presented for completeness.

62 CHAPTER 5. PER-CLUSTER MEMORY MANAGEMENT

Send

CopyFrom

Source o
Destination

Kernel Buffer

Figure 5.9: Protected Copy in HURRICANE.

labeled Source in its address space. Consistent with these permissions, process B may have
data transferred to or from any portion of this segment through the protected copy system
calls. The access permissions last until B replies to the message sent by A.

The figure shows that the protected copy facility is implemented through a “trusted”
server called the copy process, which resides in the kernel address space. This process must
be trusted because it must access its client’s address spaces and because it must be able to
check the permissions before the transfer can begin. The actual transfer is accomplished
by first loading from the source segment into a pre-allocated buffer in the kernel address
space, and then storing this data into the address space of the destination process.

It is interesting to note that in a prior implementation the copy process transferred the
data through mapped regions as shown in Figure 5.10. In this implementation, the copy
process binds source and destination regions in its own address space to the corresponding
regions of its clients. Once these regions are bound, a simple byte-wise copy by the copy
process is sufficient to transfer the data from the address space of A to the address space of B,
because the underlying virtual memory system takes care of all page mapping and coherence
concerns. This approach has a number of advantages. First, the data is copied directly from
the source to the destination address space, thereby avoiding the intermediate copy into
the kernel buffer. Second, the use of shared regions permits copy-on-write optimizations
if the virtual segments meet suitable alignment and size restrictions. Finally, the entire
implementation is based on standard mechanisms already provided in HURRICANE, so that
the copy process could run as a user level (and trusted) server.

In spite of all these benefits, we found that the current implementation, using the
intermediate buffer, is up to four times as fast as the mapped implementation for small
transfers. The difference in performance is primarily due to the costs, both direct and
indirect, of setting up and tearing down the shared regions. The direct costs include
binding and unbinding the shared regions; the indirect cost is through additional page

5.9. DIRTY HARRY 63

Send

CopyFrom

Source o
Destination

bcopy

Figure 5.10: An alternative implementation of protected copy.

faults. With shared regions, the copy process must always take at least two page faults:
one to map the source page; and one to map the destination page. In contrast, the current
implementation uses the address space of each client directly, and usually finds that both
the source and destination pages have already been accessed, so that no page faults are
generated at all. In the time it takes to service a page fault, the copy process can transfer
about 200 data items, giving the current version improved performance on small transfers
even with the extra copy.

5.9 Dirty Harry

In a single-level store system, a write to memory is logically a write to the corresponding
file block. If this were taken literally, each write to memory would cause an 1/O transfer
to secondary store. To reduce the amount of /O, HURRICANE supports a delayed-write
mechanism [6], which works as follows. A file block that has just been brought to main
memory from secondary store is “clean”, which means that the data in memory and on
secondary store are the same. The first write by an application to the file block sets
the DIRTY bit of the page descriptor associated with it, but the application continues
otherwise uninterrupted. The dirty bit is set to remind the memory manager that the data
on secondary store is now inconsistent with the version in memory, and that the page must

64 CHAPTER 5. PER-CLUSTER MEMORY MANAGEMENT

be written to secondary store (the delayed write) before it can be re-allocated to another
file block.

When the dirty page is freed, its page descriptor is appended to the LRU free list of the
page cache (as would a free page), where it slowly works its way toward the head of the
list. A separate page scavenger process is employed to write modified file blocks on behalf
of the processes that modified them. This page scavenger has been dubbed “Dirty Harry”,
because its primary responsibility is to write modified (or dirty) file blocks to secondary
store. Like the other processes of the memory manager, there is one page scavenger per
cluster, which is responsible for replacement of physical pages local to that cluster.

The blocks targeted for delayed-write are kept on a per-cluster DirtyList, which is
shared by the memory manager and Dirty Harry. Each element on this list contains a
pointer to the page descriptor describing the file block and physical location in memory.
This list is used as follows:

1. As the memory manager removes page descriptors from the free list for re-allocation,
it will eventually encounter a descriptor marked DIRTY. At this time, that entry is
appended to the the DirtyList and the page descriptor is marked as being on the
list.

Since the memory manager must allocate a page to complete fault handling, it con-
tinues searching the free list, repeatedly appending entries to the DirtyList until a
clean page is found. At this point, the memory manager can complete the page fault
and continues with regular fault handling, but also readies Dirty Harry.

Note that the page descriptors must remain in the page cache while they are being
written, because they are valid and represent the correct state of the file data. If
the page descriptors were removed from the page cache during the write, processes
faulting on the file block would not know that it was already in memory, and would
attempt to reallocate the file block from secondary store. Note too that pages can
be reclaimed from the dirty list at any time, as long as they are not actively involved
in the 1/0 transfer.

2. Dirty Harry processes the entries on the DirtyList. For each each entry on the list,
the corresponding page descriptor is marked DOING_I0, and a WriteBlock request is
sent to the appropriate Block Server. By marking the page as doing 1/0O, processes
are prevented from modifying the page contents while they are in transit to secondary
store.

3. When the transfer is complete, Dirty Harry will clear the DIRTY bit for the file block
and remove the page from the DirtyList. Since the page remained at the head of

the free list during the write, it will be the first to be reallocated (ie. flushing does
not “cheat” the LRU ordering of the free list).

On systems with large amounts of physical memory, it may take a long time before a
dirty page propagates to the head of the free list. To reduce the amount of data lost should

5.9. DIRTY HARRY 65

the system crash before the dirty pages are flushed to secondary store, the page scavenger
searches the free list periodically, building up the DirtyList directly. The dirty pages are
then flushed one at a time and at a lowered priority.

Chapter 6

Cross-Cluster Memory Management

6.1 Introduction

The data and control structures that support the management of resources within a clus-
ter are complete in that they provide all the functionality necessary for operations local
to the cluster. The structure of a cluster is focused not on scalability, but on attaining
good performance for tightly-coupled interactions within the cluster. This chapter focuses
on structuring for scalability. Consistent with the structuring philosophy of hierarchical
symmetric multiprocessing, the framework for a scalable operating system is laid by in-
stantiating multiple clusters across the processors of the system. FEach cluster instance
retains its basic service and control structuring, which includes the per-cluster servers and
the four primary data structures: address spaces and region trees; the page cache; and the
file table.

Having multiple clusters increases the service capability of the operating system, while
still maintaining the benefits of locality for operations local to the cluster. However, the
clusters must cooperate and communicate to provide applications with an integrated and
consistent view of the system. For example, independent programs on different clusters
may share data through a common file region; the clusters must then communicate to
maintain the consistency of the shared data. Similarly, the processes of a large-scale
parallel application may span multiple clusters; in this case the memory manager must
support a consistent view of the single shared address space.

These examples imply that some of the resources within a cluster must be shared with
other clusters. The way in which the shared resources are accessed determines how they
are best managed. There are four strategies for managing shared resources:

1. The resource exists as a single copy in a well-known, but statically determined,
location in the system. Static placement permits the resources to be located quickly,
although the accesses are typically remote. This strategy is appropriate for data
structures that are changed frequently, since maintaining the consistency of multiple
copies would otherwise be costly.

66

6.1. INTRODUCTION 67

2. The resource exists as a single copy, but the location changes over time. Migrating
the resource to where it will be accessed can reduce access latency and network
contention, but makes it more difficult to locate the resource. Thus, the fast search
allowed by static placement is lost. Also, the migration of actively shared resources
can lead to thrashing.

3. The resource is always replicated to every cluster, and the replicas are kept consistent
across clusters. This strategy allows local and concurrent accesses to the replicated
copies, but maintaining consistency is expensive if the structure changes often.

4. The resource is replicated on demand, and the replicas are then kept consistent.
The concurrency-consistency trade-off for demand replication is similar to that of
full replication above, but demand replication can reduce the cost of replication and
consistency if the resource is shared by a subset of the clusters in the system.

In all four approaches to managing shared data, data in remote clusters will need to be
accessed, for example: i) to keep replicated copies consistent ii) to fetch a copy of a data
item that is replicated on demand iii) when the only copy is remote. Hence, communication
with remote clusters is necessary to access remote data. As discussed by Chaves [22] there
are three primary methods of remote communication:

Shared Memory is still a viable option, particularly for lightweight operations that make
only a few references. While remote shared memory accesses have no direct overhead,
they contribute to bus contention and have longer latency than local accesses. In
addition, each cluster in HURRICANE resides in a separate address space, which means
that data in a remote cluster can only be accessed by mapping the appropriate portion
of the remote cluster’s address space into the address space of the local cluster.
Pointers are especially difficult to handle, and must be managed carefully to avoid
aliasing across the local and remote address spaces.

Remote Interrupts or bottom-half invocations, are appropriate for heavier weight op-
erations. To perform a remote interrupt, the requesting processor interrupts the
target processor so that it can perform the operation. Because the target processor
performs the operation, data accesses are local to the interrupted cluster. However,
processing the interrupt steals cycles from the process that was executing on the
processor, impeding its progress. Light weight operations are not suitable candidates
for bottom-half invocation because they cannot amortize the cost of the interrupt
(saving and restoring the registers, etc.).

Using remote interrupts as a base, we have built a Remote Procedure Call [13] facility
which allows operations performed on remote clusters to appear like procedure calls to
the local cluster. The RPC facility uses remote shared memory to pass the arguments

of the call.

Message-passing or top-half invocation, is best suited to high level operations, where
a server process on the target cluster handles the request on behalf of the remote

68 CHAPTER 6. CROSS-CLUSTER MEMORY MANAGEMENT

cluster. Communication through top-half invocation should be used for operations
that are relatively infrequent or which require significant processing, so that the extra
overhead imposed by the message passing system is not significant. In our system,
message passing across clusters is implemented using remote procedure calls.

The rest of the chapter is structured as follows. Section 6.2 explains the sharing and
communication strategies used to support the management of virtual resources across clus-
ters; Section 6.3 describes the strategies used for global file block management. In Sec-
tion 6.4, we show how the data structures can be applied to support the coherence of main
memory across clusters. Finally, the last two sections review how the cluster and cross-
cluster structures interact, by considering in detail the two most important operations:
paging (Section 6.5) and unmapping (Section 6.6).

6.2 Managing Cluster Data Structures

The address space and region descriptors are referenced on every page fault, so it is im-
portant to keep the cost of accessing this information to a minimum. Consequently, each
cluster keeps a local “working set” of per address space data structures used by the pro-
cesses on that cluster. For programs that span multiple clusters, the shared resources are
replicated on demand to the clusters that reference them. The data structures that are
replicated in this fashion are the address space descriptors (ASIDs), and the region de-
scriptors (Regions). The shared state kept in these structures seldom changes, (except for
copy-on-write regions, which are treated differently, as discussed below).

Because regions may be replicated across clusters, the memory manager must ensure
the consistency of the replicated state. For example, operations that reset the length of
a region or remove a region must be supported correctly. Consistency is maintained by
directing all modification requests to the home cluster of the address space, where the
global updates are properly synchronized and disseminated to the other clusters.

Currently, the home cluster is designated as the cluster on which the address space was
created. This decision was made in preference to other placement schemes because at the
time the address space is created it is not known how many processes it will eventually
support. Placing the home cluster anywhere but the creation site would thus penalize
sequential or small-scale parallel programs that do not span multiple clusters. Since the
home clusters are designated on a per program basis, they are naturally distributed across
the system as the result of process load balancing.

The per address space data structures are replicated on demand from the home clus-
ter. When a process first migrates to a new cluster that does not yet have any address
space state, the ASID is replicated from the home cluster to the new cluster using remote
procedure calls. The region tree of the replicated descriptor is initially empty — the ad-
dress space descriptor only contains information about the home cluster and program-wide
constants, such as the default backing file.

The region tree is built up in similar fashion as the program executes. When a search

6.2. MANAGING CLUSTER DATA STRUCTURES 69

for a region fails on the local cluster, the home cluster is asked for a copy of the region,
which is then inserted into the local tree. Note that this makes searches for regions that
do not exist more expensive than if the regions were not replicated, since the search will
fail first on the local cluster and then fail again on the home cluster.

The sub-region lists, which are used by copy-on-write regions, are an example of a
data structure that is not replicated across clusters. Instead, sub-region lists reside on
the home cluster only, and all operations involving sub-regions are directed to the home
cluster. Sub-region lists are not replicated because copy-on-write regions are primarily used
for the initialized data section of programs; the lists therefore tend to contain only a few
elements that change rapidly as the program starts-up. By not replicating the sub-region
lists, the number of remote searches is increased. However, the cost due to the increased
number of searches is far lower than the overhead of keeping multiple copies of a frequently
changing data structure consistent. Moreover, in the HURRICANE environment, copy-on-
write regions are typically small, so that few remote searches are necessary in the common
case. As an additional optimization, the region descriptor is globally updated to eliminate
the cowfile reference, once the entire region has been copied.

Application requests to the memory manager are always sent by message to the local
region manager process (see Figure 4.2). If the local cluster is not the home cluster, then
the request is forwarded to the region manager on the home cluster. All modifications to
address space resources are serialized properly at the home cluster, and the home cluster
is responsible for propagating the modification to the clusters that share the data.

The clusters that have a local copy of an address space or region descriptor are kept in
a cluster set bit vector that is part of the respective descriptor on the home cluster. When
a region or address space is modified, the home cluster uses RPC calls to pass the new
state of the descriptor to each cluster in the cluster set. Hence, the cluster set is effectively
a full-map directory of the clusters that contain copies of a particular descriptor. Because
update requests could arrive at any time, each address space on a cluster has a multiple
reader single writer (MRSW) lock to synchronize concurrent accesses.

