Performance Issues in the Design of Hierarchical-ring and

Direct Networks for Shared-memory Multiprocessors

Govindan Ravindran

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Electrical and Computer Engineering

University of Toronto

(©) Copyright by Govindan Ravindran 1998

Abstract

Performance Issues in the Design of Hierarchical-ring and

Direct Networks for Shared-memory Multiprocessors

Govindan Ravindran
Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering
University of Toronto

1998

This dissertation explores performance issues in the design of interconnection networks for
shared-memory multiprocessors. In particular, it considers low-dimensional direct (e.g., mesh
and tori) and hierarchical-ring networks, and studies issues in topology, buffer management,
switching, routing and flow control. The performance evaluation is primarily done by simulating
the target systems at the register transfer level on a cycle-by-cycle basis using both synthetic

and real (SPLASH-2) workloads.

The contributions of the dissertation include:

e the first extensive performance study specifically for shared-memory multiprocessor inter-
connection networks. Prior research focused primarily on distributed memory systems. It
is important to consider shared-memory systems separately because of the different class

of traffic they must support.

e the first extensive simulation study of hierarchical-ring networks. Topologies that perform
well are derived, and various cut-through switching techniques, such as wormhole, virtual
cut-through, cell switching, are evaluated under both blocking and non-blocking flow

control policies.

e a comprehensive comparative performance study of 2D mesh, 2D tori and hierarchical-
ring networks. It is shown that the hierarchical-ring networks outperform the mesh and

tori networks for system sizes smaller than 64 processors.

e a novel deadlock free routing technique for wormhole switched hierarchical-ring networks

using a virtual channel approach.

e a novel priority-based network design that uses dynamic virtual channels and prioritized
link arbitration with priority inheritance that results in improved system throughput and

can be used to support multiple classes of traffic.

ii

Acknowledgements

First, I would like to thank Professor Michael Stumm for his supervision and guidance through-
out. Among many valuable things I learned in his association include attention to detail,
simplicity in presentation, and the virtue of hard work.

I would like to thank the members of my examination committee, Professors Zvonko Vranesic,
Ken Sevcik, Paul Chow, Anindo Banerjea, and Charles Clarke for their careful reading of my
dissertation. Their valuable suggestions helped to vastly improve the quality of presentation in
this dissertation.

I would like to thank Prof. Ted Szymanski of McGill University for accepting to serve as the
external examiner in my committee. His critical evaluation of my dissertation and numerous
insights are highly valuable.

I would also like to thank Prof. Carl Hamacher of Queen’s University for his many inputs
on my research during the past several years.

I am blessed with great parents and a wonderful wife. My wife, Vijaya, deserves special
mention for her patience and support throughout my graduate study. Also, special thanks for
her several perl scripts that I used extensively for output analysis of simulation results.

I greatly appreciate the help and support of my colleagues, Kulki, Sudarsan, Jaseemuddin,
and Kiran who provided me great company and invaluable wisdom during my stay in the
department.

My friends Singar, Ram, Kala, Dev, and Vani enriched my social life during my stay in this
wonderful city, Toronto. For sure, I will miss their company in the years to come.

Finally, I would like to thank the Government of Canada for their financial support through

a Commonwealth Doctoral Fellowship.

iii

Contents

1 Introduction

1.1
1.2

Contributions of Dissertationt e

Organization of Dissertationot

2 TIssues in the Design of Multiprocessor Networks

2.1
2.2

2.3

2.4

2.5
2.6

Terminologyt e
LOPOlOgY o e et e
2.2.1 Direct Networkso e
2.2.2 Hierarchical-ring Networks o i
Switching Techniques o i e
2.3.1 Circuit Switching e
2.3.2 Store-and-forward Switching
2.3.3 Cut-through Switching e
2.3.4 Cell Switchingo e
Routing Techniquesoou oot e e
2.4.1 Deterministic Routing.
2.4.2 Adaptive Routingo ot
Flow-control Techniques.o i i

Other I8SUeS . . ot

3 System Description, Methodology, and Workloads

3.1

3.2
3.3
3.4
3.5

System Descriptiont e
3.1.1 Hierarchical-ring System Description i ittt ..
3.1.2 Mesh System Description....... ...
Switching and Flow-control Techniques. i,
SIMUIATOT oot e
System and Workload Parameters

Program-driven Simulation oo i

iv

11
12
12
13
14
17
18
19
24
25
26

4 Mesh, Torus, and Ring Networks: Comparative Performance
4.1 Comparative Performance Evaluation i i
4.1.1 Access Patterns with Memory Locality
4.1.2 Access Patterns with No Memory Locality.............
4.1.3 Program-driven Simulation

Topology and Bisection Bandwidth

5.1 Deriving Optimal Hierarchical-ring Topologiesot
BT Single Rings . .oooiii e
5.1.2 Two-level Rings.o e
5.1.3 Three-level Ringso oot e
B.14 Verification e

5.2 Effect of Critical Parameters on Performancet
B.2.1 Single Rings ...oooiii i e
5.2.2 Additional Ring Levels o
5.2.3 Assessment of the Model
5.2.4 Effect of Router Speeds on Performance
5.2.5 Effect of Channel Width on Performance

Switching, Buffer Management, and Flow-control

6.1 Switching Techniques e
6.1.1 Wormhole and Buffered-wormhole Switching....................... ...,
6.1.2 Virtual Cut-through Switching.
6.1.3 Cell Switchingo o e

6.2 Buffer Management in Hierarchical-ring networks oot
6.2.1 Wormhole Switched Hierarchical Rings i,
6.2.2 Virtual Cut-through Switched Hierarchical Rings
6.2.3 Cell Switched Hierarchical Rings........ ...,

6.3 Performance of Switching Techniques in Hierarchical-ring Networks

6.4 Blocking Cell Switching in Hierarchical-ring Networks.......... oo ..

6.5 Buffer Management in Direct Networks ...ttt ..
6.5.1 Wormhole Switched Mesh Networks,
6.5.2 Wormhole Switched Tori Networks
6.5.3 Wormhole Switched Bidirectional Rings i,

43
44
45
48
51

55
55
56
59
62
63
64
66
67
68
69
70

7 Routing

7.1 Deterministic Routing in Hierarchical-ring Networkso oot

8 Prioritized Direct Networks: Design and Performance

8.1 The Problem

8.2 Static Virtual Channels
8.3 Dynamic Virtual Channels
8.4 Prioritized Direct Networks
8.4.1 Priority Traffic for Traditional Applications
8.4.2 Time-constrained Traffic

9 Conclusion

9.1 Future Work . ..o e
9.2 Impact of this Research and Applicability to Industryo ..
Bibliography

vi

92
92

96
97
99
101
103
103
106

110
111
112

113

List of Tables

1.1

1.2

1.3

2.1

3.1

3.2

3.3
3.4

3.5

4.1

5.1

6.1

6.2

The traffic and network characteristics of shared-memory and distributed mem-
OTY MU PrOCESSOTS. L & ottt e e e e e 2
Categorizing multiprocessor interconnection networks. into direct, hybrid, and
indirect networks for shared-memory and distributed memory multiprocessing.... 3

Design issues and organization of dissertation. o i, 4

Virtual channel requirement for deadlock free routing. With the exception of

deterministic routing, all are adaptive routing techniques. 24

Switching and flow-control techniques used in evaluating hierarchical-ring and
direct multiprocessor networks. 33
System and synthetic workload parameters and their range of values used in our
SIMUlations. e 39
System parameters used in program-driven simulations. 40
Characteristics of some real applications from SPLASH-2 suite. The network
simulated is a 16 processor 2-level 8 x 2 hierarchical ring with 32-byte cache lines. 42
Characteristics of some real applications from SPLASH-2 suite. The network

simulated is a 64 processor 3-level 8 x 4 x 2 hierarchical ring with 32-byte cache

Maximum processor request rates for single and 2-level rings obtained from the

model and simulation for 32, 64 and 128-byte cache lines. 69

Comparison of different switching and flow-control techniques in hierarchical-ring
e WOT KRS, « oot e e 85

A comparison of NIC buffer memory requirements..........., 89

vii

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

A 2-dimensional 3 X 3 mesh connected network with bidirectional links between

070 Y& (= =

The figure illustrates the message, packets, flits and phits in processor networks. .

Popular direct topologies: (a) 5-ary 1-cube (1-dimensional ring), (b) 2-dimensional

mesh (3 x 3), (¢) 3-ary 2-cube (2-dimensional torus), (d) 3-dimensional mesh

(3 x 3% 3), (e) 2-ary 3-cube (3-dimensional hypercube).........................

A 2-level hierarchical-ring connected network. il i

Circuit switching in a 2-dimensional mesh network. The source and destination
nodes are shown in dark and the intermediate nodes are shown in grey. The
established path is illustrated by the bolder links connecting the source and

destination. A path between the source and the destination node is established

and is not released until the entire message is received by the destination node. ..

Store-and-forward switching in a 2-dimensional mesh network. The source and
destination nodes are shown in darker shades and the intermediate nodes are
shown in lighter shades. Entire packets hop from one node to another in the
path between the source and the destination node. The intermediate nodes

between the source and the destination receive packets in their entirety before

forwarding them to the next node.

Wormhole switching in a 2-dimensional mesh network. The header flit establishes

a path and the body flits follow. The reserved links along the path are shown. ...

Latencies of different switching techniques in the case where no blocking occurs:

a) store-and-forward switching and b) cut-through switching.

Cell switching in an 1-dimensional ring connected network. The cells of a packet

can be interleaved with the cells of another packet. The links between nodes are

not reserved for an entire packet and are released after a cell is forwarded........

viii

8

11

12

14

15

16

2.10 The figure illustrates deterministic and adaptive routing in a 2-dimensional mesh
connected network. ‘B’ represents unavailable links due to blocking. Path 1
is chosen by a deterministic routing algorithm while path 2 is chosen by an
adaptive routing algorithm. It is seen that adaptive routing can route around
blocked nodes whenever possible thus improving the throughput of the network

significantly. . ..o o e

2.11 The figure shows a simple example of a deadlock in a 4-node-cycle involving
nodes 2, 3, 5, and 6. The buffers of each of these nodes is full with a packet,
destined for nodes 6, 5, 3, and 2, respectively. The destination node numbers for
packets are shown inside the nodes where they are buffered, whereas the present

node numbers are shown outside the corresponding nodes.......................

2.12 A 2-dimensional mesh network and its channel dependency graph (shown by

darker lines) for dimension-ordered routing. i

2.13 A unidirectional 5-node ring topology: a) interconnection network b) channel

dependency graph. e

2.14 A unidirectional 5-node ring topology with virtual channels: a) interconnection

network and its b) channel dependency graph............ ool

3.1 A hierarchical-ring system with two levels. it
3.2 A 2-dimensional 3 x 3 mesh with 9 nodes. o

3.3 A network interface controller (NIC) for hierarchical-ring connected multiproces-

SOT TLELWOT K.« ittt e e e e e

3.4 An inter-ring interface controller for hierarchical-ring connected multiprocessor

NEtWOT K. oot e

3.5 A network interface controller for a 2-dimensional mesh or a torus. The in-
put/output links from /to neighboring nodes are referred to as network input/output
links and the input/output link from/to local processor-memory module is re-
ferred to as processor input/output link. The schematic also shows the network

input buffers and processor input/output buffers.

3.6 A network interface controller for a 2-dimensional mesh or a torus with two static

virtual channels per physical link......... i i

3.7 A program-driven simulator contains two major components: a memory reference

generator and a target system (interconnect) simulator.

ix

22

28

29

31

32

36

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Performance of systems with 32-byte cache lines under the T}, workload: a) throughput-
latency curves for 16 processor systems, b) throughput-latency curves for 64 pro-
cessor systems, ¢) latency as a function of request rate for 16 processor systems,

and d) latency as a function of request rate for 64 processor systems............. 45

Performance of systems with 128-byte cache lines under the 7}, workload: a) throughput-
latency curves for 16 processor systems, b) throughput-latency curves for 64 pro-
cessor systems, ¢) latency as a function of request rate for 16 processor systems,

and d) latency as a function of request rate for 64 processor systems............. 46

Average latency of rings, meshes, and tori networks when scaled under T},. work-
load for a) 32-byte cache line and low request rate, b) 32-byte cache line and high
request rate, ¢) 128-byte cache line and low request rate, and d) 128-byte cache
line and high request rate... ...t i 47

Throughput-latency curves of rings, meshes, and tori networks under Typiform
workload for: a) 16 processor systems with 32-byte cache lines, b) 64 processor
systems with 32-byte cache lines, ¢) 16 processor systems with 128-byte cache
lines, and d) 64 processor systems with 128-byte cache lines..................... 49

Average latency of rings, meshes, and tori networks when scaled under T'yp;107m
workload for a) 32-byte cache line and low request rate, b) 32-byte cache line and
high request rate, ¢) 128-byte cache line and low request rate, and d) 128-byte

cache line and high request rate. o i i i i 50

Throughput versus the number of processors for high request rates with cache

line sizes of a) 32 bytes, and b) 128 bytes. ...t 51

Execution times of SPLASH-2 applications normalized to the execution time of
a 2-dimensional mesh-connected system. It is assumed that the applications run
on 16 processor 32-byte cache line systems under program driven simulations.
A 2-level 8 X 2 topology is used for the hierarchical-ring network and a 4 x 4

topology is used for the mesh and torus network. i L 52

Average transaction latency (after L2 miss) for SPLASH-2 applications. It is
assumed that the applications run on 16 processor 32-byte cache line systems
under program driven simulations. A 2-level 8 x 2 topology is used for the
hierarchical-ring network and a 4 x 4 topology is used for the mesh and torus

NEtWOT K. oot e 52

4.9

4.10

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

Execution times of SPLASH-2 applications normalized to the execution time of
a 2-dimensional mesh-connected system. It is assumed that the applications run
on 64 processor 32-byte cache line systems under program driven simulations. A
3-level 8 x 4 x 2 topology is used for the hierarchical-ring network and an 8 x 8

topology is used for the mesh and torus network. i L 53

Average transaction latency (after L2 miss) for SPLASH-2 applications. It is
assumed that the applications run on 64 processor 32-byte cache line systems
under program driven simulations. A 3-level 8 x 4 x 2 topology is used for the
hierarchical-ring network and an 8 x 8 topology is used for the mesh and torus

NEtWOT K. oot e 53

Throughput-latency curves for single ring topologies with 32B cache lines for

(@) Tuniform and (b) Ty, workloads. ... i i 57

Throughput as a function of request rate for single ring 4 and 8 processor systems

running the Typiform and Tjo. workloads. ... oo i 57

Maximum achievable throughput for 4 processor and 8 processor single ring sys-
tems. Figure (b) presents the throughput gain in percent of using an 8 processor

system as opposed t0 a 4 processor system. ... i 58

Throughput as a function of request rate for single ring 4 and 8 processor, (a) 64B

and (b) 128B cache line systems running the Typiform and Tj,. workloads......... 58

Throughput-latency curves for two level ring topologies with 32B cache lines for

the (a) Tyniform and (b) 17, workloads. oo 60

Throughput as a function of request rate for two level ring topologies with 32B

cache lines running T'yniform and T, workloads ... oo 60

Maximum achievable throughput for the 8 X 3 and 8 X 5 topologies. Figure
(b) presents the throughput gain in percent of using a 8 x 5 topology as opposed
10 an 8 X 3 tOPOLOZY. .« v vt 61

Global ring utilization for 2-level rings with 32-byte cache lines. Two curves are

shown for the T'yniform and Tj,. workloads at both high and low request rates. ... 62

Throughput-latency curves for three level rings with 32B cache lines for the

(@) Tuniform and (b) Ty, workloads. ... i i 63

(a) Global and (b) local ring utilization for three-level hierarchical rings with
32B cache lines. Curves are shown for T'y,iform and T}, workloads and for high

and low request Tates. e 63

xi

5.11

5.12

5.13

5.14

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Comparing the “optimal” topology with two other topologies for a 64 processor,
32-byte cache line system with the Tyniforn workload. (a) Throughput-latency
and (b) latency as a function of request rate curves are shown................... 64
Normalized execution time of five SPLASH applications for three different topolo-
gies of 64 processor, 32-byte cache line systems: (1) a 3-level 8 x 4 X 2 system,
(2) a 2-level 16 x 4 system, and (3) a 3-level 4 x 4 x 4 system. The execution
time is normalized to the 3-level 8 X 4 x 2 system. oo, 65
Average memory access latency (after L2 cache miss) of the five SPLASH appli-
cations under three different 64 processor, 32-byte cache line system topologies.
Since these applications have low (network) request rates, the latency of trans-
actions is sensitive to the diameter of the particular topology.................... 65
Effect of decreasing channel width on maximum processor request rate. The

graph is shown for 2-level and 3-level rings with 32-byte cache lines.............. 71

Throughput-latency curves for a 3-level, 64 processor 8 x 4 X 2 hierarchical-ring
system with 32-byte cache lines for the (a) Tyniform and (b) 17, workloads. The
curves are shown for three different IRI buffer sizes......... 76
Latency as a function of request rate for a 3-level, 64 processor 8 x 4 x 2
hierarchical-ring system with 32-byte cache lines for 3 different buffer sizes under
Tuniform Workload. ... o 76
Latency components (NIC and IRI delays) as a function of request rate for a
3-level, 64 processor 8 X 4 X 2 hierarchical-ring system with 32-byte cache lines
and an IRI buffer size of (a) 1 CL and (b) 4 CL under Typiform workload......... 77
Latency components (NIC and IRI delays) as a function of request rate for a
3-level, 64 processor 8 X 4 X 2 hierarchical-ring system with 32-byte cache lines
and an IRI buffer size of 256 CL under T'y.if0rm workload. ... oot 77
Throughput-latency curves for three different NIC ring buffer sizes under T'ypif0rm
workload for a 3-level, 64 processor 8 x4 x 2 hierarchical-ring system with 32-byte
cache [Ines. ... e 78
Throughput-latency curves for four different IRI buffer sizes under the (a) Tyniform
and (b) Tj,. workloads for non-blocking virtual cut-through switched 3-level, 64
processor 8 X 4 X 2 hierarchical-ring system with 32-byte cache lines............. 79
Latency as a function of request rate for four different IRI buffer sizes under
the Tuniform workload for non-blocking virtual cut-through switched 3-level, 64

processor 8 X 4 X 2 hierarchical-ring system with 32-byte cache lines............. 79

x1i

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

Latency components as a function request rate for a non-blocking virtual cut-
through switched 3-level, 64 processor 8 x 4 x 2 hierarchical-ring system with
32-byte cache lines for IRI buffer sizes of (a) 1 CL, (b) 4 CL, (c) 16 CL, and

(d) 64 CL under Typiform workload.o i

Throughput-latency curves for three different ring buffer sizes under Typniform

workload with optimal IRI buffer size of 16 CL for a non-blocking VCT switched

3-level, 64 processor 8 X 4 x 2, hierarchical-ring system with 32-byte cache lines. .

Throughput-latency curves for five different IRI buffer sizes under (a) Tyniform

and (b) Ty, workloads for a non-blocking cell switched 3-level, 64 processor

8 X 4 x 2, hierarchical-ring system with 32-byte cache lines......................

Latency as a function of request rate for four different IRI buffer sizes under

Tuniform workload for a non-blocking cell switched 3-level, 64 processor 8 x 4 X 2,

hierarchical-ring system with 32-byte cache lines.

Latency components as a function of request rate for a non-blocking cell switched
3-level, 64 processor 8 X 4 x 2, hierarchical-ring system with 32-byte cache lines
for IRI buffer sizes of (a) 1 CL, (b) 4 CL, (¢) 16 CL, and (d) 64 CL under Typniform

WOTKIoad. o

Throughput-latency curves for different switching techniques with blocking and

non-blocking flow control under T'y,iform workload for a 3-level, 64 processor

8 X 4 x 2 hierarchical-ring system with 32-byte cache lines.

Throughput-latency curves for blocking cell switching with single flit buffers un-
der Tyniform workload for a 3-level, 64 processor 8 x 4 x 2, hierarchical-ring system
with 32-byte cache lines. A cache line is broken and sent as 3 cells instead of

a single large worm. For comparison purposes, latency-throughput curve for

wormhole switching with single flit buffers is also shown.

Throughput-latency curves for blocking cell switching under T',iform workload
for a 3-level, 64 processor 8 X 4 X 2, hierarchical-ring system with 128-byte cache
lines. A cache line is sent as 2, 3, and 9 cells instead of a single large worm. For

comparison purposes, throughput-latency curve for single-flit wormhole switching

19 Al80 SHOWIL. . oo

Performance impact of NIC buffer sizes on a 64 processor 8 x 8, 2-dimensional

mesh connected system with 32-byte cache lines under the Ty, workload.

(a) Throughput-latency and (b) latency versus request rate curves are shown. ...

xiii

80

81

83

84

85

86

87

6.17

6.18

6.19

7.1

7.2

7.3

7.4

8.1

8.2

8.3

8.4

Performance impact of NIC buffer sizes on a 64 processor 8 x 8, 2-dimensional

mesh connected system with 128-byte cache lines under the T',,if0rn workload.

(a) Throughput-latency and (b) latency versus request rate curves are shown. ... 88
Performance impact of NIC buffer sizes on a 64 processor 8 x 8, 2-dimensional
torus system with 32-byte cache lines under T'ynjf0rn workload. (a) Throughput-
latency and (b) latency versus request rate curves are shown. 90
Performance impact of NIC buffer sizes on a 64 processor bidirectional ring sys-
tem with 32-byte cache lines under T'yniform workload. (a) Throughput-latency
and (b) latency versus request rate curves are shown. 90
Deadlock cycles in a 2-level wormhole switched hierarchical-ring network......... 93

Dividing channels and node numbers for deadlock free routing in a 2-level worm-

hole switched hierarchical-ring network. 94

Channel dependency graph for a 2-level wormhole switched hierarchical-ring net-
work with deterministic, minimal routing. The graph shows various deadlock

cycles in such a routing algorithm.o i i i i 94

Channel dependency graphs for a 2-level wormhole switched hierarchical-ring
network with deadlock-free routing using virtual channels. Channel dependency

graphs are presented for (a) low and (b) high virtual channels................... 95

Worst-case and average communication latencies for time-constrained traffic in
a 2D 8 x 8 mesh-connected multiprocessor network. Worst-case latency is shown
both for round-robin link arbitration and with dynamic virtual channels. The

errorbars show the variances on these values. o i 98
Mesh Network Interface Controller with (a) static and (b) dynamic virtual channels.100

Hardware support for dynamic virtual channel flow control is illustrated for one

physical channel between a transmitting and a receiving node. 102

Throughput versus latency curves for a 64 processor 8 X 8 wormhole switched pri-
oritized network. Curves are drawn for the base case for non-prioritized network
with no dynamic channels (for comparison purposes) and cases where higher pri-
ority is given based on packet size (longer or shorter) and transaction type (read

OF WITEE) .o o 104

Xiv

8.5

8.6

8.7

8.8

8.9

Throughput versus latency curves for a 64 processor 8 X 8 wormhole switched
network. Curves are drawn for the base case for non-prioritized network with
no dynamic or static virtual channels (for comparison purposes), for the non-

prioritized network with two virtual channels per physical channel, and for the

prioritized network with high priority read transactions........................

Worst-case latency versus request rate for a 64 processor 8 x 8 wormhole switched
prioritized network. Curves are drawn for the base case for non-prioritized net-
work with no dynamic channels and for the case where read transaction is given

higher priority. The worst-case latency is the average over all batches with the

absolute maximum and minimum values are shown as errorbars.

Worst-case latency versus request rate for a 64 processor 8 x 8 wormhole switched
prioritized network. Curves are drawn for the base case for non-prioritized net-

work with no dynamic channels and for the case where shorter packets are given

0 0 173/

(a) Worst-case latency of time-constrained requests and (b) average latency of
best-effort requests as a function of best-effort request rate for an 8 X 8 64 proces-
sor wormhole switched prioritized network. Curves are drawn for the base case

of a non-prioritized network with no dynamic channels and for the case with

dynamic channels, where time-constrained packets are given priority............

(a) Worst-case latency of time-constrained requests and (b) average latency of
best-effort requests as a function of best-effort request rate for an 8 X 8 64 pro-
cessor wormhole switched prioritized network. A non-uniform bit complement
memory access pattern is used for best-effort requests. Curves are drawn for the

base case of a non-prioritized network with no dynamic channels and for the case

with dynamic channels, where time-constrained packets are given priority.

XV

107

.109

CHAPTER 1
Introduction

The design of a multiprocessor’s interconnection network is important, as it significantly affects
the performance and cost of the multiprocessor. In this dissertation, we present the results
of a performance study of issues in the design of multiprocessor interconnection networks in
general, and low-dimensional direct and hierarchical-ring networks in particular. Although
the performance of wide-area and local-area networks has been studied extensively, as has
the performance of interconnection networks for distributed memory machines, few studies of
interconnection networks for shared-memory machines exist. This work, therefore, fills a void
in existing research that will become increasingly important as shared-memory multiprocessors
become more widespread.

Multiprocessor interconnection networks differ from wide-area and local-area networks sig-
nificantly in that they have (i) regular topologies allowing for simple algorithmic routing as
opposed to table-driven routing, (i¢) smaller node sizes that do not allow the buffering of a
larger number of packets at the nodes, (¢i¢) bit-parallel links, (iv) higher speed, and (v) error-
free short transmission links. These network characteristics demand switching, routing, and
flow-control techniques that are different from those used in communication networks.

Shared-memory systems also differ from distributed memory systems in a significant way. In
a shared-memory system, the processors are more tightly coupled than in a distributed memory
system, where a programmer sees a collection of separate computers that communicate only by
sending explicit messages to one another. Memory is accessible to all processors in a shared-
memory system. Thus, interprocessor communication in a shared-memory system is indirect,
where the producer typically leaves the data in the memory for the consumer to later fetch.
Also, communication in a shared-memory system requires no intervention on the part of a run-
time library or operating system. This results in low start-up costs for communication, whereas
in a distributed memory system, access to the network is typically managed by system software,
resulting in high start-up costs. As a result, shared-memory multiprocessing produces unique

traffic patterns that change dynamically and that have short variable sized packets (mostly

2 CHAPTER 1. INTRODUCTION

‘ Shared-memory Networks ‘ Distributed Memory Networks

Shorter message size Longer message size
Packet switched Packet switched or
Circuit switched

Dynamic traffic pattern Static traffic pattern

Network is the primary System software and
source of overhead network interfaces are
primary sources of overhead

Table 1.1: The traffic and network characteristics of shared-memory and distributed memory
multiprocessors.

bi-modal). These and other characteristics are tabulated in Table 1.1. More importantly, it
is not clear how factors such as cache line size (that influences the largest packet size), node
buffer size, and locality in the memory access pattern affect system performance.

In our work, we have focussed on low-dimensional direct and hierarchical-ring networks,
such as 2-dimensional meshes and tori. In a direct network, every node in the network is a
processing node and is connected directly to a small set of neighboring nodes typically using
a very regular topology. Hierarchical rings belong to the class of networks known as hybrid
networks, where some processing nodes are connected to each other by point-to-point links,
while other processing nodes are connected through switching nodes. While low-dimensional
direct networks are currently popular in research and commercial environments, hierarchical-

ring networks present a viable alternative to direct networks, mainly because:

1. the hierarchical-ring network is attractive due to its low dimension resulting in simple

routers, wider link widths and shorter packet switching times.

2. the physical locality of hierarchical rings blends naturally with that of computational

locality often exhibited in parallel programs,

3. the hierarchical-ring structure allows efficient broadcasting capabilities useful for imple-

menting cache coherence [29] and multicast protocols [92],

Table 1.2 categorizes multiprocessor networks according to different classes and program-
ming models. The areas where a lot of work has already been done are marked by /. Those
areas that have not been studied much are addressed in this dissertation (with the exception
of distributed memory hybrid networks). There have been only a few performance studies of
hierarchical-ring and direct networks for shared-memory multiprocessors [28, 38, 39, 42, 47, 54,

66, 95]. Holliday and Stumm [42] analyzed hierarchical-ring multiprocessor networks under cell

Direct Indirect Hybrid
Networks | Networks | Networks
Shared-
memory ? Vv ?
Distributed
Memory Vv Vv ?

Table 1.2: Categorizing multiprocessor interconnection networks. into direct, hybrid, and indi-
rect networks for shared-memory and distributed memory multiprocessing.

switching and parametric simulations. Hamacher and Jiang [39] presented an analytical queuing
network model for hierarchical-ring networks and derived optimal configurations. Jaseemud-
din [47] proposed and evaluated bidirectional, ring-connected multiprocessors as an alternative
to hierarchical, ring-based multiprocessors. Oi and Ranganathan [66] presented a performance
analysis of bidirectional, ring-connected shared-memory multiprocessors. Zhang and Yan [95]
compared NUMA and COMA hierarchical-ring architectures using analytical models. Kumar
and Bhuyan [54] evaluated the performance impact of virtual channels in 2-dimensional torus
connected shared-memory multiprocessors. All these studies assume specific switching, rout-
ing, and flow-control techniques and do not study issues such as scalability, buffer management,
or priorities. Also, they do not study network performance under program-driven simulations
(with the exception of Jaseemuddin [47] and Kumar and Bhuyan [54]) and do not present an

extensive performance comparison of direct and hierarchical-ring topologies.

Low-dimensional direct networks have been studied extensively for distributed memory mul-
tiprocessors, however, they are being used in today’s larger commercial and research shared-
memory multiprocessors. Recent commercial and research shared-memory multiprocessors that
use direct networks include SGI Origin [16], Flash [55], Cray T3E [81], and Sequent NUMA-
Q [84]. The recent systems have followed the success of some earlier direct network shared-
memory multiprocessors that include Alewife [4], and DASH [57]. Examples of some research
in shared-memory multiprocessors based on hierarchical-ring networks include Hector [93] and

NUMAchine [92].

This dissertation tries to extend previous work with an extensive study of various per-
formance issues in the design of low-dimensional direct and hierarchical-ring networks in the
context of shared-memory multiprocessing. We study the impact of topology, switching, rout-
ing, flow-control, network buffer size, and priorities on the performance of such networks. We
also present an extensive performance comparison of hierarchical-ring and three different direct

networks for shared-memory multiprocessing.

4 CHAPTER 1. INTRODUCTION
Topology | Switching Buffer Flow-control | Routing | Priority
management
Hierarchical- Chap 5 Chap 6 Chap 6 Chap 6 Chap 7 not
ring networks studied
2D direct not Chap 6 Chap 6 Chap 6 & | studied by | Chap 8
networks interesting Chap 7 others
Table 1.3: Design issues and organization of dissertation.
1.1 Contributions of Dissertation

A rough design space of multiprocessor networks is presented in Table 1.3. The table

indicates which chapters address which areas. In particular, the dissertation makes the following

specific contributions:

o Comprehensive performance study of shared-memory multiprocessor interconnection net-

works: We believe this study constitutes the first comprehensive performance study of
low-dimensional direct and hierarchical-ring interconnection networks for shared-memory

systems.

Comparative performance study: We present a detailed comparative performance evalua-
tion of low-dimensional direct and hierarchical-ring networks using both synthetic work-
load and program-driven simulations. We show, in particular, that hierarchical-ring net-
works perform better than 2-dimensional direct networks for system sizes up to 64 pro-
cessors at low request rates either when there is locality in the memory access pattern or

for large cache line sizes.

Topology: We derive several high throughput and low latency hierarchical-ring topologies
and study the impact of locality (in the memory access pattern) and constant bisection

bandwidth constraints on system performance.

Switching techniques and buffer management: We study the performance of several cut-
through switching techniques for hierarchical-ring networks under both blocking and non-
blocking flow-control policies. These include wormhole, virtual cut-through, and cell
switching techniques. We show that increasing the buffer size in wormhole routers can
result in significant performance improvement, but that too large a buffer size some-
times hurts performance. We also show that while non-blocking cell switching is a good

choice for hierarchical-ring networks, it requires large buffers to minimize the number of

packets dropped. On the other hand, wormhole switching requires virtual channels to

1.2. ORGANIZATION OF DISSERTATION 5

prevent deadlock although it uses less buffer space. We study wormhole switching in
low-dimensional direct networks, namely the 2-dimensional mesh, 2-dimensional torus,
and the bidirectional rings under blocking flow-control and show that buffered wormhole

switching in direct networks results in optimal performance.

e Routing: We propose a deadlock free minimal routing technique for wormhole switched

hierarchical-ring networks using a virtual channel approach.

e Priority: We propose dynamic virtual channels and present the design of prioritized direct
networks that also use priority inheritance and priority-based link arbitration. We show
how such prioritized networks can be used to improve system throughput and to support

multiple classes of traffic.

1.2 Organization of Dissertation

Chapter 2 presents, in tutorial style, background necessary for understanding this dissertation.
We introduce most of our terminology there. Chapter 3 gives an overview of hierarchical-
ring and direct network based multiprocessor systems, their network interfaces, and it presents
the methodology we use in the performance evaluation of these networks. Chapter 4 presents a
strong motivation for considering hierarchical rings: we compare the performance of hierarchical-
ring, 2-dimensional mesh, 2-dimensional torus, and single bi-directional networks, and show that
hierarchical-ring systems are competitive from a performance point of view.

