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Abstract

Restructuring compilers have been effective in tailoring nested loops and arrays so as to improve per-
formance on both uniprocessor and multiprocessor systems. The regular structure of nested loops
and arrays has enabled their systematic analysis and transformation. The focus of this dissertation
is a new and generalized loop transformation framework. called C'omputation Decomposition and
Alignment (CDA).

The linear loop transformation framework introduced in 1990 was a major breakthrough.
partly because it provided a unified view of many of the earlier loop transformations. and partly
because it was a formal method based on linear algebra. Since then. the compiler community
has designed algorithms which automatically derive linear transformations that achieve specific
optimization objectives in given nested loops. The framework also sparked the development of
generic techniques to derive efficient code for the linearly transformed loop structures.

The main contribution of this dissertation is the CDA transformation framework. which is
capable of restructuring nested loops at the granularity of statements and subexpressions. The
granularity of transformation is thus finer than in the linear loop transformation framework. which
transforms nested loops at the granularity of entire iterations. A CDA transformation is applied to
a nested loop in two steps. First. the loop iteration space is decomposed into multiple computation
spaces. each representing computations of a statement or a subexpression. Second. each of the
computation spaces is linearly transformed with a {possibly) different transformation matrix.

CDA unifies into a single framework many existing transformations including all linear loop
transformations. A linear loop transformation only modifies the execution order of the iterations,
while a CDA transformation modifies both the composition of the iterations and the execution
order of the re-composed iterations. This feature enables new optimizations which cannot be
obtained by linear loop transformations alone. In this thesis, we show how CDA transformations
can achieve the effect of certain global data transformations. We present heuristic algorithms to

automatically derive CDA transformations to reduce i) the number of cache conflicts and iz) the
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number of ownership tests. and we show how CDA can achieve several other optimizations. We
also compare the performance of some benchmark loops to the corresponding CDA transformed

loops using a simulator and three different types of real computer systems.
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CHAPTER 1

Introduction

There is nothing permanent, except change.
— Heraclitus

Restructuring compilers modify program structure in order to improve performance on target hard-
ware. On uniprocessors. restructuring compilers are often used to maximize cache hit rates so as to
hide latencies of the memory hierarchy. On parallel computer systems. restructuring compilers are
often used to parallelize the code and to maximize data access locality. Parallelizing code includes
the identification of the parallelism in the code. the even distribution of computations onta pro-
cessors. and the placement of data to match the mapping of parallel computations (or vice versa).
Improving data access locality includes maximizing cache hit rates and minimizing the number of
remote accesses.

The restructuring techniques that have been proposed over the vears focus primarily on nested
loops and arrays — loops. because they are a regular. well defined control structure that are straight-
forward to manipulate and because thev constitute the core of many applications — arrays, also
because they have a regular structure. The structure of a loop and the layout of data in memory

greatly affect performance:

e The loop structure determines the data flow relations between loop iterations. and hence the

amount of parallelism available in the loop.

e The loop structure and data layout determine the patterns in which memory is accessed.
and hence the spatial and temporal cache locality as well as the number of remote memory

accesses required.

e The loop structure affects the number of iterations mapped to each processor, and hence the

balance of computational load.

For this purpose. restructuring compilers (among other things) apply loop and data transfor-

mations to modify the structure of nested loops and change the data layout so that the same result
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for 1=2.2n

for 1 =1.n .
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end for
Figure 1.1: A loop transformation to expose parallelism.
for 1=1.n for t1=0.n—1
for j=1. for j=1.n—1
S: A=y ))=At—y. )+ Bli—4.)) S A() = Al ))+ Bl gj
end for = end for
end for end for

Figure 1.2: A loop transformation to improve memory access behavior.

is computed but with improved performance.

Consider the nested loop on the left hand side of Figure 1.1. The loop. as is. cannot be directly
mapped onto a multiprocessor to run in parallel. Every execution of statement S must wait for
the results of the previous execution of S. A loop transformation can. however. re-arrange the
execution order of the iterations so that each iteration requires data produced only by earlier ¢
iterations, allowing the j iterations to be executed in parallel. The loop on the right hand side of
Figure 1.1 is a transformation of the loop on the left hand side. [t computes the same result, but
exhibits improved parallelism.

Loop transformations can also be used to improve cache and memory access behavior. Consider
the two dimensional loop on the left hand side of Figure 1.2. This loop has poor cache locality.
because a new cache line is accessed in every iteration. and successive iterations do not use elements
of previously accessed cache lines. The loop can be transformed into the loop on the right hand side
of the figure. which is semantically equivalent to the original loop. The transformed loop performs
better than the original loop on both uniprocessors and multiprocessors if the matrices are stored
in row major order. because the elements of a cache line are used in successive iterations.

The example of Figure 1.2 also illustrates how a loop transformation can reduce the number of
remote memory accesses in the case where the loop is run in parallel on a multiprocessor. Consider
a parallel system with p processor-memory module pairs and a mapping scheme where the outer

loop is executed in parallel such that all j iterations of an outer iteration ! execute on processor



i mod p.! Also assume that arrays A and B are mapped onto memory modules such that row &
of each array resides on memory module k& mod p. With the original loop. processor & will need
to access array elements A(:— j.j) and B(i — j.j) remotely whenever (i — j) mod p # k. With
the transformed loop, however, all array accesses in the loop are local. Hence, the transformation
increased locality. given the initial mapping of computation and data.?