Demand replication of address spaces and regions is important in realizing the per-
formance goals of hierarchical symmetric multiprocessing. The replication itself permits
higher concurrency and localized access to the descriptors. Because the regions are repli-
cated only on demand, the number of replication operations is reduced, compared to a
full replication strategy. For example, regions private to a particular process of a parallel
application are copied only to the cluster where that process executes. Consequently, the
number of data structures local to each cluster is minimal, and these data structures are
accessed only by processors local to that cluster, which allows the service times in each
cluster to remain low. For regions that are shared by several processes within a cluster,
the first process on each cluster to access the region replicates it once, for use by all pro-
cesses in the cluster. The sharing within clusters further reduces the number of replication
operations. Thus, having multiple processors per cluster can reduce the amount of cross-
cluster communication, compared to a fully-distributed system (or equivalently, having one
processor per cluster).

70 CHAPTER 6. CROSS-CLUSTER MEMORY MANAGEMENT

This section has focused on the address space and region descriptor management across
multiple cluster instances. The other primary data structures, the page cache, file table,
and page tables, also exist on a per-cluster basis. The file table and page tables do not
directly share their data with other clusters. Because all the state in the file and page tables
is local to the cluster, these structures are maintained independently across clusters. The
page descriptors, however, can contain remote file block information, their management is
the subject of the next two sections.

6.3 Directories

The most important operations at the physical resource level are those of locating pages,
and identifying processors that have references to a page. The first is used to handle a page
fault, and the latter is used for page unmappings and invalidations. In the single cluster
case, the page cache hash table was used to search for the corresponding page descriptor.
For the multiple cluster case, the search must be expanded to include other clusters. In
fact, because individual pages may be replicated, the search may be required to return the
“closest” copy.

Rather than try to support global operations using the physical resources of the clusters
directly, we have introduced a higher level directory whose entries identify the state and
location of resident file blocks in a global sense. The directories are also used for synchro-
nization purposes. These directories have the following advantages: 1) they support fast
search operations, which is important for scalability 2) besides search, the directory entries
can be used as a basis for cross-cluster coherence mechanisms, and 3) synchronization can
be easily applied at the level of a directory entry, which permits highly concurrent access.
Because accesses to directories are light-weight, in that they typically involve checking a
field or setting a bit, directory entries are accessed through shared memory.

The following discussion assumes a directory entry of the following form:

File Block - which is the <server,token,block> identifier used to identify the file block
cached by a physical page. These fields are used to search the directory as described
below.

Member Set - a bit vector with one bit per cluster in the system. If a bit is set, then the
corresponding cluster has valid references to the file block, where a valid reference
means that the page cache of the cluster has a valid page descriptor for the file block.
The member set, together with the state field below, is used to maintain memory
coherence across clusters.

State - this field consists of three elements: a dirty bit to indicate whether or not the
page has been modified; a busy bit to synchronize accesses to both the page and
the directory entry itself; and an 1/O bit to denote pages that are in-transit from
secondary store.

6.3. DIRECTORIES 71

fo
Ja fi fa

A
hashd(fb) i

A

[[
Directory Hash Table
| |

hash.(fy)

Figure 6.1: A two-level hash function is used to search the global directory table. The first level,
hash., identifies the cluster; the second level, hashgy, identifies the per cluster hash bin in which
a directory entry resides.

Because there is potentially one such entry per physical page, the size of the directory
is proportional to the size of physical memory. The directory entries must therefore be
distributed across the system to balance the load and maximize concurrency. We refer
to the way in which these entries are distributed as the placement strategy. This section
presents several placement strategies and discusses their strengths and weaknesses.

6.3.1 Single-Level Directories

Currently, HURRICANE supports cross-cluster page operations through a single-level direc-
tory, using a distributed two-level hash function to distribute the directory entries evenly
across the system. Figure 6.1 illustrates this placement strategy for a 7 processor system
configured as 3 clusters. The figure shows the search for a particular entry as a two-step
process: first the cluster hash function, hash.(server,token,block), is used to identify the
cluster in which an entry resides; from here the directory hash, hashq(server, token, block),
identifies the bin of the hash table within the cluster that stores the entry.

This placement strategy allows a physical page to be located from anywhere in the
system in at most two remote operations: a search of the directory to determine the
cluster containing the page; and a search of the remote page cache to find the page itself.
By distributing the directory entries in this fashion, a high degree of concurrency can be
supported: the per cluster directories each have their own lock, which only needs to be
held during a search or update, so that directories on separate clusters may be searched in
parallel. As well, the hash,. and hash, hash functions distribute the entries evenly across
the system, which helps to balance the search load. Unfortunately, this load balancing
comes at the expense of locality. On a C' cluster system, any page has only a 1/C chance
of being in the local directory. This implies that most directory searches will be remote,
adding traffic to the intercommunication network and interfering with processing on the

72 CHAPTER 6. CROSS-CLUSTER MEMORY MANAGEMENT

remote cluster.

We had considered putting the directory entries for each file on the cluster of the file
server responsible for that file. Because main memory in a single-level store system is
simply a cache of secondary store, this approach would be analogous to directory-based
cache coherence schemes implemented in hardware, which place the directory entries for
cache lines near the memory they are caching. The rationale behind this placement strategy
is that the file server must be contacted for page-level 1/O anyway, so that the number of
remote clusters involved is reduced by placing the directory entries local to the server. This
approach also provides order constant time access to the directory entries since the server
is encoded as part of the logical file descriptor. One concern, however, is that the cluster
containing the 1/0 server could become a bottleneck, since the searches for the directory
entries are directed there, in addition to the 1/O requests themselves. A second concern
is that the responsibility for balancing the load across the clusters now rests with the I/0O
sub-system, because directory entries could only be distributed evenly if the physical file
blocks they map are distributed evenly. Finally, this scheme only reduces remote accesses
when a page needs to be read from or written to secondary store; the directory entry is
not necessarily near where the page will be used. Since the per cluster page caches are
extremely effective, most accesses to a directory entry are in fact not related to 1/0, but
instead to unmapping or consistency operations during the course of execution.

To improve locality one could place the directory entry on the cluster that first accesses
the file block. This would require an extra level of indirection to the basic directory
distribution scheme. The top level of the directory would still be distributed across the
clusters and would still be accessed through the hash, and hashy hash functions. However,
the top level directory entries would no longer maintain the full state of the file blocks,
but would instead keep a pointer to the cluster that maintains the complete directory
information for the file block. Thus, the first cluster to access a file block sets itself as the
owner at the top level (by setting the pointer in the top-level directory entry to itself),
and then places the directory information in its own cluster. All subsequent accesses by
the owner cluster are thus local references. Other clusters that must access the directory
information can find it in two searches: the top level search determines the owner cluster;
this cluster is then searched to find the entry itself. It may even be possible to avoid the top
level search by keeping the owners of frequently referenced directory entries in a local hint
table. Because the hint table is local, the number of remote searches can be reduced, which
conserves communication bandwidth and reduces access latency. Of course, the search of
the hint table can only be justified if the hit rate is high enough to amortize the extra
top-level search that results if no hint is present.

This first-hit placement strategy is optimal for sequential tasks or for small scale parallel
tasks that run entirely within a single cluster. In association with the hint table, this
scheme can exhibit good locality for multi-cluster applications, assuming the processes are
scheduled onto clusters near the owner cluster. However, these locality advantages can
break down under a number of scenarios, in which case the overhead is far greater than if
the top level directory were used alone. Consider, for example, the case where a number

6.3. DIRECTORIES 73

of instances of the same execution are simultaneously executed in different clusters across
the system, as is common for many system utilities in a multi-programmed environment.
Since only one cluster can be the owner, the remaining clusters could wind up needing
three look-ups to access the directory entries instead of one if the top level directory is
used alone!.

The break-down of locality stems from the lack of distribution control within the place-
ment strategy itself, which is using the first access to a file block to place its directory entry
for all subsequent accesses. This one-time placement decision is even less attractive when
one considers the lifetime accesses to a directory entry. Since the page caches are effective,
the lifetime of a cached file block is typically far greater than the lifetime of the program
that first referenced it. Thus, while the example above specified simultaneous execution
of independent programs (a lack of spatial locality), the exact same behavior is seen if
the multiple instances of the same program runs on different clusters over time (a lack of
temporal locality). It may be possible to reduce this effect by migrating directory entries
away from owner clusters that no longer reference the page?. The migration is completed
by changing the owner identifier in the top-level directory. If hint tables are being used,
their entries are now stale, but will be updated when the change of ownership is noticed
on the next access.

The problems with the first-hit directory entry placement strategy can be even worse
for large-scale parallel applications, particularly those that share regions across clusters.
For example, consider a parallel matrix multiply program that must calculate the matrix
product ¢ = AB. Each process computes the solution for a subset of the rows of the C'
matrix, which requires access to the corresponding rows of the A matrix and all of B. If the
program spans multiple clusters, the directory entries corresponding to the independently
accessed rows of (' and A will be evenly distributed across the clusters, but all of the
directory entries for B could reside on a single cluster. This happens because the first
process to access the first page of B becomes the owner of its directory entry, and is also
the first process to complete its fault processing. Consequently, the same process will also
be the first to access the second page of B, and so on, until all the directory entries reside
on the same cluster. This behavior was actually observed in HURRICANE in the context of
page placement: using a first-hit policy all the pages of B were placed on a single processor.
It was these observations that led to the development of the round-robin placement policy.

6.3.2 Multi-level Directories

The single-level directories described in the last section force a flat distribution of directory
entries, so that access locality suffers. In very large systems, a lack of locality can degrade
performance significantly. Locality and concurrency can both be improved if the directories

!The three searches performed by the remote clusters are: 1) search the local hint table, which results
in a miss; 2) search the top-level directory entry to find the owner cluster; 3) search the directory entries
of the owner cluster to find the state of the file block.

2This situation is detected when the owner cluster is not a part of the member set.

74 CHAPTER 6. CROSS-CLUSTER MEMORY MANAGEMENT

Top Level Directory
Level 2 Directory

Level 3

@WE@O@E@@@EOHOO0O0OE

Figure 6.2: A hierarchical directory configured into three levels across twelve clusters.

are structured hierarchically, as shown in Figure 6.2. The circles in the figure are clusters,
which form the leaves of the tree. The boxes at each of the L levels are the nodes of
the tree, and represent directories with the same entry structures and hash tables as for
single-level directories, except that the member sets at level [now identify the children at
level [+ 1 that contain information about the particular file block. The entries within a
node are still distributed uniformly across the clusters spanned by the node, and are still
located through a hashing function.

With hierarchical directories, searches for file blocks not found in the local cluster pro-
ceed up the levels of the tree. Locality of access is improved because the entries searched
are initially confined to nearby clusters. For example, clusters C5, C4 and C5, Cg of Fig-
ure 6.2 can locate the entry for file block f; in one Level-3 directory search. Concurrency is
enhanced because searches to different nodes at the same level are completely independent.
For example, clusters Cy and C's5 of Figure 6.2 are covered by two different Level-3 nodes,
so searches by these clusters can proceed in parallel.

If a particular file block is not found in either the local cluster, or the Level-3 directory,
the search continues up the tree until a directory entry for the block is found or the root
of the tree is reached. Thus, the first level search for f; fails for cluster C; in the figure,
but succeeds at Level-2. The information obtained at this level indicates that either of
the Level-3 nodes covering clusters (5 and (4, or (5 and Cg can be searched to identify
a cluster that contains a physical page caching the file block. Similarly, for clusters C
through C'5 the search for file block f; fails at the first two levels but succeeds in the
Level-1 directory, so that in general, any page can be located in at worst 21 searches.

It is interesting to note that if the search was always started at the root of the tree,
only L searches would be required. However, these I searches would always be required,
and would negate the locality benefits of the hierarchical structuring. Also, the 21, accesses
for a bottom-up search is the worst case; the number of accesses in practice depends on
the system workload. In any event, a non-trivial hierarchical directory will always require
more searches than a single-level directory. This extra overhead is amortized by the locality
and concurrency benefits, particularly in large systems where network bandwidth must be
conserved, and where access latencies to remote clusters can be high.

6.4. MAIN MEMORY COHERENCE 75

Hierarchical directories can be viewed as a placement strategy that replicates the state
of a directory entry to provide better locality of access. Because the state is replicated, the
consistency of this state across entries becomes an issue. For example, if file block f, of
Figure 6.2 is modified in one of the clusters, the coherence policy in effect may require that
the dirty bits be set in all the directory entries for the file block. Other operations that
may potentially modify multiple directory entries are unmap and invalidate. When such
global state changes are required, the operation should appear atomic, or else some entries
will contain temporarily inconsistent state. The integrity of the directory can be preserved
by introducing locks at each node and imposing a protocol on their acquisition. The
locking protocol is required to prevent deadlock if several locks must be held simultaneously.
Deadlock can be avoided by requiring that multiple locks in different levels be acquired by
progressing from the top of the tree down towards the leaves, and that locks within a level
be acquired in order of increasing cluster number.

This locking protocol dictates that modifications to a file block entry must start at
the root of the tree and propagate down to the leaves. Searches can still proceed up the
tree, provided they can prevent the node from being modified while it is being searched.
If the search of the node as level [fails, the node must be unlocked before the node of
its parent (at level [— 1) can be searched. A race condition can result here if the tree is
modified between the time the lock is released at level [and acquired at level [— 1. This
condition is easily detected by checking the member set of the parent node: if the search
of the child failed then it was not a member at the time of the search; if the child is a
member when the parent lock is obtained, then the tree was modified and the search is
retried in the child. The restriction that modifications proceed down the tree does not
impact concurrency severely, because the locks at one level only need be held long enough
to make the change and acquire the locks at the next level down. Thus, multiple updates
can proceed simultaneously in pipeline fashion.