Since hierarchical-ring networks are highly configurable, topology issues of such networks
are studied in Chapter 5. In Chapter 6 we discuss switching, buffer management, and flow-
control issues in hierarchical-ring and direct networks. Since we only consider deterministic
routing protocols, we focus on deadlock freedom in such routing algorithms for hierarchical-
ring networks in Chapter 7. Finally, we present the design of a novel priority direct network

with dynamic virtual channels in Chapter 8.

CHAPTER 2
Issues in the Design of Multiprocessor Networks

In a direct network, every node in the network is a processing node and is connected to its
neighboring nodes by direct links. In a hierarchical-ring network, there are processing nodes
and there are switching nodes; the processing nodes are connected in some cases directly but
in some cases through switching nodes. The communication architecture of a hierarchical-
ring or direct network is characterized, among other things, by the topology, and how it does
switching, routing and flow-control [19, 74]. Topology of a network defines how the nodes are
interconnected by channels. Switching is the mechanism by which a router removes a packet
from one of its input links and places it on an output link, thereby allocating channels and
buffers to the packet as it travels through the network. Routing is the selection of a path for
a packet from its source to its destination node. Flow-control is the mechanism that regulates
the transmission of packets in a network; the flow-control unit in a router, for example, informs
neighboring nodes to stop sending packets to avoid buffer overflows.

In this chapter, we introduce different topologies and different techniques for switching,

routing, and flow-control. We show how these factors can affect system performance.

2.1 Terminology

In this section, we introduce the terminology essential for understanding this dissertation, using
the simple direct network shown in Figure 2.1. This two-dimensional network consists of nine
nodes connected by links or channels.! Each node contains a processing module that includes
a processor and local memory, and it contains a router that connects the node to the network.
Each link connects a pair of nodes and consists essentially of a set of wires, most of which are
used to transfer bit-parallel data while the others are used for control. The links in the figure
are bidirectional, but in other networks they may be unidirectional. The number of wires in a

link that transmit data in any one direction is defined as the link or channel width.

"We will use the terms links and channels interchangeably throughout this dissertation.

2.1. TERMINOLOGY 7

— wlRoOuter |—»

<—
\ Bi—directional | PM
Links /

Processor—-Memory
Module

Figure 2.1: A 2-dimensional 3 x 3 mesh connected network with bidirectional links between
nodes.

In a shared-memory multiprocessor, if a processor accesses memory that is not local to the
node, then the hardware implicitly generates and sends a memory request message to the node
with the target memory. Messages are usually sent as packets over the network. A packet
contains a header with all the information required to deliver it to the correct destination,
such as the address of the target node. The packet is the smallest unit for allocating channels.
In wormhole switching, a popular switching technique we will describe later in this chapter,
every packet is broken into a number of flits,®> and buffering, forwarding and flow-control are
performed at the flit level. The flits of a packet are sent consecutively over a channel, so the flits
of two packets are never interleaved. Flits themselves are actually transmitted a phit (physical
transfer unit) at a time, which is typically the size of the link width, something that can be
transferred in a single clock cycle. Figure 2.2 illustrates how a message is partitioned into
packets, into flits and then into phits.

Routers connect the processing nodes to the network and manage the links to the neighboring
nodes. A router normally contains communication processing logic as well as a set of buffers to
hold flits. It handles all communication related tasks to allow computation (by the processor)
and communication at the node to take place concurrently. The communication tasks include
relaying packets in the direction of the packets’ destination nodes (switching and routing),
preventing buffer overflow (flow-control), removing packets from the network if destined for the
local node, and injecting packets from the local node into the network (switching). In addition,

some routers also assemble packets into messages and disassemble messages into packets. How

2 A flit as defined in [18] is the smallest unit of information that a node may refuse or accept. Thus, in a simple
implementation, the number of bits in a flit may correspond to the number of data lines in a single physical
channel.

8 CHAPTER 2. ISSUES IN THE DESIGN OF MULTIPROCESSOR NETWORKS

\ Message ‘ Message Application unit
D3 |H D2 H] [DL |H Packets Routing unit

l Switching and
eoe FRl=Fl|elH oee Flits flow—control unit

l

cee @ E E *ee Phits Transmi£sion unit

Figure 2.2: The figure illustrates the message, packets, flits and phits in processor networks.

effectively a router carries out these functions is critical to system performance.

The router has network input and output links to each neighboring node and a processor
input and output link to the local processing module. The number of network input/output
links is dependent on the network dimension; the higher the dimension of a network, the higher
the number of links at a node. The out-degree of a node is the number of links leaving the node,
whereas the in-degree is defined as the number of links arriving at the node. For the topologies
we consider, the in-degrees and out-degrees are equal and we will just refer to the degree of
a node. There are buffers associated with input links which are referred to as input buffers.?
The torus routing chip, developed at the California Institute of Technology, was one of the first
general purpose routers for a direct network-based multiprocessor [17].

A packet originates at a source node and is consumed at a destination node.* The distance
between two nodes is the minimum number of links in any path between the nodes. Network
diameteris the maximum internode distance in the network [30]. It is analogous to the diameter
of a circle (which is the maximum distance between any two points on the circle). Higher dimen-
sional networks normally have a smaller network diameter than lower dimensional networks.
The average distance traveled by a packet is dependent on the application traffic pattern; the
average delay of a packet will be a function of the distance it must travel.

Contention for a network resource (a link or a buffer) occurs when two or more packets
compete for the same resource. Network link or buffer contention leads to one or more packets
being blocked until the resources they need are freed. The network latency is the total elapsed

time between when a packet is injected into the network and when it is received by the des-

*Buffers may also be associated with output links, or with both input and output links.
*In the case of multicasting, there is more than one destination node.

2.2. ToproLoOGY 9

tination node. It is the sum of the internode distance and the amount of time the packet is
blocked in the network waiting for resources. The multiprocessor system throughput is defined
as the total number of memory requests completed per unit time.

Bisection width is defined as the minimum number of links that must be removed to partition
the network into equal halves [3]. Bisection bandwidth is the total bandwidth of the bisection
links. The significance of the bisection width is that if memory request destinations are selected
at random, then half of the requests must traverse the bisection channels. Therefore, for
an application that exhibits poor memory access behavior, bisection bandwidth of a network
becomes critical to the application’s performance when the bisection links become congested.

Ideally a direct network should be scalable to a large size simply by adding more nodes
to the network. Secalability of a network is constrained by various factors such as constant
bisection bandwidth, which becomes a performance bottleneck when the network size is in-
creased [71]. Also, while it is desirable to increase the size of a network by adding an arbitrary
number of nodes, most direct networks allow only fixed-size increments, the exception being

one-dimensional rings.

2.2 Topology

2.2.1 Direct Networks

Most common direct network topologies can be broadly classified into two general classes
namely, the n-dimensional meshes and the k-ary n-cubes. In both cases, n is the dimension of
the network. A k-ary n-cube has k nodes in each dimension and, by definition, has wraparound
channels that connect the first and the last node in any dimension. It is the wraparound chan-
nels that differentiates k-ary n-cubes from n-dimensional meshes. As a consequence of having
wraparound channels, all nodes in a k-ary n-cube have the same number of neighbors, namely
2n for k > 2 and n for k = 2, making it a symmetric interconnection network [76]. An n-
dimensional mesh has normally the same number of nodes along each dimension but does not
possess wraparound channels. As a result, the number of neighbors for a node depends on the
position of the node, making it an asymmetric interconnection network. A k-ary n-cube has a
smaller diameter than an n-dimensional mesh because of the wraparound channels. A single
ring is a special case of k-ary n-cube where n = 1, and a binary hypercube is a special case of
both an n-dimensional mesh and a k-ary n-cube where k = 2.

A direct network router might be implemented on a single or small set of VLSI chips, or it
might be implemented on a printed circuit board (PCB). In either case, packaging constraints

limit the number of wires to the neighboring nodes and the processing module, placing a bound

10 CHAPTER 2. ISSUES IN THE DESIGN OF MULTIPROCESSOR NETWORKS

—i—a-1 11
| |

a)

= ok

|
-

FArAr

=

o
-

(d) (e)

Figure 2.3: Popular direct topologies: (a) 5-ary 1-cube (1-dimensional ring), (b) 2-dimensional
mesh (3x3), (c) 3-ary 2-cube (2-dimensional torus), (d) 3-dimensional mesh (3x3x3), (e) 2-ary
3-cube (3-dimensional hypercube).

on the I/O bandwidth available for communication links. Assuming that the I/O bandwidth of
a router is divided equally among the links to its neighbors, adding more links to a node (and
thus increasing the dimension of the network), decreases the I/O bandwidth available per link
proportionately. Since increasing the number of links also reduces the diameter (and thus the
average internode distance) of the network, a trade-off exists between per link bandwidth and

diameter in the choice of the number of links per node [31].

Figure 2.3 illustrates different direct topologies. Earlier systems, such as hypercubes, tended
to use higher dimensional networks and therefore had a smaller network diameter at the ex-
pense of lower per link bandwidth. More recent multiprocessor systems use lower dimensional
direct networks, after it was shown that lower dimension networks (with at most 3 dimensions)
generally perform better than their higher dimension counterparts [3, 20]. The most common
direct network topology in use today is the 2-dimensional (2D) mesh because of its low degree,
which permits efficient layouts and construction with standard components (see Figure 2.1). An
interesting variation is the cube-connected cycle, where each node of an n dimensional binary
hypercube is replaced with a ring of n nodes [69]. Each ring node connects to one of the n links
incident on the vertex. As a result, the node degree remains fixed at three, irrespective of the

hypercube dimension.

Figure 2.1 shows a 2-dimensional mesh with bidirectional links between nodes. Throughout
this study, we will illustrate the various switching, routing and flow-control techniques using

this topology.

2.2. ToproLoOGY 11

Global Ring

|

Router

. . Processor—-Memory
Module

Figure 2.4: A 2-level hierarchical-ring connected network.

2.2.2 Hierarchical-ring Networks

A hierarchical-ring network falls under the category of hybrid networksin that it is only partially
a direct network. In a two-level hierarchical-ring network, several direct single ring networks,
referred to as local rings, are connected by a global ring consisting of switches or inter-ring
interfaces [92, 93]. The global ring is itself an ensemble of switches connected by a direct
network topology but contains no processing nodes. The fact that there are two levels in
the network hierarchy is transparent to the processing nodes, and it is possible to extend the
hierarchy to more than two levels; for example, a three-level hierarchical-ring network consists
of a global ring connecting multiple two-level hierarchical-ring networks. Figure 2.4 shows a
two-level hierarchical-ring network where the global and local network nodes are connected by

unidirectional rings [92].

Hierarchical-ring networks have a diameter that grows more slowly with system size than
comparably sized direct networks, indicating that they might scale well. On the other hand, they
have a constant bisection bandwidth that can limit their scalability. However, it is reasonable
to expect that when mapping parallel applications onto a multiprocessor network it will usually
be possible to do so such that the tasks that communicate frequently are placed close to one
another so that most communication will be local to one cluster. If there is locality in the
communication pattern of the applications, then hierarchical-ring networks can scale to a larger

number of nodes [73].

12 CHAPTER 2. ISSUES IN THE DESIGN OF MULTIPROCESSOR NETWORKS

Different parts of a
message in transit

Source

M [«
Dm\

1
L
1

IpEd

<« Established path

Destination

[]

[]

Figure 2.5: Circuit switching in a 2-dimensional mesh network. The source and destination
nodes are shown in dark and the intermediate nodes are shown in grey. The established path
is illustrated by the bolder links connecting the source and destination. A path between the
source and the destination node is established and is not released until the entire message is
received by the destination node.

2.3 Switching Techniques

Switching deals with allocating buffers and channels to packets. The three main switching
techniques include circuit switching, store-and-forward, and cut-through switching. In this
section, we briefly discuss each of these switching techniques. They can be applied to both
hierarchical-ring and direct networks even though we always use a 2-dimensional mesh network
for illustration. We cover cut-through switching in more depth in this section, and we consider
only cut-through switching in our performance evaluation in subsequent chapters, because 1) it
exhibits lower network latency, and 2) is used in many recent networks such as those of the

Cray’s T3D [80], T3E [81], and SGI Origin [56].

2.3.1 Circuit Switching

In circuit switching a header containing the destination address is first sent through the network
to build a path from the source node to the destination node [49]. At each intermediate node on
the path, a connection is established between an input port and an output port. Which output
port will be chosen is determined by the routing algorithm. As the header progresses through
the network it reserves the links over which it is being transmitted. When the destination node
receives the header, it sends an acknowledgment back to the source indicating that a direct
connection between the source and the destination has been established, thereby allowing the

message transfer to commence. This prior reservation of links makes it unnecessary to buffer

2.3. SWITCHING TECHNIQUES 13

(portions of) the message at any intermediate node when it is in transit. The path is released
either by the last byte of the message as it passes through each node along the path or by an
acknowledgment that is sent by the destination node when it receives the last byte. Figure 2.5
shows an example of circuit switching in a 2-dimensional mesh network.

The transmission time of a message of length L over d hops takes 3d + L/W cycles, where
W is the width of the communication channels. It takes 2d time units for a header to establish
a path (with the acknowledgment) and d time units for the first byte of the message to reach
the destination and L/W time units thereafter for the remainder of the message. When, L, the
length of the message, dominates in the above expression, it results in message transmission
time that is largely independent of the distance between source and destination nodes.

The main disadvantage of circuit switching is that it under-utilizes network bandwidth by
reserving a set of links for each transfer, making them unavailable for other transmissions even
when they are not currently being used. Consequently, modern shared-memory multiproces-
sor networks do not use circuit switching, although some of the earlier distributed memory

multiprocessor networks used circuit switching [45, 65].

2.3.2 Store-and-forward Switching

Store-and-forward switching [50] differs from circuit switching in that no path is established
prior to the transfer of data. It is the protocol of choice in data communication networks.
In a store-and-forward network, the unit of data transfer is a packet and a message is broken
down into one or more packets. A node accepts the header of a packet only when it can
buffer the entire packet, and it does not forward a transit packet to a neighboring node until it
receives the entire packet. Figure 2.6 illustrates store-and-forward switching in a 2-dimensional
mesh network. Cosmic Cube [83] and Intel’s iPSC-1 [65] are some earlier systems that used
store-and-forward switching.

The network latency for store-and-forward switching is d(L/W), where d is the number of
hops, L is the length of a message (consisting of one or more packets including the header), and

W is the channel width. Store-and-forward switching suffers from the following drawbacks:

e The latency of store-and-forward networks is proportional to the distance between the
source and destination nodes and is therefore dependent on the diameter of the network.
This makes store-and-forward switching expensive in low-dimensional networks that have

large diameters.

e Fach store-and-forward node must have buffers large enough to store entire packets.

Buffers of this size require large silicon area in routers.

14 CHAPTER 2. ISSUES IN THE DESIGN OF MULTIPROCESSOR NETWORKS

Different Packets
of a Message

Source Eﬁ‘ﬁ/

B[]

I e I e I [

Destination

Figure 2.6: Store-and-forward switching in a 2-dimensional mesh network. The source and
destination nodes are shown in darker shades and the intermediate nodes are shown in lighter
shades. Entire packets hop from one node to another in the path between the source and
the destination node. The intermediate nodes between the source and the destination receive
packets in their entirety before forwarding them to the next node.

2.3.3 Cut-through Switching

Cut-through switching is an improvement over both store-and-forward and circuit switching in
the following two ways: 1) when the header of a packet arrives at a cut-through switched node,
it is forwarded to a neighboring node without necessarily waiting for the entire packet to arrive,
and 2) the packet header reserves a path as it traverses the links while the packet tail releases
the path after it passes through. Similar to store-and-forward switching, a message is divided
into one or more packets where the packet is the unit of data transfer. A packet is in turn
divided into a number of flits. As flits are forwarded, a packet may be spread out over multiple
links, and a packet is sometimes referred to as a worm in this context. Since only the head flit
of a packet contains the routing information, it is essential that the flits of a packet not to be
interleaved with flits of another packet. The head flit of a packet acquires network resources
(links and buffers) as it proceeds through the network, while the tail flit frees them.

There are two important variations of cut-through switching, namely virtual cut-through
and wormhole switching. They both send packets as a sequence of flits with the header flit
containing the routing and sequencing information, but they differ in how they handle blocked
packets. Virtual cut-through switching, first introduced by Kermani and Kleinrock [51], buffers
packets in their entirety when they are blocked. Thus when the header of a packet becomes

blocked at a node,” the remainder of the packet will continue to be transmitted to the node

5The packet may be blocked at a node when either the output link it requires is busy transmitting another
packet or the input buffer at the next node is full.

2.3. SWITCHING TECHNIQUES 15

Flits of a
Packet

FAF/,/H/
I

Source

Path
Established

(L1 1H

Destination

Figure 2.7: Wormhole switching in a 2-dimensional mesh network. The header flit establishes
a path and the body flits follow. The reserved links along the path are shown.

until the entire packet has arrived. This requires large buffer spaces in the routers (similar to

store-and-forward switching) capable of buffering entire packets.

In wormhole switching, a blocked packet may span multiple nodes, residing in the flit buffers
of those nodes (see Figure 2.7). When a packet header cannot move forward it is blocked in
place and continues to hold the resource it just acquired. When the local buffers become full,
flow control will prevent the neighboring node from transmitting further flits of the packet over
the incoming link. This can possibly cause the neighboring router buffers to fill as well, and
flow-control will propagate further back. A blocked packet can thus span multiple nodes. This,
in turn, can cause the blockage of other packets. Under heavier load conditions, a single “hot-
spot” node may cause tree saturation where contention for the hot-spot can back propagate to

affect other traffic that has no need to reach the hot-spot node [40, 67, 68].

In the absence of contention, network latency in cut-through switched networks is given by
d+ L/W, where d is the number of hops, L is the length of a message (consisting of one or
more packets including the header), and W is the data channel width. When L dominates in
the above expression, the path length d will not significantly affect the network latency. As
a result, the latency of cut-through switched networks is less dependent on network diameter
than store-and-forward networks. Cut-through switching is thus a sensible choice for both low
and high dimensional networks. Figure 2.8 compares the communication latency of cut-through
switching with that of store-and-forward switching, in the case where no blocking occurs. It
is obvious that cut-through switching can significantly reduce network latency compared to

store-and-forward switching when there is no contention.

16 CHAPTER 2. ISSUES IN THE DESIGN OF MULTIPROCESSOR NETWORKS

H - Header
S - Source Node
Nodes D - Destination Node
i1, i2 - Intermediate Nodes
S |TRT DATA
i1 H| DATA
i2 H| DATA
b DATA
Time
Nodes @
H - Header Flit
D1, D2, D3 - Data Flits
s
g
2
D

Time

(b)

Figure 2.8: Latencies of different switching techniques in the case where no blocking occurs:
a) store-and-forward switching and b) cut-through switching.

Wormbhole vs. Virtual Cut-through

Both wormhole and virtual cut-through switching block a packet when it cannot move forward,
the former buffering it across multiple nodes and the latter buffering it in its entirety in a
single router. However, it is not clear which switching technique is superior, and both have
their advantages and disadvantages [85]. At low network loads, both switching schemes behave
similarly because link contention occurs infrequently. At high loads close to network saturation,
virtual cut-through switching exhibits higher throughput and lower latency but it requires larger
buffers at the routers, capable of storing entire packets. Virtual cut-through switching performs
better at high loads, because the probability of a packet blocking is high in this situation, and
since blocked packets are stored in their entirety in routers, the network links are still available
for transmitting other packets going to other destinations. This allows higher average link
utilization and thus higher network throughput.

In contrast, wormhole networks block packets across nodes, making links unavailable for
other use, preventing their bandwidth to be fully exploited. Nevertheless, wormhole switching is
attractive in that it requires only a few flit buffers at the routers, since it does not need to buffer
entire packets.® This reduced buffer requirement makes wormhole routers less expensive and
faster [13]. Thus, in choosing between the two schemes, there is a trade-off between performance
and cost. There are some who argue however, that virtual cut-through will become prevalent

in the near future, because with advances in VLSI technology, large buffers can be integrated

STraditional wormhole routers use only single-flit buffers.

2.3. SWITCHING TECHNIQUES 17

into a router at reasonable cost and also the propagation delay associated with large buffers
can be reduced significantly [26].
To take advantage of inexpensive and faster wormhole routers yet address the low through-

put problem at high loads, a number of alternatives have recently been proposed recently:

1. hybrid switching switches from wormhole to virtual cut-through at high loads by selectively
buffering entire packets [85],

2. buffered wormhole switching improves throughput by increasing the buffer size at the
routers to more than just a few flits, thereby reducing significantly the number of links a

packet can block [73].7

3. wave switching combines circuit switching and wormhole switching, whereby circuit switch-
ing is used between nodes that are going to communicate frequently, while wormhole

switching is used to transmit packets for which circuit switching is not efficient [24].

In this dissertation we propose buffered wormhole switching and will show in Chapter 6
that this can reduce latency and improve system throughput in both hierarchical-ring and

direct networks.

2.3.4 Cell Switching

An important variation of cut-through switching is cell switching [5, 42, 43, 72, 92, 93]. In
cell switching, packets are divided into equi-sized cells that are routed independently (see Fig-
ure 2.9). In this sense it is the same as virtual cut-through switching on a per cell basis. Each
cell contains its own routing information: the first cell of a packet carries the full target mem-
ory address, while the remaining cells of the packet only identify the destination node. Note
that there is no need for sequencing information in a cell if we assume a deterministic routing
protocol. The fact that the target node address exists in each cell allows the cells to be routed
independently, but it adds overhead to the size of the cells. For example, a 128 processor net-
work requires 7 bits to address each processor and 7 more bits to identify the source node in
order to distinguish between cells from different source nodes to the same destination node.
This amounts to a total of 14 bits of extra overhead per cell which translates into about 11%
if we assume a 128-bit cell size. Note that there is no need to identify cells of different packets
from the same source node if cells arrive in order at the destination node.

An advantage of cell switching is that it does not require the buffering of entire packets,

vet blocked packets do not block links. Hence, cell routers can be fast and still inexpensive

"Increasing the buffer size beyond the largest worm size results in diminishing returns in network throughput,
however.

18 CHAPTER 2. ISSUES IN THE DESIGN OF MULTIPROCESSOR NETWORKS

Cells of a
Packet

N

Source] [o] Destination

Figure 2.9: Cell switching in an 1-dimensional ring connected network. The cells of a packet
can be interleaved with the cells of another packet. The links between nodes are not reserved
for an entire packet and are released after a cell is forwarded.

to build. For example, in one-dimensional networks, links can be acquired and then released
in the same clock cycle for the transmission of a single cell (assuming cell size is equal to
the phit size), and an incoming transit cell can always be transmitted on the outgoing link
without being buffered [92]. We will show in Chapter 6 that cell switching is more effective
than either wormhole or virtual cut-through switching in hierarchical-ring networks, especially
when combined with non-blocking flow-control (described in Section 2.6) [72]. It should be
noted that in a single ring, the cell switching is same as the slotted ring protocol [5, 43]. We
also propose and evaluate in Chapter 6 a hybrid cell-wormhole switching for hierarchical-ring

networks.

2.4 Routing Techniques

Routing determines the path selected by a packet to reach its destination. Routing is critical
to network performance and a large amount of research has been done on this topic [7, 14,
18, 19, 21, 23, 25, 26, 27, 34, 35, 46, 53, 60, 62, 80, 89]. The regular topologies typically used
for multiprocessor direct or hierarchical networks permit algorithmic routing, as opposed to
routing based on tables. In distributed algorithmic routing, the path selection for a packet is
distributed across the nodes: when the packet arrives at a node, the router decides along which
link to forward the packet according to a routing algorithm. In source routing, the entire path
for a packet is decided by the source node itself. Source routing does not allow alternate path
selections to accommodate faulty links or to avoid a heavily congested area. Also source routing
normally requires a larger packet header to accommodate the specification of the route. For
these reasons, source routing is not normally used in modern multiprocessor networks.
Distributed algorithmic routing techniques are common in multiprocessor networks and can

be classified as either deterministic or adaptive. In deterministic routing, the entire route is

2.4. ROUTING TECHNIQUES 19

|

[os]
o8}

Destination

Path 1 — Deterministic
Path 2 — Adaptive

Figure 2.10: The figure illustrates deterministic and adaptive routing in a 2-dimensional mesh
connected network. ‘B’ represents unavailable links due to blocking. Path 1 is chosen by a
deterministic routing algorithm while path 2 is chosen by an adaptive routing algorithm. It is
seen that adaptive routing can route around blocked nodes whenever possible thus improving
the throughput of the network significantly.

determined by the source and destination node addresses alone. The Intel Paragon [6], MIT
J-machine [23, 64], and Cray T3D [80] all use deterministic routing. Adaptive routing, on
the other hand, exploits the fact that there is more than one path between any source and
destination node pair (in a multi-dimensional network), and bases its decision on which output
link to forward a packet to on such factors as present network conditions and the distance from
the destination node (see Figure 2.10). If the choice of output link is always guaranteed to lead
to the shortest path to the destination node, then the routing is said to be minimal. Also, one
can further differentiate between fully adaptive and partially adaptive routing techniques. In a
Sully-adaptive router, the set of legal output links for a packet includes all possible output links
the packet can take to reach its destination; hence, by definition a fully-adaptive router cannot
be minimal. A partially-adaptive router, on the other hand, takes into account only a subset of
all possible output links.

In the subsequent chapters we only consider minimal, deterministic, distributed algorithmic
routing. Hence, we focus on this class of routing in the rest of this section, but for interested

readers we do give some pointers for adaptive routing schemes.

2.4.1 Deterministic Routing

Livelock, starvation, and deadlock are the three major issues that any routing algorithm must
address. A routing algorithm that guarantees forward progress of each packet, where every hop

the packet makes takes it a step closer to its destination, is said to be livelock free. Minimal,

20 CHAPTER 2. ISSUES IN THE DESIGN OF MULTIPROCESSOR NETWORKS

Figure 2.11: The figure shows a simple example of a deadlock in a 4-node-cycle involving nodes
2, 3,5, and 6. The buffers of each of these nodes is full with a packet, destined for nodes 6, 5,
3, and 2, respectively. The destination node numbers for packets are shown inside the nodes
where they are buffered, whereas the present node numbers are shown outside the corresponding
nodes.

deterministic routing by definition is livelock free. In non-minimal routing, on the other hand,
the routing algorithm must be carefully designed to avoid livelock; otherwise a packet could
continuously be routed in a cycle such that it does not reach its destination. A simple solution
to prevent livelock is to adopt an age-based priority scheme, where older packets are routed

along minimal paths [62].

Starvation occurs when a node is permanently blocked from injecting messages into the
network. This may happen when there is heavy transit traffic. A solution to prevent starvation
based on the message injection rate of nodes is proposed in [62]. This solution requires extra
handshaking lines and additional hardware in routers. Another solution is to use injection
tokens in the network, allowing a source node to inject a message only after it consumes one
injection token [53]. Since starvation did not occur in any of our simulations, we did not resort
to any explicit starvation prevention techniques, although there is no guarantee that it will

never occur.

Deadlock is a condition that occurs when some packets are blocked forever because of full
network buffers [18, 46, 60]. Cut-through and store-and-forward switching are susceptible to
deadlock, because blocked packets occupy buffers and/or channels (network resources) while
requesting other resources resulting in cyclic waits for network resources. Figure 2.11 shows
an example of a simple deadlock in a 2-dimensional mesh network involving four nodes 2, 3, 5
and 6 (a 4-node-cycle). The buffers of each node in this cycle are filled with messages destined
for the diametrically opposite node. No message can advance towards its destination (under a

minimal routing algorithm), so there is a deadlock situation.

2.4. ROUTING TECHNIQUES 21

The techniques proposed to deal with deadlocks in direct networks fall under two general
categories, namely (¢) deadlock prevention and (i¢) deadlock detection and recovery. Deadlock
prevention techniques rely on designing routing algorithms that do not allow deadlock to occur
in the first place. Deadlock detection and recovery techniques, on the other hand, deal with
first detecting and then recovering from deadlocks. We use the deadlock prevention technique
in direct networks in our further study and extend it to apply to hierarchical-ring networks in
Chapter 6.

One way to prevent deadlock in wormhole (cut-through) networks is to divide a physical
channel into a number of virtual channels and restrict the assignment of packets to these chan-
nels. All virtual channels together share the same physical channel, but each virtual channel
has its own set of buffers. This virtual channel approach is widely used to prevent deadlocks in
wormhole networks, and interestingly it improves throughput [18, 19].

Seitz and Dally proposed a necessary and sufficient condition for a minimal deterministic
algorithm to be deadlock-free [18]. For a given interconnection network and its routing function,
they define a channel dependency graph and state that the deterministic routing function is
deadlock free if and only if there are no cycles in the channel dependency graph. As a result,
for a routing function to be deadlock free according to this theory, it must restrict the use
of channels for routing packets so as to eliminate cycles in the channel dependency graph.
Given an interconnection network, we can derive its channel dependency graph as follows. The
vertices of the channel dependency graph represent the edges of the interconnection network
and a vertex vy is connected to a vertex vy if the routing algorithm allows a packet to be routed
from the channel represented by wv; to the channel represented by wvy. Figure 2.12 shows a
2-dimensional mesh network and its channel dependency graph for dimension-ordered routing
(described below).

For n-dimensional meshes dimension-ordered routing is a minimal and deterministic routing
algorithm. It routes a packet along the lowest dimension first for as far as it must go, before
routing it on the next higher dimension, and so on until the packet reaches its destination.
This algorithm is simple to implement, elegant and the most widely used [6, 57, 80]. In a
2-dimensional mesh, for example, each node is represented by a 2-digit radix & number, where
k is the number of nodes along a dimension, with the first digit representing the node’s position
in the first dimension and the second digit representing the node’s position in the second
dimension. The packet is routed in the first dimension (along the z-axis), until it reaches a
node whose subscript matches the destination address in the first position. The packet is then
routed along the second dimension. In this case at most one turn is allowed and the turn is from

the first dimension to the second dimension. A total of n — 1 turns are allowed, in general, for

22 CHAPTER 2. ISSUES IN THE DESIGN OF MULTIPROCESSOR NETWORKS

Channel dependency

/ graph

Mesh network

Figure 2.12: A 2-dimensional mesh network and its channel dependency graph (shown by darker
lines) for dimension-ordered routing.

n-dimensional meshes. Dimension-ordered routing guarantees deadlock and livelock freedom in
n-dimensional meshes by enforcing a strictly monotonic order on the dimensions traversed, but
it does so at the cost of adaptivity. It is easy to see that there are no cycles in the channel

dependency graph of Figure 2.12.

For k-ary n-cubes, dimension-ordered routing is still minimal and deterministic, but not
deadlock-free. In this case a deadlock would involve wraparound channels within a given di-
mension (since cyclic channel dependencies involving multiple dimensions cannot occur). Seitz
and Dally developed deadlock-free minimal deterministic routing protocols for k-ary n-cubes
by splitting each physical channel into two virtual channels to prevent cyclic channel dependen-
cies in a given dimension. As an example, consider the 1-dimensional, 5-ary 1-cube (a 5-node
ring) and its channel dependency graph shown in Figure 2.13. There is a cycle in the channel
dependency graph, so deadlock is possible. Such cycles can be broken by splitting each phys-
ical channel along a cycle into two virtual channels known as high and low virtual channels.
A packet currently at node n; is routed to the high virtual channel if 7 is smaller than the
subscript of the destination node, and into the low virtual channel otherwise. The low virtual
channel out of node 0 is not used. It is easy to see that such a routing function has no cycles

in the resulting channel dependency graph, as shown in Figure 2.14.

This routing function can be extended to general k-ary n-cubes. Each node of the k-
ary n-cube can be identified by an n-digit radix & number, with the ¢th digit of the number
representing the node’s position in the ¢th dimension. Similar to an n-dimensional mesh, we
route in the order of dimension, with the most significant dimension first; in each dimension,

17, a packet is routed in that dimension until it reaches a node whose subscript matches the

2.4. ROUTING TECHNIQUES

cO

cl

no

nl

Y

Y

n2

c2

n3

c3

Y

n4

c4

@

(b)

cO cl c2 c3 '

23

Figure 2.13: A unidirectional 5-node ring topology: a) interconnection network b) channel

dependency graph.

cl0 cl1 cl2 c13 cl4
n0 > nl » N2 > n3 » N4 >
- c00 | co1 | c0 c03 | c04
€Y

c.oo c01 C!Z c03 c04_
90 0 O

cla cl3

cl2

(b)

cll

cl0

Figure 2.14: A unidirectional 5-node ring topology with virtual channels: a) interconnection
network and its b) channel dependency graph.

destination address in the ¢th position. The message is routed on the high channel if the ¢th

digit of the destination address is greater than the ith digit of the present node’s address;

otherwise, the message is routed on the low channel.

In general, it is not possible to develop minimal deterministic deadlock free routing algo-

rithms for k-ary n-cubes without virtual channels, with the exception of k-ary 1-cubes for values

of k£ < 4 [63]. This makes n-dimensional meshes attractive, since dimension ordered routing

alone can guarantee deadlock freedom without requiring virtual channels, thus resulting in

reduced router complexity [13].