6.4 Main Memory Coherence

Main memory coherence is required to support policies that replicate physical pages. For
example, the default page-placement policy in HURRICANE replicates shared pages across
clusters to reduce contention and increase locality. This section discusses mechanisms and
issues related to extending the full-map directory protocol used for cache coherence within
clusters to the next level of the storage hierarchy: that of main memory coherence across
clusters.

The basic concepts of main memory coherence are similar to those of cache-coherence,
but there are some differences in mechanism because the caches are implemented in hard-
ware, while main memory consistency is implemented entirely in software. For example,
caches automatically replicate the data of a cacheable page on a line by line basis. To
achieve analogous locality benefits at the main memory level, the system must provide a
primitive to replicate data pages. Moreover, since the cost of replicating an entire page is
much higher than the cost of loading a cache line, the policy decisions that govern replica-

76 CHAPTER 6. CROSS-CLUSTER MEMORY MANAGEMENT

tion may be different at the two levels. Specifically, the cost to replicate a page can only
be justified if the number of memory accesses to the new copy can amortize the initial
overhead. Otherwise, the line level replication already supported in hardware will result
in a lower total access cost. Bolosky has shown that knowledge of future accesses is re-
quired to make an optimal decision about when to replicate a page [18]. Consistent with
the hierarchical symmetric multiprocessing structuring philosophy, the heuristic used in
HURRICANE is to share main memory pages within clusters, and to replicate them across
clusters. Of course, this default policy can be over-ridden by applications that have prior
knowledge about their memory access patterns.

Our design requires that even remotely accessed pages have a local descriptor to hold
coherence and housekeeping state needed by the cluster. One reason for this is that page
descriptors in remote clusters cannot be accessed directly, because they are in a different
address space. While remote shared memory could still be used to access page descriptors
across clusters (even if this access is somewhat complicated), manipulations to a page
descriptor are usually accompanied by other operations, such as flushing a cached page,
or resetting a page table entry. The heavier-weight of these operations makes RPC the
appropriate communication medium; the page descriptor manipulations are bundled as
part of the remote procedure call handling.

Currently, the state for remotely referenced pages is held in a special page descriptor
called a representative. Representatives have the same fields as normal page descriptors, so
that they can be inter-mixed in the page cache. However, representatives have their own
Core structure for free list management, and the addr field contains the physical address
of a remote page.

In the worst case, all mappings within a cluster could be to remote pages, which im-
plies that there could be one representative per physical page in the system. If this worst
case were common, the design would not be scalable or even practical, but we have found
empirically that a relatively small number of representatives is sufficient for most applica-
tions. To handle the remaining cases, the techniques of virtual page replacement [40] can
be applied to reclaim the least recently used representatives for re-assignment. The limited
number of representatives could lead to performance degradation if all the representatives
are a subset of the working set of a single program, since a type of thrashing can occur as
the representatives are repeatedly reclaimed and re-assigned a short time later. However,
program referencing this many remote pages has extremely poor locality, and would not
perform well under any circumstances.

The remainder of this section shows how the coherence policy represented by the state
transition diagram of Figure 6.3 can be applied to support both main memory and cache
coherence. The policy is similar to the MRSW coherence policy of Section 5.5, with two
important differences. First, file blocks that are read shared across clusters are replicated
onto each cluster that accesses it. This replicated state is called Multiple Clusters and
Readers, or MCR. Second, when a file block moves from the MCR to the MRW state,
all but one of the replicas is removed from memory. Processors remote to the cluster
containing the single copy of the file block must then access the data remotely.

6.4. MAIN MEMORY COHERENCE 77

Read C'(pi) #C(p;

Read p; =p; MR Any Read

Cr)=Clo) _

Read
C(pi)=C(p;)

Any Write

Figure 6.3: The state transition graph for a coherence policy that replicates pages shared for
reading across clusters.

In this hierarchical configuration, cache coherence is still maintained within clusters
through the mechanisms of Section 5.5. As a result, a single cross-cluster uncache page
operation will uncache the page on all processors in the member set of the cluster. Because
memory consistency is not supported directly in hardware, the coherence state transitions
are driven indirectly when a processor in a cluster determines (through the directory) that
a global operation is required. In the same way, operations such as uncache are applied to
entire clusters.

To illustrate the cross-cluster coherence protocol, we now step through the actions that
result as a page is initialized and stepped through the SR, MCR, and MRW states in
sequence. The discussion assumes that single-level directories are used. When the page is
first accessed, the local page cache search and subsequent directory search reveal that the
page is not yet resident in memory. At this time, the page is requested from secondary
store, page descriptor and directory entries are allocated for the page, and the member
sets at both levels are initialized to identify the processor and cluster that is requesting the
data. In addition, the DOING_IO bits are set to inform the other processors that the page
is in transit, but that the data is not yet valid. Assuming the initial access was a read, the
page moves to the SR state when it arrives from secondary store.

If a processor in a different cluster attempts to read the page, the local page cache
search will fail because the page has never been accessed on that cluster. However, the
directory search will find that the page is in memory, that it has not yet been accessed for
a write, and will also indicate the cluster in which the data resides. The faulting processor
can then obtain a local replica of the page and add itself to the member set of both the
page and directory structures. Note that the directory entry must be locked during the

78 CHAPTER 6. CROSS-CLUSTER MEMORY MANAGEMENT

replicate operation to prevent other clusters from attempting to write the page while it is
being copied.

At this point, two identical copies of the page exist, and the state of both is SR within
their respective clusters and MCR across clusters. Further reads by different processors
within these clusters will move the local state to multiple-readers, but will not affect the
global state. Indeed, the directory is not even searched for these accesses, because the
local page descriptor state contains all the information needed. These accesses may also
proceed concurrently, because the structures and pages are independent across clusters. If
a replicated page is unmapped, it is unmapped in all clusters that have an active mapping,
but is left in the local page cache of the clusters to avoid the cost of replication should the
page be accessed again in the near future.

To complete the illustration, assume that one of the processors in either of the two
clusters attempts to write the page. Since this is the first write access, the MODIFIED bits
must be set at both levels of the consistency hierarchy. Even if the page is in the SR state
within the faulting cluster, the system recognizes that a replica exists and moves the page
to the MRW state. On the remote cluster, the replica page and the caches containing data
from the page must then be invalidated, and the page descriptor must be replaced by a
representative. The physical address in the representative page descriptor identifies the
remote page, which can be used in the page tables to access the data directly.

This example has assumed that the initial write was attempted by a member of the
existing cluster member set. If the write originated from a cluster outside the member
set, the local page cache search would fail and the directory entry would indicate that the
page is replicated across two clusters. The state in all three clusters must therefore be
moved to the MRW state, but two courses of action are possible. Because the faulting
cluster does not yet have a mapping to the page, it could either migrate a copy of the
page locally before invalidating the remote copies and replace the remote page descriptors
with representatives pointing to the local copy, or it could invalidate one of the copies and
create a representative locally that identifies the remaining (single) copy of the page. The
justification for the former decision is that the processor that caused the fault will likely
access the page again in the near future, so that making the page local will reduce the
latency of these accesses; HURRICANE has adopted the latter policy as the default to avoid
the cost of replicating a page that is moving to the uncached state.

6.5 Demand Paging

The HURRICANE memory manager is primarily demand-driven, which means its mecha-
nisms are implemented by delaying actions until necessary, rather than trying to predict
application requirements. When a translation fault is recognized, the processor saves the
state of the faulting process and passes it on the memory manager. This state information
includes, among other things, the process’ registers, the virtual address that caused the
fault, and the type of access (read or write). The memory manager uses this state and the
algorithm of Figure 6.4 to determine the actions needed to resolve the fault.

6.5. DEMAND PAGING

ALGORITHM HandlePageFault :

find the region containing the faulting address
determine the file block containing the faulting address

search the local page cache for the file block

IF the file block is not locally resident THEN
allocate a page and page descriptor for the file block

search the directory for the file block

IF the file block is not globally resident THEN
initiate the I/0 transfer
RETURN

ELSE
% the file block is resident in a different cluster
determine the global state of the file block

CASE action(global state)
Replicate:
copy the remote page to the local cluster
Remote Access:
free the page and descriptor
create a representative for the remote block
ENDCASE
ENDIF
ENDIF

IF the faulting access was a write THEN
IF the file block is marked copy-on-write THEN
allocate a backing store page to the process
copy the source page to the backing store page
ENDIF
ENDIF

79

check the coherence policy to determine the mapping permission

map the page into the address space of the faulting process

RETURN

Figure 6.4: The algorithm used to handle translation faults.

80 CHAPTER 6. CROSS-CLUSTER MEMORY MANAGEMENT

The first step is to search the tree of regions bound into the process’ address space for
the one containing the faulting address. As discussed in Section 5.2, the region descriptor
maintains the file to which the region is bound and the mapping attributes of pages in the
region. The file region and virtual address together identify the file block, which is used as
the key to search the local page cache of the cluster. If the file block is found to be locally
resident, the next step is to determine the mapping permissions. The mapping permissions
are a combination of the region attributes (for example, read-only), the coherence state of
the page (SR, MRW, etc.), and whether or not the page is marked for copy-on-write.

It the file block is not found in the local cluster, a new page and page descriptor
is allocated for the file block. It is possible that the page and descriptor will not be
needed, since later processing may determine that the page data must be accessed through
a representative. However, the page descriptor is allocated immediately because it is needed
for synchronization during the fault handling. If the file block was not found in the local
page cache, the directory is queried next to see if the block is resident anywhere in the
system. If the block is resident in a remote cluster, the algorithm proceeds to the coherence
check phase, which will identify whether the page should be replicated to the local cluster
or accessed through a representative.

The final possibility is that the file block is not yet initialized anywhere in the system,
either because this is the first access, or because it is already in transit from secondary store.
In both cases, the local page descriptor is marked DOING_IO to prevent other processes from
accessing it prematurely. From this point the fault handling algorithms for the two cases
diverge, as described below.

On first access, a directory entry is created for the file block with its initial state set to
DOING_IO. If the check of the directory entry reveals that the file block is in transit, but to
a different cluster, the faulting process is blocked by placing the descriptor on a waiting
queue rooted in the FileTable entry for the file. In addition, the cluster is added to the
member set of the directory entry, to inform the initiating cluster that a process is waiting.
Once the directory and page descriptors have been marked as DOING_IO, other processes
that fault on the page will find from their local page caches that the page is already on its
way, and are blocked in their local FileTables.

Once the file block transfer is complete, some clean-up must be performed before the
faulting process can be restarted. First, the DOING_IO bit is cleared in both the page
descriptor and directory entry. Second, other processes queued in the local FileTable
waiting for the file block to arrive must be signaled and readied. Third, if the directory
indicates that other clusters have waiting processes, a remote procedure call is used to
inform the memory managers on these clusters that their processes can be readied. Since
the Block Server transferred a single copy of the file block, the clean-up on these remote
clusters will involve a replicate to make the page local, or the clean-up will involve the
creation of a representative to allow a remote mapping. Finally, the physical page is
mapped to the address space of the faulting process and the process is restarted.

6.6. UNMAP 81

6.6 Unmap

This section describes the algorithm for unmap, which removes the virtual to physical
translations for a possibly replicated file block. This operation is important for several
reasons. First, it is used frequently, since every page that is mapped must eventually
be unmapped. Second, the algorithm is representative of other operations that modify
page table entries, such as page invalidate or uncache. Finally, the unmap algorithm is
an example of a compound request, because the possibility of replicated pages means that
multiple resources are involved. A compound request permits concurrency to be exploited
in its servicing.

The algorithm for unmap is given in Figure 6.5. The immediate observation is that
the algorithm is split in two: UnmapCluster locks the directory entry for the file block
and calls UnmapPage on each of the clusters in the member set. On each cluster called,
UnmapPage searches the local page cache to lock the page descriptor of the file block. The
page descriptor is required for three reasons. First, the IN_USE bit is checked to see if
the page is actively mapped by some process in the cluster. If the page is not in use,
no further action is necessary. Second, the member set of the page descriptor is used for
TLB consistency, and to invalidate the caches of local processors accessing the page. The
cache invalidate is necessary on all systems with physically addressed caches, even if the
system supports hardware cache coherence. This is because the page, once freed, could be
assigned to a different file block. If the caches are not invalidated, the processors could
still be caching the contents of the original file block, and see incorrect data.

Assuming the page is in use, the next step of the algorithm is to remove the virtual to
physical translation from all the active mappings in the cluster. The address spaces and
regions that could be referencing the file block are determined by searching the FileTable.
For each region found, the virtual range and file offset of the region gives the corresponding
virtual address in the address space that must be invalidated.

Once all the mappings in the cluster have been removed, the page descriptor is checked
to see if it is a representative. For these remotely accessed pages, the representative is
discarded. If the file block was replicated to the local cluster, the descriptor for the replica
is placed on the free list but remains valid and in the page cache. This avoids the overhead
of replication should the file block be accessed again in the near future.

The hierarchical decomposition of the unmap algorithm permits parallelism to be ex-
ploited both within and across clusters. Within a cluster, the caches and TLBs are invali-
dated concurrently by using a two-phase protocol. In the first phase, the master initiates
the cache operation on all the processors in the page descriptor member set through in-
terrupts, then performs the same operation on its own cache if necessary. In the second
phase, the master waits for the other processors to set a flag signaling their completion.
An extension of this asynchronous RPC is used to exploit parallelism across clusters as
well. The master cluster first initiates the unmap operation on all remote clusters in the
member set of the directory entry. The processors on the remote clusters can search their
page caches and file tables concurrently to perform the unmap on the local cluster. The

82 CHAPTER 6. CROSS-CLUSTER MEMORY MANAGEMENT

ALGORITHM UnmapCluster(virtual address, address space)

find the region containing the virtual address in address space
determine the file block containing the virtual address

lock the directory entry for the file block

DO for each cluster in the member set of the directory entry
CALL UnmapPage(file block)

IF the page descriptor was a representative THEN
remove the cluster from the member set
ENDIF
aD

unlock the directory entry for the file block
END UnmapCluster

ALGORITHM UnmapPage(file block)
lock the page descriptor for the file block

IF the page is IN_USE by some process THEN
search the file table for the file

DO for each address space that binds the file block
remove the virtual to physical translation

invalidate the page from the caches if necessary
oD

IF the page descriptor is a representative THEN
invalidate the representative descriptor
ELSE
free the page for possible reallocation
ENDIF
ENDIF

unlock the page descriptor for the file block

RETURN
END UnmapPage

Figure 6.5: The algorithm used to unmap a page.

6.7. SUMMARY 83

operation is complete when all the remote clusters have responded to the initiating cluster.
In this discussion, “master” refers to the cluster that initiated the UnmapCluster call, or
the processor that fielded the UnmapPage request. Because all clusters and processors are
symmetric in their capabilities, HURRICANE does not support the notion of a pre-defined
master.

The asynchronous RPCs within and across clusters are combined to form a two-level
spanning tree of the system, which increases concurrency and helps minimize the service
time of the operation. However, other optimizations are also possible. For example, the
algorithm as given in Figure 6.5 operates on one file block at a time. Thus, the costs of
the RPC and cache invalidate operations are incurred on a per page basis. Operations
that deal with sequences of file blocks, such as unbinding a region of deleting a file, could
amortize the overhead by operating on the entire sequence of blocks.

The unmap operation as described is global — it unmaps all the pages from all the
address spaces in all the clusters that access a file block. The global semantics are necessary
for consistency when pages are invalidated because a file is destroyed, or when uncache is
called as part of a MRSW coherence policy. However, unmap is often invoked as part of a
single DestroyAddressSpace call, and need not have global repercussions. In particular,
if several instances of a program are executing simultaneously, the code pages may be
replicated across clusters, and certainly exist in several sets of page tables. When one
instance of the program completes and its resources are released, the current algorithm
also unmaps the code pages of all the other program instances, forcing unnecessary page
faults. To reduce the amount of interference, a version of unmap could be supported that
works on a single cluster of address space, provided that the member set information at
the page and directory levels is maintained correctly.

6.7 Summary

This chapter has introduced a number of data structures and mechanisms. Although the
data structures are applied to different purposes, there are a number of common themes
as a result of the hierarchical symmetric multiprocessing structuring. Here we summarize
these themes by relating them back to the design guidelines of Section 3.3.

Preserving Parallelism: Data structures at both the virtual and physical levels are repli-
cated on demand across the clusters of the system. Replication preserves the paral-
lelism of application requests because the number of resources, and the number of
service points, grow to meet the service demand.

Bounded Overhead: One of the primary approaches to bounding overhead is to choose
search strategies that are independent of the size of the system. This approach is
illustrated at the physical level by directories, which permit the location of any file
block to be determined in order constant time. At the virtual level, the home cluster
concept permits any region to be located in at most one remote search.

84

CHAPTER 6. CROSS-CLUSTER MEMORY MANAGEMENT

The replication of resources also helps to keep service times constant as the system
grows, because contention and access latency to the replicated data structures is
reduced.

The physical data structures in HURRICANE grow proportional to the size of main
memory, which meets the bounded space guideline of Section 3.3. The exception to
this rule are representative page descriptors. Although these data structures could
grow proportional to the size of virtual memory, scalability is preserved by limiting
their number to a constant that is proportional to the size of main memory.

Preserving Locality: The replication of resources preserves locality by placing the copies

close to where they are accessed. The data structures also preserve the locality of
applications by supporting the implementation of higher level policies that allow
replication and caching of application data. Because replication is on demand, only
globally shared data structures are actually replicated. Data structures that are
not actively shared are always placed local to where they are accessed, and many
structures are not shared at all. For example, the FileTable and page tables are
maintained independently on a per cluster basis.

The data structures are flexible in that they allow performance tuning to different

architectures by adjusting the cluster size. Choosing cluster sizes smaller than the number
of processors in the system lessens contention in accessing a particular virtual resource,
because there are fewer processors accessing each resource and because these accesses are
local to the cluster. On the other hand, choosing a cluster size greater than one results
in fewer remote operations, because resources are replicated once per cluster. Thus, by

choosing the cluster size appropriately, both contention and communication costs can be

minimized.

Chapter 7

Experimental Results

The primary goal of HURRICANE is to investigate scalability by using hierarchical symmet-
ric multiprocessing to exploit locality and improve concurrency. Previous chapters have
discussed the issues involved and presented a design that we believe meets the research
objectives. This chapter attempts to evaluate our implementation to determine how well
the system scales, and the factors that affect its performance.

In many ways, the task of evaluating a system is as challenging as designing the system
itself. First, to measure the memory management sub-system, the experiments should be
designed to exclude effects due to the hardware, other parts of the operating system, and
the test program itself. Second, each experiment should exercise a single aspect of the
memory manager, so that the results can be interpreted unambiguously. This task is made
more difficult because scalability, which we are seeking to investigate, is itself difficult
to define quantitatively. Finally, the experiments must be performed on the available
hardware platform, which had only 16 processors at the time the measurements were
obtained. Thus, the experiments should attempt to demonstrate scalability effects even on
a relatively small system, so that extrapolations to larger systems are possible.

Considerations of experimental design raise the issue of software architecture and its
separation from implementation. Some of the designs discussed, particularly for directory
structuring, may allow the system to scale further but generally have a higher base over-
head, which makes them difficult to evaluate on a small platform. As well, HURRICANE is
an evolving system; it is only partly optimized, and many issues related to scalability have
yet to be explored. Although these challenges appear daunting, we believe the experiments
presented in this chapter meet many of the design criteria, and yield valuable insight into
the behavior of the system.

The general reasoning behind the experiments is as follows. Hierarchical symmetric
multiprocessing was developed from the assumption that while tightly-coupled systems
demonstrate high performance, they cannot scale because the shared resources must even-
tually saturate as the demand on them grows. Conversely, distributed systems appear to
scale well through replicated service sites and data structures, but typically have higher
communication overhead due to this replication. These trade-offs are illustrated concep-

85

86 CHAPTER 7. EXPERIMENTAL RESULTS

----- Contention
- - Communication
—— Total Cost

Cost

Degree of Coupling

Figure 7.1: A conceptual illustration of the trade-offs in contention and communication costs as
a function of coupling.

tually by the graph of Figure 7.1. The graph plots cost, measured in response time or
number of operations, against the degree of coupling, or sharing, for some fixed number
of processors. The dotted curve in the figure represents contention, which increases as
the coupling becomes tighter because of the increased demand on shared resources. The
dashed curve represents the cost of remote communication, which decreases with increased
sharing because, in general, fewer accesses are remote. Neither curve is linear, which ac-
counts for second order effects such as memory and bus contention. The solid curve is the
sum of the contention and communication costs, and suggests that there is some degree of
coupling for which the overall cost is minimized.

HURRICANE is uniquely suited to exploring the trade-offs in contention versus commu-
nication as a function of coupling. For a given number of processors, say p, configuring the
system into p clusters containing one processor each effectively mimics the behavior of a
fully distributed system. Similarly, if the system is configured into one cluster with p pro-
cessors, then all data and data structures are shared. If the cost trade-offs can be observed
by changing the degree of coupling (the cluster size of the system), and in particular if a
minimum cost is observed for some intermediate cluster size, then the fundamental thesis
of hierarchical symmetric multiprocessing is proven.

The experiments begin by measuring the performance of the basic memory management
primitives: page mapping and unmapping. These primitives are examined first for a single
process, and then under increasing levels of contention in an attempt to establish bounds on
system performance. The last section of this chapter investigates the performance of three

7.1. BASIC PRIMITIVES 87

parallel applications to see how their response times are affected by hierarchical symmetric
multiprocessing.

The hardware platform used for the measurements is a 16 processor HECTOR mul-
tiprocessor, configured as a local ring with 4 stations of 4 processor modules each (see
Section 2.2). Although the experiments configure the operating system into different clus-
ter sizes, the hardware configuration never changes. Each processor module contains 4
MBytes of local memory, a Motorola 88100 CPU, and 2 Motorola 838200 CMMUs [45].
The entire system is clocked at 16 MHz.

7.1 Basic Primitives

This section examines the performance of page mapping and unmapping in an uncontended
environment. Good performance of these primitives is crucial to the performance of more
complex operations that build on them, including application programs. Although page
mapping and unmapping are referred to as primitives, these operations are of course com-
posed of even lower level primitives, primarily data structure manipulations and hardware
dependent housekeeping. Consequently, the experiments in this section measure both the
aggregate and component time of each primitive, so that their behavior can be better
understood.

All experiments in this section were run with the operating system configured into 4
clusters of 4 processors each, with all servers running. However, the system was otherwise
idle. The times were measured using the system’s microsecond timers, and the numbers
reported are the average over several thousand operations. To remove start-up effects, the
pages are all pre-touched so that 1/O and initialization is excluded.

7.1.1 Read Faults

The first experiment measures the time it takes to demand map a page for read access.
The experiment was performed using a simple program that binds a region of 256 pages
into its address space, and then repeatedly accesses a single word on each page to cause
a page fault. The pages are unmapped between successive iterations of the loop so that
subsequent accesses always have to remap each page.

The average time per page fault was measured to be 160 psec. This time can be broken
into three primary components: the hardware dependent fault overhead; the region search;
and the page cache search. Note that since the page is always found in the local page cache,
and since the access is a read, the directory need not be consulted. The hardware dependent
overhead includes the time to recognize the fault, save and restore the registers, set the
page table entry, and emulate the access. The cumulative time for these operations was
measured to be about 36 psec. The region tree is searched to translate the virtual address
into a logical file block. This search time depends on the number of regions currently
bound to the address space, and on the contention for the MRSW lock that protects it.
The program for this test had 5 active regions and no lock contention, resulting in a search

88 CHAPTER 7. EXPERIMENTAL RESULTS

time of 43 psec. This figure reported includes the time to obtain and release the MRSW
lock for the address space.

The page cache search time was measured to be 33 pusec, including the lock overhead.
Like the region tree, this search time depends on the contention for the lock protecting the
page, and on the number of pages in the cache. Although the page cache is implemented
by a hash table, hash conflicts are resolved by linking the pages into an overflow list. The
probability of having to search multiple entries increases with the number of valid physical
pages in the cluster. The search time reported is for a newly booted system, so there are
relatively few valid pages.

7.1.2 Write Faults

The previous section measured the time required to map an unshared page for reading.
After this operation, the page is in the SR state, so it is write-protected. If the first
access to the page is for a write, or if the page state later moves to SRW, the same fault
sequence is followed, except that the page must also be registered as dirty in the directory.
The additional time for this directory lookup raises the SRW fault time to 230 psec.
The directory search time, 43 psec, is somewhat higher than the page cache search time of
33 psec, even though the directory and page caches have similar implementation structures
(a hash table with overflow chains). However, the page cache search is completely local to
the cluster, while three out of every four directory look-ups are to remote clusters, because
of the uniform placement strategy of directory entries.

In addition to the directory search itself, the directory locking protocol requires the
lock on the page descriptor to be released during the directory search. Thus, a second
page cache search is required after the directory check to reacquire the lock on the page
descriptor. The directory search and extra page cache search together account for the
difference between the read fault time (160 usec) and the write fault time (230 usec).

A more interesting case is when a write fault causes the page state to move to the MRW
state. To maintain cache coherence on HECTOR, this operation requires a flush/invalidate
of the processors caching the page, and is accomplished through remote interrupts. To
measure the time for a MRW fault, the simple program of the previous section was extended
to include a second process running on a different processor. The first process still runs
through the region of 256 pages, initializing each to the SR state, but then blocks while the
second process writes a word to each page in the region, causing an MRW fault for each
page. The pages of the region are then unmapped and the above sequence is repeated.
The time for this type of fault was measured to be 506 psec when the two processes are on
the same cluster. The contribution due to the remote interrupt, including the cache/TLB
invalidate and page table update, was approximately 90 usec.

When the writing process is on a different cluster, the time per fault is 828 usec. There
are several reasons for this substantial increase in time. First, the search of the page cache
on the writer’s cluster results in a miss!, because the page was mapped on the reader’s

LA miss is typically more expensive than a hit, because all the entries in the overflow chain must be

7.1. BASIC PRIMITIVES 89

cluster. The subsequent directory query shows that the page is already mapped for reading
on the other cluster. To move to the MRW state, a Representative must be allocated on the
writer’s cluster, and an RPC is needed to initialize its state from the reader’s cluster. This
also means that a second page cache search is needed, this time on the reader’s cluster, to
determine the physical address of the shared page. The last step of the fault is to invalidate
the reader’s processor cache, but since it is in a different cluster, an RPC call is used to
perform the operation.

An RPC is similar in many ways to the remote interrupt used to flush another proces-
sor’s cache, except that a lock is acquired to protect the operation. The measured time
for the null RPC was 58 usec. The times to acquire the Representative page and perform
the remote cache flush, including the RPC overhead, was measured as 175 and 250 psec,
respectively.

7.1.3 Unmap

Like write faults, the cost of unmapping depends on which processors are caching the page
and where they are located in the system. The simplest case is when the page is cached
only by the processor performing the unmap, since no remote operations are required. If
the page is cached by a different processor within the same cluster, a remote interrupt
is needed to flush/invalidate its cache. Finally, if the page is cached by a processor on a
different cluster, the remote cache operation is handled by an RPC call to that cluster.