24 CHAPTER 2. ISSUES IN THE DESIGN OF MULTIPROCESSOR NETWORKS

Topology Deterministic | Turn model | Planar | Linder and Harden
2D Mesh 1 1 2 2

k-ary 2-cube 2 2 4 6

3D Mesh 1 1 3 4

k-ary 3-cube 2 2 6 16

n-D Mesh 1 1 3 2n-1

k-ary n-cube 2 2 6 2" (n 4 1)

Table 2.1: Virtual channel requirement for deadlock free routing. With the exception of deter-
ministic routing, all are adaptive routing techniques.

2.4.2 Adaptive Routing

Deterministic routing algorithms are oblivious to dynamic network conditions. Adaptive routing
protocols were developed to take advantage of the multiple paths that may exist between source
and destination pairs to avoid points of congestion. Adaptive routing can significantly improve
network throughput and lower latency when compared to deterministic routing techniques [14,
63], but it requires more complex routers and typically additional virtual channels for deadlock

freedom [13].

Seitz and Dally’s theory of deadlock free deterministic routing has been extended to adaptive
routing [7, 14, 34]. However, it was shown later by Duato that Dally’s necessary and sufficient
condition for deterministic deadlock-free routing is only a sufficient condition in the case of
adaptive routing [25, 26, 27]. Duato shows that by separating virtual channels on a link into

deterministic and adaptive classes, wormhole routing can be both adaptive and deadlock free.

Adaptive wormhole routing algorithms that are deadlock-free require virtual channels for
both k-ary n-cubes and n-dimensional meshes. The number of virtual channels required per
physical channel depends on the degree of adaptivity sought. A fully-adaptive algorithm requires
a large number of virtual channels per physical channel when compared to a partially adaptive
algorithm. Table 2.1 compares the virtual channel hardware requirements of deadlock-free
deterministic routing with three different deadlock-free adaptive routing schemes namely the
Turn model [34], planar adaptive routing [14], and the Linder and Harden method [58]. The
Turn model, proposed by Glass and Ni, deserves special mention as it does not require more
virtual channels than deterministic, yet is adaptive. Instead, it is based on restricting the
directions in which packets may turn and prohibits just enough turns to prevent cycles in
the channel dependency graph, but allows more turns than the restrictive dimension-ordered

routing.

2.5. FLOW-CONTROL TECHNIQUES 25
2.5 Flow-control Techniques

When a buffer in a network node has become full and is about to overflow, then there are two
options to take. Kither packets can be dropped or else incoming traffic from the neighboring
nodes can be throttled by sending a flow-control signal to the neighbor so that it can block the
next packet from being sent. The first option results in non-blocking networks, while the latter

results in blocking networks.

In non-blocking networks, routers drop packets when they cannot practically be buffered [72,
93]. Non-blocking networks reduce contention for hot-spot resources and prevent tree-saturations
at high load conditions [72]. The recovery of a dropped packet is carried out either through
negative acknowledgments or through time-outs. Sending a negative acknowledgment back to
the source node reduces the time for retransmitting a packet; otherwise the source node has to
time-out before retransmitting a dropped packet. Unfortunately time-outs need to be large: to
prevent duplicate packets in the network the time-out must be larger than the maximum round-
trip delay. A larger number of time-outs therefore increases the average round-trip latency of

memory requests, especially at high loads.

A blocking network router blocks a packet when it cannot be buffered at the next neighbor
because the buffers there are full. A blocking network thus controls the flow of packets into
a node when the node’s buffers are full. Flow-control can be either receiver initiated, where
the receiving node back propagates a flow-control signal to its neighbor to request it to stop
sending packets, or sender initiated, where the transmitting node keeps a count of the number
of free flit buffers on neighboring receiving nodes by incrementing the counter whenever a flit
is sent to that neighbor and decrementing when the receiver signals that it has removed a
flit from the receiving buffer. In the receiver initiated case, there may be packets in transit
when a transmitting node receives a flow-control signal; hence, the receiving node should either
have enough buffer storage for transit packets or otherwise it must send flow-control signals in
advance of its buffers becoming full. An example of a router that incorporates receiver initiated
blocking is the Reliable Router from MIT [22]. It asserts or deasserts a clear-to-send signal
depending on whether there is enough buffer space to receive the next flit. An example of a
router that uses sender initiated blocking is the arctic routing chip, also developed at MIT [8].

End-to-end flow-control between the source and destination node is often used in data
communication protocols and has the purpose of preventing speed mismatches between the
source and destination, thereby avoiding buffer congestion at the receiving node [32]. End-to-
end flow control schemes typically have some form of admission control at the source node,

where a packet is injected into the network only if the destination is able to accept the packet.

26 CHAPTER 2. ISSUES IN THE DESIGN OF MULTIPROCESSOR NETWORKS

However, end-to-end flow-control is not typically used in multiprocessor networks, except in a
primitive form, mainly because of the overhead involved in implementing it. A rare example of
a router that supports end-to-end flow-control is the NIFDY chip developed at the University
of California, Berkeley [10]. NIFDY uses admission control to perform end-to-end flow-control
by restricting the number of outstanding requests a processor can issue to at most one per
destination processor.

In this dissertation, we study both blocking and non-blocking flow-control in hierarchical-
ring networks, but only blocking flow-control in direct networks since our preliminary simulation
results showed that non-blocking flow-control in 2-dimensional direct networks results in poor
performance. This is mainly because the longer worms (packet length) result in higher network
cycles to drop and recover packets in direct networks.® End-to-end flow control is also applied

by imposing a maximum limit on the number of outstanding transactions a processor can issue.

2.6 Other Issues

Recently, there has been some interest in providing service guarantees for new applications
requiring real-time communications with continuous data types that include audio and video.
Kim and Chien [52] proposed a novel queuing and scheduling algorithm for direct networks
that guarantees deterministic delay bounds and bandwidth for real-time traffic. J. Rexford,
et. al. [77, 78] proposed a router architecture for direct networks that supports multiple classes of
traffic that includes best-effort and real-time traffic. Both these techniques assume connection-
oriented networks, where a prior connection is established to forward real-time traffic. This
under-utilizes the network resources and penalizes best-effort traffic.

In Chapter 7, we propose dynamic virtual channel flow-control toimplement a connectionless
priority-based direct network. It can be used to either support multiple classes of traffic, as seen
in multiprocessor video/transaction servers or improve the throughput of best-effort traffic. We
implement such a network using dynamic virtual channels, priority inheritance, and priority

based link arbitration.

8Under constant router pin constraints, the number of flits of a packet increases with the dimension of the
network.

CHAPTER 3
System Description, Methodology, and Workloads

In this chapter, we describe the hierarchical-ring and direct networks we consider in this dis-
sertation. As representative direct networks, we consider 2-dimensional meshes, 2-dimensional
tori, and bidirectional rings. We use wormhole and cell switching techniques for hierarchical
rings, while our predominant switching technique for direct networks is wormhole. We use the
minimal, deterministic, dimension-ordered routing without virtual channels for 2-dimensional
meshes and two virtual channels per physical channel to prevent deadlock involving wrap-around
channels in the torus and the bidirectional ring. We consider blocking flow-control for direct
networks, and both blocking and non-blocking flow-control for hierarchical-ring networks.

Our approach to performance evaluation is primarily through simulations, although we at
times also use semi-empirical analytical models. Synthetic workload models are complemented
by program-driven simulations with programs chosen from the SPLASH-2 suite [94]. Synthetic
workload models allow us to accurately control the network load, and to study network behavior
for a range of operating points. This makes it feasible to find important network parameters such
as the maximum achievable throughput and the processor request rate at network saturation.
On the other hand, a set of real applications subject a network to some realistic operating
points; however, it would be difficult to predict the network behavior under other operating
points from just the real ones. Another advantage of using synthetic workloads is that the
number of transactions that need to be issued by each processor to obtain reliable system
performance measures is much smaller than the number of transactions needed when simulating

the execution of real application programs.

3.1 System Description

Low-dimensional meshes and tori are currently popular for use as interconnection backplanes in
large-scale shared-memory multiprocessors. A number of commercial products use these types

of networks [16, 80, 81], as do a number of experimental and research systems [55, 57]. This is

27

28 CHAPTER 3. SYSTEM DESCRIPTION, METHODOLOGY, AND WORKLOADS

Global Ring

|

Network Interface
Controller

L]
. . Processor-Memory
Module

Figure 3.1: A hierarchical-ring system with two levels.

partly because of their perceived scalability characteristics and partly because routers for these
types of networks exist and hence it is relatively easy to build such systems using off-the-shelf
routers and processors. Nevertheless, we will show in Chapter 4 that hierarchical unidirectional
ring-based multiprocessors are, from the point of view of performance, interesting alternatives
to two-dimensional direct networks.

Figures 3.1 and 3.2 show shared-memory multiprocessor systems containing a number of
processing modules, in the former case connected by a two-level hierarchy of unidirectional
rings [92], and in the latter case connected by a square 2-dimensional bidirectional mesh.!
Each processing module (PM) contains a processor, a local cache and a portion of the main
memory. In the case of hierarchical rings, all processing modules are connected to lowest level
rings, which we also refer to as local rings. A global ring connects several of these local rings.

The channel width (data path) of the ring is assumed to be 128 bits wide in our study.

For a mesh connected system, a number of variations on the basic topology shown are possi-
ble. The connection between each pair of adjacent nodes in a mesh is bidirectional (implemented
as two 32-bit wide unidirectional channels?). We consider both mesh-connected networks that
have no wrap-around connections and tori with wrap-around channels. The main differences be-
tween a mesh and a torus network are: (1) for deadlock-free, dimension-ordered routing, a mesh
network does not require virtual channels, whereas a torus network requires its physical channel
to be multiplexed between two virtual channels, (2) the wrap-around channels in a torus reduce

the network diameter by a factor of 2 when compared to a mesh network, (3) the bisection

'These figures are repeated from Chapter 2 for convenience.
2The assumption is valid under constant router pin constraints where a 128-bit wide channel for unidirectional
rings reduces to a 32-bit wide channel for 2-dimensional meshes

3.1. SYSTEM DESCRIPTION 29

— wlRoOuter |—»

<—
\ Bi—directional | PM
Links /

Processor—-Memory
Module

Figure 3.2: A 2-dimensional 3 x 3 mesh with 9 nodes.

bandwidth of a torus is twice that of a mesh network, again due to the wraparound channels,
and (4) all nodes in a torus network have the same number of neighbors making it a regular
topology. The bidirectional ring, which we also study, is considered to be a 1-dimensional torus.

We only consider shared-memory multiprocessors in our study. Hence, we assume that both
the hierarchical-ring and the direct networks provide a flat, global (physical) address space, and
that each PM is assigned a unique contiguous portion of that address space, determined by its
location. All processors can transparently access all memory locations in the system. The target
memory is determined by the address of the memory being accessed. The memory transactions
we consider are cache line reads and writes. Each memory transaction involves a request and
response sub-transaction. Local memory accesses do not involve the network. Remote memory
accesses require a request packet to be sent to the target memory, followed by a response packet
from the target memory to the requesting processor. Packets sent are of variable size and are
transferred in flits,® bit-parallel, along a unique path through the network. In a hierarchy of
rings, a packet containing a remote request whose target memory is in a different ring than
its source, first travels up the hierarchy to the level needed to reach the target node, and then
descends the hierarchy to the target node where it is removed from the local ring. The target

node sends a response packet back to the requesting PM along a similar path.

3.1.1 Hierarchical-ring System Description

For a hierarchical ring, there are two types of network nodes: Network Interface Controllers
(NIC) connect processing modules (PM) to local rings and Inter-ring Interfaces (IRI) connect

two rings of adjacent levels. The NIC examines the header of a packet and switches (1) incoming

®No distinction is made between a phit (physical transfer unit) and a flit in our study.

30 CHAPTER 3. SYSTEM DESCRIPTION, METHODOLOGY, AND WORKLOADS

Input Ring Buffer Output
Link Link

Input Output
Request Request
and and
Response Response
Buffers Buffers

|Pro;:essor—Memory |

Figure 3.3: A network interface controller (NIC) for hierarchical-ring connected multiprocessor
network.

packets from the ring to a PM, (2) outgoing packets from the PM to the ring, and (3) continuing
packets from the input link to the output link. The IRI controls the traffic between two rings
and is modeled as a 2 X 2 crossbar switch. Possible implementations of these network nodes are
depicted in Figures 3.3 and 3.4.

The NIC has a FIFO ring buffer to temporarily store transit packets arriving from the
network not destined to the local PM when the output link is currently transmitting another
packet from the local PM. If the ring buffer is empty and no packet is currently being transmit-
ted, then an incoming transit packet will be forwarded to the output link directly, bypassing
the ring buffer. The NIC also has a FIFO input buffer for storing packets destined for the local
PM and a FIFO output buffer for storing packets originating from the PM destined for nodes
elsewhere in the network (see Figure 3.3). Both of these are split into request and response
queues (not shown) to avoid deadlocks involving multiple classes of traffic [37]. Priority for
transmission to the next node is given to ring packets either waiting in the bypass buffer or
having just arrived from the previous node. Otherwise, if there are packets in one of the output
queues then priority is given to response packets over request packets. The reason behind this
prioritized link arbitration is to minimize the time a packet spends in the network.

Superficially, the NIC model described appears to be similar to the buffer insertion ring
access scheme used in ring topology local area networks [44, 91]. There are, however, significant

differences. In the cut-through switched ring,

1. blocking flow-control is used to block a packet when it cannot be buffered at the next
neighbor because the buffers are full. For example, in a wormhole switched ring with

single-flit ring buffers, a blocked (header) flit of a packet will block the following flits, and

3.1. SYSTEM DESCRIPTION 31

Input Upper Ring Buffer Output
Down Up
Buffer Buffer
a;,<<—|:|:|:1<—>'.r@t
Link Lower Ring Buffer Link

Figure 3.4: An inter-ring interface controller for hierarchical-ring connected multiprocessor
network.

when the entire packet becomes blocked, it typically spans multiple nodes.

2. priority is always given to packets in the ring when there is a competing request for an

output link from the local PM.
3. small, fixed size insertion buffers are used, and

4. dedicated transmit and receive buffers (input and output buffers) to and from the local

PM are used.

An IRI has two ring buffers, one for the lower ring and one for the upper ring. It also has
a down buffer and an up buffer (see Figure 3.4). The down buffer stores packets arriving from
the upper ring destined for the lower ring, while the up buffer stores packets arriving from the
lower ring destined for the upper ring. Switching takes place independently at the lower and
upper ring sides. We use a prioritized link arbitration where priority is given to packets that
do not change rings. Arriving transit packets block and are placed in the ring buffer (1) when
the output link is in the process of transmitting a packet from the up/down buffer or (2) when
packets are already waiting in the ring buffer.

Both the NIC and IRI have flow control units (for blocking networks) that are used to signal
upstream neighbors when to stop sending packets. We consider NIC and IRI buffers with sizes
ranging from single flit size to multiple cache line sizes large enough to accommodate one or
more packets containing cache lines.

We assume that all communications occur synchronously: that is, within a network clock
cycle, each NIC can transfer one flit to the next adjacent node (if the link is not being blocked),
and receive a flit from the previous node it connects to; an IRI, in one network clock cycle, can

transmit and receive a flit on each ring (if there is no blocking).

32 CHAPTER 3. SYSTEM DESCRIPTION, METHODOLOGY, AND WORKLOADS

Network Network
Physical Network Physical
Input Input Output
Channels Buffers Channels
— 1 —
— —
Switch
— —
— 1= e
P Processor
Ianc))Ltj:tessor Output
Channel Channel
m&?tessor Processor
Output
Buffer Buffer

| Processor-Memory |

Figure 3.5: A network interface controller for a 2-dimensional mesh or a torus. The in-
put/output links from/to neighboring nodes are referred to as network input/output links
and the input/output link from/to local processor-memory module is referred to as proces-
sor input/output link. The schematic also shows the network input buffers and processor
input/output buffers.

3.1.2 Mesh System Description

In a mesh (torus) connected system, there is only one type of network node, namely the mesh
Network Interface Controller (NIC) that connects processing modules to the mesh. A NIC for
a 2-dimensional bidirectional mesh or torus is shown schematically in Figure 3.5. The NIC is
modeled as a 5 X 5 crossbar switch with four input/output links from and to its four direct
neighbors and one input/output link from and to the local PM. The input links have FIFO
buffers to store flits that are blocked in the network. An output buffered NIC can be considered
to be an input buffered NIC by associating the buffers on the output of each NIC with the inputs
of the next NIC.

The NIC provides the basic cut-through switching function from router inputs to outputs.
It examines the header flit of an incoming packet to determine which output link the packet
should be forwarded to. The NIC also does proper arbitration if there are competing requests
for an output link. The arbitration policy could be round-robin or priority-based or both. If
a requested output link is not available, then the requesting flit is blocked and stored in the
corresponding input buffer. It is assumed that our mesh NIC can connect all inputs to outputs
in a single network clock cycle. Once a switch connection between an input and output link is

established, it is broken only after the last flit of a packet has been transferred. We consider

3.2. SWITCHING AND FLOW-CONTROL TECHNIQUES 33

Blocking Non-blocking
Direct Hierarchical-ring Direct Hierarchical-ring
Networks Networks Networks Networks
Wormbhole Vv Vv
vCT Vv Vv
Cell Vv Vv Vv

Table 3.1: Switching and flow-control techniques used in evaluating hierarchical-ring and direct
multiprocessor networks.

flit-sized and (single or multiple) cache line sized buffers. Under the assumption of constant pin
constraints, a 128-bit wide channel for rings with one input and output connection per ring NIC
translates into a 32-bit wide channel for meshes with four input and four output connections

per mesh NIC.

3.2 Switching and Flow-control Techniques

In this section, we briefly mention the different switching and flow-control techniques used in
our performance evaluation. We consider three different switching techniques: wormhole (WH),
virtual cut-through (VCT), and cell switching. The switching schemes are examined for both
blocking and non-blocking networks (with some exceptions). Wormhole (both single-flit and
buffered) switching is a natural candidate for switching in blocking networks, while cell switching
is a natural candidate in non-blocking networks. Virtual cut-through switching in blocking
networks results in a similar performance to buffered wormhole switching and therefore is used
only in non-blocking networks. In the non-blocking variant of virtual cut-through switching a
node drops the packet whenever a node cannot buffer it in its entirety. The dropped packet is
recovered through negative acknowledgments and through time-outs.

Table 3.1 presents the switching and flow-control combinations considered in this disserta-
tion. We do not consider non-blocking flow-control in direct networks since our preliminary
simulations showed that they result in poor performance.* For direct networks, we consider
both wormhole and buffered wormhole switching; virtual cut-through switching results in sim-
ilar performance as buffered wormhole switching and is therefore not further considered for
direct networks. For hierarchical-ring networks, we consider cell switching under both block-
ing and non-blocking flow-control, virtual cut-through under non-blocking flow-control, and

buffered wormhole switching under blocking flow-control.

*This is mainly due to the overhead involved in dropping and recovering packets, since the packets are much
longer (number of flits) in direct networks compared to their hierarchical-ring counterparts.

34 CHAPTER 3. SYSTEM DESCRIPTION, METHODOLOGY, AND WORKLOADS

Network Network Network
Physical Input Physical
Input Buffers Output
Links Links

——— —
Switch

—L—"1 —

Static /
Virtual Processor gﬁ%ﬁfsor
Channels :_r:rEIL(n Outr
Processor I Processor
Input Ouput
Buffers || Buffers
L]

Processor—-Memory

Figure 3.6: A network interface controller for a 2-dimensional mesh or a torus with two static
virtual channels per physical link.

Virtual channels were introduced in Chapter 2 as a means for providing deadlock free
routing. We use two virtual channels in wormhole switched hierarchical ring, bidirectional ring
and 2-dimensional tori networks, where deadlock might otherwise occur. We will also use them
at times to improve system throughput in 2-dimensional mesh networks (Chapters 4 and 7).
Figure 3.6 presents a block diagram for a mesh NIC with two virtual channels sharing the
bandwidth of each physical link. Each virtual channel has its own input buffer. The virtual
channels in this case are referred to as static, since their number per physical link remains
constant. In Chapter 7, we introduce dynamic virtual channels, where the number of virtual

channels per physical channel can vary, in the context of priority networks.

3.3 Simulator

The simulator we use reflects the behavior of a system at the register-transfer level on a cycle-
by-cycle basis. It was implemented using the smpl simulation library [59]. For the version of
our simulator that is driven by synthetic workload models, the batch means method of output
analysis was used, with the first batch discarded to account for initialization bias. In the batch
means method, a single long run is divided into sub-runs called batches. A separate sample
mean is computed for each batch. These batch means are then used to compute the grand
mean and confidence interval. The batch termination criterium was that each processor had
to complete at least some minimum number of requests as opposed to using a total number of

requests completed over the entire system as this could substantially underestimate the mean

3.3. SIMULATOR 35

response times since requests with long response times are underrepresented.

A hierarchical-ring base simulator was validated against measurements taken from the Hec-
tor prototype, a hierarchical-ring architecture [93]. The Hector prototype and the base simula-
tor use cell switching and non-blocking flow-control. The base simulator was then extended to
model other switching techniques, such as wormhole and virtual cut-through and flow-control
techniques such as blocking and hybrid flow-control. For meshes, tori, and bidirectional rings,
the processor and memory modules are essentially the same as in the hierarchical-ring simulator
with new NIC modules added that incorporate appropriate switching, routing and flow-control
techniques.

A program-driven simulator is used to run real applications on hierarchical-ring and 2-
dimensional mesh and torus connected multiprocessor systems. The program-driven simulator
controls the scheduling of processes so that the interleaving of memory references is the same
as it would be on the simulated machine. Our program-driven simulator is partitioned into
two main parts: a memory reference generator (the front end) and a target system simulator
(the back end), as illustrated in Figure 3.7. The reference generator models the execution of an
application program on some number of processors. When an application generates a memory
reference, the front end sends an event to the back end. The back end typically models the
system interconnect and the memory hierarchy. When the back end completes the operations
for an event, it signals the front end to continue with process execution. A simulation library
manages and schedules events and processes.

We use MINT (a MIPS interpreter) as our front-end that encompasses the memory reference
generator and simulation library components [90]. The input to MINT is a statically-linked Irix
executable file compiled for the MIPS R3000 processor. Our back-end target system simulator is
the same as we use for the synthetic workload. Hence, the difference between the two simulators
is that we use the MINT event scheduler in the former and the smpl event scheduler in the
latter. However, we use smpl routines in both simulations to collect statistics. Using the same
back-end allows us to directly compare the results obtained from both simulations.

For the synthetic workloads, our main performance measures are transaction latency and
system throughput, whereas for the program-driven simulations they are transaction latency
and execution time of parallel applications. These and other performance measures are defined
as follows:

Transaction latency is the elapsed time between when a request is first issued and the time

the corresponding response is received.® It is measured in processor clock cycles and includes

5For writes the response packet returns upon queuing of the request at the target memory, so it is possible
for the target memory to be still processing a write request after the transaction completes in the above sense.

36 CHAPTER 3. SYSTEM DESCRIPTION, METHODOLOGY, AND WORKLOADS

Event s
Menory >
Ref er ence I nt er connect
Gener at or Si nul at or
(MNT)
Process
Cont r ol
Front-end Back-end

Figure 3.7: A program-driven simulator contains two major components: a memory reference
generator and a target system (interconnect) simulator.

any time-outs and retransmissions that might occur in the non-blocking networks.

System throughput is defined as average number of requests issued in the entire system per
processor cycle.

Average NIC and IRI delays are the average time a packet waits in NIC and IRI buffers,
respectively, and are measured in processor cycles.

Maximum achievable throughput is the system throughput just before network saturation.
At network saturation, a small increase in request rate produces a large increase in transaction
latency accompanied by no increase in throughput.

Link utilization measures the fraction of time a link is utilized for data transfer. It gives a

measure of network contention. Ideally, we would like link utilization to be low.

3.4 System and Workload Parameters

A shared-memory multiprocessor interconnection network can be characterized in part by the

following parameters:
1. system size (number of processors),
2. the relative processor, memory and network cycle times,
3. the maximum number of transactions a processor may have outstanding at a time, and
4. the topology.

Allowing only one outstanding transaction per processor results in a low processor efficiency.
A number of techniques such as relaxed memory consistency models, prefetching, non-blocking

reads, and multiple hardware contexts have been proposed to minimize the time a processor

3.4. SYSTEM AND WORKLOAD PARAMETERS 37

is blocked waiting for some transaction to complete and thus improve processor efficiency [36].
We model this effect by allowing up to four outstanding transactions per processor. Thus,
a processor does not block until the number of outstanding transactions has exceeded the

maximuimn.

The topology of hierarchical-ring networks is specified by the branching factor at each level
of the hierarchy, starting at the local ring up to the global ring. A topology specified as 8 x 4 x 2
refers to a three-level hierarchy with 8 nodes per local ring, 4 level-1 rings per level-2 ring, and
2 level-2 rings connected to the global ring. To specify the topology of 2-dimensional direct
networks, we use the n X n notation where n is the number of nodes in a single dimension,

assuming square meshes or tori.

The main parameters in our synthetic workload model include the request rate, which is the
mean time between cache misses® given a non-blocked processor, the probability that the cache
miss is a read, and a measure of communication locality. We subject the network to a wide
range of request rates from 0.0001 to 0.1. This corresponds to a range from 1 cache miss per
10000 cycles to 1 miss in 10 cycles. We will show later in this chapter that this range includes
most request rates exhibited by real programs. Given a cache miss, we assume the probability
of it being a read is 0.7, which is consistent with observed behavior [33]. For cache line transfers,
we assume the availability of page-mode DRAM, where the first word of a cache line is provided
by the memory after, say, 10 processor cycles, and successive words are provided in consecutive

processor cycles [15].

For our synthetic workload model, two main memory transactions, namely the read and
write transaction and four types of packets, namely, read request, read response, write request
and write response are simulated. In the case of a read transaction, the request packet contains
the target memory address and the response packet contains the requested cache line data. In
the case of a write transaction, the request packet contains the cache line data to be written
and the response packet contains an acknowledgment. For writes, the response packet is sent
back to the requesting station as soon as the write is queued at the target memory, so the

latency of the actual memory operation is hidden.”

Our synthetic workload model does not take coherence traffic explicitly into account. Cache
coherence traffic could be included within a low-level workload model such as ours by providing
a translation from a high-level workload model to a low-level workload model. Holliday and

Stumm [42] did a preliminary study of the effect of such a translation for the case of software

5The mean time between cache misses follows a negative exponential distribution.
"To isolate the issues related to network performance, we assume that the target node always accepts all
requests to it without generating negative acknowledgments.

38 CHAPTER 3. SYSTEM DESCRIPTION, METHODOLOGY, AND WORKLOADS

cache coherence using the approach developed by Adve et.al. [1]. The resulting ranges for the
low-level workload parameters were consistent with the ranges we consider.?

Communication locality can greatly affect system throughput in shared-memory multipro-
cessor networks. We use clusters of locality to model locality in our synthetic workloads [42].
This communication model logically organizes all processors into clusters and assigns a proba-
bility for each cluster being the target of a transaction. Hence, two parameters, where each is
a vector, specify a specific locality model. The vector S = (51, Sg,- -+, S,,) specifies the size of
each cluster. Here, Sy, 53, - -, 9, represent the size (number of processors) of clusters 0, 1, - - -, n,
respectively. The vector P = (P, Ps,-- -, P,) specifies the probability of each cluster being the
target of a transaction. Given that the target memory is in a particular cluster, the probability
of a processor module within that cluster is uniformly distributed. This definition of clusters is
independent of the topology of the network. For a hierarchy of rings, the clusters are defined
in terms of the absolute difference (modulo the size of the system) between the two processor
numbers, when numbered them left to right when processors are viewed as the leaves of a tree
defined by the ring hierarchy. For 2-dimensional mesh or torus connected networks, clusters are
defined in terms of the link distance between processors. The communication model described
is similar to ones described in other studies of direct networks [2, 3].

In our studies, we used two specific workloads derived from this model:

1. Workload Tj,., represented as S = (1,4,n —5) and P = (0.5,0.8,1.0), models 3 clusters
where the first cluster is the source processor module itself, the second cluster contains
the source processor module’s four closest neighbors, and the third cluster contains all
other processor modules. Cluster 1 has probability 0.5 of being the target, cluster 2 has
probability 0.8 of being the target, given that the target is not in cluster 1, and cluster
3 has probability 1.0 of containing the target, given that the target is not in cluster 1 or
cluster 2. This workload models high communication locality where there is a probability

of 0.5+ (1 —0.5) « 0.8 = 0.9 that the target memory lies within the first two clusters.

2. Workload T'yiform, represented as S = (n) and P = (1.0) with n being the total number
of processors, models a single cluster that has a probability 1.0 of containing the target
memory. This workload models poor communication locality where there is an equal
probability of a processor accessing any other processor’s memory (including its own
memory). We include Typiform in particular because many other studies have used this

workload [2, 14, 19, 27, 34, 39, 53, 85], allowing easier comparisons.

81t is possible to include traffic due to write-backs and invalidations within the read and write parameters.

3.5. PROGRAM-DRIVEN SIMULATION 39

Parameter | Value Description
n | 16, 64 Number of processors
b|1 Number of memory banks
N1 XN X - Xnrp | 8 X 2,8 x4 X 2 Hierarchical-ring Topology
4x4,8x8 2D Mesh/Torus Topology
NXMY | N2M10 Ratio of network and memory cycles
to processor cycle
T4 Maximum number of outstanding
transactions
A 1 0.0001-0.4 Request rate
R | 0.7 Probability that a cache miss is a read

(517527"'7Sm

S = (N), (1,4,n—5) | Cluster size
P:(P17P27" s P

(1), (0.5,0.8,1.0) | Cluster probabilities

e’ [

Table 3.2: System and synthetic workload parameters and their range of values used in our
simulations.

The system and workload parameters used in our study are summarized in Table 3.2. We
consider system sizes of 16 and 64 processors to represent small and medium-scale multipro-
cessor networks, respectively. We define the cycle ratio as the relative speed of the processor,
network, and memory [42]. It is specified as N X MY which means that each network cycle is
X times as slow as a processor cycle and the memory requires Y processor cycles to service one
memory request. We define network cycle time as the time required for a packet to move from
the input of one node to the input of the next node. Such a transfer need not occur in a single
network cycle. OQur assumption that the network cycle time is a factor of two slower than the
processor cycle time is justified from the fact that for a 5ns processor cycle time (200 MHz),
our ring cycle time of 10ns is close to that used in SCI performance studies [82].7

All simulation results have confidence interval half-widths of 1% or less at a 95% confidence
level, except near saturation where the confidence interval half-width may increase to a few

percent.

3.5 Program-driven Simulation

For our program-driven simulation, we simulate a cache coherent shared address space multi-
processor with physically distributed memory and one processor per node. Every processor has
a two-level cache that is kept coherent using a directory-based protocol [88]. Table 3.3 presents

some important system parameters used in our program-driven simulations.

®SCI specifies a ring cycle time of 2ns [41] with 4 ring cycles required to transfer a packet from the input of

one node to the input of the neighboring node.

40 CHAPTER 3. SYSTEM DESCRIPTION, METHODOLOGY, AND WORKLOADS

Description Value
Ratio of network to 2
processor cycles

Memory read/write time | 10 Proc cycles

Memory Tag time 6 Proc cycles

Cache 2-level, Direct-mapped
L1/1.2 data-cache size 32 KB/1 MB

L1/12 cache line size 32 Bytes

Table 3.3: System parameters used in program-driven simulations.

We use application programs from the SPLASH-2 suite [94], which consists of a mixture of
complete applications and computational kernels. It has applications and kernels drawn from
a variety of disciplines that include scientific, engineering and graphics computing. We briefly
discuss here those applications and kernels we use in our simulations. Detailed descriptions of
all programs are available in [86, 94] and the characteristics of their memory access behavior
can be found on the SPLASH web page [87]. In each case, the input data sets we use are
those specified for the programs in the SPLASH-2 suite and the data are distributed among
the processing nodes according to the SPLASH-2 guideline.

FFT: The FFT kernel is a complex 1-D version of Bailey’s six step FFT algorithm. The data
set consists of n complex data points to be transformed and another n data points referred to
as the roots of unity. Both sets of data are organized as \/n X y/n matrices and partitioned
so that every processor is assigned a contiguous set of rows. Communication occurs in three

matrix transpose steps, which require all-to-all interprocessor communication. Every processor

transposes a contiguous sub-matrix of % X % from every other processor, where p is the

number of processors, and transposes one sub-matrix locally. The FFT implementation is
optimized to minimize the interprocessor communication.

LU: The LU kernel factors a dense matrix into the product of a lower and upper triangular
matrix. The dense n X n matrix is partitioned into an N x N array of B x B blocks, where
n = NB, to allow the exploitation of temporal locality on sub-matrix elements. The block
ownership is assigned using a 2D scatter decomposition and the blocks are allocated locally
to processors that own them. The blocks are updated only by the processors that own them.
Elements within a block are allocated contiguously to improve spatial locality benefits. Block
size B is critical to performance and a smaller size (B=8 or 16) is chosen to strike a good
balance between cache miss rate and load balance.