To measure the cost of these operations, the write fault program of the previous section
was modified so that instead of writing to each page, the second process unmapped the
pages of the region. Having the second process do the unmap permits more freedom in
controlling which processor initiates the operation.

The time to unmap a page cached only by the local processor was measured to be
323 psec?. Like the page fault primitives, this time contains contributions from both
the hardware and data structure maintenance; however, the specific operations are very
different. The hardware dependent times include the cache and TLB invalidations and the
resetting of the page table entry (about 62 psec). The data structures that need to be
searched for this operation are: the directory to determine which clusters map the page;
the page cache to obtain the page descriptor, which identifies the processors within the
cluster that cache the page; and the File Table, which identifies the address spaces and
regions that bind the file containing the page. The directory and page cache search times
are as reported earlier; the time to search the File Table was measured as 120 pusec.

If the page is cached by a different processor within the same cluster, a remote inter-
rupt is required to have the processor invalidate the corresponding cache/TLB entries and
remove the page table entry. The measured time for this operation was 336 psec. The

searched to determine that the page is not present.

ZAn application unmap request is a system call whose latency is highly dependent on the current
system state. Consequently, the times reported were obtained around the unmap call inside the kernel,
which removes the variability of results due to system call handling.

90 CHAPTER 7. EXPERIMENTAL RESULTS

component breakdown for the additional overhead is the same as for the write fault case
above.

Finally, if the page is cached by a processor in a remote cluster, an RPC call is used to
perform the unmap remotely. If the page descriptor is not a representative it is left in the
remote page cache, otherwise the representative is freed and the corresponding directory
entry is cleared. The measured time for a cross-cluster unmap with no representative is
362 psec.

7.2 Performance Bounds

The previous section determined a lower bound on the response times of page mapping and
unmapping operations by examining the performance of these primitives in the absence
of contention. This section builds on these results by adding contention to the point
where the system starts to saturate. This type of bounds analysis is important for two
reasons. First, it allows the determination of maximum throughput, which is an indicator
of the scalability of the system. Second, performance bounds can be applied to the study
of application performance, since applications cannot achieve more throughput than is
obtainable from the synthetic stress tests developed in this section.

Contention relates to the demand placed on a resource by its clients, and manifests itself
in many ways, such as bus or memory contention at the hardware level, or lock contention
in software. The tests in this section are primarily concerned with the contention for
memory management resources, and will focus on two types: the contention caused by
simultaneous requests for different resources; and the contention caused by simultaneous
requests for the same resource. Although the resource demand is applied in a controlled
manner, the response times are measured from the application level, and therefore include
memory and bus contention caused by the test.

The experimental setup used for this section is similar to that of the previous section:
the system is fully configured with all servers running, but no other users were active. As
before, start-up costs such as process migration, region replication, and page initialization
are not included. All processes were scheduled onto different processors in a way that
minimizes the number of clusters spanned. That is, new processes are added to one cluster
until each processor within it has a process, before any processes are added to any other
cluster. This allocation algorithm corresponds to a scheduling policy that attempts to
assign related processes to the same cluster to maximize locality.

7.2.1 Independent Page Faults

This section measures the throughput of simultaneous mapping faults to independent
pages. To obtain these values, the basic read fault program of Section 7.1.1 was modi-
fied to allow any number of processes to run simultaneously. Each process binds its own
private region of 256 pages, and repeatedly reads the first byte of each page to cause a page
fault. The pages of each region are unmapped at each iteration of the loop. Because each

7.2. PERFORMANCE BOUNDS 91

region is bound to a different file segment, the faults are all to different physical pages. To
maximize contention, the processes barrier before and after the fault intensive portion of
each iteration. The degree of contention is controlled by varying the number of processes
running simultaneously.

Figure 7.2 shows the average response time for mapping faults for cluster sizes ranging
from 1 to 16 processors. The fault times vary from 142 usec when one process is running
on a single cluster of size 1, to 512 usec per fault when 16 processes are simultaneously
faulting on 16 processors configured as a single cluster.

The most noticeable feature of these curves is the dip in response times for cluster
size 8, and the smaller dips for cluster size 4. These dips are a direct consequence of
the scheduling policy used in the experiment, which places the processes in a way that
minimizes the number of clusters spanned. Consequently, contention within a cluster
increases as processes are added until the cluster is full, at which point contention is
maximized. The next process is added to a new cluster that is otherwise idle, so the
response time of the new process is a minimum. Since the response times plotted are
averages across all processors, the lone process has the effect of pulling the average down,
thus causing the dip seen in the figures. As further processes are added to the new cluster,
contention effects begin to increase the individual response times, but there are more
processes to weight the average. This is why the dip for cluster size 8 has a minimum at
12 processors. As the number of processors is further increased, contention increases until
at 16 processors, when both clusters are full, the response time returns to the saturated
value obtained for the single cluster of 8 processors. These same arguments apply to the
dips seen at 6, 10, and 14 processors for the cluster size 4 curve, and clearly shows how
bandwidth increases as more clusters are added.

One will note that the single processor page fault times of Figure 7.2 steadily increase
as the cluster size increases — from 142 psec for cluster size 1 to 179 usec for cluster size
16. The increase is due to NUMA effects within the larger clusters. The data structures
of a cluster are shared by all processors within the cluster, and are distributed evenly
across the memories of the cluster to balance the average memory demand. As a result the
probability of having to access data from a remote processor (or station) increases with
the cluster size, and consequently the average access time to memory increases.

It is interesting to consider what would happen if a different scheduling policy were
used, for example, scheduling first across clusters and then within them. Under this policy,
response times remain constant (at their minimum value) as new processes are added
to idle clusters, until all processes have been assigned a process. When the number of
processes exceeds the number of clusters, those clusters with multiple processes start to
become contended, and the weighted averaging starts to bring the response times up. For
extreme cases, the response times for the schedule-across policy are the same as for the
schedule-within policy discussed earlier. These cases include sequential tasks and parallel
programs that require all the processors, and operating system configurations where there
is one cluster per processor or where a single cluster spans all the processors in the system.

To investigate the scalability of independent page faults, Figure 7.3(b) plots “Normal-

92 CHAPTER 7. EXPERIMENTAL RESULTS

500
A- Cluster Size 16
x- Cluster Size 8
- Cluster Size 4
.- Cluster Size 2
400 |- Cluster Size 1
Response
Time 300 4
(usec)
200
100 4
| | | | | | | | |

Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Faulting Processes

Figure 7.2: The response time versus number of faulting processes for simultaneous independent
page faults. Each curve is for a different cluster configuration.

7.2. PERFORMANCE BOUNDS

93

a)
500 -
A- 16 Processes
x- 8 Processes
O- 4 Processes
.- 2 Processes
400 - - 1 Process
Response
Time
(usec)300 |
200 -
100 ! !
b) 16 1 2
A- Cluster Size 16
x- Cluster Size 8
o- Cluster Size 4
.- Cluster Size 2
|- Cluster Size 1
10 4
Normalized
Throughput
54
14
|

1 1 1 1

Number of Faulting Processes

| I Il
1 2 3 4 5 6 7 8 9 10 11 12 13 1 5 16

Figure 7.3: Performance of simultaneous independent page faults. a) Response time versus
cluster size for different numbers of faulting processes. b) Normalized throughput versus number

of faulting processes for different cluster configurations.

94 CHAPTER 7. EXPERIMENTAL RESULTS

ized Throughput”, which is derived from the response times of Figure 7.2 by the following
relation:

X(n) = R(1)/(R(n)/n) = nk(1)/R(n) (7.1)

where R(1) is the response time for a single process, n is the number of processes, and
R(n) is the response time per page fault when n processes are running simultaneously.
The figure clearly shows that this test favors small cluster sizes, which exhibit close to
linear throughput increases (15.7 for 16 processes on cluster size 1). This behavior can be
anticipated because the faults are to independent pages. The small cluster sizes benefit from
several factors. First, the lazy replication mechanism for regions means that each cluster
only contains the regions it is actively referencing, which reduces the search time. Second,
the page caches only contain the pages accessed locally by the cluster, which reduces hash
table conflicts and search times for these structures as well. Finally, but perhaps most
important, lock contention is reduced on small cluster sizes. This is because equivalent
data structures in different clusters are locked separately, effectively increasing the lock
bandwidth. In addition, the reduced search times due to the automatic distribution of
data structures when many clusters are used means that the length of critical sections is
reduced.

7.2.2 Concurrent Faults to Shared Pages

The previous section measured the performance of simultaneous faults to independent
pages. This section investigates the opposite end of the workload spectrum: the perfor-
mance of simultaneous faults to shared pages. The program used to measure this perfor-
mance is an extended version of the basic write fault program of Section 7.1.2. The program
creates any number of children, or writer processes, and schedules each onto a different
processor. A master process then reads a small number of pages (4 in the examples used
here) to initialize them into the SR state, and then enters a barrier with the children. All
the writer processes simultaneously write to these shared pages, causing a flood of page
faults to the memory manager. The children then barrier again with the master, so that
it can unmap the pages and start the next iteration.

The response time per fault is plotted against cluster size in Figure 7.4(a). Each curve
in the figure joins the response times of equivalent numbers of writer processes for different
cluster configurations. The values are plotted this way to show the performance trade-offs
between contention and communication.

Intuitively, one expects this test to favor large cluster sizes, since a cross-cluster write
fault involves two RPC calls and the overhead of creating a representative page. For the
16 process workload, Figure 7.4(a) shows that response times improve with increasing
cluster size up to 8 processors per cluster, but then contention on the page cache causes a
degradation in the performance when all 16 processors are configured as a single cluster.
For the less extreme workloads, the minimum response time is found at the point where
the cluster size matches the number of processes in the test. From this minimum, the curve
slopes up sharply to the left because smaller cluster sizes must use remote communication

7.2. PERFORMANCE BOUNDS

a) 2500

2000

1500

Response
Time
(usec)

1000

500 A

A- 16 Processes
O- 8 Processes
x- 4 Processes
.- 2 Processes
- 1 Process

b) 16

10

Normalized
Throughput

A- Cluster Size 16
x- Cluster Size 8
o- Cluster Size 4
.- Cluster Size 2

Number of Faulting Processes

1 1 1 1 1 1

1 1 1

| I Il Il
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

95

Figure 7.4: Performance of simultaneous faults to shared pages. a) Response time versus cluster
size for different numbers of faulting processes. b) Normalized throughput versus number of
faulting processes for different cluster configurations.

96 CHAPTER 7. EXPERIMENTAL RESULTS

to complete the fault. To the right of the minimum, the slope of the curve is more gradual,
and is due to the same NUMA effects that were observed for the independent page fault
experiment of the previous section. It is certain that these are NUMA effects because all
the data structures, including locks, are identical within all cluster sizes larger than or
equal to the number of processes used in the test.

The normalized throughput for this example is given in Figure 7.4(b). The figure shows
that throughput for faults to shared pages is much less than for faults to independent pages,
with a peak of 6.5 for 16 processes on 2 clusters of 8 processors each. This result is not
surprising, since the object of the test is to saturate a single resource: the shared pages that
are the targets of the simultaneous faults. These findings seem to support the intuition
that HECTOR/HURRICANE is best suited to medium or coarse-grained parallelism.

It is again interesting to consider the behavior of the system if the schedule-across
policy is used instead of the schedule-within policy used for the experiments. As before,
both policies yield identical response times for the four extremes: a single process or cluster
size 1; and 16 processes or cluster size 16. For intermediate cluster sizes, the response time
for 2 processes is significantly higher than the response time for the single process case,
because the second process is scheduled to a different cluster and must therefore incur
the cost of a cross-cluster write fault. As more processes are added to new clusters, the
response times increase slightly due to RPC contention on the cluster containing the shared
page. When the number of processes first exceeds the number of clusters, there is little
change in response time, primarily because the overhead is dominated by the cost of the
remote communication already present. As the clusters become full, the local page cache
contention begins to dominate.

These observations, together with the consideration of scheduling effects on independent
faults discussed in the previous section, suggest that the appropriate system-wide schedul-
ing policy is to use the schedule-across policy for sequential tasks, and the schedule-within
policy for the processes of parallel tasks. This hybrid policy minimizes the response times
for the independent faults of separate sequential tasks, and minimizes the communication
overhead for the shared faults of parallel tasks.

Multiprocessors like HECTOR are sometimes termed weakly NUMA, because the access
ratio between local and remote memory is relatively small. For example, in the absence
of contention, memory local to a HECTOR processor can be accessed in 10 cycles, while
accesses to memory on other processors in the same station take only 4 cycles longer. In
our particular configuration, accesses to memory on a different station take only 8 cycles
longer than accesses to local memory. To investigate the effects of remote access latency,
an artificial delay of 16 cycles was added to the ring in the HECTOR prototype. As a
result accesses to a different station take 24 cycles longer than accesses to local memory.
Figure 7.5 shows the results of the concurrent faults experiment with this ring delay. The
experiment was run with 16 processes, and the cluster size was varied from 1 processor per
cluster, to 16 processors per cluster.

The figure shows that the increased access latency does have an effect, particularly on
the large and small cluster configurations. When the system is configured with cluster

7.2. PERFORMANCE BOUNDS 97

3000 -

2500 4 !

Response
Time000 -
(usec)

1500 4 - no delay
x- high delay

1000 A

Cluster Size

Figure 7.5: Performance of simultaneous faults to shared pages when the access latency to remote
memory is changed.

size 16, all processors access the same data structures in a tightly-coupled fashion. The
response times for this case degrade because the shared data structures have a relatively
high probability of being on a remote station, and are therefore more costly to access. The
response times for cluster size 1 also degrade more quickly than for intermediate cluster
sizes. This is because there is more cross-cluster communication, so that the probability
that the communication is to a cluster on a remote station is higher.