Radix: The integer radix sort kernel sorts a set of k-bit integer keys by examining r-bits in each

3.5. PROGRAM-DRIVEN SIMULATION 41

iteration. The r-bit field is called a digit. The algorithm is iterative and performs one iteration
for each radix r digit of the keys. The keys are stored in a global array of integers. The sorted
keys are stored in another global array. Both arrays are partitioned across the processors. In
each iteration, a processor passes over its assigned keys and generates a local histogram. The
local histograms are then accumulated into a global histogram, thereby generating all-to-all
communication. Finally, each processor uses the global histogram to permute its keys into a
new array for the next iteration. The predominant pattern of communication in the radix sort
is bursty.

Ocean: The Ocean application studies large-scale ocean movements based on eddy and bound-
ary currents. The computation is performed in a number of time steps. At each time step
several independent calculations are made over a number of grids. It is optimized to minimize
the communication-to-computation ratio by partitioning the grids into square-like sub-grids.
The main data structure is a number of 2-dimensional arrays which represent different grids.
The partitioning of computation over all processors is done by decomposing the data domain.
Each processor performs computation over its assigned sub-domain which consists of a few grid
points. The exchange of data takes place only for the boundary elements with a near-neighbor
communication pattern. The data written by local processors in one step are read by remote
processors in the subsequent step allowing for optimization by the cache coherence protocol
and prefetching.

Raytrace: Raytrace renders a three-dimensional scene using ray tracing. A hierarchical uni-
form grid is used to represent the scene. A ray is traced through each pixel in the image
plane, and reflects, in unpredictable ways, off the objects it strikes. Each contact generates
multiple rays, and the recursion results in a ray tree per pixel. The image tree is partitioned
among processors in contiguous blocks of pixel groups, and distributed task groups are used
with task stealing. Major data structures represent rays, ray trees, the hierarchical uniform
grid, task queues, and the primitives that describe the scene. The data access patterns are
highly unpredictable in this application.

Tables 3.4 and 3.5 summarize the characteristics of the applications for 16 and 64 pro-
cessor systems, respectively, corresponding to the two system sizes we used for running real
applications.!® The tables present for each application its input data set, average number of
memory requests per processor (L2 cache misses), the average memory request rate, the av-
erage interval between memory requests in processor cycles, and the fraction of such memory

requests that are reads. The numbers are shown for 32-byte and 64-byte cache line sizes. It

%These characteristics were obtained running the applications on a hierarchical ring connected multiprocessor,
with a two-level hierarchy for 16 processors (8 x 2) and a three-level hierarchy for 64 processors (8 x 4 x 2).

42 CHAPTER 3. SYSTEM DESCRIPTION, METHODOLOGY, AND WORKLOADS
Application Problem Requests per Proc | Proc Request Rate | Request Interval | Fraction
Size 32BCL | 64B CL | 32BCL | 64B CL | 32B CL | 64B CL | Reads
FFT 64K points 22741 11433 0.0166 0.0083 61 121 0.65
Radix 1M integer 63152 36447 | 0.00834 | 0.00481 120 208 0.63
LU 512 x 512 90973 53472 0.0048 | 0.00284 209 353 0.67
16 x 16 blocks
Ocean 258 x 258 153303 | 106602 | 0.0079 0.0059 127 170 0.82
Raytrace | Teapot Geometry | 44134 29935 0.0035 | 0.00235 286 426 0.73
Table 3.4: Characteristics of some real applications from SPLASH-2 suite. The network simu-
lated is a 16 processor 2-level 8 x 2 hierarchical ring with 32-byte cache lines.
Application Problem Requests per Proc | Proc Request Rate | Request Interval | Fraction
Size 32BCL | 64B CL | 32BCL | 64B CL | 32B CL | 64B CL | Reads
FFT 64K points 6015 3029 0.0174 | 0.00874 58 115 0.65
Radix 1M integer 19836 14329 | 0.00999 | 0.00722 100 139 0.63
LU 512 x 512 27046 13899 | 0.00571 | 0.00293 176 342 0.67
16 x 16 blocks
Ocean 258 x 258 55132 44041 | 0.01087 | 0.00868 92 116 0.82
Raytrace | Teapot Geometry | 11926 9002 0.00373 | 0.00282 268 355 0.73

Table 3.5: Characteristics of some real applications from SPLASH-2 suite. The network simu-
lated is a 64 processor 3-level 8 X 4 x 2 hierarchical ring with 32-byte cache lines.

should be noted that the request rates shown here are on the low side because they do not
include the requests generated to maintain coherent caches. Nevertheless, the communication
frequency of applications varies widely as seen from the average memory request rate. This
suggests that its quite difficult to predict the typical communication behavior. However, none
of the applications are embarrassingly parallel and most of them demonstrate regular commu-
nication patterns. By taking into account a range of request rates (from very low to very high
values), our synthetic workload model contains communication patterns of most present and

future parallel applications.

Chapter Summary

This chapter presented system descriptions of 2-dimensional mesh and hierarchical-ring con-
nected multiprocessor networks. We presented our parametric and program-driven simulation
The

methodology with the description of synthetic workload models and real applications.

system and workload parameters we use in this dissertation were summarized.

CHAPTER 4

Mesh, Torus, and Ring Networks: Comparative
Performance

The most popular direct multiprocessor network topology in use today is the 2-dimensional
mesh or torus. This is partly because routers are available off the shelf and partly because the
bisection bandwidth of such networks grows with system size, thereby allowing them to scale to
a larger number of nodes. Examples of mesh-connected shared memory multiprocessors include
Stanford University’s FLASH [55], MIT’s Alewife [4], and SGI’s Origin [16]. However, when
compared to ring networks, a 2-dimensional mesh or torus network has smaller link width under
identical pin constraints due to twice the number of directly connected neighbors. This also
increases their switching and routing complexity. Moreover, their network diameter increases
more rapidly with the number of nodes than when compared to hierarchical rings.

In this chapter we will show that, from a performance point of view, hierarchical-ring net-
works are interesting alternatives to low-dimensional direct networks for shared-memory mul-
tiprocessors. We compare the performance of hierarchical-ring and direct shared-memory mul-
tiprocessor networks and show that hierarchical-ring networks generally perform better than
2-dimensional meshes and tori when connecting a small number of nodes (< 16), but that
meshes and tori perform better in systems with a large number of nodes. This is primarily
because of the constant bisection bandwidth constraints of hierarchical-ring networks [71].

For direct networks, we consider 2-dimensional meshes and tori. Recently, there has been
some interest in single bidirectional ring networks for shared-memory multiprocessing [47, 66],
and we therefore include them in our study as a special case of tori networks of one dimen-
sion. Since wormhole switching is the predominant switching technique in direct networks, we
will use them in both our direct and hierarchical-ring networks, even though we will show in
Chapter 6 that cell switching performs somewhat better in hierarchical-ring networks. For both
2-dimensional meshes and tori networks, we use dimension ordered routing which is minimal
and deterministic. For wormhole switched hierarchical-ring networks, we extend Dally’s [18]
deterministic deadlock-free routing in a single ring (k-ary 1-cube) to a hierarchy of rings. The

routing technique is explained in Chapter 7.

43

44 CHAPTER 4. MgesH, ToRrUS, AND RING NETWORKS: COMPARATIVE PERFORMANCE

Input/ | VCs per | Cache NIC memory
Channel | Output | Physical | line requirements
width | Channels | Channel | size | 1/4 CL | 1/2CL | 1 CL
Hierarchical 328 - - 968
Rings 128b 1/1 2 128B - - 288B
Bidirectional 328 - 968 -
Rings 64b 2/2 2 128B - 288B -
Meshes & 32B 96B - -
Tori 32b 4/4 2 128B 288B - -
Meshes 328 488 - -
32b 4/4 1 128B 144B - -

Table 4.1: A comparison of memory requirements for ring and mesh NIC buffers of different
sizes.

4.1 Comparative Performance Evaluation

We evaluate the systems using Tyniform and Tj,. as our synthetic workloads and five real
applications from the SPLASH-2 suite for our program-driven simulations. Since hierarchical-
ring networks are highly configurable, we use topologies that exhibit low latency and high
throughput for most memory access patterns. These topologies are derived in Chapter 5. Also,
we assume optimal buffer sizes at NICs and IRIs, as derived in Chapter 6.

In our comparison, we generally try to be fair, although we slightly favor direct networks.
For example, our T3, workload model favors meshes, as it minimizes the number of hops in
meshes, but not so for ring-based systems. We assume the hierarchical rings are wormhole
switched, even though cell switched rings tend to perform somewhat better (see Chapter 6).
Also, we assume the same routing time for rings, meshes, and tori, although routing in rings is
simpler and hence faster. Since we assume two virtual channels per physical channel for both
hierarchical-ring and tori networks (for deadlock free routing), we also consider the case of two
virtual channels per physical channel for meshes. However, in meshes, we use virtual channels
purely for improving network throughput by allocating these channels to packets so as to avoid
head-of-line blocking, while using dimension ordered routing to prevent deadlock.

Under the assumption of constant pin constraints, a 128-bit wide channel for rings with one
input and one output connection per ring NIC translates into a 32-bit wide channel for meshes
and tori with four input and four output connections per NIC, and a 64-bit wide channel for
bidirectional rings. When considering the on-chip memory requirement for buffers, assuming
cache line sized buffers for meshes favor meshes and tori, while assuming single-flit buffers for
meshes favors hierarchical rings. For a fair comparison we assume that the memory requirement

in a router is the same for both direct and hierarchical-ring networks. For a hierarchical ring,

4.1. COMPARATIVE PERFORMANCE EVALUATION 45

70 T T T T T T T u } T T 80 T T T T T“ }'\
Hierarchical-ring —— o 4 Hierarchical-ring —— '
65 | Bidirectional-ring --+-- | 1 s Bidirectional-ring S ror / |
2D Mesh (1 vc) e g/ Mesh (1 vc) = / #
60 | 2D Mesh (2vc) - A A 70 Mesh (2 vc) - ¢ 1
2D Torus -+-- / Tori -=-- A
/&)\ s i % 65t e 4
k] , 19 7
o o
@ K @ 60 1
) < | 3
c - e 55+]
2 12
3 S s0f .
| 45 t :
a b
@ | ol ®
B - g
30 1 1 1 1 1 1 1 1 1 1 35 s 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1 11 0 0.5 1 15 2 25 3 35
Throughput (requests/cycle) Throughput (reg/cycle)
90 T T 120 T T
Hierarchical-ring —— Hierarchical-ring ——
Bidirectional-ring -+ 110 Bidirectional-ring —-- 1
80 2D Mesh (1vc) -8 o 1 2D Mesh (1 vc) 8- .
2D Mesh (2 vc) - 100 + 2D Mesh (2 vc) - e <
2D Torus -+-- : 4 2D Torus -+--
7 70 e 1 % 9 T 1
o R o
[S) < [S) S
@ . @ 80 T 1
a 60 A 7 a
c e 70]
2 o 2
S s0 ’ 13 60 .
50 1
40 A 1
»»»»»»» - (d
© o) @
[e
fc]o [M—— b L L 30 L L
0.001 0.01 0.1 1 0.001 0.01 0.1 1
Request Rate Request Rate

Figure 4.1: Performance of systems with 32-byte cache lines under the Tj,. workload:
a) throughput-latency curves for 16 processor systems, b) throughput-latency curves for 64
processor systems, c) latency as a function of request rate for 16 processor systems, and d) la-
tency as a function of request rate for 64 processor systems.

we assume a cache-line (CL) sized NIC buffer, which translates into a NIC buffer size that can
hold one-fourth of a cache line in a mesh and torus and one-half of a cache line in a bidirectional

ring. Table 4.1 summarizes the memory requirement in routers of direct and hybrid networks.

4.1.1 Access Patterns with Memory Locality

We consider in this section the Tj,. workload that exhibits high locality in the memory access
pattern. Figure 4.1 presents latency, both as a function of throughput and the request rate
for four different topologies for 16 (the first column of graphs) and 64 (the second column of

graphs) processor systems with 32-byte cache lines. Each throughput-latency curve is obtained

46 CHAPTER 4. MgesH, ToRrUS, AND RING NETWORKS: COMPARATIVE PERFORMANCE

T T T T T "T Fai T 200 T T T T H T 7

180 Hierarchical-ring —— ,m S ¥ 1 Hierarchical-ring —— f b

Bidirectional-ring -+ g/ 180 | Bidirectional-ring -+ K
2D Mesh (1 vc) e ;A 2D Mesh (1 vc) -

160 - 2D Mesh (2 vc) - e 1 2D Mesh (2 vc) - j

2D Torus -2--) i 160 2D Torus -2-- A

2 140 t S PN g
3 /] 8140}
> >
2120 | 12
)) 3120
c I c
2 7 2
T 100 S 1 3 100

80 1 80

(@ (b)
60 1 60 -
0 005 01 015 02 025 03 03 04 0 0.2 0.4 0.6 0.8 1
Throughput (requests/cycle) Throughput (requests/cycle)
240 T T 350 T T
200 | Hierarchical-ring ——] Hierarchical-ring ——
Bidirectional-ring --+--- Bidirectional-ring --+---
200 | 2D Mesh (1 vc) =~ S] 300 - 2D Mesh (1vc) 8-
2D Mesh (2 vc) -~ " 2D Mesh (2 vc) -

180 | 2D Torus -=-- G 1 2D Torus -+-- e
w = % 250 R
[}
< 160 —— {5
> T > PN
) A & . 4
> 140 . {1 X200
2 2
% 120 1 %

- 100 | =150
80 1
(©) 100 (d)
60 fsmmmr 1
40 L : 50 . .
0.001 0.01 0.1 1 0.001 0.01 0.1
Request Rate Request Rate

Figure 4.2: Performance of systems with 128-byte cache lines under the 7}, workload:
a) throughput-latency curves for 16 processor systems, b) throughput-latency curves for 64
processor systems, c) latency as a function of request rate for 16 processor systems, and d) la-
tency as a function of request rate for 64 processor systems.

from two curves that plots throughput and latency independently against request rate [9].!
The points at the lower-end of the throughput scale in a throughput-latency curve correspond
to low request rates, while those at the higher-end of the throughput scale correspond to high
request rates. Initially, when we increase the request rate the throughput scales with little or no
increase in latency and reaches a point after which any increase in request rate results in little
increase in throughput accompanied by a large increase in latency. We refer the throughput at
this point as the maximum achievable throughput for a given network topology.

In Figure 4.1, we consider meshes with both one and two virtual channels. There are two

important observations from these graphs. For a smaller system size of 16 processors, the

'"We will mainly use the throughput-latency representation in this dissertation.

4.1. COMPARATIVE PERFORMANCE EVALUATION

60 T T T
Hierarchical Ring ——
55 | 32B CL, Req Rate=0.02 pidirectional Ring -+ |
2D Mesh (1 vc) =
2D Mesh (2 vc) -~
50 | 2D Torus -=—- |

Latency (cycles)

25 1 1 1
4 8 16 32 64
No. of Processors
130 T T T
Hierarchical Ring ——
120 | 128BCL, Req Rate=0.008 pgijgjrectional Ring e
2D Mesh (1 vc) =
2D Mesh (2 vc) -~

110 | 2D Torus -+--

100 g g B

-

Latency (cycles)
©
o

4 8 16 32 64
No. of Processors

140

120

Latency (cycles)

100

47

[
o

60 =

T T T

Hierarchical Ring ——
32B CL, ReqRate=0.2 pjgjrectional Ring —+
2D Mesh (1 vc) =
2D Mesh (2 vc) -~
2D Torus -=--

40 1 1 1
4 8 16 32 64
No. of Processors
350 r Hierarchical Ring —— A
128B CL, Req Rate=0.08 gjgirectional Ring
2D Mesh (1 vc) =
300 r 2D Mesh (2 vc) - 4
2D Torus -4--
3 250
(8]
>
e
& 200
c
Q
150
100
50 1 1 1
4 8 16 32 64

No. of Processors

Figure 4.3: Average latency of rings, meshes, and tori networks when scaled under 77,. workload
for a) 32-byte cache line and low request rate, b) 32-byte cache line and high request rate,
¢) 128-byte cache line and low request rate, and d) 128-byte cache line and high request rate.

bidirectional ring exploits locality much better than a hierarchical ring and a 2-dimensional

mesh or torus, resulting in a low latency and high throughput curve. This is mainly because of

the dynamic clustering effect of the bidirectional ring for memory access patterns that exhibit

high locality [47]. Among hierarchical-ring and 2-dimensional direct networks, the hierarchical-

ring network exhibits lower latency at low request rates, but suffers from early saturation at

high request rates. However, for a large system size of 64 processors, both hierarchical and

bidirectional rings suffer from early saturation at high request rates (because of the bisection

bandwidth constraints) even though they exhibit latency values that are marginally lower than

in 2-dimensional direct networks at low request rates.

The trend is similar for a large cache line size of 128 bytes except that both hierarchical

and bidirectional rings exhibit latency values that are significantly lower (about 25%) than in

48 CHAPTER 4. MgesH, ToRrUS, AND RING NETWORKS: COMPARATIVE PERFORMANCE

2-dimensional meshes and tori at low request rates. This is shown in Figure 4.2.

Figure 4.3 compares the latency of rings, meshes and tori as we scale the system size from
4 to 64 processors under the Tj,. workload. The graphs in the top row of this figure are for
systems with 32-byte cache lines, while the bottom two are for systems with 128-byte cache
lines. We present two graphs for each cache line size; one at a low request rate and the other at
a high request rate. Generally, rings (bidirectional and hierarchy) perform better than meshes
and tori at low request rates, but meshes and tori scale better to a large number of nodes
especially under high request rates. Also, hierarchical and bidirectional rings perform better
than mesh and torus at larger cache line sizes. This is because with large cache line sizes, the
relative length of a worm in a mesh or a torus network is higher than in a ring network, so the
probability of blocking is higher in meshes and tori and because in the absence of contention,
latency is dominated by the length of the worm (see Chapter 2).

We define the cross-over point as the number of nodes where the switch-over occurs. The
results show that at low request rates, the cross-over point is sensitive to the cache line size, but
is independent of the cache line size at high request rates. At low request rates, the cross-over
points (for rings) are 64 processors or more. At higher request rates, the cross-over point for
bidirectional ring is around 36 processors, while it is much lower (less than 16 processors) for
hierarchical rings irrespective of the cache line size. This is because at high request rates, the
constant bisection bandwidth of the ring limits its scalability, while meshes and tori scale well

to large system sizes.

4.1.2 Access Patterns with No Memory Locality

In this section we consider the T';,n workload model that exhibits poor memory access
locality. Figure 4.4 presents the throughput-latency curves for four different topologies for 16
and 64 processor systems with 32-byte cache lines (the first row of graphs) and 128-byte cache
lines (the second row of graphs). There are two important observations from these graphs. For a
smaller system size of 16 processors, both the hierarchical and bidirectional rings perform better
than the 2-dimensional meshes and tori (with the difference in performance being higher at 128-
byte cache line size than at 32-byte cache line size). Among ring networks, the bidirectional
ring has a slightly superior throughput-latency curve than a unidirectional hierarchical ring.
However, for a system size of 64 processors, ring networks perform worse than 2-dimensional
networks. In this case, the 2-dimensional torus is clearly superior to all other networks under
all request rates. Among rings, the hierarchical ring has a lower latency than the bidirectional
ring under low request rates, although it suffers from earlier network saturation under high

request rates. The trend is similar for a large cache line size of 128 bytes.

4.1. COMPARATIVE PERFORMANCE EVALUATION 49

160 T T T T T B ;} ‘l‘ 300 T T T ‘l T T &
Hierarchical Ring —— i Hierarchical Ring —— ! 6 ¢
Bidirectional Ring -—+--- v / / Bidirectional Ring -—+-- i i i

140 2D Mesh (1 vc) 8- 7?4 Fo] 250 b 2D Mesh (1 vc) = / [

2D Mesh (2 vc) a 4 2D Mesh (2 vc) - / @ 4
2D Torus -&-- / 2D Torus -4-- i /
% 120 ¢ / 1 ® | iF /
S S 200 f i A
> > ; /
L L / /
> 100 1 = J
2 2 :
g $ 150 | LA s 1
S 8ot 15 -
) Jj" X ,
. i x /’A/
100 + 1
60 1 s (b)
40 1 1 1 1 1 1 50 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Throughput (requests/cycle) Throughput (requests/cycle)
450 T T T T H“J ’,! 1 800 “‘ T X T T
Hierarchical Ring —— f A t i :
400 + Bidirectional Ring -+ & N 1 700 | i ; X i J
2D Mesh (1 vc) = & i 4
2D Mesh (2 vc) - / /] ; /
350 2D Torus -=-- 5 / 600 f 1
i f i x ?
% 300 7 % 500 | / 4
> > 3 /
< 250 | | € k)

& & 400 | * A

: 5 :

- 200 L 4 - X e

5 S 300 |) e C)

150 ¢ 1 /X,r“’/ﬂHierarchicaI Ring ——
200 - Bidirectional Ring ——
100 ¢ © 2D Mesh (1 vc) =
L 2D Mesh (2 vc) -
50 1 1 1 1 1 1 100 1 1 1 2D Tqrus A
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.05 0.1 0.15 0.2 0.25 0.

Throughput (requests/cycle) Throughput (requests/cycle)

Figure 4.4: Throughput-latency curves of rings, meshes, and tori networks under 7'y,;f0,m Work-
load for: a) 16 processor systems with 32-byte cache lines, b) 64 processor systems with 32-byte
cache lines, ¢) 16 processor systems with 128-byte cache lines, and d) 64 processor systems with

128-byte cache lines.

Figure 4.5 compares the latency of rings, meshes and tori as we scale the system size
from 4 to 64 processors for systems with 32-byte and 128-byte cache lines. We observe that
rings (bidirectional and hierarchy) perform better than meshes and tori when connecting a
small number of nodes, but meshes and tori perform better in systems with a large number of
nodes.? Similar to the results for the 7}, workload, hierarchical rings perform better at lower
request rates and at higher cache line sizes.

At low request rates, the cross-over points (for rings) are around 30 processors for 32-byte
cache line systems, while the cross-over point for bidirectional rings is around 50 processors and

is greater than 64 processors for hierarchical rings for 128-byte cache line systems. At higher

2 An exception to this is the case of a system with a 128 byte cache line and low request rates, where hierarchy

of rings perform better than meshes and tori even for the large system.

50 CHAPTER 4. MgesH, ToRrUS, AND RING NETWORKS: COMPARATIVE PERFORMANCE

130 T T T 800 T T T
| Hierarchical Ring —— - /] Hierarchical Ring 32B CL, Req Rate=0.04
120t gigirectional Ring 32B CL, Req Rate 0.004/, 700 L Bidirectional Ring - a
| 2D Mesh (1vc) o - 2D Mesh (1 vc) e
110 / 2D Mesh (2 vc) -~
2D Mesh (2 vc) -~ 600 - |
2D Torus —=-- 2D Torus -+--
100 | iA
0 ()
2 90} S/ 4 2500 1
> 80 1 400
[5) o - %)
g 70 | 48 -]
E - © 300 1
| - > |
60 | g e i
R e 200 1
50 f--e=mTT0 T]
L (@) |
P | 100 k..
30 1 1 1 O 1 1 1
4 8 16 32 64 4 8 16 32 64
No. of Processors No. of Processors
180 T T T 1800 T T T
Hierarchical Ring —— - / Hierarchical Ring — -
160 | Bidirectional Ring .. 128BCL Req Rate—0.00l/,,‘ 1600 Bidirectional Ring —— 128B CL, Req Rate=0.01
2D Mesh (1 vc) & / 2D Mesh (1 vc) o)
2D Mesh (2 vc) o L 2D Mesh (2 vc) -~ i
140 2D Torus -&-- . 2D Torus -4-- /
=]
Q
S 120]
e
&
o 100 A
E
S]
80
60 200 R
40 L L L 0
4 8 16 32 64 4 8 16 32 64

No. of Processors No. of Processors

Figure 4.5: Average latency of rings, meshes, and tori networks when scaled under T',if0rm
workload for a) 32-byte cache line and low request rate, b) 32-byte cache line and high request
rate, ¢) 128-byte cache line and low request rate, and d) 128-byte cache line and high request
rate.

request rates, the cross-over points (for rings) are around 25 processors irrespective of the cache
line size. This is again because of the constant bisection bandwidth of the rings that limits
their scalability, while meshes and tori scale well to large system sizes. To show this limitation
we plot in Figure 4.6, the system throughput as a function of the number of processors (for
high request rates). While the throughput of meshes and tori scale well with the system size,
the ring throughput flattens out after about 24 processors. This observation makes us believe
that ring-based networks are ill-suited for large system sizes, unless their bisection bandwidth

is increased, at least for applications with little locality in their memory access patterns.

4.1. COMPARATIVE PERFORMANCE EVALUATION 51

0-7 T T T 0.3 T T T
Hierarchical Ring ~— 35p ¢ Req Rate=0.04," Hierarchical Ring ——
Bidirectional Ring e Bidirectional ng . 128BCL, ReqRate=0. 01
06 2DMesh(lvc) = - 4 025} 1
, 2D Mesh (1 vc)
2D Mesh (2 vc) - 2D Mesh (2 vc) - .
2D Torus -&-- - 2D Torus -+ o x
0.2 r 9 4

05 A]

%
E‘

Throughput (requests/cycle)
Throughput (requests/cycle)

0.1 " ! ! ! 0 ! ! !

4 8 16 32 64 4 8 16 32
No. of Processors No. of Processors

Figure 4.6: Throughput versus the number of processors for high request rates with cache line
sizes of a) 32 bytes, and b) 128 bytes.

4.1.3 Program-driven Simulation

Here, we present the comparative performance of hierarchical ring and direct multiprocessor
networks by running real applications using the program-driven simulator. The direct network
topologies considered include 2-dimensional torus, 2-dimensional mesh, and bidirectional ring.
The experimental set-up is the same as used for synthetic workload driven simulations. We
present results for two system sizes, 16 and 64 processors with 32-byte cache lines. The perfor-
mance measures used are normalized execution time and the average transaction latency (after
L2 cache misses). Normalized execution time is computed as the ratio of the execution time
of an application in a system with a particular network topology to that in a 2-dimensional
mesh-connected system. As a result, the normalized execution time of a 2-dimensional mesh
network will always be 1 for all applications. The parallel speedups® of these applications in
the mesh network ranges from 12 for FFT to 14 for LU in 16 processor system and from 13 for
Raytrace to 36 for FF'T in 64 processor system. If the application running in a system with a
particular network topology has a normalized execution time of less than 1, it means that the
application runs faster than in a 2-dimensional mesh-connected system.

Figure 4.7 presents the normalized execution time of five different applications namely FFT,
LU, Radix, Raytrace, and Ocean when run on 16 processor, 32-byte cache line systems connected
by direct and hierarchical-ring networks. The input data sets for these applications have been

summarized in Chapter 3. We can see that the execution times are all close, regardless of the

*To measure parallel speedup we consider only the parallel section of the code, and ignore the sequential
section. In the SPLASH-2 suite, the parallel section is defined as the time from the creation of the master
thread, until the master thread has successfully completed a wait() call for all of its children.

64

52 CHAPTER 4. MgesH, ToRrUS, AND RING NETWORKS: COMPARATIVE PERFORMANCE

1.05
o
o
o
1\% | 2D Mesh
g
= 10k - B -~ | 2-level Ring _|
c
2
3 B Bi-ring
0}
]
8 B 2D Tori
N
< 095 .
£
o
zZ
0.9

FFT LU Radix Raytrace Ocean

Figure 4.7: Execution times of SPLASH-2 applications normalized to the execution time of a
2-dimensional mesh-connected system. It is assumed that the applications run on 16 processor
32-byte cache line systems under program driven simulations. A 2-level 8 x 2 topology is used
for the hierarchical-ring network and a 4 x 4 topology is used for the mesh and torus network.

=
o
o
o

90.0 -

s00l- | 2D Mesh

700k | 2-level Ring _|
6001 - ll Bi-ring

s00l- 2D Tori
400 -
300 —

200 —

Ave. Trans. Latency, 16 Proc (Proc. Cycles)

100 —

0.0

FFT LU Radix Raytrace Ocean

Figure 4.8: Average transaction latency (after L2 miss) for SPLASH-2 applications. It is
assumed that the applications run on 16 processor 32-byte cache line systems under program
driven simulations. A 2-level 8 x 2 topology is used for the hierarchical-ring network and a 4 x 4
topology is used for the mesh and torus network.

4.1. COMPARATIVE PERFORMANCE EVALUATION

Normalized Execution Time (64 Proc)

Figure 4.9: Execution times of SPLASH-2 applications normalized to the execution time of a
2-dimensional mesh-connected system. It is assumed that the applications run on 64 processor
32-byte cache line systems under program driven simulations. A 3-level 8 X 4 X 2 topology is
used for the hierarchical-ring network and an 8 X 8 topology is used for the mesh and torus

network.

Ave. Trans. Latency, 64 Proc (Proc. Cycles)

Figure 4.10: Average transaction latency (after L2 miss) for SPLASH-2 applications. It is
assumed that the applications run on 64 processor 32-byte cache line systems under program
driven simulations. A 3-level 8 X 4 x 2 topology is used for the hierarchical-ring network and

=
N

=
o

o
©

0.8

| 2D Mesh

| 3-level Ring

B Bi-ring

B 2D Tori

N
©
o
o

240.0

200.0

160.0

120.0

80.0

40.0

0.0

FFT

LU Radix Raytrace Ocean

J 2D Mesh
| 3-level Ring

I Bi-ring

0 2D Tori —

FT

LU Radix Raytrace Ocean

an 8 x 8 topology is used for the mesh and torus network.

54 CHAPTER 4. MgesH, ToRrUS, AND RING NETWORKS: COMPARATIVE PERFORMANCE

system on which they run. The hierarchical and bidirectional ring-connected systems generally
result in slightly lower execution times than the torus and mesh-connected systems. The average
transaction latency (after L2 miss) in the above systems shown in Figure 4.8 explains the small
difference in the execution time of applications, with bidirectional ring systems exhibiting the
lowest latency, followed by the hierarchical-ring, torus, and mesh-connected systems, in that
order. This confirms our earlier findings from simulating synthetic workloads: for small scale
systems, rings exhibit lower average transaction latency than 2-dimensional direct networks.

For 64 processor, 32-byte cache line systems, we observe in Figure 4.9 that the meshes and
tori systems perform somewhat better than the hierarchical and bidirectional ring systems, with
the exception of FF'T, where the hierarchical-ring system results in lower execution time. The
average transaction latency for the applications is shown in Figure 4.10. With the exception
of FF'T, it is clear that 2-dimensional direct networks exhibit slightly lower latency than rings,
and bidirectional rings exhibit the highest latencies.

From the execution times of applications on different networks for both 16 and 64 processor
system sizes, we can conclude that though there are differences in transaction latencies the
resulting execution times are so close that it effectively makes no difference which network
type is used. This is because the applications generally have very high cache hit rates that
significantly reduce network traffic. Nevertheless, we believe for applications that exhibit a
lot of network activity (multimedia, transaction processing applications) the network type will

have a significant performance impact.

Chapter Summary

This chapter presented a detailed comparative performance study of different low-dimensional
direct and hierarchical-ring networks. It was shown that the hierarchical-ring network performs
better than 2-dimensional direct networks at low (below saturation) request rates either when
the workloads exhibit high locality in memory access pattern or for large cache line sizes.
Hierarchical-ring networks performance is the same or slightly better than 2-dimensional direct
networks for small system sizes of up to 25 processors (the crossover point) even when there is
poor locality in the memory access patterns. However, 2-dimensional direct networks scale well
for larger system sizes. This is because the bisection bandwidth of direct networks grows with
system size allowing them to scale to a larger number of nodes than in the hierarchical-ring

networks.

CHAPTER 5
Topology and Bisection Bandwidth

This chapter considers topology issues. For a given number of processors there are not many
ways to configure a 2-dimensional direct network, so studying topology issues of such networks
is relatively uninteresting. We assume square topologies for 2-dimensional direct networks
since they are currently popular [4, 55, 57], although there have been a few studies on hexago-
nal [12] topologies. Given this fact, the rest of this chapter focuses mainly on topology issues
of hierarchical-ring networks and the impact of topology on performance of such networks.

Multiprocessors based on a single ring are limited to a small number of processors because
the diameter of the network grows with the number of processors, and because of the constant
bisection bandwidth. A hierarchical-ring network can accommodate a larger number of pro-
cessors by interconnecting multiple rings in a hierarchical fashion. A major advantage of the
hierarchical-ring topology is that it can be used to exploit the spatial locality of memory ac-
cesses often exhibited in parallel programs. As we will demonstrate in this chapter, this spatial
locality property of hierarchical rings is critical to size scalability.

There are several ways we can build a hierarchical-ring network given a number of proces-
sors. Feasible configurations or topologies range from a tall, lean network to a short and wide
network. However, only a few of these topologies tend to possess a high throughput, low latency
combination, which should be the goal of any topology. In this chapter we describe a bottom-up
approach in finding such topologies and discuss the effect that the bisection bandwidth has on

the performance of such networks.

5.1 Deriving Optimal Hierarchical-ring Topologies

In this section we derive good high-performance hierarchical-ring topologies using flit-level sim-
ulations. We assume wormbhole switching with 2 virtual channels per physical channel to avoid

deadlock,! and choose optimal buffer sizes (as determined by our simulations) for both NIC ring

'Deadlock-free minimal routing for hierarchical rings using virtual channels is described in Chapter 7.

55

56 CHAPTER 5. ToPoLOGY AND BISECTION BANDWIDTH

buffers and IRI buffers. However, it should be noted that the hierarchical-ring topologies we
derive is independent of the switching technique or buffer sizes assumed. We use a bottom-up
approach and start from the lowest level in the hierarchy and work up one level at a time. At
the lowest level, we derive the maximum number of processors that can be sustained at high
throughput and low latency and then fix that configuration. At higher levels, we derive the
maximum number of next lower level rings of the previously set configuration that still gives
high throughput and low latency.

We use the T'yniform and T}, workloads to simulate poor and high spatial locality in memory
accesses, respectively. Given the fact that memory accesses of real applications tend to lie
somewhere between these two extremes [79], the topology derived using the T'iz0rm workload
tends to be conservative, while the topology derived from the T},. workload will be optimistic.

Our procedure is as follows. We start with a single ring, L1, and determine the maximum
number of processors, 71 uniform and np; o that can be sustained with high throughput and
low latency for the two workloads. The result consists of two optimal 1-level topologies for the
two workload models. We then plot the maximum achievable throughput for both topologies for
most memory access patterns that lie between T'yn;10rm and Ti,.. From the throughput curves
we evaluate the trade-off between the two topologies to determine a good L1 topology.

We then add the next level, L2, to the hierarchy and determine the appropriate number
of L1 rings, nr2 uniform and npz jo, that gives us high throughput, low latency topologies. We
again evaluate the trade-off between these topologies and choose an L2 topology based on the
maximum achievable throughput for different memory access patterns.

In the next step, we proceed to derive the number of L2 rings in a L3 ring for a high
throughput, low latency 3-level hierarchy. As we go to higher levels of hierarchy, we find that
the topology we obtain under the Tj,. workload is the same as the topology we obtain under the
Tuniform workload. This signifies that even high locality in memory accesses cannot compensate

for the constant bisection bandwidth constraints.

5.1.1 Single Rings

Here, we will show that a single ring can reasonably sustain a total of 8 processor-memory
modules across most memory access patterns, and as we increase the cache line size, the effect
of locality in the memory access pattern on system performance becomes less significant.
Figure 5.1a presents the throughput-latency curves for single ring topologies when subjected
to the Tyniform workload, while Figure 5.1b presents the throughput-latency curves for single
rings when subjected to the 7}, workload. For the case with no locality, nr; uniform = 4 gives

us a low latency configuration with high throughput compared to that of 8 and 16 processor

5.1. DERIVING OPTIMAL HIERARCHICAL-RING TOPOLOGIES 57

200 T T T T T’ 100 T T T T T T T T T’y
i 1 Proc —— !
180 [5 proc @ 90 | 2Proc —— ®]
4 Proc -8 i 4 Proc s /
160 + 8 Proc - 4 g 8 Proc —x
16 Proc -+-- / 80 I 16 Proc - |
% 140 # 1 %
3 ; 3 70¢ 4]
o A [&] Y x
@ 120 r / o] @ J
2 S/ F > 60 [e]
£ 100 | ¥ 1 £ .
= y ’ = 50 a 4
8 gt y ;] s . o %
60 f o e -] 40 e 1
f x RS = o {,«*x e
T 1 30 e]
———
1 1 1 20 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 025 0.3 0.35 0.4 0.45 05
Throughput (requests/cycle) Throughput (requests/cycle)

Figure 5.1: Throughput-latency curves for single ring topologies with 32B cache lines for
(@) Tyniform and (b) 17, workloads.

0.5 T T

4 Proc - T uniform —— N

0.45 4 Proc-Tloc —— N 1

8 Proc - T uniform -=-- X
8 Proc - T loc x

=}
N 9w ©
a w a »
T T T
x
»
\
| E—

o
N
T
!

0.15 / |

Throughput (requests/cycles)
o

o©
-
T
L

0.05 | o 1

0 e | |
0.001 0.01 0.1 1
Request Rate

Figure 5.2: Throughput as a function of request rate for single ring 4 and 8 processor systems
running the Typiform and T, workloads.

systems; initially when the number of processors is less than 4, performance is throughput lim-
ited and when we add more processors, throughput increases to a point after which performance
becomes latency limited.

For the T}, workload (Figure 5.1b), the maximum achievable throughput for the 8 processor
ring is much higher than for the 4 processor ring; therefore, we choose ny; ;.. = 8, although
the 4 processor configuration exhibits lower latency at lower request rates. For both workload
models, however, the 16 processor configuration is clearly not desirable, as it exhibits higher

latency when compared to the 8 processor topology.

Figure 5.2 presents the throughput versus request rate curves when subjected to the T',if0rm

H8& CHAPTER 5. ToPoLOGY AND BISECTION BANDWIDTH

0.48 T T T T 50 T T T T
4 Proc - 32B Cache Line —— ; e
0.46 - (a) 8 Proc - 32B Cache Line —+—] gig 8ggﬂg tmg e (b)
~0.44 | e 40 ['128B Cache Line o
S042 t B R
3 oal A I
7] ‘T
] U]
50.38 { ©
o} 220
=0.36 | . ;] B
= =y
£034} - |l B
=2 . £10
30.32 .

-10 &

0 0.2 0.4 0.6 0.8 1 0 0.4 0.6 0.8
Locality Locality

Figure 5.3: Maximum achievable throughput for 4 processor and 8 processor single ring systems.
Figure (b) presents the throughput gain in percent of using an 8 processor system as opposed
to a 4 processor system.

0.35 T T 0.2 T T
4 Proc - T uniform ——) .
4Proc-Tloc —— @ 0.8 | 4Proc Tuniform = s O
_. 03 8Proc-Tuniform = 7 | 8 Proc - T uniform ~a--
4 8 Proc-Tloc - x 20.16 8 Proc- T loc e
= X © e
5025 | e B024 ;S
E N +,,»+’/ % ; s
8 02} 7 | golzy L/
g x D,,aﬂ;,m/"[*" - al g 0.1t R 74’3” (oRE N = iR oA 8
= Xe o] = °
50.15 / 5 0.08 | n'm
£ - <=
4 # / g fﬂ'
3 01t o 1 3006
c = B
= F0.04
0.05 t 1
e 002 f -~
0 L 1 0 . |
0.001 0.01 0.1 1 0.001 0.01 0.1
Request Rate Request Rate

Figure 5.4: Throughput as a function of request rate for single ring 4 and 8 processor, (a) 64B
and (b) 128B cache line systems running the Typiform and 1, workloads.

and Tj,. workloads for the two topologies 711 uniform and npj 0. For np; ., the maximum
achievable throughput is 65% higher when there is high locality in the memory accesses than
when there is poor locality. For np; yniform the difference is only 15%.

Given a workload model P = (P, P3, Ps), where Pi, P, and Ps are the probabilities of
memory accesses in the three clusters, as defined in Chapter 3, we then define the following

equation for the locality in the memory access pattern,
locality=P + (1 - P) P, (5.1)

For Tyniform, P1 = % and P, =4 - %, where n is the total number of processors in the system,

5.1. DERIVING OPTIMAL HIERARCHICAL-RING TOPOLOGIES 59

and for Tj,., P = 0.5 and % = 0.8. Substituting these values in Equation 5.1, locality varies
from localityypiform = % +(1- %)% for the Typiforn workload to locality;,. = 0.9 for the T,
workload. We normalize locality values that lie between locality,niforn and locality,. to lie

between 0 and 1 with the following equation,

locality — localityypiform

locality = (5.2)

localityi,e — localityypiform
Figure 5.3a presents the maximum achievable throughput (for locality in memory access pat-
terns that lies between Typiform and Tj,.) for the two topologies. The locality scale is normalized
from 0 (that corresponds to Typiform) to 1 (that corresponds to Tj,.). It is clear that the 8 pro-
cessor topology results in higher throughput for most memory access patterns.

Figure 5.3b presents the maximum throughput gain in percent by using a 8 processor topol-
ogy (nr1,10c) as opposed to a 4 processor topology (nr; uniform) for different degrees of locality
in memory accesses. It is obvious that there is a positive throughput gain (as high as 45%) for
most memory access patterns by using the 8 processor topology. The trend is similar for larger
cache line sizes, where there is still a gain in the maximum achievable throughput when using
a 8 processor topology although it is much less for 64 and 128-byte cache line systems than
for the 32-byte cache line system.? Figure 5.4 presents the throughput versus request rate for
single ring 4 and 8 processor topologies for systems with 64-byte and 128 byte cache lines.

The main conclusions in this section can be summarized as follows:

1. a total of 8 processor-memory modules can be reasonably sustained in a single ring across

most memory access patterns, and

2. as we increase the cache line size, the effect of locality in the memory access pattern on

system performance becomes less significant.

5.1.2 Two-level Rings

In this section we will show that a total of 5 local rings can be reasonably sustained in a two-
level hierarchical-ring topology for most memory access patterns and that the effect of locality
in memory accesses on system performance is independent of cache line size for systems of
this size. To do so, we add a second level ring, L2, and determine how many L1 local rings a
two level hierarchy can sustain. The L2 global ring connects a number of L1 local rings, each
containing the maximum number of processor-memory modules (ny; = 8), as determined in

the previous section. Figure 5.5 presents the throughput-latency curves for 2-level hierarchical

°The ring size Nrf uniform and npq oc remain the same at 4 and 8 nodes for 64 and 128-byte cache line sizes.

60 CHAPTER 5.
180 T T T T T T T !
2 Local Rings —— ;
| 3 Local Rings -+-- /]
160 4 Local Rings & /
5 Local Rings -
140 t 1
m # m
@ / @
S 120 + 1 2
o) o)
2y 2y
€ 100 | 1 <
® ®
- -
80 R
60 r (a) B
40 1 1 1 1 1 1 1
0 005 01 015 02 025 03 035 04

Throughput (requests/cycle)

Figure 5.5: Throughput-latency curves for two level ring topologies with 32B cache lines for

the (a) Tyniform and (b) Tj,. workloads.

ToPOLOGY AND BISECTION BANDWIDTH

75 T T T T ’L' T H l"
2 Local Rings —— i i
70 + 3 Local Rings --+-- | CE J
4 Local Rings -s--
65 | 5 Local Rings -x X]
6 Local Rings -4-- / i
60 / 4 1
/ r'D X/
55 //;'/ ’ ’ ///4‘ i
/ " A
50 ., < x]
45 e]
40]
b
35 b |
30 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14

Throughput (requests/cycle)

1.6

14 r

12 ¢

0.6 |

Throughput (regs/cycle)

0.4

0.2

3 Rings - T uniform ——
3 Rings - Tloc -

4 Rings - T uniform -e--
4 Rings - T loc

5 Rings - T uniform -=-- i
5Rings - T loc -»--4

!

0.00

Figure 5.6: Throughput as a function of request rate for two level ring topologies with 32B

0.01

0.1 1

Request Rate

cache lines running T'ypniform and Tj,. workloads

rings with 32-byte cache lines. With the T',ifrm workload, a global ring can sustain only 3
(nL2,uniform = 3) local rings; any increase in the number of local rings decreases the maximum
achievable throughput of the network. However, with the Tj,. workload that has high locality,
we can increase the number of local rings to 5 (ny2,1,. = 5). In the latter case, when the number

of local rings is further increased, there is no significant increase in the maximum achievable

throughput.

One major difference between single ring and two-level ring topologies is the effect of locality
on the maximum achievable throughput. For Tj,., the maximum achievable throughput with

nL2e (8 X 5 topology) is about 500% higher than for Ty,ifrm. This is shown in Figure 5.6,

1.6

5.1. DERIVING OPTIMAL HIERARCHICAL-RING TOPOLOGIES 61

1.6 T T T T 50 T T T T
@ 8 x 3 - 32B Cache Line —— (b) 32B Cache Line ——
14 | 8 x5 - 32B Cache Line —+- /| 40 L 64B Cache Line --+---
- 128B Cache Line =
%)
§~ 1.2 /108 30
1] 7 c
0 ‘©
e O 20
g E
~ =
5 o 10
£ S
[=)] c
3 F oo
c
'_
-10
0.2 1 1 1 1 _20 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Locality Locality

Figure 5.7: Maximum achievable throughput for the 8 X 3 and 8 x 5 topologies. Figure
(b) presents the throughput gain in percent of using a 8 X 5 topology as opposed to an 8 x 3
topology.

which plots the throughput as a function of the request rate for two-level ring topologies. The

difference in throughput is highest for nps jo..

Figure 5.7a plots the maximum achievable throughput as a function of normalized locality
(for memory access patterns that lie between Tyniform and Tj,.). Figure 5.7b presents the
throughput gain in percent when using an 8 x 5 topology as opposed to an 8 x 3 topology.
We see that by using the 8 X 5 topology there is a throughput loss for most memory access
patterns; however, this loss is small and decreases as locality is increased. The throughput gain
starts to grow at a higher rate when locality > 0.6, resulting in a 45% throughput gain when
locality = 1. 1t should be noted it is possible for real applications to have more locality than
locality = 1, resulting in an even higher throughput gain. Since the throughput gain by using
an 8 x 5 topology is much higher at higher locality levels than the throughput loss at lower
locality levels, we can reasonably assume that the number of local rings a second-level global
ring can sustain is 5. An important observation is that unlike the single ring case, the effect of

locality on the throughput gain remains independent of the cache line size.

Figure 5.8 presents the global ring utilization for the 2-level rings plotted as a function of
the number of local rings. Two curves are shown for each workload model: one for a low request
rate and one for a high request rate. It is clear that when subjected to a low request rate, the
global ring utilization increases linearly irrespective of the nature of workload. This is not true
for high request rates, where the global ring utilization rises much faster when local rings are
added, resulting in an early saturation. For the T',;f0rn workload, the global ring saturates at

the point where 3 local rings are connected, whereas for T}, it takes 5 local rings to saturate.

62 CHAPTER 5. ToPoLOGY AND BISECTION BANDWIDTH

100 T T
90 r o
. 80| e]
S
c 701 1
E 60 i
5 501 :
x 40 r m R
T P
O ot " Req Rate=0.02, T uniform ——|
X Req Rate=0.005, T uniform -+
104 /7 Req Rate=0.1, T loc -8
Req Rate=0.02, T loc -
0 e ! ! |
1 2 3 4 5

No. of Local Rings

Figure 5.8: Global ring utilization for 2-level rings with 32-byte cache lines. Two curves are
shown for the Typiform and T, workloads at both high and low request rates.

The trend is similar for 64 and 128-byte cache line sizes (but not shown).

The main conclusions from this section can be summarized as follows:

1. the global ring of a two level hierarchy can reasonably sustain 5 local rings for most

memory access patterns, and

2. the effect of locality on system throughput is independent of the cache line size used.

5.1.3 Three-level Rings

We next introduce a third level to the hierarchy and proceed to determine how many L2 rings
can be sustained. Each L2 ring now consists of a second level ring connected to 5 L1 rings of
8 nodes each, for a total of 40 nodes. We refer to the third level ring as the global ring.

Figure 5.9 presents the throughput-latency curves for 3-level hierarchical rings with 32-byte
cache lines. For Typiform, the trend is similar to what we observed for 2-level rings, namely that
a maximum of 3 L2 rings (nrs uniform = 3) can be sustained by a global ring. However, for
Tioc, we are only able to sustain 3 L2 rings (nrs,. = 3). The constant bisection bandwidth
constraint of the hierarchical-ring network offsets the benefits of high locality in the memory
accesses. Thus, even good locality (where in this case 90% of all requests lie within a 4 neighbor
cluster) saturates the global ring fairly easily.

The effect of bisection bandwidth on performance is shown in Figure 5.10, which plots the
global and local rings utilization against the number of L2 rings in a 3-level ring hierarchy. The
trend is similar to that of the 2-level ring hierarchy, although the rate at which the global ring

utilization rises is higher. Also, in the 3-level ring hierarchy, the global ring saturates when

5.1. DERIVING OPTIMAL

500

450
400
350 r
300 r

250 |

Latency (cycles)

200 r

150

100 ¢

50

22-
32-
42-

T T T T T

level Rings ——
level Rings -—+--
level Rings -&--

0.05

0.

1 0.15 0.2 0.25 0.3 0.35

Throughput (reg/cycle)

Latency (cycles)

100

90

30

HIERARCHICAL-RING TOPOLOGIES

63

T

22-
32
42-

T

level Rings ——
level Rings -+
level Rings -

1
Throughput (reg/cycle)

15 2 2.5

Figure 5.9: Throughput-latency curves for three level rings with 32B cache lines for the
(@) Tyniform and (b) 17, workloads.

100
90
80
70 |
60 [
50 r
40
30 |

Global Ring Utilization (%)

20 |

10+t /

@)

0

LB i‘%;eq Rate=0.002, T uniform —— |
Req Rate=0.005, T uniform -+---
Req Rate=0.01, T loc = |

Req Rate=0.05, T loc

! !

*

2 3
No. of 2-level Rings

Local Ring Utilization (%)

100

80

60

40

20

(b)

T

Req Rate=0.002, T uniform

Req Rate=0.005, T uniform -

Req Rate=0.01, T loc
Req Rate=0.05, T loc

o

!

!

2

3
No. of 2-level Rings

Figure 5.10: (a) Global and (b) local ring utilization for three-level hierarchical rings with 32B
cache lines. Curves are shown for Typiforn, and Tj,. workloads and for high and low request

rates.

nrg = 3 irrespective of the degree of locality. The fact that the local ring utilization is low at

the point where the global ring saturates, as shown in Figure 5.10b, further strengthens our

argument that the performance of the network is bisection bandwidth limited.

5.1.4 Verification

To verify that the topologies derived in the previous sections result in high throughput, low

latency configurations, we compare three different topologies of a 64 processor, 32-byte cache

line system. The three topologies include:

e a8 X 4 x 2 topology derived from our results,

64 CHAPTER 5. ToPoLOGY AND BISECTION BANDWIDTH

400 800 ;
8x4x2 —— e
350 1 700 r ’ 1
300 - | 600 <
k4 3 500 1
S 250 e
) O
2 > 400 |
£ 200 r 1<
© < 300 <
— —
150 <
200 <
100 | 1 100 (ONE.
50 1 1 1 1 1 1 O 1
005 01 015 02 025 03 035 04 0.001 0.01

Throughput (requests/cycle) Request Rate

Figure 5.11: Comparing the “optimal” topology with two other topologies for a 64 processor,
32-byte cache line system with the Tyuiforn workload. (a) Throughput-latency and (b) latency
as a function of request rate curves are shown.

e a balanced 4 x 4 x 4 hierarchy, and
e a 16 x 4 with large local rings.

Figure 5.11a presents the throughput-latency curves for these configurations. It is clear that
even though at low request rates the balanced 4 x 4 x 4 topology has lower latency, the 8 x 4 x 2
hierarchy achieves highest throughput. This is because, at low request rates, in the absence of
contention, the network with a lower diameter has lower latency. However, the advantage of
lower diameter begins to disappear as contention sets in at higher request rates, as shown in
Figure 5.11b.

To further verify this, we compare the execution time of real applications in Figure 5.12
for the three topologies. The applications are from the SPLASH-2 suite and consist of FFT,
LU, Radix, Raytrace and Ocean. We observe that for these applications there is no significant
difference in the execution time. However, from Figure 5.13, which plots the average memory
access latency we see that a balanced network topology (4 x 4 x 4) has the lowest average
latency, followed by the 8 x 4 x 2 topology. The 16 x 4 topology performs worst. These results

confirm our findings obtained from our synthetic workload simulations at low request rates.

5.2 Effect of Critical Parameters on Performance

In this section we develop a simple analytical model to study the effect of certain critical
parameters on the performance of hierarchical-ring topologies. The analytical model is semi-

empirical in that it uses some input parameters derived from simulations. This semi-empirical

0.1

5.2. EFFECT OF CRITICAL PARAMETERS ON PERFORMANCE 65

)
£ | 8x4x2
|_
.S 11¢ B 16x4 7
it B 4x4xa
O
x
w
o
o)
N 104 —
[
£
o
P
09t —
0.8
FFT LU Radix Raytrace Ocean

Figure 5.12: Normalized execution time of five SPLASH applications for three different topolo-
gies of 64 processor, 32-byte cache line systems: (1) a 3-level 8 x 4 x 2 system, (2) a 2-level
16 x 4 system, and (3) a 3-level 4 x 4 X 4 system. The execution time is normalized to the
3-level 8 x 4 x 2 system.

=
©
o
o

| 8x4x2
16004 W 16x4 [T

4x4x4
140.0 " —

120.0 ¢~ —

100.0 ¢~ —

©

g

=}
I
]

Ave. Trans. Latency (Proc. Cycles)
[}
©
o
[
|

IN

©

o
|
|

200 —

0.0

FFT LU Radix Raytrace Ocean

Figure 5.13: Average memory access latency (after L2 cache miss) of the five SPLASH appli-
cations under three different 64 processor, 32-byte cache line system topologies. Since these
applications have low (network) request rates, the latency of transactions is sensitive to the
diameter of the particular topology.

66 CHAPTER 5. ToPoLOGY AND BISECTION BANDWIDTH

model allows us to save much simulation time and is useful for determining which part of the
design space should be simulated for more accurate predictions. The parameters we consider
in our model include router speed, channel width and the number of processors per node. In

particular, we define the following parameters:

A = cache miss rate or the processor request rate.

A ma = processor request rate beyond which the network goes into saturation.

Alm = fraction of A to the local memory.

Ay = fraction of A(1 — Ay,) to a processor on the local ring.

Agri = fraction of A(1 — Ay,) (1 — Ay) that stays with in the 2-level ring hierarchy.
Sproc = processor speed in cycles/second.

Shic = NIC speed in cycles/second.

Siri = second-level IRI router speed in cycles/second.

Sqtb_iri = third-level IRI router speed in cycles/second.

nr; = number of next lower level ring connected to an tth level ring,

when ¢ = 1, ny; = number of nodes in a local ring.

when ¢ = 2, ny», = number of local rings connected to a second level ring.

when ¢ = 3, nrs = number of 2-level rings connected to a third level ring.
w = Channel width.

Lirans = average length of a memory transaction (request and response) in bits.

5.2.1 Single Rings

In the first step, we develop the model for a single ring and extend it to include a second and a
third level. Let us assume for simplicity a single processor per node. The traffic, m in bits/sec,
injected by a node into the ring depends on the cache miss rate (the processor request rate),
A, the fraction of requests that go to local memory, Ay,, the average length of a transaction,

Lrans, and the processor speed, Sp.:

m=A\- (1 - Alm) “Lirans « Sproc (53)

Assuming the T'ypif0rm workload, the average load at any point in the ring will be m - n%, since
a packet typically (on average) traverses half the ring. We refer this as the bisection load. For

the bisection load to be less than or equal to the bisection bandwidth it is necessary that:

m-%gzw-sm (5.4)

Substituting for m from Equation 5.3 we have:

A (1 - Alm) : Ltmns : Sproc : % < 2-W- Sm'c (55)
which can be rewritten as:
S L;
A 1 _ A - . proc rans < 4 5 6
(im) P TR (5.6)

5.2. EFFECT OF CRITICAL PARAMETERS ON PERFORMANCE 67

If we define S,4, as the ratio of processor and NIC router speeds, SSPT“, and n,pis (number of

physical transfer units) as the ratio of the average length of a transaction to the channel width,

%, Equation 5.6 can be rewritten as:
A (1= A) - Sratio * Nphits *pg < 4 (5.7)
For the T'yniform workload, Ay, = %, so equation 5.7 is reduced to:
Ac(nps — 1) - Sratio - Nphits < 4 (5.8)

Therefore, the maximum processor request rate in a single ring, given the number the nodes

for which the network does not saturate, can be derived from the following;:

1 1 1

Nphits NL1 — 1 Smtio

Amawc(]—level) =4 (59)
In other words, to keep a single ring network below saturation, a processor’s cache miss rate
should be at most the value defined in Equation 5.9. It should be noted that this value is
inversely proportional to the average length of a transaction (n,4), the ratio of processor and

NIC router speeds (Syqtio), and the number of nodes in a ring.

5.2.2 Additional Ring Levels
For two levels of rings, the equivalent of equation 5.4 is:

nre

-~ <2-W-S;, (5.10)

mrz -

where my, is the request rate from a local ring into the global ring, nys is the total number
of local rings, and 5;,; is the inter-ring interface router speed. mps can be defined in the same

way as in Equation 5.3:

1

Mmrz = Ny [(/\) (1 - /\lm) “ Litrans - Sproc : ﬁ)

]- (1= Ay) (5.11)

Substituting % for S}t and expanding equation 5.10 using equation 5.11 we obtain:

Sm'c
A (= X = (1= A < gt 225 s gy <4 (5.12)

If we define Si.;_ratio as the ratio of the NIC and IRI router speeds, g:lif’ and substitute i for

A and % for Ay, for the Tyniform workload, we can obtain the maximum processor request

68 CHAPTER 5. ToPoLOGY AND BISECTION BANDWIDTH

rate in a two level ring system from:

1 1 1 1

np; —1 npe —1 Nphits Slel _ratio

Amawc(,?—level) =4 (513)

For 3-level rings, we can proceed similarly and derive the following equation for the maximum
processor request rate:
1 1 1 1 1 1 1 1
1- Alm 1- Alr 1- Agr’ Nphits Sglb_mtio nry MNrz NL3

Amawc(B—level) =4 (514)
where (1 — Ay,) is the fraction of packets in the second level that travels to the third level,

Siri
Sglb_zrz

Sqlb_ratio = is the ratio of second-level IRI and the third-level global IRI router speeds,

and nps is the number of second-level rings connected to the third-level global ring.

5.2.3 Assessment of the Model

To assess the accuracy of our model, we compare A,,,, obtained from equations 5.9, 5.13
and 5.14 to the simulation results obtained in Section 4.2. Since S,u0 = 2, nppis= 4, 6, and
10 for 32, 64 and 128-byte cache lines, respectively, and ny; = 8, nys = 5 and nys = 3 in
our simulations, we substitute these values to obtain A,,,, predicted by the model. Table 5.1
presents the maximum processor request rates, as obtained from our simulations and from the
model. The model generally follows the maximum processor request rates obtained from our
simulations, but generally overestimates the values. The values are overestimated, because
network contention is not captured in our model. Network contention can be accounted for by
multiplying the model output with a contention factor (see Table 5.1). The contention factor
is computed as the ratio of the average of maximum processor request rates (for all cache line
sizes) obtained from the simulation to that obtained from the model. We observe that this
contention factor decreases by a factor of 2 as we increase the number of levels in the hierarchy.

An interesting property of (contention-free) maximum processor request rates is that they
decrease by a factor of two for every increase in the number of levels in the hierarchy. Dividing
equations 5.14 and 5.13, the ratio of the maximum processor request rates for a 3-level and a

2-level hierarchy is given by,

Amawc —level 1 1 1
€) — . . Slcl_mtio T (515)

Amawc(,?—level) 1- Ag?” Sglb_mtio nrs

Substituting A, = L Sqib_ratio = Sicl_ratio = 1 and np3 = 3 from our simulation results, we

nrs

obtain

Am(l(l/’ —iEeveE
Smar(Fzlevel) 5 (5.16)

Amawc(,?—level)

5.2. EFFECT OF CRITICAL PARAMETERS ON PERFORMANCE 69

Cache Line Max Processor Request Rate Contention
Hierarchy Size Simulation | Model Model Factor
(adjusted)
32B 0.07 0.0714 0.063
Single-ring 64B 0.04 0.0476 0.042 0.88
128B 0.02 0.0286 0.025
32B 0.02 0.0357 0.0157
2-level 64B 0.008 0.02381 0.011 0.44
128B 0.005 0.01429 0.0063

Table 5.1: Maximum processor request rates for single and 2-level rings obtained from the
model and simulation for 32, 64 and 128-byte cache lines.

Similarly, the ratio of the maximum processor request rates for a 2-level hierarchy and a single-

ring is given by dividing equations 5.13 and 5.11,

/\max —leve 1 1 1
(2=level) _) Spaie + —— (5.17)
Amawc(]—level) 1—Alr Slcl_mtio Uan

Substituting A;. = L S1t ratio = 1, Sratio = 2, and nps = 5, we obtain,

nrg’

Amawc(,?—level)

=0.5 (5.18)

AmaaL’(single—ring)

We can, for example, use this property to obtain the number of lower level rings a global ring
can sustain for a level higher than 3. For example, in a 4-level hierarchical-ring network, we
know that the maximum processor request rate A, q.(;—1cvery Will be half of that in a 3-level

hierarchy. Therefore,

A _ 1 1 1
max(4 level) — . . Sglb_ratio [05 (519)
Amawc(B—level) 1- Agr] Sglb] _ratio nry
Substituting Ay, = %, Sqivt _ratio = Sgib_ratio = 1, and solving for npr,, we obtain,

A —iEeveE
iy :MH:!% (5.20)

mawz (4 —level)

Therefore, we can sustain up to 3 L3 rings in a 4-level hierarchy.

5.2.4 Effect of Router Speeds on Performance

As shown earlier, the performance and scalability of hierarchical rings are clearly limited by

their constant bisection bandwidth. By increasing the bandwidth of the global ring (and thus

70 CHAPTER 5. ToPoLOGY AND BISECTION BANDWIDTH

the bisection bandwidth), we can connect additional lower level rings without worsening the
average memory access latency. Targeting just the global ring is effective, because the utilization
of the lower level rings is low, especially when the global ring is saturated. The bandwidth of
the global ring can be increased either by increasing the width of the ring or the speed of the
ring. We explore the option of clocking the global ring at a speed higher than that of local and
intermediate rings.

For 2-level rings, we use Equation 5.13 to obtain nys, the maximum number of local rings

connected to a global ring,

1 1 1 1

Amawc(,?—level) nry — 1 Nphits Siri_mtio

nps =4 - +1 (5.21)

If the global ring is twice as fast as the local rings then S raro = g'”c = 0.5. Dividing

equation 5.21 by itself, we obtain:

NL2(Siri _ratio=0.5) — 1

=2 (5.22)
N L2 (Siri_ratio=1) — 1
Substituting 12 (iri_ratio=1) = 5 from our simulation results and solving for nps(iri_ratio=0.5),

we obtain:
nLQ(iri_rati0:0.5) =9 (523)

From this we conclude that a 2-level hierarchical ring can sustain up to 9 local rings when the

global ring is twice as fast as the local rings. For 3-level rings, equation 5.22 becomes,

n ratio= -1
L3(glb_ratio=0.5) -9 (5.24)

NL3(glb_ratio=1) — 1

Since nps(gib_ratio=1) = 3 and nps(gp_ratio=0.5) = D, the global ring in a 3-level hierarchy can

sustain up to 5 second-level rings when it is clocked at twice the speed of local rings.

5.2.5 Effect of Channel Width on Performance

The channel width affects the number of physical transfer units that must be transferred per
packet. Our basic assumption has been a 128-bit (16-byte) wide ring channels, which requires
transfers of 2, 4, or 8 phits for messages containing a 32, 64 and 128-byte cache line (exclud-
ing header phits), respectively. Any reduction in channel width increases the number of phits
required and therefore reduces the maximum processor request rate for the same network con-

figuration. To determine the performance impact of a reduction in channel width by a factor

5.2. EFFECT OF CRITICAL PARAMETERS ON PERFORMANCE 71

0.02 T T T

2-level Ring ——
3-level Ring -+

Max Node Injection Rate
o
o
=Y

e

7*“’*'4——7»—7—>~,,;_,
1 L e

8 16 32
Number of Phits (Decreasing Channel Width)

Figure 5.14: Effect of decreasing channel width on maximum processor request rate. The graph
is shown for 2-level and 3-level rings with 32-byte cache lines.

of 2, we divide the two equations derived from 5.21 by setting 7,4 in the numerator to 4 and

Nphits in the denominator to 8 and obtain:

Amawc(phi),‘s:S) =0.5- Amawc(phits:4) (525)

Thus the maximum processor request rate is reduced by a factor of 2, when the channel width
is reduced by a factor of 2. Figure 5.14 shows the impact of decreasing channel width on the

maximum processor request rate.

Chapter Summary

This chapter presented techniques to derive high-performance topologies for hierarchical-ring
networks. Our overall goal was to maximize system throughput. From this point on, in this
dissertation, when dealing with hierarchical-ring systems, we assume the following topologies:
up to 8 processors on a level-1 ring, a maximum of 5 level-1 rings in a 2-level hierarchy, and a
maximum of 3 level-2 rings in a 3-level hierarchy. For mesh and torus-connected systems, we
assume 2-dimensional square topologies.

We also showed in this chapter that single rings and 2-level hierarchical-ring topologies are
more sensitive to locality in memory accesses, whereas higher level hierarchical-ring topologies
are less sensitive. We presented some semi-empirical analytical models to explore design spaces

not considered in our simulations.