7.2.3 Unmap

This section examines the behavior of the unmap operation for compound requests. The
example request removes the translations to a single physical page that is mapped by mul-
tiple processes. We began with the simple unmap program of Section 7.1.3, and extended
it to allow any number of processes to execute on different processors. A master process
first binds a shared region of 256 virtual pages. Each process then reads the first byte of
each page in the region, so that all the pages become read shared by all the processes. The
master then unmaps the pages of the region and the sequence is repeated.

Figure 7.6(a) shows the response times obtained for varying numbers of processes and
cluster configurations. Since there is no contention from other processes while the region
is unmapped, the experiment measures the parallelism of the unmap operation itself. To
perform the unmap, asynchronous RPCs are used within and across clusters to form a

98 CHAPTER 7. EXPERIMENTAL RESULTS

a) 1000
A- 16 Processes
- 8 Processes
x- 4 Processes
.- 2 Processes
|- 1 Process
750 -
o
Response
Time .
(usec) No
500 -
250 - Cluster Size
Il Il Il Il Il
b) 16 1 2 4 8 16
A- Cluster Size 16
x- Cluster Size 8
o- Cluster Size 4
.- Cluster Size 2
|- Cluster Size 1
10 4
Ra
Normalized
Throughput
54
14
Number of Faulting Processes
| | | | | | | | | | |

| I Il Il
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 7.6: Performance of unmap for compound requests. a) Response time versus cluster size
for different numbers of faulting processes. b) Normalized throughput versus number of faulting
processes for different cluster configurations.

7.3. APPLICATION PERFORMANCE 99

two-level spanning tree of the system (see Section 6.6).

Figure 7.6(a) shows the effectiveness of this approach, particularly for the 16 process
workload. For this workload, concurrency is maximized for cluster size 4, which exhibits
the lowest response time. The slopes of the curves in the figure indicate that the cross-
cluster parallelism has a larger benefit than the parallelism obtained within the clusters.
This is because the cross-cluster asynchronous RPCs permit concurrent searches of local
data structures, while large cluster sizes can only benefit from parallel cache operations,
which are a much smaller part of the total unmap time.

Figure 7.6(b) shows that the unmap operation appears to scale reasonably well, achiev-
ing a peak relative throughput of 9.34 for 16 processes on a 4 cluster configuration. These
values indicate that the bandwidth of the unmap operation is increasing with system size.

7.3 Application Performance

Previous sections have examined the performance bounds of the system by using synthetic
stress tests to establish throughput limits. These synthetic programs are useful because
they allow control of experimental parameters, but they do not necessarily represent the
behavior of real programs. This section examines the performance of three parallel ap-
plications as a function of cluster size. The applications are: SOR, a partial differential
equation solver; matrix multiply; and 2D-FFT, which calculates the fourier transform of a
two-dimensional array of data. All three programs are of the data-parallel, or SPMD?, class
of applications, which means that each process executes the same computational kernel on
a different portion of the data space. However, the data access patterns of the applica-
tions are very different, so that each stresses a different aspect of the memory management
sub-system.

All the tests are run with 16 processors; only the data set sizes and cluster configurations
are varied. As for the rest of the experiments, the system is booted in full multi-user mode,
so that all system servers are active but the system is otherwise idle. Unlike previous
experiments, the response times reported in this section are for the entire program, which
includes the time to create, schedule and destroy the worker processes, as well as the time
to initialize any data structures. As a result, the times reported represent more than
the overhead due to memory management alone; in particular, they include the overhead
of the HURRICANE kernel. However, it is difficult to separate memory management from
kernel overhead for real applications, and the response times still demonstrate the effects of
clustering. In addition, measuring the time for the entire program permits a fair speed-up
comparison, which will be reported for each application.

3SPMD stands for Single Program Multiple Data, and refers to the class of programs where all processors
execute identical computational kernels, but on different parts of the data set.

100 CHAPTER 7. EXPERIMENTAL RESULTS

oo
LA
g
H
@E. .
100 : 3
. A- A
A
NS .
g% A
X § }
5y x- Processor 1
Virtual .- Processor 2
Nﬁfr?t?er A- Processor 3
50+ =+ Processor 4
25+
A
Ap ﬁAAA A A x O
ACA N O
%2 A X . O
0 A x o1 0 B) ‘ x
100 200 300 400

Time (msec)

Figure 7.7: The page access and coherence faults of the SOR program, as recorded on the
HecToOR multiprocessor.

7.3.1 Partial Differential Equations

The SOR application uses the method of simultaneous over-relaxation [52] to solve Laplace’s
equation for a two-dimensional data set. This method starts from a set of initial, or bound-
ary conditions and iterates over the data space until the solution converges to a steady-
state. The particular example used finds the temperature distribution in an infinitely long
square rod whose edges are held at a fixed value. This example was chosen because it
has a closed form solution, which allows the verification of the solution obtained. To solve
this problem in parallel, one worker process is assigned to a separate processor, and each
worker process iterates over an equal sized strip of the two-dimensional array. The data in
each strip is accessed by a single process except along the common edges, where the data
is shared by the processes in adjacent strips.

Figure 7.7 shows the page faults generated by a run of the program using 4 workers on a
double-precision data set size of 128 x 128. The vertical axis shows the virtual page number
(virtual address divided by the page size) of the page that was accessed to cause the fault.
The horizontal axis shows the time at which each page fault was serviced, measured to the
nearest 5 millisecond interval. Because the figure plots faults as a function of the process
that caused them, there may be several entries for a given page number. Multiple faults
can occur if the page changes state, for example from SRW to MRW, or if the page is
unmapped and then reaccessed.

The scatter plot shown can be interpreted as follows. The faults in page numbers

7.3. APPLICATION PERFORMANCE

Response1 0.

Time
(sec)

15 -

o 192x192 DP
A- 128x128 DP

w

1 1 1 1 1

1 2 4 8 16

Cluster Size

101

Figure 7.8: The response time of the SOR program for different data set sizes and cluster

configurations.

102 CHAPTER 7. EXPERIMENTAL RESULTS

below 25 are in the text and initialized data sections of the program. The program begins
with a master (on processor 3) reading command line arguments and initializing the data
for the forthcoming computation. At time 70 msec the children start, and immediately
fault on their respective code and stack pages. The worker’s stack pages are located at
the highest page numbers in the figure. At time 110 msec the computation begins, as
each worker sequentially accesses the pages in its designated strip of data. There are
two faults on each page: the first is the initial access as the workers read the boundary
values of the data set; the second follows almost immediately as the first computed value
is written back to the array. At time 135 msec , the workers have accessed all the pages
in their allocated data strip, and try to complete the first iteration by accessing the data
of the adjacent worker. Since this adjacent page has already been initialized to the SRW
state on a different processor, a coherence fault is generated to move the page into the
MRW state, which allows the page to be shared safely by both workers. At this time, all
processes have completely established their working sets, so there are no more faults until
the computation completes. There are two key observations to be made about the data
access patterns exhibited by the program: simultaneous page faults are primarily to the
independent pages of each strip; but the pages along common edges are shared.

Figure 7.8 shows the response time as a function of cluster size for the SOR program
using 16 processors on data set sizes of 128 x 128 and 192 x 192. The execution time for
the large data set was 13.3 seconds when the system was configured with cluster size 4;
this is a speed-up of about 13 over the execution time for a single worker. Both curves
exhibit decreasing response times as the size of a cluster is reduced from 16 to 4 processors.
At cluster size 2 the response times level out, and then increase when the cluster size is
further reduced to 1 processor per cluster. Note that the increase in response time is more
pronounced for the large data set, although the virtual resource and process management
overhead is the same. One must therefore conclude that the increase is primarily due to
memory effects.

Because the page faults are primarily to independent pages, one would expect that
performance would improve as the cluster size is decreased (see Figure 7.3(a)). However,
the observed decerease in response time as the cluster size decreases is much less than if the
faults were to independent pages alone. To examine the behavior more closely, consider
the data distribution of the array. For 16 processors, the 128 x 128 double-precision data
is decomposed into strips of 2 pages each; for the 192 x 192 array, each worker is allotted a
strip of 4.5 pages. In both cases, edge pages are shared by two workers, which means that
two pages per strip are in the MRW state. MRW faults are always more expensive that
SRW faults, and cross-cluster faults are even more expensive. As the cluster size decreases,
the proportion of cross-cluster faults increases. Thus, for the small data set and 1 processor
per cluster, each cluster has 2 pages for the single worker, plus 2 representative pages for
the shared edge pages. For cluster size 2, there are still 2 representatives per cluster, but
there are now 4 local pages because there are 2 workers on the cluster. The increase in
cross-cluster faults that results as the cluster size is reduced is the primary reason for the
flattening of the curve.

7.3. APPLICATION PERFORMANCE 103

300
0 O O o o m) m] m] m] o
A N A A A A A A A A
X X X X X X X X X X
200
Virtual
Page
Number 0 o O o o o o] o o
A A
100 A A A A A A A A
N . X x x x x X X x
x- Processor 1
.- Processor 2
A- Processor 3
- Processor 4
oLHE ! ! ! !
1 2 3 4 5
Time (sec)

Figure 7.9: The page access and coherence faults of the Matrix Multiply program, as recorded
on the HECTOR multiprocessor.

7.3.2 Matrix Multiply

The matrix multiply program solves the matrix equation ' = AB, which has the following
computational kernel:

do i=1 to N
do j=1 to N
do k=1 to N
cli,k] = c[i,k] + ali,jl*b[j,k]

To solve this problem in parallel, each worker process executes the above kernel for
an equal sized strip of the C matrix. The A and B matrices are read but not written, so
they can be completely cached. The elements of C are written by a single process, so they
should be cacheable as well. However, if the elements of two adjacent strips happen to be
co-located on a common page, then that page will appear write-shared to the system, and
is therefore uncached. This is an example of false sharing.

Page placement policies are very important in improving access locality for this pro-
gram. To calculate the results for a strip of C, each process must access all the elements of
C contained in the strip, the elements of the same strip of A, and the entire B matrix. To
maximize locality for this access pattern, the A and C arrays are bound with a first-hit pol-
icy, which means the physical pages are allocated on the processor that first accesses them.
Since B is accessed by all processors, the region containing this array is bound round-robin,

104 CHAPTER 7. EXPERIMENTAL RESULTS

which means the physical pages are cycled across the memories of the processors to balance
the access load.

Figure 7.9 shows the page faults generated by a run of the matrix multiply program
with four processes and a single precision array size of 256 x 256. The program begins
by initializing the three arrays in parallel. This phase is seen as the short diagonal series
of page faults by each processor. Besides initialization, this phase serves the important
function of placing the data pages as discussed above. Since the pages of A and B are
written to, their coherence state is be reset by the master to allow the processors to cache
the data during the actual computation.

The computation starts at time 250 msec, with each worker moving through its strip
of C and corresponding strip of A. The figure shows the faults along the rows of the A and
C matrices as slowly increasing diagonals for each worker. In the figure, the C matrix is
bound at the lowest virtual address, followed by B and then A. Since the entire B matrix
is needed by all processes for each row of C, the faults to this array are concentrated at
the beginning of the calculation. This aspect of the program stresses the capability of the
memory manager to handle multiple simultaneous read faults to shared pages.

Figure 7.10 shows the response times for the matrix multiply program on different
cluster configurations and with different data set sizes. Although the response time curves
show U-shapes similar to the SOR program, the difference in the access patterns of the
two programs indicate that the underlying cost contributions must also be different.

The default policy for read-only data is to share pages within clusters and replicate
them across clusters. This policy applies to the B matrix, which is accessed in its entirety
by all processors, and therefore replicated across all the clusters. The result is a strong
improvement in locality and subsequent decrease in remote accesses, which benefits inter-
mediate sized clusters the most. For large cluster sizes, there is not enough replication to
improve the locality significantly, and for small clusters, the advantages are offset by the
overhead of the replication itself.

The reader will notice that the data point is missing for the double-precision 384 x 384
data set on cluster 1. This is because the system attempts to replicate B onto every
processor, which causes the system to run out of memory. However, even if page-out or a
remote mapping policy were employed to allow the program to complete, the overhead of
the policy would degrade the response times substantially.

7.3.3 Two-Dimensional FFT

The 2D-FFT program computes the forward and reverse transform of a two-dimensional ar-
ray of data. The algorithm proceeds by performing a one-dimensional transform first along
each row of the array, and then along each of its columns. The one-dimensional transform
is computed with a fast fourier transform (FFT) algorithm, which requires O(logN) time,
where N is the number of points in the data set. This algorithm exploits symmetry in the
calculation, which is dominated by sine and cosine operations. To improve the performance
of the two-dimensional calculation, the sine and cosine values are pre-computed and saved

7.3. APPLICATION PERFORMANCE 105

0 ’\/
10 4
|
Response oo BD
Time
(sec) x\\
5 i A \\ - X
N N - > -
.- 384X384 DP
- 384X384 SP
14 x 256X256 DP
A- 256x256 SP
Il Il Il Il Il

1 2 4 8 16

Cluster Size

Figure 7.10: The response time of the Matrix Multiply program for different data set sizes and

cluster configurations.

106 CHAPTER 7. EXPERIMENTAL RESULTS

400
W o o
x- Processor 1
.- Processor 2
A- Processor 3
- Processor 4
8
300 -
ul
Virtual
Page 200+
Number @

100

1 1 1
500 750 1000 1250

Time (msec)

Figure 7.11: The page access and coherence faults of the 2D-FFT program, as recorded on the
HecToOR multiprocessor.

in a look-up table.