CHAPTER 6
Switching, Buffer Management, and Flow-control

This chapter presents switching and buffer management issues in hierarchical-ring and direct
networks. In particular, we will show how different switching techniques affect system perfor-
mance as does the network buffer size. For hierarchical-ring networks, we consider wormhole,
buffered wormhole, virtual cut-through, and cell switching, whereas for direct networks we con-
sider wormhole and buffered-wormhole switching techniques. We consider blocking flow-control
for wormhole switched networks and non-blocking flow-control for virtual cut-through and cell
switched hierarchical-ring networks. We also propose and evaluate a blocking cell switching
scheme in hierarchical-ring networks. We assume deterministic, deadlock-free routing with vir-
tual channels in hierarchical-ring, tori, and bidirectional ring networks and dimension-ordered
routing (with no virtual channels) in the mesh networks. Routing issues and in particular,
deadlock-free routing are explained in Chapter 7.

One advantage of unidirectional rings, as pointed out in Chapter 3, is that the routers
require fewer connections (due to the single dimension), allowing for a wider data path than
in higher-dimensional direct networks under constant pin constraints, and thus shorter packet
switching time. Another advantage is that the single network input link at the router allows
larger ring buffers than in higher-dimensional networks under constant memory constraints.

Wormbhole routers for distributed memory systems predominantly use single-flit buffers [53,
78, 85]. For shared-memory multiprocessors, we extended this to buffered wormhole switch-
ing [71], where the routers have buffers that are several flits large as opposed to just one flit.
This definition of buffered wormhole switching is irrespective of a flit containing one or more
phits. The buffered wormhole switching approach significantly improves system throughput
and reduces latency, primarily because the number of links held by a blocked packet is vastly
reduced. Also, since both long packets (containing cache lines) and short packets (containing
acknowledgments or data-free requests) co-exist in a shared-memory multiprocessor network,
even a buffer size of a few flits is effective in improving throughput, as it can buffer smaller

packets in entirety.

72

6.1. SWITCHING TECHNIQUES 73
6.1 Switching Techniques

Switching is the mechanism by which a router removes a packet from its input link and places it
in an output link, thereby allocating channels and buffers to the packet as it travels through the
network. We consider four switching techniques: wormhole (WH), buffered wormhole (BWH),
virtual cut-through (VCT), and cell switching.

Wormhole and virtual cut-through are common switching techniques used in n-dimensional
meshes and k-ary n-cubes [6, 55, 57, 80, 81], but we are aware of no previous work that considers
these switching techniques in ring connected networks. Cell switching is different from either
wormhole or virtual cut-through switching in that packets are divided into cells that are routed
independently; it has been used in both single rings (typically under the name “slotted ring”)

and hierarchical-ring networks [92, 93].

6.1.1 Wormbhole and Buffered-wormhole Switching

In wormhole switching (see Chapter 2), a packet is sent as a sequence of flits, with the header
flit containing the routing information. A flit is the smallest unit a router can accept or refuse.
Since there is no distinction between a flit and a phit in our study, a flit is transferred in a
single clock cycle between any two neighboring nodes. As flits are forwarded, a packet may
be spread over multiple links, and a packet is hence sometimes referred to as a worm in this
context. Since only the head flit of a packet contains routing information, it is essential that
the flits of a packet not be interleaved with flits of another packet. Packets are of variable size,
with the size of the largest packet (and hence the longest worm) assumed to be large enough

to hold a cache line.

A flit cannot move forward if the link it is to use next is busy (which can only happen for
the header flit) or if the buffers of the next router in the path are full (which can happen for
any of the flits). In either of these cases, the flit is blocked. Traditionally, wormhole routers
are associated with single flit buffers on input links. As a result, a blocked flit will block the
following flits, and when the entire packet becomes blocked, it typically spans multiple nodes,
continuing to hold resources (buffers and links) in the nodes it spans. We will show later
that having buffers larger than just a single flit can decrease the network latency and improve
throughput. In this buffered wormhole approach, when a flit of a packet becomes blocked, the
router continues to accept additional flits of the packet (if any) over the incoming link until
the input buffers associated with the link become full; only at that point does the router stop
accepting further flits.

74 CHAPTER 6. SWITCHING, BUFFER MANAGEMENT, AND FLOW-CONTROL

6.1.2 Virtual Cut-through Switching

Virtual cut-through switching is similar to wormhole switching in that a packet is sent as a
sequence of flits that may not be interleaved with other packets and the header flit containing
routing information. A virtual cut-through node, however, will accept the header flit of a
packet only if it has enough buffer space for the entire packet. Thus, when a packet is blocked,
it is removed from the network and buffered inside a single node. This requires large ring
buffer spaces in the routers. In a blocking virtual cut-through network, flow-control is almost
always sender initiated in that a node keeps track of the free buffer space in directly connected
neighboring nodes, and it does not forward a packet to a neighbor when there is not enough
buffer space there. Sender initiated blocking is used, because the variable-sized packets require

a node to know the size of the packet before the header can be sent.

Non-blocking virtual cut-through switching

We have adapted blocking virtual cut-through switching to realize non-blocking virtual cut-
through switching for hierarchical-ring networks. A non-blocking virtual cut-through node
drops a packet (instead of blocking) when it cannot forward it to a neighboring node. In
hierarchical rings, packets are dropped only at the inter-ring interfaces (IRIs) when they need
to change rings because in network interface controllers (NICs), priority for the output link
assignment is given to transit packets, and in IRlIs, priority is given to packets that do not

change rings.

Dropped packets are recovered by using NACK packets and end-to-end time-outs. When
a request packet is dropped, it is recovered by sending a negative acknowledgment (NACK)
packet to the source node, and when a response packet is dropped it is recovered through time-
out. When a request packet is sent, the source NIC keeps a copy of the request and starts a
timer. If a response is received before the timer expires, then the timer is cleared and the copy
is discarded. If the source NIC receives a NACK for its request, then it resends the request and
resets the timer. If the timer expires, then it is assumed that either the response packet or that
the NACK packet had to be dropped, and the request is resent with simultaneous resetting
of the timer. Since the worst-case latency value for a memory request is non-deterministic,
time-out values are normally chosen to be very large (two orders of magnitude greater than the
average round trip time) since a smaller value will introduce duplicate request packets in the

network.

6.2. BUFFER MANAGEMENT IN HIERARCHICAL-RING NETWORKS 75

6.1.3 Cell Switching

Cell switching is a variant of virtual cut-through switching, where a packet is divided into a
number of equi-sized cells that are routed independently. In a single ring, cell switching is
the same as the slotted ring. Cells are similar to flits except that each cell carries separate
routing and sequencing information so that it can be routed independently. In hierarchical-ring
networks, we assume the size of a cell to be the same as a phit that can be forwarded in a
single clock cycle from one node to a neighboring node. The first cell (header cell) of a packet,
similar to a header flit in wormhole switching, carries the full target memory address while the
remaining cells (body cells) of the packet identify only the destination PM. The cells of a packet
are assembled together at a destination node. The destination node discards a packet if it does
not receive all the cells of the packet.

The advantage of cell switching is that, unlike virtual cut-through switching, they do not
require large packet-sized ring buffers at the nodes. In fact, there is no requirement for ring
buffers (with the exception of transreceivers) at NICs and at IRIs when the cell size is the same
as the phit size, since an incoming transit cell can always be transmitted on the outgoing link
without having to be buffered (given that priority is always given to ring packets).

A major disadvantage of cell switching is the overhead (in the data path) associated with
carrying routing and sequencing information in body cells. For example, in a 128 processor
system, 7 bits are needed to address each processor, and 7 more bits to identify the source node
in order to distinguish between cells from different source nodes to the same destination node.
This amounts to a total of 14 bits which translates into about 11% overhead if we assume a

128-bit cell size.!

6.2 Buffer Management in Hierarchical-ring networks

6.2.1 Wormbhole Switched Hierarchical Rings

In this section, we study the performance impact of IRI buffer size on hierarchical-ring networks
under wormhole switching. We vary only the up/down buffer sizes and assume that the size
of NIC and IRI ring buffers (referred simply as ring buffers) are optimal (as determined later)
and fixed.? This allows us to study the sensitivity of the network performance to IRI up/down

buffer sizes alone.

!There is no need to identify cells of different packets of the same source node since they arrive in order to
the destination node due to the minimal, deterministic routing used in hierarchical rings.

2By optimal buffer size, we mean the minimum ring buffer size required for high throughput and low latency
networks.

76 CHAPTER 6. SWITCHING, BUFFER MANAGEMENT, AND FLOW-CONTROL

700 100 T T T 7
1CL —-— i
L 4CL —+— i J
600 | 1 90 T 256 CL -a-- {
_ 500 | 1~ 1
[%] [%] /e
Q Q
o o J
3 400 t 1 g
> >
(8] (8]
g g 1
= 300 1 %
- -
200 1
()
100 r 1
1 1 1 1 1 1 30 1 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.5 1 15 2
Throughput (requests/cycle) Throughput (reg/cycle)

Figure 6.1: Throughput-latency curves for a 3-level, 64 processor 8 X 4 X 2 hierarchical-ring
system with 32-byte cache lines for the (a) Tyniform and (b) 1}, workloads. The curves are
shown for three different IRI buffer sizes.

1000 ;
1CL ——
900 B 4 CL T 7

256 CL 5
800 | :

[©2 N
o o
o O

500

Latency (cycles)

400
300
200

100 |

0.001 0.01 0.1
Request Rate

Figure 6.2: Latency as a function of request rate for a 3-level, 64 processor 8 x 4 x 2 hierarchical-
ring system with 32-byte cache lines for 3 different buffer sizes under T',;0r, workload.

Consider a 3-level, 64 processor 8 X 4 x 2 hierarchical-ring system with 32-byte cache lines
and a phit size of 128 bits. In such a system, a packet containing a cache line of 32 bytes (the
read response and write request packet) is 3 flits long (1 flit for the header and 2 flits for the
cache line). The other packets, namely the read request and write response packets, are 1-flit
long. For the NIC and IRI, we chose a ring buffer size of 3 flits, which can hold the largest
packet.

Figure 6.1 presents the throughput-latency curves for IRI buffer sizes of 3 flits (enough to
hold a packet with a cache line), 12 flits (enough to hold 4 cache-line-sized packets), and 768
flits (to hold 256 cache-line-sized packets), which we shall henceforth refer to as 1 CL, 4 CL,

2.5

6.2. BUFFER MANAGEMENT IN HIERARCHICAL-RING NETWORKS 77

800 T 800 Y
Latency, 4 CL ——
1 700 - IRl Delay, 4 CL —+—
NIC Delay, 4 CL =

Latency, 1 CL ——
700 | IRl Delay, 1 CL -+
NIC Delay, 1 CL =

600 r 600

500 500
400 400

300 r 300

Latency Components (cycles)
Latency Components (cycles)

&

@ 1 100

100 J]
%++—-——%——+ ———————————— et -+
R gD . 0
0.00 0.01 0.1 0.001 0.01
Request Rate Request Rate

Figure 6.3: Latency components (NIC and IRI delays) as a function of request rate for a 3-level,
64 processor 8 X 4 x 2 hierarchical-ring system with 32-byte cache lines and an IRI buffer size
of (a) 1 CL and (b) 4 CL under Typiform workload.

1000 T

900 Latency, 256 CL ——)
IRI Delay, 256 CL -+
NIC Delay, 256 CL -

o o o
o o o
T
!

Latency Components (cycles)
N w Ny (o)) (2] ~ [e0)
o o o o
o o o o

=
o
o

A+
[e ooy B BB R e)

0.00 0.01 0.1
Request Rate

Figure 6.4: Latency components (NIC and IRI delays) as a function of request rate for a 3-level,
64 processor 8 X 4 x 2 hierarchical-ring system with 32-byte cache lines and an IRI buffer size
of 256 CL under Typniform workload.

and 256 CL-sized buffers. Figure 6.1a presents these curves for the T',,if0rn workload, whereas
Figure 6.1b presents the same for the T},. workload. We observe that with wormhole switching,
the maximum achievable throughput is good when the IRI buffer size is set to 1 CL. There is a
small gain in throughput when the IRI buffer size is increased form 1 CL to 4 CL, with negligible
gain in throughput thereafter with the T},. workload, and a degradation in throughput with
the Tuniform workload. This is evident in Figure 6.1a, where we see a decrease in throughput
at high request rates for the 256 CL IRI buffer sizes. The performance graphs for other system

sizes and cache line sizes (64 and 128 bytes) are similar and are therefore not shown.

0.1

78 CHAPTER 6. SWITCHING, BUFFER MANAGEMENT, AND FLOW-CONTROL

500

450

(O] B
(4] o
o o
T T

w

o

o
T

250 |

Latency (cycles)

200 r

150

100 ¢

50 1 1 1 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Throughput (requests/cycle)

Figure 6.5: Throughput-latency curves for three different NIC ring buffer sizes under T'nif0rm
workload for a 3-level, 64 processor 8 x 4 x 2 hierarchical-ring system with 32-byte cache lines.

Hence, with poor memory locality, large IRI buffers in wormhole switched hierarchical-ring
networks hurt performance. To further analyze the behavior of large IRI buffer sizes under the
Tuniform Workload, we present latency curves in Figure 6.2 for the three different IRI buffer sizes
plotted as a function of request rate. We observe that under high request rates, the round-trip
latency with 256 CL buffer sizes is much higher than with smaller buffer sizes. This is due
to high IRI queuing delays that occur for the large buffer size under high request rates. The
latency due to NIC and IRI queuing delays for different IRI buffer sizes is plotted in Figures 6.3
and 6.4. We see that for high request rates, NIC delays form a large fraction of the total latency
for 1 CL buffer sizes. As we increase the IRI buffer size, the NIC delay decreases, but the IRI
delay increases; the IRI delays form a larger fraction of the latency when a 256 CL IRI buffer
size is used.

Next, we fix the IRI buffer size at 4 CL and proceed to analyze the performance impact of
ring buffer sizes. Figure 6.5 plots the throughput-latency curves under the Ty, workload
for three different ring buffer sizes, namely 1 flit, 1 CL, and 4 CL. There is a similar trend
under the 7},. workload (not shown). We see a significant improvement in throughput when
the ring buffer size is increased from 1 flit (traditional wormhole switching) to 1 CL (buffered
wormhole switching). This is mainly because of the reduction in the number of links a blocked
packet can hold. Additional increases in the ring buffer size do not further affect performance,
because the single input/output link of a NIC effectively serializes the transmission of packets.

We conclude that the performance of wormhole switched hierarchical-ring networks is some-
what sensitive to the IRI buffer size, with a smaller size (of about 4 CL) resulting in high
throughput. A higher IRI buffer size can hurt performance, especially under high request rates.

6.2. BUFFER MANAGEMENT IN HIERARCHICAL-RING NETWORKS 79

400 140 T T T T T T T T T T

1CL ~— H
4CL - !
350 16 CL = i
120 64 CL - H F
300 256 CL -=-- ;,‘ ¢
g g { #
2 250 9100 / P
o) o) i
5 200 S 80| / ;o
© © #)]
- - ; /
150
£
60 r £ b]
100 A e (b)
/»i;i_:iﬁ;/”ﬂ
!’——’“’“”‘ywﬂd‘;—_
50 1 1 1 1 1 40 1 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0 01 02 03 04 05 06 07 08 09 1
Throughput (requests/cycle) Throughput (requests/cycle)

Figure 6.6: Throughput-latency curves for four different IRI buffer sizes under the (a) Tynitorm
and (b) T}, workloads for non-blocking virtual cut-through switched 3-level, 64 processor 8 x
4 x 2 hierarchical-ring system with 32-byte cache lines.

500

450

Latency (cycles)

N N w w B
o (2] o a o
o o o o o

[y

o

o
T

100 &

50 .
0.0001 0.001 0.01
Request Rate

Figure 6.7: Latency as a function of request rate for four different IRI buffer sizes under the
Tuniform workload for non-blocking virtual cut-through switched 3-level, 64 processor 8 x 4 x 2
hierarchical-ring system with 32-byte cache lines.

The network performance is not that much affected by ring buffer sizes greater than a single
cache line size. There is a similar trend for larger cache line sizes (not shown). In a nutshell,
buffered wormhole switching results in a significant performance improvement when compared

to traditional wormhole switching with single flit buffers.

6.2.2 Virtual Cut-through Switched Hierarchical Rings

The performance of a virtual cut-through hierarchical-ring network with blocking flow control is

similar to that of the buffered wormhole switched network considered in the previous section. In

11

80 CHAPTER 6. SWITCHING, BUFFER MANAGEMENT, AND FLOW-CONTROL
700 T 600
Latency, 1 CL —— Latency, 4 CL ——
600 | Delay (dropped pkis), 1 CL -] Delay (dropped pkts), 4 CL ——
IRI Delay, 1 CL =~ 500 f IRI Delay, 4 CL 8-~ 1

NIC Delay, 1 CL -

NIC Delay, 4 CL -

w w
o o
o o
> 500 1 >
S < 400 1
2 2
@ 400 18
c c
é g 300) 1
§ 300 1 § ’
2 2 200
> > q
2 200 {1 2
Q Q .
g g)
100 (@ A 100 b]
o [——— T e e e Mo S R s T i anataniii
0.0001 0.001 0.01 0.00 0.01
Request Rate Request Rate
600 600
Latency, 16 CL —— Latency, 64 CL ——
Delay (dropped pkts), 16 CL -—+--- Delay (dropped pkts), 64 CL -—+---
—~ 500 r IRl Delay, 16 CL -&8-- 1 ~500 IRI Delay, 64 CL 8- b
3 NIC Delay, 16 CL - 3 NIC Delay, 64 CL -
S S
< 400 1 <2400 1
[2] [2]
c =
Q Q
c c
g 300 1 § 300 1
£ £
o o
] O]
2 200 1 2 200 1
c c
Q Q
g g
100 © 1 ~ 100 (C
= - -
0.00 0.01 0.00 0.01

Request Rate Request Rate

Figure 6.8: Latency components as a function request rate for a non-blocking virtual cut-
through switched 3-level, 64 processor 8 x 4 x 2 hierarchical-ring system with 32-byte cache
lines for IRI buffer sizes of (a) 1 CL, (b) 4 CL, (¢) 16 CL, and (d) 64 CL under Ty,iform workload.

wormhole switching, the optimal ring buffer size was one cache line deep, so a blocked packet can
occupy at most only one link. For ring-based systems, therefore, there is no difference between
when a blocked packet is buffered inside the NIC buffer (as in virtual cut-through switching)
or buffered across two NIC buffers since all packet transmissions are serialized through a single
output link. For this reason, we do not present performance graphs for blocking virtual cut-
through switching in rings; instead, we focus on a non-blocking variant of virtual cut-through
switching.

Figure 6.6 presents the throughput-latency curves for a 3-level, 64 processor 8 X 4 X 2, non-

blocking virtual cut-through switched hierarchical ring under T;0pm and Tj,. workloads. The

time-out value was chosen to be large enough to avoid duplicate packets in the network.> We

®A time-out value of 5000 processor cycles was sufficient to prevent any duplicate packets in our simulations.

6.2. BUFFER MANAGEMENT IN HIERARCHICAL-RING NETWORKS &1

500 T T T T T

1CL ——
450 b 2 &0
16CL =

(O] B
(4] o
o o
T

! !

w
o
o
T
!

250

Latency (cycles)

200

150

100

50 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3
Throughput (requests/cycle)

Figure 6.9: Throughput-latency curves for three different ring buffer sizes under T'y,iform Wwork-
load with optimal IRI buffer size of 16 CL for a non-blocking VCT switched 3-level, 64 processor
8 X 4 x 2, hierarchical-ring system with 32-byte cache lines.

vary the IRI buffer size, and keep the ring buffer sizes constant at 1 CL. The smallest IRI buffer
size we consider is 1 CL, as this is the minimum required buffer size for virtual cut-through
switching, and we go up to 256 CL. There is a significant increase in the maximum achievable
throughput when we increase the buffer size from 1 CL to 4 CL, and there is a small further
increase when we increase the buffer size to 16 CL but no increase beyond that. Figure 6.7
presents the corresponding latency curves under the T'y,iform Wworkload. It can be seen that the

IRI buffer size of 16 CL gives the lowest latency values for a wide range of request rates.

The performance sensitivity of non-blocking VCT networks to the IRI buffer size differs from
that of blocking wormhole networks in the following ways: (1) in non-blocking VCT networks,
we see an increase in the maximum achievable throughput as we increase the IRI buffer size,
with a size of 16 CL being optimal, whereas in blocking wormhole ring networks a much smaller
buffer size of 4 CL is found optimal, and (2) unlike in a wormhole network, a larger IRI buffer

size in a non-blocking VCT network does not hurt performance.

Figure 6.8 presents the latency components as a function of the request rate for the four
different IRI buffer sizes under the Typ0r, workload. In addition to the NIC delay and IRI
delay, an important latency component in a non-blocking network is the fraction of round-trip
time that is spent in time-outs and retransmissions when packets are dropped. This delay
constitutes a major fraction of the latency for smaller IRI buffer sizes, since the IRIs drop a
larger number of packets. However, this delay fraction decreases when the IRI buffer size is
increased, eventually reducing to zero for 64 cache line IRI buffers. But the decreasing number

of dropped packets is accompanied by an increase in IRI queuning delay.

2.5

82 CHAPTER 6. SWITCHING, BUFFER MANAGEMENT, AND FLOW-CONTROL
600 T T i T T L 100 T
o
i 7 90 1
500 i P
8 400 ! 5 2
> | 5l S 70]
2 i i 2 /
> ! 3 > !
© / P © /
— ; ‘ﬁd/ — ,*,/
200 v 50 S Eﬂg«- 1
/+’ Py .. /ré"ﬁ;j;:ﬂr .
T O 40 — ®
100 IR Sy o 1
1 1 1 1 1 1 30 1 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.5 1 15 2
Throughput (requests/cycle) Throughput (reg/cycle)

Figure 6.10: Throughput-latency curves for five different IRI buffer sizes under (a) Tyniforn and
(b) T1,. workloads for a non-blocking cell switched 3-level, 64 processor 8 x4 x 2, hierarchical-ring
system with 32-byte cache lines.

Figure 6.9 presents the throughput-latency curves for three different ring buffer sizes with
the IRI buffer size kept at its optimal value of 16 CL. Similar to blocking wormhole networks,
the performance is not affected by the size of the ring buffers. There is a similar trend under the
Ty, workload (not shown). We also observe similar performance curves when we vary the IRI

and NIC buffer sizes for a hierarchical-ring system with larger cache lines (64 and 128 bytes).

6.2.3 Cell Switched Hierarchical Rings

In this section, we consider non-blocking cell switched hierarchical-ring networks. Since we
assume a cell size to be the same as the phit size, there is no requirement for ring buffers, as a
cell arriving at a router can always be transmitted to the output link without being buffered.

Figure 6.10 depicts throughput-latency curves for a cell switched 3-level, 64 processor 8 x
4 x 2 hierarchical-ring system. The curves are drawn for five different IRI buffer sizes. The
behavior is similar to that of non-blocking virtual cut-through networks; however, the optimal
IRI buffer size (64 CL) is larger than for the non-blocking virtual cut-through switched network.
Figure 6.11 presents the corresponding latency curves as a function of request rate. It can be
seen that the IRI buffer size of 64 CL gives the lowest latency values for a large range of request
rates.

The latency components are shown in Figure 6.12 for four different IRI buffer sizes. Similar
to virtual cut-through switching, the latency component due to time-outs and retransmission
of dropped packets forms a large fraction of the latency for smaller buffer sizes and decreases

with an increase in buffer size. However, as the IRI buffer size is increased, we see a rise in IRI

6.3. PERFORMANCE OF SWITCHING TECHNIQUES IN HIERARCHICAL-RING NETWORKS 83

500 : —
1CL —-— A7
450 4cL ; i 1
16 CL = /
400 + 64 CL -x / by |
256 CL -»-- / g

% 350 | [1
Q ! i
o 4
3300 / / 1
) P
2 250 | i 1
= ! s
S 200 f P]

150 ;g

L ' |
4/ ..g/m
100 ;“-_—‘—_.——-—!—»;;i;;t;:;;g‘r’A 1
50
0.001 0.01

Request Rate

Figure 6.11: Latency as a function of request rate for four different IRI buffer sizes under T',if0rm
workload for a non-blocking cell switched 3-level, 64 processor 8 x 4 x 2, hierarchical-ring system
with 32-byte cache lines.

queuing delay that forms a major fraction of the latency at larger buffer sizes.

6.3 Performance of Switching Techniques in Hierarchical-ring
Networks

In this section, we compare the performance of various switching techniques, namely, (1) worm-
hole switching with 1 flit ring buffers, (2) buffered wormhole switching (with 1 CL sized ring
buffers), (3) non-blocking virtual cut-through switching (with 1 CL sized ring buffers), and
(4) cell switching. Table 6.1 compares the different characteristics and memory requirements
of these switching schemes. The IRI buffer sizes in all these switching schemes are chosen to
be optimal. Figure 6.13 presents the throughput-latency curves for the four different switch-
ing techniques in a 3-level, 64 processor 8 X 4 X 2 hierarchical-ring system with 32-byte cache
lines. It is obvious that traditional wormhole switching with 1-flit ring buffers results in poor
performance when compared to the other switching techniques. This is because as the request
rate increases, the probability of a packet being blocked increases, as does the likelihood of it
blocking other packets, since a blocked packet spans multiple links. As a result, networks using
wormhole switching with single flit buffers saturate from contention well before they exhaust
their bandwidth. However, the advantages of single flit buffers include high-speed routers and
complete isolation of nodes from in-transit packets [85]. Buffered wormhole switching (with
single cache line ring buffers) results in a much improved performance, both in terms of average
latency and throughput. This is because a blocked packet can hold at most one link. The

disadvantage of buffered wormhole switching is that the ring buffer size becomes large for large

84 CHAPTER 6. SWITCHING, BUFFER MANAGEMENT, AND FLOW-CONTROL

1000 700
Latency, 1 CL —— Latency, 4 CL ——
IRI Delay, 1 CL - Delay (dropped pkts), 4 CL -—+---

NIC Delay, 1 CL - 600 r IRI Delay, 4 CL -5 1

[e]
o
o

NIC Delay, 4 CL - s
500 '

600 400

400 300

200

Latency Components (cycles)
Latency Components (cycles)

200

(@) 100 ()

[o J TSRS S, SRS FE- ST R B 0

0.00 0.01 0.001 0.01
Request Rate Request Rate
T 700 T
700 Latency, 16 CL —— | Latency, 64 CL ——
Delay (dropped pkts), 16 CL -+ 600 L Delay (dropped pkts), 64 CL -+ |
—~ 600 IRI Delay, 16 CL = | ~ IRI Delay, 64 CL =
8 NIC Delay, 16 CL - 8 NIC Delay, 64 CL -
S S, 500 1
£ 500 1 &
8 8
c c
g 400 { g 400 1
o o
£ £
8 300 18 300 J
3 3
£ 200 { g 200 1
T T
))
100 (O 100 @
N " o R Yoo -
0.001 0.01 0.1 0.00 0.1
Request Rate Request Rate

Figure 6.12: Latency components as a function of request rate for a non-blocking cell switched
3-level, 64 processor 8 x 4 x 2, hierarchical-ring system with 32-byte cache lines for IRI buffer
sizes of (a) 1 CL, (b) 4 CL, (c) 16 CL, and (d) 64 CL under T',iforn workload.

cache lines, resulting in larger memory requirements.

Non-blocking virtual cut-through switching results in better performance than single flit
wormhole switching, but performs poorly compared to buffered wormhole switching and suffers
from the same disadvantages as buffered wormhole switching. Non-blocking cell switching
results in a performance that is marginally better than buffered wormhole switching and as we
will show, significantly better than blocking cell switching. However, we see that advantage
only at high request rates. The other advantage of non-blocking cell switching includes small
ring buffers. However, cell switching requires an overhead in the data path for carrying the
source and destination node identification for each cell. This overhead can become a significant
percent of the total data path for larger system sizes and /or for systems with smaller data path.

On the other hand, all blocking switching techniques require virtual channels for deadlock free

6.4. BrLocKING CELL SWITCHING IN HIERARCHICAL-RING NETWORKS 85

Blocking Non-blocking
WH | Buffered WH | WH-Cell | VCT Cell
Ring Buffer Size | 1 Flit 1 CL 1 Flit 1 CL 0
IRI Buffer Size 4 CL 4 CL 4 CL 16 CL | 64 CL
Virtual Channels 2 2 2 1 1

Table 6.1: Comparison of different switching and flow-control techniques in hierarchical-ring
networks.

500 : x ; ; ; .

|l WH, 1Flit -— i
40 1 wH 1cL e : b
VCT 1 CL = :
400 cell -~ i

350 r
300 r

250 |

Latency (cycles)

200 r

150

100 | g

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Throughput (requests/cycle)

Figure 6.13: Throughput-latency curves for different switching techniques with blocking and
non-blocking flow control under 7',;f0rm Workload for a 3-level, 64 processor 8 x4 x 2 hierarchical-
ring system with 32-byte cache lines.

routing. The performance of different switching techniques is similar in larger cache line sized

(64 and 128 bytes) hierarchical-ring systems and are not shown.

6.4 Blocking Cell Switching in Hierarchical-ring Networks

An interesting alternative to single-flit wormhole switching is the blocking cell switching. As
established above, the main disadvantage of single-flit wormhole switching is its poor throughput
under high request rates due to the blocking nature of worms. On the other hand, non-blocking
cell switching with the size of a cell being the same as the phit, cells do not block holding links.
The blocking cell switching combines wormhole and cell switching where a worm is divided and
sent as a sequence of cells with single-flit ring buffers. Each cell carries enough information to
be routed independently. The size of each cell can vary, with the minimum being the size of the
data path. The header cell normally carries the full target memory address, and the following

cells carry only the source and destination node identification. The extra routing information

86 CHAPTER 6. SWITCHING, BUFFER MANAGEMENT, AND FLOW-CONTROL

500 T T T T T T T L

| WH —— P
450 I \WH-Cell, 3 Cells ‘

(O] B
g o
o O

w
o
o

250

Latency (cycles)

200

150

100

50
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
Throughput (requests/cycle)

Figure 6.14: Throughput-latency curves for blocking cell switching with single flit buffers under
Tuniform workload for a 3-level, 64 processor 8 x 4 x 2, hierarchical-ring system with 32-byte
cache lines. A cache line is broken and sent as 3 cells instead of a single large worm. For
comparison purposes, latency-throughput curve for wormhole switching with single flit buffers
is also shown.

500 T T T T T
450 | / 1
400 | ;oo]
v ! X
o R
S350 8]
o ’ X
2 ;
< 300 | . 1
45 X
- X'
250 WH —— A
x> WH-Cell, 2 Cells -+
- WH-Cell, 4 Cells &
200 | i WH-Cell, 9 Cells -~
150 1 1 1 1 1 1

0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095
Throughput (requests/cycle)

Figure 6.15: Throughput-latency curves for blocking cell switching under 7’,if0rn workload
for a 3-level, 64 processor 8 X 4 x 2, hierarchical-ring system with 128-byte cache lines. A
cache line is sent as 2, 3, and 9 cells instead of a single large worm. For comparison purposes,
throughput-latency curve for single-flit wormhole switching is also shown.

requires extra wires, similar to cell switching. However, since it is blocking, it eliminates the
need for time-outs. It differs from wormhole switching in that a blocked cell typically occupies
fewer links (depending on the size of a cell). When the cell size is the same as the phit size, a

blocked cell may hold no links.

Figure 6.14 presents the throughput-latency curves for blocking cell switching with single-flit

ring buffers for a 3-level, 64 processor 8 x4 x 2, hierarchical-ring system with 32-byte cache lines.

6.5. BUFFER MANAGEMENT IN DIRECT NETWORKS &7
350 ; ; ; — 1000
LFlit E LE
3 Flits —— / 900 1 3 Flits ——
300 1CL = j N ¥ 1CL =
AGL -) s 800 - 4CL -]
64 CL - / P 16 CL -+
= 250 | 256 CL -x-- / Py | 27007 256 CL -x--]
+ : v
e P < 600 | 1
> / : % >
) i)
= 200 | i o 7 1 2500 f 1
2 S E 2 -
% Ve % 400 t e 1
— + £ e 4 3 P .
150 a4 300 * A
g ,]
100 | g @ 1 SR ®)
e 100 ey
e i N A]
50 1 1 1 1 1 1 1 O 1
0O 01 02 03 04 05 06 07 08 0.001 0.01 0.1

Throughput (requests/cycle) Request Rate

Figure 6.16: Performance impact of NIC buffer sizes on a 64 processor 8 X 8, 2-dimensional mesh
connected system with 32-byte cache lines under the Ty;i50rm workload. (a) Throughput-latency
and (b) latency versus request rate curves are shown.

Assuming a cell size same as the phit size (128 bits), blocking cell switching with 3 cells for a
cache line transfer achieves a higher throughput than sending a cache line as a single worm.
Figure 6.15 presents the throughput-latency curves for the same system, but with 128-byte
cache lines. This time we vary the number of cells per packet from 2 to 9.

It should be noted that blocking cell switching should be considered only as an alternative
to single-flit wormhole switching as it still performs poorly when compared to either buffered

wormhole or non-blocking cell switching.

6.5 Buffer Management in Direct Networks

6.5.1 Wormbhole Switched Mesh Networks

In this section, we present the performance impact of NIC input buffer sizes on 2-dimensional
wormhole switched mesh networks. We vary the NIC buffer size from 1 flit (traditional worm-
hole) to 256 CL. We choose a phit size of 32 bits and a cache line size of 32 bytes. As a result,
the largest packet is 12 flits long (containing a cache line and a 4-flit header), while the smallest
packet is 4 flits long.