Like the previous two applications, the parallel solution to this problem assigns equal
sized strips of rows and columns to each worker process. The workers compute the row
transforms in parallel, then barrier before computing the column transforms. Since the C
language stores arrays in row-major order, the columns are loaded into local vectors before
transforming them; this allows a single 1D-FFT routine to suffice for all calculations.

Figure 7.11 shows the page faults generated by a run of the 2D-FFT program with
four workers on a single-precision data set size of 128 x 128. The program starts with the
usual cluster of text and stack faults as the workers are created and initialized. At time
100 msec, the array is initialized, in parallel, to random values. A copy of the data set is
also made at this time so that the results of the calculation can be checked. The forward
transform begins at time 200 msec with the workers initializing the sine and cosine look-up
tables. These tables occupy the highest page numbers in the figure. Since the tables have
been written for initialization but are used in a read-only manner, the coherence state of
the tables is reset so that they can be cached for the remainder of the computation. At
time 250 msec the row transforms begin, and can be identified by the series of page faults
at gradually increasing virtual page numbers. The workers barrier at time 450 msec to
begin the column transform. Since the pages of the array had been initialized to the SRW
state, the load of the columns causes an intense flurry of coherence faults as the pages
move to the MRW state. This aspect of the program stresses the memory managers ability

7.3. APPLICATION PERFORMANCE 107

15 4

.- 512X512 DP

x- 512X512 SP -7
O- 256X256 DP = - - — - _ _ _--"
104 a-256x256 SP

Response
Time
(sec)

1 1 1 1 1

1 2 4 8 16

Cluster Size

Figure 7.12: The response time of the 2D FFT program for different data set sizes and cluster
configurations.

108 CHAPTER 7. EXPERIMENTAL RESULTS

to handle simultaneous faults to shared pages. There are no more faults for the remainder
of the forward transform, since the entire working set is by now well established. The
transform completes at time 700 msec, when the workers barrier with the master. The
remainder of the faults in the figure are the results of the reverse transform, which shows
the same access pattern as exhibited by the forward part of the program.

Figure 7.12 shows the response times for the 2D-FFT program for different data set sizes
and cluster configurations. Again, intermediate cluster sizes show the best performance,
with cluster size 2 achieving a speed-up of 9.3 on the 512 x 512 double-precision data
set. The complex access patterns of this application make it difficult to attribute the
performance difference to any one aspect of the system. However, in tuning the system
for better performance, we found that times on intermediate cluster sizes were improved
by the addition of asynchronous unmap operations (they used to be sequential), and that
large cluster sizes benefited from finer grained locking in the page cache.

Chapter 8

Conclusion

8.1 Overview of the Dissertation

This dissertation has focused on the structuring of memory management for scalable per-
formance. We began by considering the properties that an operating system should possess
if the throughput is to increase with the number of processors. These considerations led to
a set of design guidelines and a new framework for structuring systems, called Hierarchical
Symmetric Multiprocessing. The HSM architecture promotes scalability by distributing
and replicating service capabilities and data structures across tightly-coupled groups of
processors called clusters.

Chapters 5 and 6 described how the principles of hierarchical symmetric multiprocessing
are applied to the HURRICANE memory manager. The data structures of the memory man-
ager are directly accessible by all processors within a cluster and are shared as needed across
clusters. The integrity of the data structures is maintained by synchronization protocols
within and across clusters. Cross-cluster consistency of virtual resources is maintained by
directing all requests through the home cluster of the address space. A directory structure
is used as the synchronization point for cross-cluster operations on physical pages. Clusters
cooperate through three types of communication mechanisms: shared memory is used to
access directory entries; RPC is used for demand-driven operations; and message-passing
is used by the server processes of the memory manager.

The effectiveness of the HSM architecture was illustrated in Chapter 7. The experiments
showed that the trade-offs between contention and communication could be balanced by
choosing the cluster size correctly. In particular, several applications with different memory
access behaviors were shown to perform better using an intermediate cluster size than using
either fully distributed or fully shared configurations. For example, for the SOR, 2D-FFT,
and Matrix Multiply applications, cluster size 4 and 2 always resulted in better performance
than cluster size 1.

109

110 CHAPTER 8. CONCLUSION

8.2 Summary of Contributions

The effort to build a scalable memory manager has resulted in three main contributions: a
set of sufficient conditions and guidelines for a scalable operating system; an architectural
framework for designing scalable systems, called hierarchical symmetric multiprocessing;
and a prototype implementation of the architecture, called HURRICANE, which demon-
strates the viability of the approach. This section reviews these contributions.

8.2.1 Conditions for Scalability

From a consideration of the properties of the fundamental metrics of computer performance,
we have been able to develop the following set of conditions sufficient for an operating
system to scale:

1. The time at a particular resource devoted to servicing a particular request must be
bounded by a constant independent of p, the number of processors in the system.

2. The number of resources available to service a particular class of request must increase
proportional to p.

3. The system must be balanced in its service capabilities.
4. The servicing of individual requests must be localized and independent.

These criteria can be translated into a set of design guidelines that can be used as a basis
for system structuring:

1. The operating system must preserve the parallelism of the applications it supports.
This is achieved by increasing the operating system resources as a function of p, and
by providing balanced and distributed service capabilities.

2. The operating system must bound its service time and space overhead. Bounded
service times means the system must use data structures and search techniques that
are independent of p. Bounded space restricts the system to use data structures whose
space costs grow proportional to the physical resources of the underlying machine.

3. The operating system must preserve the locality of the applications. Locality can be
preserved a) by properly choosing and placing data structures within the operating
system, b) by directing application requests to nearby service points, and c) by
enacting policies that preserve locality in the applications’” memory accesses.

8.2.2 Hierarchical Symmetric Multiprocessing

Hierarchical symmetric multiprocessing is a new architecture for operating system struc-
turing. The goal of HSM is to provide an integrated and formal approach to operating

8.2. SUMMARY OF CONTRIBUTIONS 111

system structuring without compromising performance. The architecture is based on ob-
servations of the characteristics of existing systems. Tightly-coupled systems can achieve
good performance through shared data structures and fine-grained communication, but
cannot scale. Loosely-coupled systems can scale through distributed service capability and
replicated data structures, but the cost of remote communication is typically high.

A hierarchical symmetric multiprocessing system is based on the notion of clusters,
which are composed of groups of neighboring processors that share data structures in a
tightly-coupled way. Fach cluster supports the complete functionality of a small-scale
symmetric multiprocessing operating system. Multiple clusters cooperate and communi-
cate in a loosely-coupled fashion to give applications an integrated and consistent view of
a single large system. The advantages of hierarchical symmetric multiprocessing can be
summarized as follows:

e Hierarchical symmetric multiprocessing provides a framework for exploiting locality,
since system service points and data structures are replicated across the system. Per-
formance is maintained because data structures are local to where they are accessed,
and because data structures are shared primarily by processors within a cluster.
Large-scale applications are scheduled across multiple clusters, and can benefit from
the concurrency afforded through replicated system services.

e Hierarchical symmetric multiprocessing enhances portability by allowing performance
tuning to different architectures. The appropriate cluster size for a given architecture
is affected by several factors, including the local-remote memory access ratio, the
hardware cache size and coherence support, and the network topology. HSM allows
the cluster size to be chosen to match these architectural parameters.

This same reasoning can be applied to tuning for different workloads on a single
system. By choosing the cluster size correctly, the trade-offs between contention and
communication overhead can be balanced to maximize performance.

e Finally, hierarchical symmetric multiprocessing simplifies lock structuring issues,
which can lead to improved performance and scalability. Because contention for
a lock is limited to the number of processors in a cluster, locks within a cluster can
be relatively coarse-grained and still achieve good performance. Further, the locks do
not have to be restructured as the system grows, because the locks and the structures
they protect are instantiated separately on each cluster of a large system.

8.2.3 HURRICANE

HURRICANE is a new operating system built to evaluate the viability of a hierarchical
symmetric multiprocessing architecture. The memory manager was built from scratch so
that it is free of the the bias and constraints imposed by an established environment.
Through the demand replication and distribution of data and control structures, we were
able to meet the design criteria of a HSM architecture. In particular, our focus on structure

112 CHAPTER 8. CONCLUSION

and mechanism has resulted in a flexible base that can be used to experiment with trade-
offs in coupling, and which can be used as a platform for the development of higher level
policies.

In the course of developing the HURRICANE memory manager, we have gained valuable
experience in designing large systems, which has led to several novel structuring approaches.
First, the copy-on-write mechanism of HURRICANE is not based on the traditional shadow
trees of Mach and Chorus. The sub-region approach we use arises partly as a result of
the different environment and workload of HURRICANE, but we also believe the approach
is more scalable because the dependence on global data structures is reduced. Second, we
have developed an asynchronous RPC protocol that permits parallelism to be exploited
in the servicing of compound requests, such as unmapping multiple replicas of a physical
page. Third, HURRICANE maintains page tables on a per processor basis. This approach
permits exact book-keeping for advanced coherence policies, and simplifies the problem
of TLB-consistency. HURRICANE is the first operating system we know of to maintain
both cache and memory coherence as part of the memory manager. Our experience with
directories has yielded interesting insights into structuring of directories for both locality
and scalability. All four areas have been developed in the context of hierarchical symmetric
multiprocessing on HURRICANE. It will be interesting to explore the applicability of these
approaches on other systems and architectures.

8.3 Future Work

The implications of hierarchical symmetric multiprocessing structuring are far-reaching,
and present many challenges. This section enumerates several such challenges within the
memory manager itself, and across the system as a whole.

Development so far has focused on the structuring and mechanisms of the HURRICANE
memory manager to allow scalability, and the current system provides a flexible test-bed for
further experimentation. In particular, several of our current mechanisms warrant further
attention. First, our current approach to supporting remote accesses through representa-
tive page descriptors must be re-evaluated. The number of representatives per cluster is
currently a constant, and the constant can increase with cluster size because there is more
memory available for the descriptors. Unfortunately, the probability of accessing pages
remotely increases as the cluster size decreases, and the small cluster sizes have the fewest
number of available representatives. However, we are hesitant to share page descriptors
directly across clusters, because locality is lost and contention is increased.

A second interesting area for study is in the structuring and handling of RPC calls. To
support clustering, we have found that each memory manager function has three internal
interfaces: one for operations local to the cluster; another to serve as the RPC handler for
operations remote to the cluster; and the third to invoke operations remote to the cluster.
We feel that having three interfaces for each call is counter to good software engineering
principles, and would like to investigate other structuring approaches.

The use of RPC for cross-cluster communication also raises issues in how the servicing of

8.3. FUTURE WORK 113

remote requests is balanced across the system. Currently, the RPC service load is balanced
by having processor ¢ of each cluster direct its RPC requests to processor ¢ of the target
cluster. If the target processor is busy at the time of the request (for example, it may be
servicing a local page fault), the requesting processor waits until the target processor is
free. We would like to investigate more dynamic load balancing approaches; an example
would be to direct an RPC request to any non-busy processor in the target cluster.

While development so far has focused on the structuring and mechanism, there are a
number of other area of memory management that should be addressed:

Memory Management Policies: The suitability of HURRICANE as a platform for higher
level policies has been demonstrated through the example coherence policy used
in the dissertation, but other, more sophisticated policies are possible and could
perform better. The policies that govern the placement and replication/migration
of pages must consider both the application access patterns and the architectural
parameters [37]. Several groups have done initial policy studies [36, 17, 24]. However,
their results tend to be specific to a particular architecture, so the generalization of
their findings to a clustered environment, and the analysis of the scalability of the
policies, is an interesting area of study [18].

Application-Level Control: Because the memory manager must support a broad mix
of applications, its policies are general and are tuned to perform well for the common
case. In addition, the mechanisms and policies are constrained to the protection
granularity supported by the hardware. Applications may be able to improve their
performance by overriding these defaults with their own memory management poli-
cies. Some possibilities for study in this area include:

e Application level cache coherence [50] - to allow finer control than the page size
granularity supported by the memory manager.

e Weakly consistent systems [20] - to reduce the effects of false sharing.

e Application level page fault handling [66, 5] - to allow application control of
page placement and mapping.

Page-out: Few researchers have investigated page replacement policies for NUMA archi-
tectures, although this topic raises several important issues. For example, instead of
replacing or paging-out valid pages on clusters where available memory is low, pages
can be “borrowed” from neighboring clusters with more available memory [35]. The
opposite approach is also possible: instead of writing pages targeted for replacement
to disk immediately, they could be migrated away to clusters with more available
memory. Another possible solution is to balance memory demand by migrating pro-
cesses to clusters with more available memory.

Besides memory management, the principles of hierarchical symmetric multiprocessing
have also been applied to the HURRICANE kernel implementation. The next challenge

114 CHAPTER 8. CONCLUSION

is the issue of scalability within the I/O subsystem. We believe it will be beneficial to
replicate and distribute the file blocks of individual files across a number of disks, which
are themselves distributed across the system. One of the important differences between
memory and files is that data in the latter is persistent, which means that a block place-
ment decision has repercussions far beyond the lifetime of the program that wrote the
data. Although the file blocks are cached by the memory manager, the persistence issue
complicates the management of locality, because remotely accessed file blocks consume bus
bandwidth during their transfer. The eventual solution to the problem could even involve
scheduling decisions that place a program near to where its data is located.

While the dissertation has considered the application of HSM to operating systems, we
believe the architecture is also well suited to the design of large-scale parallel programs. The
cost trade-offs between contention and communication are largely the same for applications
and operating systems, and the management of locality is key to the performance of both.
An interesting question in application design, which also affects the operating system, is
what to do when the degree of coupling that optimizes application performance is different
from the cluster size of the system.