Figure 6.16a presents the throughput-latency graphs for a 64 processor 8 X8, mesh-connected
network under the T, workload. In wormhole switching with single-flit buffers, the network
saturates far before the full network bandwidth is exhausted. An increase in the NIC buffer size
from a 1 flit to 3 flits results in a much improved performance with the maximum achievable

throughput increasing by more than 100%. This is because the maximum number of links a

88 CHAPTER 6. SWITCHING, BUFFER MANAGEMENT, AND FLOW-CONTROL

900 ; ; o — > 3000 ;
1 Flit —-— i ;
| 9 Flits -~ / ; A
800 1CL = j A 4 2500
4 CL —x i i ,g,’\
700 16 CL -»-- i o o]
. 64 CL -*-- / e
@ 256 CL ~o-- i PoF geooe
< 600 | / g]2
> F N >
< a4 21500
3 500 | f A 12
c ; 2 S c
2 A e 2
/ o/
S a00 | VR 1 S1000
300 ¢ e 1 500
200 el g
| el ! ! ! ! 0 !
0.05 0.1 0.15 0.2 0.25 0.3 0.001 0.01
Throughput (requests/cycle) Request Rate

Figure 6.17: Performance impact of NIC buffer sizes on a 64 processor 8 x 8, 2-dimensional
mesh connected system with 128-byte cache lines under the T'form workload. (a) Throughput-
latency and (b) latency versus request rate curves are shown.

blocked packet can occupy is greatly reduced; with 3-flit NIC buffers a packet can occupy at
most 3 links. An one CL NIC buffer size (12 flits) results in an another 20% improvement in
the maximum achievable throughput. However, further increases in NIC buffer size result in
diminishing returns, with only about a 15% increase in the maximum achievable throughput
for a 256 CL NIC buffer size. A 3-flit NIC buffer size (one-fourth of a CL) is therefore a good
compromise considering buffer space requirements. The latency curves presented in Figure 6.16b

further strengthen our case for 3-flit NIC buffers.

We observe a similar trend for larger cache lines. Figure 6.17 depicts the throughput-latency
and latency curves for systems with 128-byte cache lines, where a packet can be as large as 36
flits. In this case, we consider buffer sizes of 1 flit, 9 flits, and 1 CL (36 flits) to 256 CL. We can
see from the performance curves that 9-flit buffers (one-fourth of a CL) are a good compromise

considering buffer space requirements.

For the Tj,. workload, the trend is very similar except that the increase in the maximum

achievable throughput with the increase in NIC buffer size is relatively small (not shown).

The total buffer space requirements for mesh routers with different NIC buffer sizes are
presented in Table 6.2. We conclude that while a single flit NIC buffer is a poor choice in terms
of performance, a multiple cache line size buffer results in large buffer space requirements.
A NIC buffer size that lies between a single flit and a single cache line is a good compromise
between performance and buffer space requirement. We choose flit buffers one-fourth the size of
a cache line for the purpose of requiring the same amount of memory per router as hierarchical-

ring NICs with 1 CL ring buffers (see Table 4.1).

0.1

6.5. BUFFER MANAGEMENT IN DIRECT NETWORKS &9

VCs per | Cache NIC memory

Physical | line requirements
Channel | size | 1-flit | 1/4 CL | 1/2 CL 1 CL 4 CL 16 CL
Hierarchical 328 328 - - 968 384B 1.5 KB
Rings 2 64B | 32B - - 160B 6408 2.5KB
128B | 32B - - 288B 1.125KB | 4.5 KB
Bidirectional 328 328 - 968 1928 7688 3KB
Rings 2 64B | 32B - 160KB | 320KB 1.25KB | 5KB
128B | 32B - 288B 5768 2.25KB | 9KB
Meshes & 32B | 32B 96B - 384B 1.5KB 6KB
Tori 2 64B | 32B 160B - 6408 2.5KB 10KB
128B | 32B 288B - 1.125KB | 4.5KB 18KB
Meshes 32B 16B 418B - 192B 7688 3KB
1 64B 16B S0B - 320B 1.25KB | 5KB
128B | 16B 144B - 5768 2.25KB | 9KB

Table 6.2: A comparison of NIC buffer memory requirements.

6.5.2 Wormhole Switched Tori Networks

Torus-connected systems exhibit similar characteristics as mesh-connected systems with respect
to NIC buffer sizes. Figure 6.18 presents the throughput-latency and latency versus request rate
curves for a 64 processor 8 X 8, torus system with 32-byte cache lines for different NIC buffer
sizes. The curves are similar to their mesh counterparts, with a 3-flit NIC buffer size (one-
fourth of a CL) being a good compromise between performance and buffer space requirements.
However, the maximum achievable throughput in the torus is about 40% higher than in a
comparable mesh (for 3-flit buffers). The improved throughput is partly due to the reduced
network diameter and partly due to the existence of two virtual channels per physical channel.
Even though the virtual channels are used for deadlock free routing, they result in reduced

contention for output links in routers, thus resulting in better link utilization.

6.5.3 Wormbhole Switched Bidirectional Rings

We consider wormhole switched bidirectional rings with two virtual channels per physical chan-
nel. Under the assumption of constant pin constraints, we choose a phit size of 64 bits for
bidirectional rings, which is twice the size of 32 bits considered for mesh/torus networks.* The
throughput-latency curves for a 64 processor bidirectional ring show a trend similar to the other

systems for different NIC buffer sizes as illustrated in Figure 6.19. We see a 3-flit buffer size

4This follows from the fact that a bidirectional network has 2 input and 2 output links, as opposed to 4 each
in a torus/mesh network.

90 CHAPTER 6. SWITCHING, BUFFER MANAGEMENT, AND FLOW-CONTROL

250 T T T T T T T’. T "Y é 700 T
1Flit — | Py 1 Flit —=—
3Flits —— | b 3Flits —~+— |
1CL o | P 600 1CL -5
200 4 CL - i 4 i 4CL -~
16CL = | LI 500 16 CL ~em
7 256 CL x| ;K — 256 CL ---
0 ! 4 0
Q ks 7 Q
3 Q. 400 1
e B e
> 150 ¥ 1 = A
o o 300 - R
T IS .8
| — s
200 - R
100 R
T a b 1
e () 100 (b)
50 1 1 1 1 1 1 1 1 1 1 O 1
0O 01 02 03 04 05 06 07 08 09 1 11 0.001 0.01 0.1
Throughput (requests/cycle) Request Rate

Figure 6.18: Performance impact of NIC buffer sizes on a 64 processor 8 x 8, 2-dimensional
torus system with 32-byte cache lines under Tyuiform workload. (a) Throughput-latency and
(b) latency versus request rate curves are shown.

500 1600 :
; 1 Flit ——
450 | /1 1400 - 1
400 1200]
% 350 1 &
3 81000 |
o o
3300 13
> ~. 800 1
= 250 7 <
— +— 600 4
S 200 15
150 | 400 1
100 1 200 ®)
50 1 1 1 1 1 1 1 O 1
005 01 015 02 025 03 035 04 045 0.001 0.01 0.1

Throughput (requests/cycle) Request Rate

Figure 6.19: Performance impact of NIC buffer sizes on a 64 processor bidirectional ring system
with 32-byte cache lines under Tyiform workload. (a) Throughput-latency and (b) latency
versus request rate curves are shown.

(one-half of a CL) as a good trade-off between performance and buffer space requirement.

Chapter Summary

In this chapter, we presented the results of a performance analysis of different cut-through
switching techniques and the impact of buffer size on hierarchical-ring, mesh, torus, and
bidirectional-ring connected systems. These results have been derived under the assumption
that there is no distinction between a flit and a phit. We summarize the main conclusions from

this chapter as follows:

6.5. BUFFER MANAGEMENT IN DIRECT NETWORKS 91

e In hierarchical-ring networks, buffered wormhole switching and non-blocking cell switching
perform better than other switching techniques considered. While the buffered wormhole
switching requires smaller IRI buffers when compared to cell switching, it requires cache
line sized ring buffers and two virtual channels per physical channel for deadlock free

routing.

e In direct networks, buffered wormhole switching is preferred due to its ability to improve

system throughput significantly without large NIC buffer space requirements.

e A blocking cell switching is an attractive alternative to the blocking wormhole switching

with single-flit buffers.

CHAPTER 7
Routing

Deadlock free routing techniques in 2-dimensional direct networks have been studied thor-
oughly [18, 24, 25, 26] and therefore we only briefly present them here. For 2-dimensional
meshes, dimension-ordered routing is a minimal and deterministic routing algorithm. It routes
a packet along the lowest dimension first for as far it must go, before routing it on the next
higher dimension. Dimension-ordered routing guarantees deadlock freedom in 2-dimensional
meshes by enforcing a strict monotonic order on the dimensions traversed. For 2-dimensional
tori and bidirectional rings, dimension-ordered routing is still minimal and deterministic, but
not deadlock free. In this case, a deadlock would involve wraparound channels within a given
dimension. Such deadlock cycles in a single dimension can be broken by splitting each physical
channel along a cycle into two virtual channels and restricting the assignment of packets to
these channels during routing (see Chapter 2).

In this chapter, we focus on deadlock free deterministic routing in hierarchical-ring connected
networks. A wormhole switched hierarchical-ring network is susceptible to deadlock as any
wormhole switched direct networks. Because multiple rings are connected by a hierarchy, there
are several ways deadlock can occur. The deadlock could involve single rings and/or multiple
rings. We present in this chapter a novel routing technique that prevents deadlock in wormhole

switched hierarchical-ring networks.

7.1 Deterministic Routing in Hierarchical-ring Networks

Figure 7.1 presents the two possible ways deadlock can occur in a two-level hierarchical-ring
network. The deadlock can occur in individual rings (including the global ring). These cycles are
labeled from 1 to 4 in the figure. The other way deadlock can arise is from cyclic dependencies
of channel resources that span the hierarchy. One such deadlock cycle (label 5) is shown in the
figure. Preventing such multiple deadlock cycles in a hierarchy of rings makes the design of a

deadlock free routing algorithm non-trivial. Figure 7.3 presents the channel dependency graph

92

7.1. DETERMINISTIC ROUTING IN HIERARCHICAL-RING NETWORKS 93

PM PM

Deadlock involving
2-level rings

Deadlock in
single rings

Figure 7.1: Deadlock cycles in a 2-level wormhole switched hierarchical-ring network.

for a 2-level hierarchical-ring network that clearly shows the different deadlock cycles.

Dally and Seitz proposed a necessary and sufficient condition for minimal deterministic
routing in wormhole switched networks to be deadlock-free [18]. They state that a deterministic
routing function is deadlock free if and only if there are no cycles in the channel dependency
graph (see Chapter 2). For a single unidirectional ring, we can break such cycles by splitting
each physical channel along a cycle into a group of virtual channels. We number the nodes and
corresponding output channels of a single ring as ng, ny, ..., 0y, and cg, €1,, ¢, respectively,
and pick channel ¢p as the dividing channel. We then split each channel into high virtual
channels, ¢1g, €11, .., €1m, and low virtual channels, cqg, co1, -+, Com- If the routing algorithm is
such that the packets at a node numbered less than their destination node are routed on the
high channels, and packets at a node numbered greater than their destination node are routed
on the low channels, then such an algorithm is proven to be deadlock-free.

To extend the deadlock-free routing algorithm from a single ring to a hierarchy of rings, we
again split each physical channel into low and high virtual channels. We number the network
nodes (NICs) as nicg, nicy, ..., nic,,, where m is the total number of nodes, starting from local
ring 0. The IRIs are numbered separately as irig, ¢riq, ..., iri, starting from the IRI associated
with local ring 0. Because the deadlock cycles can involve both single and multiple rings, we
pick a dividing channel in each local and each higher-level ring. This is shown in Figure 7.2 for
a 2-level hierarchy. The dividing channel in a local ring is used to break deadlock cycles arising
from the traffic confined to the local ring, while the dividing channel at the higher level ring is
used to break cycles that span the hierarchy.

For packets whose source and destination nodes lie in a same local ring, we use the local

94 CHAPTER 7. RoOUTING

Dividing Channel
nic10
nic4

nic5 nicll

-~ _—

Local Ring 1
irl

Local Ring 2 nico

nicé

iri2

nic7
nic8

Dividing Channel
g irio \ Dividing Channels
nic3

Local Ring O

nic2

Figure 7.2: Dividing channels and node numbers for deadlock free routing in a 2-level wormhole
switched hierarchical-ring network.

Figure 7.3: Channel dependency graph for a 2-level wormhole switched hierarchical-ring network

with deterministic, minimal routing. The graph shows various deadlock cycles in such a routing
algorithm.

dividing channel to break deadlock cycles in exactly the same way as in a single ring. For
packets, whose source and destination nodes lie in different rings, the dividing channel of the
highest level ring the packet must travel to is used to break the deadlock cycle. A packet
arriving at a NIC in the same ring as the source node (source ring) of the packet is routed on
a high virtual channel if the destination node number is higher than the source node number;
otherwise it is routed on the low virtual channel. A packet arriving at an IRI, is routed

on the high virtual channel if the destination IRI (the IRI that connects to the destination

7.1. DETERMINISTIC ROUTING IN HIERARCHICAL-RING NETWORKS 95

05 04 c010 c09 c19
c011
06 i01 c08 cl8
i02 ////
c07 102
i0 i00

c03 i10 c13
c02 cl0 cl2

c0l cl1
() (b)

Figure 7.4: Channel dependency graphs for a 2-level wormhole switched hierarchical-ring net-
work with deadlock-free routing using virtual channels. Channel dependency graphs are pre-
sented for (a) low and (b) high virtual channels.

ring of the packets) is higher than the source IRI; otherwise it is routed on the low virtual
channel. Figure 7.4 shows the channel dependency graph of the routing algorithm for low and
high virtual channels. The channels with lighter shades are restricted by our routing algorithm.
Since neither of the graphs has cycles, we conclude that the routing algorithm prevents deadlock

in wormhole switched hierarchical-ring networks.

Chapter Summary

A wormbhole switched hierarchical-ring network is susceptible to deadlock. We presented in this
chapter a deadlock free routing technique for wormhole switched hierarchical-ring network that

extends Dally and Seitz’s deadlock free routing in single rings.

CHAPTER 8

Prioritized Direct Networks: Design and
Performance

Adding priorities to direct interconnection networks (of shared-memory multiprocessor systems)
can lead to a number of advantages. It can reduce average latencies and improve system
throughput. It can be used to support multiple classes of traffic, such as regular, best-effort
traffic and multimedia, time-constrained traffic. It can lead to much lower variance in latency
and hence improved system predictability, which is important for (soft) real-time systems.

Adding priorities to direct networks is surprisingly simple, and involves three main com-
ponents: (i) priority-based link arbitration, (¢7) priority inheritance, and (7:¢) dynamic virtual
channels. With priority-based link arbitration, if two or more packets compete for the same
idle link, the link will be assigned to the higher priority packet (as opposed to assigning in a
round-robin or in a FIFO manner). There are many ways to assign priority to packets. For
instance, we can assign priority to a packet based on its age, transaction type, or size.

This simple priority scheme can, however, result in priority inversion, where a lower priority
packet may block a higher priority packet that may come behind it in a queue. With priority
inheritance [70], a blocking lower priority packet at the head of a queue temporarily inherits
the priority of the higher-priority packet behind it. This allows the lower priority packet to
obtain the desired link sooner, thereby reducing the queuing delays for higher priority packets.
Though priority inheritance was originally introduced to prevent priority inversions of real-time
tasks in operating systems, we are unaware of any work that has applied priority inheritance
to multiprocessor networks.

Finally, we introduce the concept of dynamic virtual channels that allows the allocation of
virtual channels dynamically [75]. We allocate new virtual channel buffers for high priority
packets that would otherwise unnecessarily be blocked.

In this chapter, we show how a connectionless wormhole switched two-dimensional mesh
connected shared-memory multiprocessor network can be extended to support priorities of
network packets, and we analyze its performance. Through flit-level simulations, we show that

such prioritized networks can significantly reduce latency and improve system throughput, how

96

8.1. THE PROBLEM 97

they can support multiple classes of traffic, and how they can improve system predictability.

Although prioritized networks have been studied before [52, 78] they have only been consid-
ered for implementing real-time multiprocessor networks and not for improving system through-
put. Our work is also different from this work in that we do not establish virtual connections
between end-to-end nodes but use a connectionless network that do not require a connection
set-up to reserve link bandwidth and buffer space for routing time-constrained traffic. In other
related earlier work [77], Rexford et. al. propose virtual networks for routing different classes
of traffic. Our approach is different in that we use demand driven dynamic virtual channels as
opposed to static virtual channels and employ priority inheritance. By dynamically allocating
virtual channel buffers from a common pool, we utilize buffer resources more efficiently (when
compared to utilization of static virtual channel buffers) and by allowing the number of virtual
channels in a physical channel to vary (depending on demand), we improve system through-
put and reduce average transaction latencies when compared to the case with static virtual

channels.

8.1 The Problem

In this section, we illustrate one of the applications of prioritized networks, namely to sup-
port two classes of traflic. Multiprocessor systems are increasingly being used for multimedia
applications, while still serving as data and computation engines. In the backplane networks
of such systems, a variety of traflic types will co-exist, ranging from traffic of parallel compu-
tations, which we refer to as best-effort traffic, to the traffic for multimedia audio and video
communications, which we refer to as time-constrained traffic. These two types of traffic have
quite different traffic characteristics and performance requirements. Time-constrained traffic
often requires a bound on worst-case latency, while a good average-case behavior will suffice for
the best-effort traffic arising from parallel computations. Bounds on worst-case latency could
be provided if the network is connection oriented and resources can be reserved in advance
during a connection set-up phase. In addition to the overhead of setting-up a connection, each
reservation decreases the available link bandwidth and buffer resources for regular traffic. Since
reservation based schemes are conservative, they reserve more network resources than required,

often far more than needed on average.

A connectionless network, in contrast, allows better utilization of network resources among
several classes of traffic. Although a connectionless network may not be able to guarantee

bounds on worst-case latency, we will show it can be effective in significantly reducing worst-

98 CHAPTER 8. PRIORITIZED DIRECT NETWORKS: DESIGN AND PERFORMANCE

3500 Worst-case Latency - Non-prioritized Network —— |
Worst-case Latency - Prioritized Network ~=—

E Ave Latency - Non-prioritized Network -=--
%3000 s Ave Latency - Prioritized Network -x-- -
o
£2500 g
5
32000 + 1
o
Q
(4] L i
§1500 %
31000 | % |
c -
PAEE
| L D 4
500 | e o
0 R e
0.001 0.01 0.1

Request Rate

Figure 8.1: Worst-case and average communication latencies for time-constrained traffic in a
2D 8 x 8 mesh-connected multiprocessor network. Worst-case latency is shown both for round-
robin link arbitration and with dynamic virtual channels. The errorbars show the variances on
these values.

case latency bounds and therefore can be used in conjunction with jitter! control techniques at
the end nodes [48]. As such, priority based interconnection networks are suitable for at least a
subclass of multimedia applications, and they certainly can be used to improve the behavior of
interactive applications [11].

Wormbhole routed networks with round-robin link arbitration are used in many of todays
multiprocessor routers, and they deliver good average performance. However, worst-case com-
munication latency can be very high and unpredictable as the network load increases. Figure 8.1
illustrates this. Assuming a workload described in a later section (containing time-constrained
and best-effort traffic), the bottom curve plots the average communication latency of time-
constrained requests as a function of load rate of best-effort requests for a 2-dimensional 8 x 8
mesh network. The top curve plots the worst-case latency of the time-constrained traffic for
the same workload. We used batch-mean analysis method [59] where the average latency is
computed as the grand average of all batch averages and the worst-case latency is computed as
the average of all batch worst-case latencies. The errorbars show the variances on these values.
For the worst-case latency, the top end of the errorbars represents the global worst-case (over all
batches), while the bottom end represents the global best (over all batches) of the worst-cases.

It is apparent that the worst-case latencies and their variance increase significantly as the

load increases. The curve in the middle plots the worst-case latencies of time-constrained traffic

!Unpredictability in the worst-case latency of time-constrained traffic leads to delay jitter defined as the
variance in latency encountered during individual transactions.

8.2. STATIC VIRTUAL CHANNELS 99

for the same workload, but for a network that uses the techniques proposed in this Chapter. It
is clear from this curve that the techniques are effective in reducing worst-case latency and its
variance without the need for bandwidth reservation. While our goal is to reduce the worst-
case latency of time-constrained packets, we wish to do so without unnecessarily penalizing
best-effort traffic. By routing time-constrained traffic mainly through dynamically assigned
channels, we reserve a set of primary virtual channels for best-effort traffic. This prevents
performance deterioration of best-effort traffic even when there is a moderately high level of

real-time traffic.

8.2 Static Virtual Channels

A network with virtual channels organizes the flit buffers associated with each physical channel
into several virtual channels. Virtual channels increase physical channel utilization, and thus
network throughput, because any blocked packet that spans several nodes occupies only one
virtual channel, and can be bypassed using any of the other virtual channels associated with a
physical channel. The virtual channel assignment is made at the packet level, while the physical
channel is allocated at the flit level. The virtual channels associated with a physical channel
arbitrate for physical channel bandwidth on a flit-by-flit basis. With static virtual channels,
the number of virtual channels per physical channel remains constant, whereas with dynamic
virtual channels (which we describe in the next section), they vary over time. Figure 8.2a shows
a mesh NIC with two virtual channels per physical channel; the number of virtual channels in
this case is static and will not vary. Figure 8.2b shows a NIC with dynamic virtual channels;
the number of virtual channels per physical channel will vary over time, with the minimum
number per physical channel being 1.

At the receiving side of a node, the routing algorithm first assigns an incoming packet to
an output physical channel and then to a virtual channel. When virtual channels are used for
deadlock free routing, then the choice of virtual channel is dictated by the routing algorithm;
Otherwise, another allocation scheme is used or any free virtual channel associated with the
physical channel is chosen.

Hardware support for static virtual channels require status registers at the transmitting and
the receiving side of a node [19, 22]. The transmitting node contains a status register for each
virtual channel on the corresponding receiving node. The status register normally includes a
bit to indicate whether the virtual channel is active or idle and a count of the number of free
virtual channel buffers. The active/idle bit is used to prevent interleaving of the flits of different

packets. The receiving node contains a status register for each virtual channel that contains

100 CHAPTER 8. PRIORITIZED DIRECT NETWORKS: DESIGN AND PERFORMANCE

Network Network Network Network Network
Physical Input Physical Physical Network Physical
Input Buffers Output Input Input Output
Channels Channels Channels Buffers Channels

= - —ft=1- -

Switch Switch

St . = -

Static / / Processor

Virtual Processor (F;rotcefsor Dynarfic 110 grotce?sor

Channels gﬁ;}md Channel Virtual Channel Channel

Channels
Processor = Processor Processor [__] Processor
Input Ouput Input | Output
Buffers — Buffers Buffers Buffers
- -

Processing Module

Processing Module

@ (b)

Figure 8.2: Mesh Network Interface Controller with (a) static and (b) dynamic virtual channels.

information such as the state of the channel and optionally, input and output virtual channel
pointers. The status register storage requirements per physical channel is given by the following

equation,

Sy = N(log(Bye) + 1) + N (8.1)

where the first and second term represent the storage requirement at the transmitting and
receiving side of a node, respectively. B,. is the number of flit buffers per virtual channel, and
N is the number of virtual channels per physical channel. For N = 4, and B,. = 4 flits, the

status buffer storage requirement is 16 bits.

Adding virtual channels requires a few additional wires in the physical channel to identify
the virtual channel for each transmitted packet in the forward direction and to indicate the
availability of buffers to the transmitting node in the reverse direction. The virtual channel
buffer counter at the transmitting side is incremented each time a flit is transmitted to the
neighboring node and decremented when the neighboring node signals that it has forwarded a
flit and thus freed up buffer storage by back propagating a freed signal along with the virtual
channel identification. The extra channel width overhead for supporting virtual channels in
a network with 32-bit phits with 4 static virtual channels per physical channel is: 2 bits to
transmit the virtual channel id in the forward path, 2 bits to transmit the virtual channel id in

the reverse path, and a freed line.

8.3. DyNaAMIC VIRTUAL CHANNELS 101

8.3 Dynamic Virtual Channels

In this section, we propose dynamic virtual channels. Dynamic virtual channels are similar
to static virtual channels in that they are multiplexed over a single physical channel and each
of these dynamic channels have independent FIFO buffers of the same size. However, unlike
static virtual channels, where a fixed number of virtual channels are multiplexed over a physical
channel, virtual channels, in this case, are allocated dynamically from a common pool. In our
case, a new virtual channel is allocated dynamically, if possible, for a high priority packet that
would otherwise unnecessarily block. The number of dynamic channels allocated per physical
channel is thus flexible and varies depending on the contention for the physical channel. Routers
using this dynamic virtual channel allocation therefore prevent head-of-line blocking effectively.
In head-of-line blocking, a packet waiting for a blocked link is itself blocking another packet
behind it whose target output link is free.

We assume that the total number of virtual channels that can be allocated in a NIC is
constant. Initially there is one virtual channel per physical channel, which we refer to as VC-0.
A virtual channel is allocated for a packet by the control logic at the transmitting side of a
link, which transmits the dynamic virtual channel number along with the packet (similar to
the static virtual channel allocation case). At the receiving side, if the dynamic channel for
an arriving packet does not already exist, then it is allocated to the physical channel of the
incoming packet. A dynamic channel, once allocated, is released when it contains no more data.

Dynamic virtual channels can be implemented with a simple extension to the hardware used
to support static virtual channels. At the receiving side of a node, when a packet arrives, it
is buffered in the specified virtual channel buffer (if the virtual channel has been allocated to
the physical channel). When the specified virtual channel does not exist, it will be allocated
from a common buffer pool. In the rare case where there are no free common pool buffers,? the
incoming packet cannot be assigned the specified virtual channel and the packet (header flit)
is dropped and a drop signal (back to the transmitting node) is asserted. The transmitting
node then retransmits the header flit when the drop signal is deasserted. This requires the
transmitting node to keep a copy of the header flit when a dynamic virtual channel is requested
so that it can later be retransmitted if necessary. This has no performance impact on the
system, as it is equivalent to blocking a flit for an extra cycle.

Figure 8.3 presents the hardware required for implementing dynamic virtual channel flow

control for one physical channel between a transmitting and a receiving node. Similar to the

2This can happen when two or more arriving packets at different physical channels require new virtual channels
at the same time and only a subset of requests can be granted.

102 CHAPTER 8. PRIORITIZED DIRECT NETWORKS: DESIGN AND PERFORMANCE

Transmitting Node Receiving Node

Dynamit VCs

Physical channel 0
Status registers vel m 001 y
associated with

physical channel 0 |,,.o E XXX

Allocation bit 7 \
) . Output phyisical channel
ldle/Active bit allocated @ this VC in
the receiviTg node
Allocation bit / XOutput VC pointer (optional)
Idle/Active bit

Input VC pointer (optional)

Buffer count

Figure 8.3: Hardware support for dynamic virtual channel flow control is illustrated for one
physical channel between a transmitting and a receiving node.

static virtual channel case, the transmitting node contains a status register for each virtual
channel on the receiving side. The number of such status registers is equal to the maximum
number of possible dynamic virtual channels. The status register contains an allocation bit to
identify whether the virtual channel has been allocated to a physical channel and, if allocated,
a bit to indicate whether it is idle or active, and a count of the number of free buffers associated
with that virtual channel. In addition to the above, to avoid head-of-line blocking, 3 bits are
required to store the physical channel number assigned to the packet at the head of virtual
channel buffer in the receiving node. The receiving side contains a status register for each
virtual channel; the register contains an allocation bit and an idle/active bit. The status

register storage requirement per physical channel is therefore given by,
Spc = Nmax (log(Bvc) + 24 3) +2- Nmax (82)

where the first and second term represents the storage requirement at the transmitting and
receiving side of a node, respectively, B,. is the number of flit buffers per dynamic virtual
channel, and N, is the number of maximum virtual channels that can be assigned. For
Npar = 4, and B, = 4 flits, the status buffer storage requirement is 36 bits.

With respect to channel width overhead, similar to the static virtual channel case, we need
to identify the virtual channel number both in the forward direction that is transmitted along

with the packet and in the reverse direction that is transmitted along with the freed signal.

8.4. PRIORITIZED DIRECT NETWORKS 103

In addition, an extra wire is required for the drop signal that is asserted when a header flit is

dropped.

8.4 Prioritized Direct Networks

In our implementation of a prioritized direct network, initially one virtual channel, VC-0, is
statically assigned to each physical channel. In addition to the VC-0s, there is a pool of virtual
channels that are allocated to physical channels dynamically. Low-priority packets may only use
VC-0s, but high priority packets, may use VC-0 or, if they would otherwise block, a dynamically
assigned channel. We use a three step process to allocate output links. Output links are first
allocated to packets buffered in dynamic virtual channels excluding VC-0s, as all these packets
have high priority. Among competing higher priority requests, we allocate the output link to the
oldest packet. Second, we assign output links to high priority packets, if any, at the head of the
processor input queue. Finally, lower priority packets in the VC-0s and at the processor input
queues are assigned output links in that order. Since we have independent virtual channels for
time-constrained traffic in the network, we need to apply priority inheritance only at processor
input queues, as that is the only place where priority inversion can occur.

In this section, we show how effective priority networks are in reducing latency, improving
throughput, and improving system predictability by reducing worst-case latency. We do this
using detailed flit-level simulations of a 2-dimensional mesh-connected network, extended with
priority-based link arbitration, priority inheritance, and dynamic virtual channels. Although
our evaluations are for two priority levels, a high and a low priority level, it could be extended
to multiple priority levels. We also show that dynamic virtual channels can be used to support
multiple classes of traffic. For this purpose, we consider two traffic classes, namely best-effort
traffic and time-constrained traffic. We show that the priority network is effective in reducing
the worst-case communication latency of time-constrained traffic, while not penalizing best-

effort traffic.

8.4.1 Priority Traffic for Traditional Applications

Even with no time-constrained traffic, it can make sense to assign priorities to different classes
of packets if it benefits that class or the traffic overall. For example, in a shared-memory
multiprocessor, one can consider giving a higher priority to large packets containing data or to
shorter packets containing requests or acknowledgments. Large packets consume more network
resources (e.g., links and buffers) than short packets, and when a large packet is blocked in

the network, it will unnecessarily block other packets, thereby reducing system throughput.

104 CHAPTER 8. PRIORITIZED DIRECT NETWORKS: DESIGN AND PERFORMANCE

350

Base ——
High Priority Write Trans -—+-— o
High Priority Short Pkts -5 P ox) i
High Priority Long Pkts i
High Priority Read Trans -=-- 1

N w

n o

o o
T

Latency (cycles)
N
o
o

50 Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Throughput (requests/cycle)

Figure 8.4: Throughput versus latency curves for a 64 processor 8 x 8 wormhole switched
prioritized network. Curves are drawn for the base case for non-prioritized network with no
dynamic channels (for comparison purposes) and cases where higher priority is given based on
packet size (longer or shorter) and transaction type (read or write).

By giving priority to large packets, they will be removed from the network sooner, thereby
reducing the number of packets they can block. On the other hand, by giving priority to short
packets, we prevent them from being unnecessarily blocked by large packets. It is also possible

to prioritize packets according to transaction type i.e., read and write transactions.

Figure 8.4 shows how a prioritized network can improve system performance. It presents the
throughput-latency curves for five different cases: the base case is for non-prioritized networks
with no dynamic or static channels; for the other curves priority is given to large packets, short
packets, read transactions, and write transactions. This is for a 64 processor 8 x 8, mesh-
connected system with 32-byte cache lines and T, wWorkload. For the prioritized networks,
we assume a virtual channel buffer size of 3 flits and that the maximum number of dynamic
virtual channels is 4. For the base case, the network input buffer is twice the size (6 flits)
compared to the prioritized network; under the assumption of equal memory resources. As can
be seen from the figure, the highest throughput is achieved when read transactions (i.e., read
request and read response packets) are given high priority. Also, giving priority to large packets
results in better performance than giving priority to short packets, but giving priority for write
transactions results in worse performance than in the base case. A possible explanation for this
is that since the number of read transactions is far more than the number of write transactions,
giving priority to read transactions will result in a higher dynamic channel buffer utilization

when compared to high-priority write transactions.

8.4. PRIORITIZED DIRECT NETWORKS 105

350 T

Base ——
Base - Static Channels --+---
High Priority Read Trans -=--

N w

n o

o o
T

Latency (cycles)
N
o
o

50 Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Throughput (requests/cycle)

Figure 8.5: Throughput versus latency curves for a 64 processor 8 x 8 wormhole switched
network. Curves are drawn for the base case for non-prioritized network with no dynamic
or static virtual channels (for comparison purposes), for the non-prioritized network with two
virtual channels per physical channel, and for the prioritized network with high priority read
transactions.

To show that a prioritized network with dynamic virtual channels performs better than a
non-prioritized network with the same number of static virtual channels, Figure 8.5 compares
the throughput-latency curves for the prioritized network with high priority read transactions
with a non-prioritized network with two static virtual channels per physical channel (requiring
the same memory resources (for buffers) as a prioritized network with four dynamic virtual
channels). In the latter case, we use static virtual channels to improve system throughput by
preventing head-of-line blocking.

To measure the impact of prioritized networks on the predictability of the system, we plot
the worst-case latency in Figure 8.6 for both the non-prioritized network and for the prioritized
variant with high priority for read transactions. For comparison purposes we also present the
average latency curves. We used the batch-mean analysis method, where the average latency
is computed as the grand average of all batch averages and the worst-case latency is computed
as the average of all batch worst-case latencies. The errorbars on the worst-case latencies show
the global worst-case over all batches (the top end) and the global best case over all batches
(the bottom end). It is obvious from the plot that although the average latency is small, the
worst-case latency can be as high as a factor 50 higher. The unpredictability in the worst-case
latency values shown by the length of the errorbars leads to jitter or unpredictable variance in
individual transaction latency. The prioritized network substantially reduces the average worst-

case latency and the variance by more than a factor of 2, thereby improving the predictability

106 CHAPTER 8. PRIORITIZED DIRECT NETWORKS: DESIGN AND PERFORMANCE

10000 ‘
9000 - Worst-case Latency - Base —— |
Worst-case Latency - Pri Read Trans +=—
8000 | Average Latency - Base -=-- |
Average Latency - Pri Read Trans -x--
7000 r - B 4
5 6000 | 1
> =
8
=.5000 - 1
[&] /
c /
24000 1
[§
— 4
3000 r I 4
2000 | A -
1000 r ;% ?]
e D S
0.001 0.01 0.1

Request Rate

Figure 8.6: Worst-case latency versus request rate for a 64 processor 8 x 8 wormhole switched
prioritized network. Curves are drawn for the base case for non-prioritized network with no
dynamic channels and for the case where read transaction is given higher priority. The worst-
case latency is the average over all batches with the absolute maximum and minimum values
are shown as errorbars.

of the system.

When priority is given to short packets as opposed to read transactions, then there is no
reduction either in the average worst-case latency or in their variance. In fact we see a higher
worst-case latency in this case than the base case, as shown in Figure 8.7. We can conclude
that although dynamic channels can improve system predictability it is sensitive to the priority

scheme used.

8.4.2 Time-constrained Traffic

Two classes of uniform traffic pattern

Here, we consider a mix of two classes of traffic: (i) best-effort traffic with uniformly distributed
destinations and an exponentially distributed inter-arrival time between requests, and (i¢) time-
constrained traffic with destinations uniformly distributed, but with a fixed inter-arrival time
between requests, as seen in multiprocessor video servers [61]. In our simulations, a processor is
allowed to have 2 outstanding best-effort requests and 2 outstanding time-constrained requests
for a total of 4 outstanding requests, before it is required to block for a reply.® For best-effort

traffic, we assume 32-byte cache lines are being transferred. The batch termination criterion

°In this model, the time-constrained and best-effort requests are interleaved and can be assumed to be
equivalent to having a main processor and a co-processor with the former issuing best-effort requests while the
latter issuing time-constrained requests independent of each other.

8.4. PRIORITIZED DIRECT NETWORKS 107

16000 ‘
Worst-case Latency - Base ——
14000 - Worst-case Latency - Pri Write Trans +~=— |
Average Latency - Base -=--
Average Latency - Pri Write Trans -x--

12000 1
310000 | 1
S
o)
= 8000 r 1
[&]

g
% 6000 r . 1
- L
4000 + 1
2000 |
» ,@é"
0 e I AN
0.001 0.01 0.1

Request Rate

Figure 8.7: Worst-case latency versus request rate for a 64 processor 8 x 8 wormhole switched
prioritized network. Curves are drawn for the base case for non-prioritized network with no
dynamic channels and for the case where shorter packets are given priority.

is that all processors have to complete both a minimum number of best-effort requests and a

minimum number of time-constrained requests.

Our measures of performance are the worst-case and the average round-trip access latency
for time-constrained and best-effort requests, respectively. We assume a total of 4 dynamic
channels and that the network input buffer size is 3 flits. In all our experiments we vary the
request rate of best-effort traffic and measure the worst-case latency of time-constrained requests
and the average latency of best-effort requests. The inter-arrival time of time-constrained
requests remains constant at 1 in 1000 processor cycles. A 2-dimensional 64 processor 8 x 8,

wormhole switched mesh-connected system was simulated for this experiment.

Figure 8.8a presents the average over all batches of worst-case communication latency of
time-constrained requests with errorbars indicating the absolute maximum and minimum values
over all batches. There are two such curves, the top one is for the base case of a non-prioritized
network with no dynamic channels, whereas the bottom one is for a prioritized network with 4
dynamic channels per node. The latter gives priority to time-constrained traffic. It is clear that
a prioritized network is effective in reducing the worst latency of time-constrained requests by
more than 50% and in reducing the variance in the latency. In particular, the prioritized net-
work is very effective in reducing the absolute maximum worst-case latency of time-constrained

requests, thereby improving the predictability of the network.

Figure 8.8b presents the average latency of the best-effort requests as a function of best-

effort request rate. The graph shows that even though we give priority to time-constrained

108 CHAPTER 8. PRIORITIZED DIRECT NETWORKS: DESIGN AND PERFORMANCE

WC latency, time-constrained traffic (cycles)

3000 T 240 T =
ioriti Base o Base ——
o500 | Prioritized Network —=— | é 220 | Pprioritized Network ——— 1
T 200]
2000 | 1%
= 180 |
1500 % 1 9 160 1
3 [%]
e S
= 140 1
1000 | } 13
) e 9 -
500 | ,}ﬂ% bt % % |3 0
,,,,,,,,,,,, Lk @) 2 100 ©
0 L 80 L
0.001 0.01 0.1 0.001 0.01
Request Rate Request Rate

Figure 8.8: (a) Worst-case latency of time-constrained requests and (b) average latency of
best-effort requests as a function of best-effort request rate for an 8 x 8 64 processor wormhole
switched prioritized network. Curves are drawn for the base case of a non-prioritized network
with no dynamic channels and for the case with dynamic channels, where time-constrained
packets are given priority.

requests, the average latency of best-effort requests does not get significantly worse. This is
mainly because now there is now less contention for VC-0s that are used to route best-effort

traffic.

Non-uniform best-effort traffic pattern

Here, we consider non-uniform best-effort traffic and study how it affects the worst-case latency
of time-constrained requests. We assume a bit-complement best-effort traffic pattern. The bit-
complement permutation requires a source node (z,y) to communicate with the destination
node (X, — @, Yimar — y), where X100 (Yinas) is the number of nodes in a row (column).
Consequently, all packets must eventually cross both the middle row and middle column, con-
gesting the center of a 2-dimensional mesh network. For time-constrained requests, as before,
we assume uniformly distributed destinations with a constant inter-arrival time.

Figure 8.9a presents the worst-case latency for time-constrained requests for the same net-
work considered in the previous section. The bit-complement traffic pattern significantly affects
the worst-case latency of time-constrained requests in a non-prioritized network as shown with
the upper curve. An important observation is that the worst-case latency grows rapidly with an
increase in best-effort traffic. We observe from the lower curve that a prioritized network can
again be very effective in reducing the worst-case latency of time-constrained requests by an
order of magnitude. Another benefit of the prioritized network with a non-uniform best-effort

memory access pattern, is a significant reduction in the average latency of best-effort requests at

0.1

8.4. PRIORITIZED DIRECT NETWORKS

7 1000 ‘ * w : : 600 :
g ioriti s e @550 F . . Base —— i
2 6000 Prioritized Network 18 Prioritized Network ——
g S 500 | |
£ 5000 1 1 € 450 |]
g S
S 4000 | | E 400 | |
2 T 350 | |
8 3000 | | g
& 8300 | |
® 2000 | % { £ 250
3 S 200 | y]
5 1000 [o @ 1 ¢ o
g ———————— e & & & < 150 A
0 ‘ \ ‘ : : 100 === 1
0.001 0.002 0.003 0004 0.005 0006 0007 0.00 0.01

Request Rate

109

Request Rate

Figure 8.9: (a) Worst-case latency of time-constrained requests and (b) average latency of
best-effort requests as a function of best-effort request rate for an 8 x 8 64 processor wormhole
switched prioritized network. A non-uniform bit complement memory access pattern is used
for best-effort requests. Curves are drawn for the base case of a non-prioritized network with
no dynamic channels and for the case with dynamic channels, where time-constrained packets
are given priority.

high request rates when compared to the non-prioritized network. This is shown in Figure 8.9b
where there is a 25% reduction in the average latency of best-effort requests at a high request

rate of 0.04 when a prioritized network is used.

Chapter Summary

In this chapter, we proposed and evaluated prioritized connectionless shared-memory multipro-
cessor networks. In our implementation of prioritized networks, we used three main components
namely priority-based link arbitration, priority inheritance, and dynamic virtual channels. It
was shown that a prioritized network can significantly reduce average transaction latencies and
improve system throughput when running traditional parallel applications. It was also shown
how a prioritized network could be used to reduce the worst-case latencies of time-constrained
traffic when it co-exists with best-effort traffic. One of the key aspects of the prioritized network
is that they do not increase the average latency of best-effort traffic while they improve that of

time-constrained traffic, independent of the best-effort traffic pattern.

0.1

CHAPTER 9
Conclusion

This dissertation concentrated on performance issues in the design of high-performance shared-
memory multiprocessor networks. In particular we studied low-dimensional direct and hybrid
hierarchical-ring networks. Two-dimensional direct networks are currently popular in research
and commercial environments, whereas hierarchical-ring networks present an interesting alter-
native to direct networks from a performance and practicality point of view. This dissertation

makes the following contributions:

o Comprehensive performance study of shared-memory multiprocessor interconnection net-
works: We believe this study constitutes the first comprehensive performance study of
low-dimensional direct and hierarchical-ring interconnection networks for shared-memory

systems.

o Comparative performance study: We presented a detailed comparative performance eval-
uation of hierarchical-ring, 2D mesh, 2D torus, and bidirectional ring networks under
wormbhole switching using both synthetic workload and program-driven simulations. Un-
der constant pin and memory constraints, it was shown that hierarchical-ring networks
perform better than 2-dimensional direct networks for system sizes of up to 64 processors
at low request rates either when there is high locality in the memory access pattern or for
large cache line sizes. However, 2-dimensional direct networks scale well to large system

sizes and perform better at high request rates.

e Topology: We derived in Chapter 5 several ‘optimal’ topologies for different sized hierarchical-
ring systems using a bottom-up approach. This is important because hierarchical-ring

networks are highly configurable.

o Switching techniques: We studied the performance of various cut-through switching tech-
niques for hierarchical-ring networks under both blocking and non-blocking flow-control

policies. These included wormhole, virtual cut-through, and cell switching techniques.

110

9.1.

FuTure WORK 111

While non-blocking cell switching is a good choice for hierarchical-ring networks, it has
several disadvantages. It requires large buffers to minimize the number of packets dropped
and large non-deterministic timeout values to trigger retransmission of dropped packets.
On the other hand, blocking buffered wormhole switching requires virtual channels to

prevent deadlock although it uses less buffer space.

Buffer management: We studied wormhole switching in low-dimensional direct networks
namely the 2D mesh, 2D torus, and the bidirectional rings under blocking flow-control and
under the assumption that there is no distinction between a flit and a phit. We showed
that buffered wormhole switching in direct networks results in a good trade-off between
performance and NIC buffer space requirements. We also studied buffer management
issues and the impact of router buffer sizes on system performance and found that the

optimal router buffer sizes are sensitive to the system cache line size.

Routing: For wormhole switched hierarchical-ring network, we proposed a deadlock free

deterministic routing technique that uses a virtual channel approach.

Dynamic virtual channels: We proposed dynamic virtual channel flow-control for 2-
dimensional direct networks, and proposed and evaluated priority networks using dynamic
virtual channels, priority based link arbitration, and priority inheritance. We showed that
such priority networks can be used to improve system throughput and support multiple

classes of traffic.

9.1 Future Work

There are plenty of directions in which the work described here can be extended:

e Bisection bandwidth: The performance and scalability of hierarchical-ring networks

are clearly limited by their constant bisection bandwidth. In Chapter 5, we showed
through an empirical model that increasing the bandwidth of the global ring (and thus
the bisection bandwidth) allows the network to support more processors. Targeting just
the global ring is effective, because the utilization of the lower level rings is low, especially
when the global ring is saturated. The bandwidth of the global ring can be increased
either by increasing the width of the ring or the speed of the ring. It will be interesting

to study in detail the performance impact of such an increase in bisection bandwidth.

Hybrid Flow-control: Hybrid flow-control combines blocking and non-blocking flow-

control, and may be able to exploit the advantages of both. In a blocking network, a

112

9.2

CHAPTER 9. CONCLUSION

blocked packet can span multiple nodes, thereby occupying link resources and preventing
other packets from using those links. We showed that blocking networks suffer from early
saturation before they exhaust their full bandwidth (if small buffers are used), and there-
fore perform poorly under high request rates. On the other hand, non-blocking networks
drop packets when they cannot be buffered at a node; negative acknowledgments and
time-outs are used to recover dropped packets. It is non-trivial to find a good time-out
value in non-blocking networks. A larger than required time-out value results in higher
latency while a small value results in duplicate packets. Also, to reduce the number of
dropped packets, especially under high request rates, it is necessary to use large buffers in
routers, as shown in Chapter 6, further increasing the time-out value. Another disadvan-
tage of non-blocking networks is that the hardware cache consistency mechanism cannot
tolerate the loss of invalidation packets. In hybrid flow-control, the decision to drop or
block a packet can be taken on-line depending on the nature of traffic. One possibility is
to drop a packet (at the head of a buffer) only if it has been blocked more than a certain
time, thus freeing up buffer space. When to drop a packet can also depend on the type
of the packet. For example, a request packet might be dropped sooner than a response
packet, and negative acknowledgments and invalidation packets might never be dropped.
It would be interesting to study the performance of hybrid flow-control under various such

policies.

Effect of Adaptive Routing on Shared-memory Networks: There have been exten-
sive studies of adaptive routing protocols on 2-dimensional direct networks in the context
of distributed memory multiprocessors. Almost all those studies used wormhole switching
with single flit buffers and constant packet sizes. It is not clear how adaptive routing will
be effective in shared-memory networks under buffered wormhole switching and variable
sized packets. It would also be interesting to study the performance impact of adaptive

routing with static and dynamic virtual channels.

Impact of this Research and Applicability to Industry

We believe that the results of this research will influence the design of shared-memory mul-

tiprocessor networks, in particular the design of hierarchical rings, 2D meshes and tori. An

interconnection network with low latency and high throughput allows more work to be ac-

complished in a given period of time. We expect the market for high performance parallel

processors to rise in the near future, especially as parallel processing provides a cost effective

way to improve computer system performance. Recently, we have seen small scale parallel

systems become popular for the same reason. These systems will become much more popular

9.2. IMPACT OF THIS RESEARCH AND APPLICABILITY TO INDUSTRY 113

since multimedia applications, visualizations, and 3D modeling are all becoming more compu-
tationally intensive; hence, using multiple off-the-shelf processors to exploit parallelism in those
applications is becoming very attractive. As these small scale systems become more common
place, they will naturally be extended to larger sizes. For these systems, the results of our
research will be relevant, as high performance routers are an essential component in any high

performance parallel system.

Bibliography

[1] S.V. Adve, V.S. Adve, M.D. Hill, and M.K. Vernon, “Comparison of hardware and soft-
ware cache coherence schemes,” Proc. Intl. Symp. on Computer Architecture, pp. 298-308,
May 1991.

[2] V.K. Adve and M.K. Vernon, “Performance analysis of mesh interconnection networks with
deterministic routing,” IFEFE Trans. on Parallel and Distributed Systems, Vol. 5, No. 3,
pp. 225-246, March 1994.

[3] A. Agarwal, “Limits on interconnection network performance,” IEEFE Trans. on Parallel
and Distributed Systems, Vol. 2, No. 4, pp. 398-412, April 1991.

[4] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz, B. Lim,
K. Mackenzie, and D. Yeung, “The MIT Alewife machine: Architecture and performance,”
Proc. Intl. Symp. on Computer Architecture, pp. 2-13, 1993.

[5] L.A. Barroso and M. Dubois, “Performance evaluation of the slotted ring multiprocessor,”
IFFEFE Trans. on Computers, vol.44, no.7, pp. 878-890, July 1995.

[6] R. Berrendorf et. al., “Intel Paragon XP/S - Architecture, software environment and per-
formance,” http://www.kfa-juelich.de/zam/CompServ/services/sco.paragon.html

[7] R. V. Boppana and S. Chalasani, “A framework for designing deadlock-free wormhole
routing algorithms,” IEFFE Trans. on Parallel and Distributed Systems, Vol. 7, No. 2,
pp. 169-183, February 1996.

[8] G. A. Boughton, “Arctic routing chip,” Proc. Intl. Workshop on Parallel Computer Routing
and Communication, pp.311-317, May 1994.

[9] URL: http://www.cs.washington.edu/research/projects/lis/chaos/www /bnf.html

[10] T. Callahan and S. C. Goldstein, “NIFDY: A low overhead, high throughput network
interface,” Proc. Intl. Symp. on Computer Architecture, pp. 230-242, May 1995.

[11] J. Chapin, “A fresh look at memory hierarchy management,” Proc. HOT OS-VI, 1997.

[12] M. S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing and routing issues in hexago-
nal mesh multiprocessors,” IFEFE Trans. on Computers, Vol. 39, No. 1, pp. 10-18, Jan-
uary 1990.

[13] A. A. Chien, “A cost and speed model for k-ary n-cube wormhole routers,” in Proc. Hot
Interconnects ’93, pp 3.1.1-3.1.7, August 1993.

[14] A. A. Chien and J. H. Kim, “Planar-adaptive routing: Low-cost adaptive networks for
multiprocessors,” Proc. Intl. Symp. on Computer Architecture, pp. 268-277, 1992.

114

9.2. IMPACT OF THIS RESEARCH AND APPLICABILITY TO INDUSTRY 115

[15] DRAM Synchronous DRAM DIMM 10ns, 100MHz, 3.3V Ram Chips, Corsair Microsys-
tems, URL: http://www.nf-ny.com/nfny/sdram.html

[16] Cray Research Inc. “Cray Origin2000 system overview”,
URL: http://www.cray.com/products/systems/origin2000/

[17] W. J. Dally and C. L. Seitz, “The torus routing chip,” Journal of Distributed Computing,
Vol. 1, No. 3, pp 187-196, March 1986.

[18] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor intercon-
nection networks,” IEFFE Trans. on Computers, Vol. C-36, No. 5, pp. 547-553, May 1987.

[19] W. J. Dally, “Virtual-channel flow control,” IEEE Trans. on Parallel and Distributed Sys-
tems, vol. 3, no. 2, pp. 194-205, March 1992.

[20] W.J. Dally, “Performance analysis of k-ary n-cube interconnection networks,” IFEFE Trans.
on Computers, Vol. 39, No. 6, pp. 775-785, June 1990.

[21] W. J. Dally and H. Aoki, “Adaptive routing using virtual channels,” IEEE Trans. on
Parallel and Distributed Systems, Vol. 4, No. 4, pp. 466-475, April 1993.

[22] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xanthopoulos, “Architecture and
implementation of the reliable router,” Proc. of Hot Interconnects I, August 1994.

[23] W. J. Dally et. al., “The message-driven processor: A multicomputer processing node with
efficient mechanisms,” IEFE Micro, April 1992.

[24] J. Duato, P. Lopez, and S. Yalamanchilli, “Deadlock- and livelock-free routing protocols
for wave switching,” Proc. Intl. Parallel Processing Symposium, June 1997.

[25] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks,” IEEE
Trans. on Parallel and Distributed Systems, Vol. 4, No. 12, pp. 1320-1331, December 1993.

[26] J. Duato, “A necessary and sufficient condition for deadlock-free routing in cut-through
and store-and-forward networks,” IFEF Trans. on Parallel and Distributed Systems, Vol. 7,
No. 8, pp. 841-854, August 1996.

[27] J. Duato, “Performance evaluation of adaptive routing algorithms for k-ary n-cubes,” Proc.
Intl. Workshop on Parallel Computer Routing and Communication, pp. 44-59, May 1994.

[28] T. H. Dunigan, “Multi-ring performance of the Kendall Square multiprocessor,” Oak Ridge
National Laboratory Report TM-12331, October 1994.

[29] K.I. Farkas, Z. Vranesic, and M. Stumm, “Scalable cache consistency for hierarchically
structured multiprocessors,” The Journal of Supercomputing, Vol. 8, No. 4, pp. 345-369,
1992.

[30] R. A. Finkel and M. H. Solomon, “Processor interconnection strategies,” IFEE Trans. on
Computers, Vol. C-29, No. 5, pp. 360-371, May 1980.

[31] R. M. Fujimoto, “VLSI communication components for multicomputer networks,” Ph.D.
Dissertation, Technical Report No. UCB/CSD 83/136, University of California, Berkeley,
California, 1983.

116 CHAPTER 9. CONCLUSION

[32] M. Gerla and L. Kleinrock, “Flow Control: A comparative survey,” IFFFE Trans. on Com-
munications, Vol. COM-28, No. 4, pp. 553-574, April 1980.

[33] K. Gharachorloo, A. Gupta, and J. Hennessy, “Hiding memory latency using dynamic
scheduling in shared-memory multiprocessors,” Proc. Intl. Symp. on Computer Architec-
ture, pp. 22-35, May 1992.

[34] C. J. Glass and L. M. Ni, “The Turn model for adaptive routing,” Proc. Intl. Symp. on
Computer Architecture, pp. 278-287, 1992.

[35] 1. S. Gopal, “Prevention of store-and-forward deadlock in computer networks,” [EEFE
Trans. on Communications, Vol. 33, pp. 1258-1264, December 1985.

[36] A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry, and W. D. Weber, “Comparative
evaluation of latency reducing and tolerating techniques,” in Proc. Intl. Symp. on Computer
Architecture, pp. 254-265, May 1991.

[37] D.B. Gustavson, “SCI and related standards projects,” IEFFFE Micro, Vol. 12, No. 1, pp. 10-
22, Jan 1992.

.C. Hamacher and H. Jiang, “Comparison of mesh and hierarchical networks for multi-
38] V.C. H h d H. Jiang, “C i f h and hi hical ks f Iti
processor,” Proc. Intl. Conf. on Parallel Processing, Vol. 1, pages 67-71, August 1994.

[39] V.C. Hamacher and H. Jiang, “Performance and configuration of hierarchical ring networks
for multiprocessors,” Proc. Intl. Conf. on Parallel Processing, Vol. 1, August 1997.

40] K. A. Harzallah and K. C. Sevcik, “Hot spot analysis in large scale shared-memory multi-
g
processors,” Proc. Supercomputing '93, November 1993.

[41] R. A. Hexel, A quantitative performance evaluation of SCI memory hierarchies, Ph.D.
Dissertation, University of Edinburgh, 1994.

[42] M. Holliday and M. Stumm, “Performance evaluation of hierarchical ring-based shared
memory multiprocessors”, IFEFE Trans. on Computers, Vol. 43, No. 11, pp. 52-67, Jan 1994.

[43] A. Hooper and R.C. Williamson, “Design and use of an integrated cambridge ring”, IEEE
Journal on Selected Areas of Communication, 1(5), pp. 775-784, 1983.

[44] D. E. Huber, W. Steinlin, and P. J. Wild, “SILK: An implementation of a buffer insertion
ring,” IFEFE Journal on Selected Areas in Communications, Vol. SAC-1, No. 5, pages 766-
774, November 1983.

[45] Intel iPSC860 system overview, Intel Scalable Systems Division, Intel Corporation.

[46] S. S. Isloor and T. A. Marsland, “The deadlock problem: An overview,” IFFE Computer,
Vol. 13, No. 9, pp. 58-78, June 1979.

[47] M. Jaseemuddin, Bidirectional ring: An interconnection network for shared-memory mul-
tiprocessor systems, Ph.D. Dissertation, Department of Electrical and Computer Engineer-
ing, University of Toronto, September 1997.

[48] S. Jha and M. Fry, “Continuous media playback and jitter control,” Proc. Intl. Conf. on
Multimedia Computing and Systems, pp. 245-252, June 1996.

9.2. IMPACT OF THIS RESEARCH AND APPLICABILITY TO INDUSTRY 117

[19] A. E. Joel, “Circuit switching: Unique architecture and applications,” IFEFE Computer,
Vol. 12, No. 6, pp. 10-22, June 1979.

[50] P. Kermani and L. Kleinrock, “Dynamic flow-control in store and forward computer net-
works,” IFEFE Trans. on Communications, Vol. COM-27, Feburary 1979.

[51] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer communication
switching technique,” Computer Networks, Vol. 3, No. 4, pp. 267-286, September 1979.

[52] J. H. Kim and A. A. Chien, “Rotating combined queuing (RCQ): Bandwidth and latency
guarantees in low-cost, high-performance networks,” Proc. Intl. Symp. on Computer Ar-
chitecture, pp. 226-236, May 1996.

[53] S. Konstantinidou and L. Snyder, “Chaos router: Architecture and performance,” Proc.
Intl. Symp. on Computer Architecture, pp. 212-221, May 1991

[64] A. Kumar and L. N. Bhuyan, “Evalauting virtual channels for cache-coherent shared-
memory multiprocessors,” Proc. Intl. Conf. on Supercomputing, May 1996.

[55] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy, “The

Stanford FLASH multiprocessor,” Proc. Intl. Symp. on Computer Architecture, pp. 302-
313, April 1994.

[56] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA highly scalable server,” Proc.
Intl. Symp. on Computer Architecture, pp. 241-251, June 1997.

[67] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy,
“The DASH prototype: Logic overhead and performance,” IFEFE Trans. on Parallel and
Distributed Systems, Vol. 4, No. 1, pp. 41-61, Jan 1993.

[58] D. H. Linder and J. C. Harden, “An adaptive and fault-tolerant wormhole routing strategy
for k-ary n-cubes,” IFEF Trans. on Computers, Vol. 40, No. 1, pp. 2-12, January 1991.

[59] M.H. MacDougall, Simulating Computer Systems: Techniques and Tools, MIT Press, 1987.

[60] P. M. Merlin and P. J. Schweitzer, “Deadlock avoidance - store and forward deadlock,”
IFFEE Trans. on Communications, Vol. COM-28, No. 3, pp. 345-354, March 1980.

[61] A. L. Narasimha Reddy, “Scheduling and data distribution in a multiprocessor video
server,” Proc. Intl. Conf. on Multimedia Computing and Systems, pp. 256-263, May 1995.

[62] J. Y. Ngaiand C. L. Seitz, “A framework for adaptive routing in multicomputer networks,”
Proc. Intl. Symp. on Computer Architecture, pp. 6-14, March 1991.

[63] L. M. Ni and P. K. McKinley, “A survey of wormhole routing techniques in direct net-
works,” IFEFE Computer, pp. 62-76, February 1993.

[64] Noakes, Michael D, Deborah A, and W. J. Dally, “The J-machine multicomputer: An
architectural evaluation,” Proc. Intl. Symp. on Computer Architecture, 1993.

[65] S. F. Nugent, “The iPSC/2 direct-connect technology,” Proc. ACM Conf. Hypercube Con-
current Computers and Applications, pp. 51-60, 1988.

118 CHAPTER 9. CONCLUSION

66] H. Oi and N. Ranganathan, “Performance analysis of the bidirectional ring-based multi-
g g
processor,” Proc. Intl. Conf. on Computer Design, October 1997.

[67] G. Pfister and A. Norton, “Hot-spot contention and combining in multistage interconnect
networks,” IFFE Trans. on Computers, Vol. C-32, No. 10, pp. 943-948, 1995.

N O ster . C. Brantle . A. George, 5. L. Harvey, et. al. e researc

68] G. F. Pfister, W. C. B ley, D. A. George, S. L. H Y, l., “The IBM h
parallel processor prototype (RP3): Introduction and architecture,” Proc. Intl. Conf. on
Parallel Processing, pp. 764-771, August 1985.

[69] F. P. Preparata and J. Vuillemin, “The Cube Connected Cycles: A versatile network for
parallel computation,” Communications of the ACM, Vol. 24, No. 5, pp. 300-309, May 1981.

[70] R. Rajkumar, “Synchronization in real-time systems: A priority inheritance approach,”
Kluwer Academic Publishers, ISBN 0-7923-9211-6 pp. 15-58, 1991.

[71] G. Ravindran and M. Stumm, “Hierarchical ring topologies and the effect of their bi-
section bandwidth constraints,” in Proc. Intl. Conf. on Parallel Processing, pp. 1/51-55,
August 1995.

[72] G. Ravindran and M. Stumm, “A comparison of blocking and non-blocking packet switch-
ing techniques in hierarchical ring networks,” in IFICF Trans. on Information and Systems,
Vol. E79-D, No. 8, pp. 1130-1138, August 1996.

[73] G. Ravindran and M. Stumm, “A performance comparison of hierarchical ring- and mesh-
connected multiprocessor networks,” Proc. Intl. Symp. on High Performance Computer
Architecture, pp. 58-71, February 1997.

[74] G. Ravindran and M. Stumm, “Issues in the design of direct multiprocessor networks,”
Technical Report, CSRI, University of Toronto, November 1997.
Also available at http://www.eecg.toronto.edu/gravin/pub/wh.ps.gz

[75] G. Ravindran and M. Stumm, “Prioritized Direct Multiprocessor Networks: Design and
Performance,” Submitted for Publication.
Also available at http://www.eecg.toronto.edu/gravin/pub/pri.ps.gz

[76] D. A. Reed and R. M. Fujimoto, Multicomputer networks: Message-based parallel process-
ing, ISBN: 0-262-18129-0 The MIT Press, Cambridge, Massachusetts 1987.

[77] J. Rexford and K. G. Shin, “Support for multiple classes of traffic in multicomputer
routers,” Proc. Intl. Workshop on Parallel Computer Routing and Communication, pp. 117-
129, May 1994.

[78] J. Rexford, J. Hall and K. G. Shin, “A router architecture for real-time point-to-point
networks,” Proc. Intl. Symp. on Computer Architecture, pp. 237-246, May 1996.

[79] E. Rothberg, J. P. Singh, and A. Gupta, “Working sets, cache sizes and node granularity
for large-scale multiprocessors,” Proc. Intl. Symp. on Computer Architecture, pp. 14-25,
May 1993.

[80] S. Scott and G. Thorson, “Optimized routing in the Cray T3D,” Proc. Intl. Workshop on
Parallel Computer Routing and Communication, pp. 280-294, May 1994.

[81] S. L. Scott and G. M. Thorson, “The Cray T3E network: Adaptive routing in a high
performance 3D torus,” Proc. Hot Interconnects I'V, August 1996.

9.2. IMPACT OF THIS RESEARCH AND APPLICABILITY TO INDUSTRY 119

[82] S. Scott, J. R. Goodman, and M. K. Vernon, “Performance of SCI ring,” Proc. Intl. Symp.
on Computer Architecture, pp. 403-414, 1992.

[83] C. L. Seitz, “The Cosmic Cube,” Communications of the ACM, Vol. 28, No. 1, pp. 22-33,
January 1985.

[84] URL: http://www.sequent.com/

[85] K.G. Shin and S.W. Daniel, “Analysis and implementation of hybrid switching,” IEEFE
Trans. on Computers, Vol. 45, No. 6, pp. 684-292, June 1996.

[86] J. P. Singh, W. Weber, and A. Gupta, “SPLASH: Stanford Parallel Applications for
Shared-memory,” Computer Architecture News, Vol. 20, No.1, pp. 5-44, 1992.

[87] URL: http://www-flash.stanford.edu:80/apps/SPLASH/

[88] P. Stenstrom, “A survey of cache coherence schemes for multiprocessors,” IEEE Computer,
Vol. 23, No. 6, pp. 12-24, June 1990.

[89] Anjan K. V. and T. M. Pinkston, “An efficient, fully adaptive deadlock recovery scheme:
DISHA,” Proc. Intl. Symp. on Computer Architecture, June 1995.

[90] J. E. Veenstra and R. J. Fowler, “MINT: A front end for efficient simulation of shared-
memory multiprocessors,” Proc. Intl. Workshop on Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS) pp. 201-207, January 1994

[91] Z. G. Vranesic, V. C. Hamacher, A. K. Sanwalka, and S. G. Zaky, “A hybrid token /insertion
ring LAN,” Proc. INFOCOM, Vol. 1, pp. 211-220, April 1991

[92] Z. G. Vranesic et al., “The NUMAchine multiprocessor”, Technical Report, CSRI-TR-324,
CSRI, University of Toronto, 1995.

[93] Z. G. Vranesic, M. Stumm, D. Lewis, and R. White, “Hector: A hierarchically structured
shared-memory multiprocessor,” IFFE Computer, Vol. 24, No. 1, pp. 72-78, January 1991.

[94] S. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta. “The SPLASH-2 programs:
Characterization and Methodological considerations,” Proc. Intl. Symp. on Computer Ar-
chitecture, pp. 24-36, June 1995.

[95] X. Zhang and Y. Yan, “Comparative modelling and evaluation of CC-NUMA and COMA
on hierarchical-ring architectures,” IFEFE Trans. on Parallel and Distributed Systems,
Vol. 6, pp. 1316-1331, December 1995.