In the longer term, we would like to test our ideas on larger systems, and are partic-
ularly interested in extending the hierarchy of the system. For example, the single-level
directory of the memory manager could be replaced with a hierarchical directory, to permit
better locality of access and more concurrency. Also, clusters could themselves be grouped
into super clusters. Processor load balancing is an obvious candidate for this hierarchical
clustering. A high-level process manager schedules processes between super clusters, while
lower-level managers schedule processes within a super cluster.

In conclusion, we are encouraged by the results obtained through the application of
hierarchical symmetric multiprocessing to HURRICANE so far, and look forward to the
challenges of the future.

Bibliography

1]

[9]

[10]

Vadim Abrossimov, Marc Rozier, and Marc Shapiro. “Generic Virtual Memory Man-
agement for Operating System Kernels”. In Proc. 12th ACM Symposium on Operating
System Principles, pages 123-136, Litchfield Park, Arizona, December 1989.

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis
Tevanian, and Michael Young. “Mach: A New Kernel Foundation for Unix Develop-
ment”. In Proc. 1986 Summer USENIX Conference, pages 93112, July 1986.

[. Ahmad and A. Ghafoor. “Semi-distributed Load Balancing for Massively Parallel
Multicomputer Systems”. [EEFE Transactions on Software FEngineering, 17(10):987—
1004, October 1991.

George S. Almasi and Alan Gottlieb. Highly Parallel Computing. The Ben-
jamin/Cummings Publishing Co., 390 Bridge Parkway, Redwood City, CA 94065,
1989.

Andrew W. Appel and Kai Li. “Virtual Memory Primitives for User Programs”. In
ASPLOS-1V Proceedings, pages 96-107, Santa Clara, California, April 8-11 1991.

Maurice J. Bach. The Design of the UNIX Operating System. Prentice-Hall Software
Series. Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1986.

Ramesh Balan and Kurt Gollhardt. “A Scalable Implementation of Virtual Memory
HAT Layer for Shared Memory Multiprocessor Machines”. In Summer ‘92 USENIX,
pages 107-115, San Antonio, TX, June 1992.

Amnon Barak and Yoram Kornatzky. Design principles of operating systems for large
scale multicomputers. Computer Science RC 13220 (#59114), IBM Research Division,
T.J. Watson Research Center, Yorktown Heights, NY 10598, October 1987.

Amnon Barak and On G. Paradise. “MOS - Scaling up UNIX”. In Proc. USENIX
Conference, pages 414—418, December 1986.

BBN Advanced Computers, Cambridge, MA. Inside the Butterfly-Plus, October 1987.

115

116

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

John Bennett, John B. Carter, and Willy Zwaenepoel. Munin: Distributed shared
memory based on type-specific memory coherence. Technical Report COMP TRR89-
98, Rice University, P.O. Box 1892, Houston, Texas 77251-1892, November 1989.

Richard R. Billig, Stephen S. Corbin, and Russel I.. Moore. “A fast backplane cluster
heralds a 1000-MIPS computer”. FElectronic Design, July 1987.

A. D. Birrell and B. J. Nelson. “Implementing Remote Procedure Calls”. ACM
Transactions on Computer Systems, 2(1), February 1984.

David Black. “Translation Lookaside Buffer Consistency: A Software Approach”.
In Proc. Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 113-122, 1989.

David Black, Anoop Gupta, and Wolf-Dietrich Weber. “Competitive Management
of Distributed Shared Memory”. In Spring COMPCON 89 Digest of Papers, pages
184-190, 1989.

David R. Blythe, Michael Stumm, and Ron Unrau. Hurricane Exception Architecture
— Source Specification. Technical report, University of Toronto, Toronto, Ontario,

Canada, August 1989.

William J. Bolosky, Robert P. Fitzgerald, and Michael L. Scott. “Simple But Effective
Techniques for NUMA Memory Management”. Operating Systems Review, 23(5):19-
31, 1989. Reprinted from Proc. 12th ACM SOSP, Dec. 1989, Litchfield Park, Arizona.

William J. Bolosky, Michael L. Scott, Robert P. Fitzgerald, Robert J. Fowler, and
Alan L. Cox. “NUMA Policies and Their Relation to Memory Architecture”. In
ASPLOS-1V Proceedings, pages 212-221, Santa Clara, California, April 8-11 1991.

Henry Burkhardt III, Steven Frank, Bruce Knobe, and James Rothnie. Overview
of the KSR1 computer system. Technical Report KSR-TR-9202001, Kendell Square
Research, Boston, February 1992.

John B. Carter, John K. Bennett, and Willy Zwaenepoel. “Implementation and Per-
formance of Munin”. In Proc. 13th ACM SOSP, October 1991.

David Chaiken, John Kubiatowics, and Anant Agarwal. “LimitLESS Directories: A
Scalable Cache Coherence Scheme”. In ASPLOS-IV Proceedings, pages 224-234, Santa
Clara, California, April 8-11 1991. ACM.

E. Chaves, T. J. LeBlanc, B. D. Marsh, and M. L. Scott. Kernel-Kernel Commu-
nication in a Shared-Memory Multiprocessor,. In Second Symposium on Distributed
and Multiprocessor Systems, pages 105-116, Atlanta, Georgia, March 1991. Usenix.
submitted to Computing SystemsP, April 1991.

BIBLIOGRAPHY 117

23]

[24]

[25]

[26]

28]

[29]

[30]

31]

32]

33]

[34]

[35]

David R. Cheriton. “The V Distributed System”. Communications of the ACM,
31(3):314-333, March 1988.

Alan L. Cox and Robert J. Fowler. “The Implementation of a Coherent Memory
Abstraction on a NUMA Multiprocessor: Experiences with PLATINUM”. Operating
Systems Review, 23(5):32-44, 1989. Reprinted from Proc. 12th ACM SOSP, Dec. 1989,
Litchfield Park, Arizona.

Harvey M. Deitel. An Introduction to Operating Systems. Addison-Wesley, Reading,
Mass., 1984.

P. J. Denning. “Thrashing: Its Causes and Prevention”. In AFIPS Conf. Proc., pages
915-922, 1968.

Peter J. Denning. “Working Sets Past and Present”. IFEE Transactions on Software
Engineering, January 1980.

Dror .G. Feitelson and Larry Rudolph. “Distributed Hierarchical Control for Parallel
Processing”. Computer, 23(5):65-81, May 1990.

M. J. Flynn. “Some Computer Organizations and Their Effectiveness”. IEFE Trans-
actions on Computers, C-29(9):948-960, September 1972.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. “Performance Evaluation
of Memory Consistency Models for Shared Memory Multiprocessors”. In ASPLOS-IV,
pages 245-257, Santa Clara, California, April 8-11 1991. ACM.

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. “Scale and Performance in
a Distributed File System”. ACM Transactions on Computer Systems, 6(1):51-81,
February 1988.

David V. James, Anthony T Laudrie, Stein Gjessing, and Gurindar S. Sohi.
“Distributed-Directory Scheme: Scalable Coherent Interface”. Computer, 23(6):74-77,
June 1990.

Orran Krieger, Michael Stumm, and Ron Unrau. “Exploiting the Advantages of
Mapped Files for Stream 1/O”. In Proceedings of the USENIX Winter 1992 Technical
Conference, pages 27-42, San Francisco, January 1992.

Leslie Lamport. “How to Make a Multiprocessor Computer that Correctly Exe-
cutes Multiprocess Programs”. [EEFE Transactions on Computers, C-28(9):241-248,
September 1979.

Richard P. LaRowe Jr. and Carla Schlatter Ellis. Dynamic page placement in a NUMA
multiprocessor virtual memory system. Technical Report CS-1989-21, Dept. Computer
Science, Duke University, Durham, NC 27706, October 1989.

118

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

BIBLIOGRAPHY

Richard P. LaRowe Jr. and Carla Schlatter Ellis. Experimental Comparison of Memory
Management Policies for NUMA Multiprocessors. Technical Report CS-1990-10, Dept.
Computer Science, Duke University, Durham, NC 27706, April 1990.

Richard P. LaRowe Jr., Carla Schlatter Ellis, and Laurence S. Kaplan. “Tuning NUMA
Memory Management for Applications and Architectures”. In Proc. 153th ACM SOSP,
October 1991.

Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik.
Quantitative System Performance. Prentice-Hall Inc., Englewood Cliffs, NJ 07632,
1984.

Paul J. Leach, Paul H. Levine, Bryan P. Douros, James A. Hamilton, David L. Nelson,
and Bernard L. Stumpf. “The Architecture of an Integrated Local Network”. IEEFE
Journal on Selected Areas in Communications, SAC-1(5):842-856, November 1983.

Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quar-
terman. The Design and Implementation of the 4.3BSD UNIX Operating System.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop
Gupta, John Hennessy, Mark Horowitz, and Monica Lam. “The Stanford Dash Mul-
tiprocessor”. Computer, 25(3):63-79, March 1992.

Eliezer Levy and Abraham Silberschatz. “Distributed File Systems: Concepts and
Examples”. ACM Computing Surveys, 22(4):323-373, December 1990.

Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Yale
University Department of Computer Science, Cambridge, Massachusetts, September

1986.

Tom Lovett and Shreekant Thakkar. “The Symmetry Multiprocessor System”. In
Proc. 1988 International Conference on Parallel Processing, pages 303-310. CRC
Press, Inc., August 1988.

Motorola Inc. MC88100 RISC Microprocessor User’s Manual, 1988.

Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert van Renesse,
and Hans van Staveren. “Amoeba: A Distributed Operating System for the 1990s”.
Computer, 23(5):44-53, May 1990.

Michael N. Nelson and John K. Ousterhout. “Copy-on-write for Sprite”. In Proc.
Summer USENIX 88 Conference, pages 187-201, San Fransisco, California, June
1988.

Daniel Nussbaum and Anant Agarwal. “Scalability of Parallel Machines”. Communi-

cations of the ACM, 34(3):56-61, March 1991.

BIBLIOGRAPHY 119

[49]

[54]

[55]

John K. Ousterhout, Andrew R. Cherenson, Frederick Douglas, Michael N. Nelson,
and Brent B. Welch. “The Sprite Network Operating System”. Computer, 21(2):23-36,
February 1988.

Susan Owicki and Anant Agarwal. “Evaluating the Performance of Software Cache

Coherence”. ACM, pages 230-242, 1989.

G. F. Pfister, W. C. Brantley, D. A. George, S. L.. Harvey, W. J. Kleinfelder, K. P
McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss. “The IBM Research Parallel
Processor Prototype”. In Proc. 1985 International Conference on Parallel Processing,

pages 764-771, August 1985.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, Cambridge, 510 North Avenue, New Rochelle, NY 10801, 1988.

Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert Baron, David
Black, William Bolosky, and Jonathan Chew. “Machine-Independent Virtual Memory
Management for Paged Uniprocessor and Multiprocessor Architectures”. In Proc.

11th ACM Symposium on Operating System Principles, pages 6376, Austin, Texas,
November 1987.

Bryan S. Rosenburg. “Low-Synchronization Translation Lookaside Buffer Consis-
tency in Large-Scale Shared-Memory Multiprocessors”. Operating Systems Review,

23(5):137-146, 1989. Reprinted from Proc. 12th ACM SOSP, Dec. 1989, Litchfield

Park, Arizona.

Harjinder S. Sandhu, Benjamin Gamsa, and Songian Zhou. Region-oriented memory
management in shared-memory multiprocessors. Technical Report CSRI-269, Com-
puter Systems Research Institute, University of Toronto, Toronto, Canada, M55 1A1,
April 1992.

C. Scheurich and M. Dubois. “Dependency and Hazard Resolution in Multiproces-
sors”. In Proc. 14th International Symposium on Computer Architecture, pages 234—

243, Los Alamitos, California, 1987. IEEE CS Press. Order No. 776.

Robert Sedgewick. Algorithms in C. Addison-Wesley Publishing Company, Inc.,
Reading, Mass, 1990.

Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell. Computer Structures: Prin-
ciples and Framples. McGraw-Hill Book Company, 1982.

Harold S. Stone. High-Performance Computer Architecture. Addison-Wesley, 1987.

M. Stumm. The design and implementation of a decentralized scheduling facility for
a workstation cluster. In Proc. IEEFE Conf. on Computer Workstations, pages 12-22,
March 1988.

120

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

BIBLIOGRAPHY

Michael Stumm and Songian Zhou. “Algorithms Implementing Distributed Shared
Memory”. Computer, 23(5):54-64, May 1990.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, Englewood Cliffs,
N.J., 07632, 1992.

Charles P. Thacker, Lawrence C. Stewart, and Edwin H. Satterthwaite, Jr. “Firefly:
A Multiprocessor Workstation”. [EEE Transactions on Computers, 37(8):909-920,
August 1988.

Michael Y. Thompson, J.M. Barton, T.A. Jermoluk, and J.C. Wagner. “Translation
Lookaside Buffer Synchronization in a Multiprocessor System”. In USENIX Winter
Conference, pages 297-302, Dallas, Texas, February 1988.

Zvonko G. Vranesic, Michael Stumm, Ron White, and David Lewis. “The Hector
Multiprocessor”. Computer, 24(1), January 1991.

Michael Young, Avadis Tevanian, Richard Rashid, David Golub, Jeffrey Eppinger,
Jonathan Chew, William Bolosky, David Black, and Robert Baron. “The Duality of
Memory and Communication in the Implementation of a Multiprocessor Operating

System”. In Proc. 11th ACM Symposium on Operating Systems Principles, Austin,
Texas, November 1987.

S. Zhou, M. Stumm, M. Li, and D. Wortman. Heterogeneous distributed shared
memory. [EEE Trans. on Parallel and Distributed Systems, 3(5):540-554, 1991.

Songian Zhou and Tim Brecht. “Processor Pool-Based Scheduling for Large-Scale
NUMA Multiprocessors”. In Sigmetrics 1991 Proceedings, June 1991.