This dissertation will focus on loop transformation techniques. The above examples show that

the structure of a loop is critical for good performance.

1.1 Linear Loop Transformations

Over the years. many loop transformations have been developed and proposed — see Bacon et al.
for a good overview [6]. Prior to 1990. it was found to be difficult for a compiler to determine
how and in what order to combine and apply a sequence of transformations. Without a formal
framework. reasoning about the effects of a sequence of transformations is ad hoc. making the
design of algorithms to automatically transform loops difficult. Without a formal representation
of the entire transformation sequence. code generation is difficult as well. often producing complex
loop bounds. Hence. there was a need for a formal transformation framework that provides a

mathematical basis for effectively:
t) representing a set of loop transformations in a concise and uniform way.

i1} reasoning about and comparing alternative loop transformations and their effects using formal
methods.

tit) automatically deriving loop transformations that achieve specific optimization objectives.
and

iv) applying loop transformations (i.e. generating the code for the transformed loop) in an auto-
mated way.
Fortunately. 'well structured loops are amenable to such a mathematical formalization. I[n this
regard, the linear loop transformation framework. introduced in 1990 [10. 26, 29. 36, 54}, was
a major breakthrough that greatly simplified the task for the compiler. partly because it was a
formal method based on linear algebra and partly because it provided a unified view of many of
the previously proposed loop transformations. With this framework. it became possible to design

algorithms that automatically search for transformations for given optimization objectives.

'There are no data flow constraints for parallel execution. since all iterations are independent.
*Note that a column major storage order will produce a completely different memory access behavior.
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Transformation matrix T
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i
Transformed loop New iteration space

Figure 1.3: The linear loop transformation framework.

In the linear loop transformation framework. iterations of a nested loop are represented by
an iteration space. which is an integer space bounded by hyvperplanes corresponding to the loop
bounds. A non-singular integer matrix is used to linearly transform the iteration space into a
new iteration space.® The new iteration space then corresponds to a new (now transformed) loop.
The relationship between the loops. iteration space and the transformation matrix is illustrated in
Figure [.3.

The introduction of the linear loop transformation framework was a significant contribution
in that /) it allowed a single matrix to represent a compound transformation of many existing
transformations such as skew. reversal. interchange etc. i) it allowed the development of a set
of generic techniques to generate transformed loop structures in a systematic way, independent of
the particular sequence of transformations being applied. and iii) it sparked the development of
algorithms to derive transformation matrices that achieved specific objectives for a given nested

loop.



forij=
H(i.j) - -
end for i
- -
Original Loop Iteration space Computation spaces
Transformation matrices
TIL.T2.T3
fori'j =
HG )
end for
Transformed loop Transformed iteration space Transformed computation spaces

Figure 1.4: The CDA transformation framework.

1.2 Computation Decomposition and Alignment Transformations

The main contribution of this dissertation is an extension to the linear loop transformation frame-
work called the Computation Decomposition and Alignment (CDA) transformation framework.
The objective is to unify into a linear algebraic framework a larger number of loop optimizations
than possible within the linear loop transformation framework. A CDA transformation maps the
computations of an original nested loop into computations in a new. transformed loop. It is applied

in two steps as shown in Figure 1L.4:

e First. the iteration space of the loop is decomposed into multiple integer spaces. called com-

putation spaces, each representing computations of a statement or a subexpression.

e Second. each of the integer spaces is linearly transformed with a (possibly) different transfor-

mation matrix.

The transformed computation spaces together define the transformed iteration space. and thus.

the new CDA transformed loop. It should be noted that a linear loop transformation is a spe-

3The linear loop transformation framework was originally introduced in the form of the unimodular lcop transfor-
mation framework, where the transformation matrices must have a determinant of 1. The linear loop transformation
framework is a generalization of the unimodular loop transformation framework. where the transformation matrices
may have any non-zero determinant (including +1).
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for j=1L.n
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end for

Figure 1.5: A CDA transformation of a 2-dimensional loop.

cial CDA transformation which does not first decompose the iteration space. However. the CDA

transformation framework differs from the linear loop transformation framework in several ways:

(¢)

{u22)

The linear loop transformation framework restructures loops at the granularity of iterations.
whereas the C'DA transformation framework can restructure loops at a finer granularity of

statements and subexpressions.

A linear loop transformation is defined by a single transformation matrix. whereas a CDA
transformation requires potentially several transformation matrices. one for each computation

space.

A linear loop transformation only modifies the execution order of the iterations. while CDA
transformations modifv both the composition of the iterations and the execution order of the

re-composed iterations.

The search space for legal CDA transformations of a nested loop is considerably larger than

that for legal linear loop transformations.

The CDA transformation framework unifies additional loop transformations besides those

unified by the linear loop transformation framework.

As an example of a CDA transformation. Figure L.5 shows a loop that is CDA transformed to

the loop on the right hand side. The transformed loop has a loop structure that is substantially

different than that of the original loop. and cannot be obtained by a direct application of any

existing loop transformation technique. The CDA transformation applied here improves the cache

utilization by reducing the number of cache conflicts that occur with certain certain cache and

array sizes.



1.3 Contributions of the Dissertation

The main objective of this dissertation is to show that there exist opportunities to restructure loops

at finer computation granularity than there exist within the linear loop transformation framework.

The final outcome is a transformation framework that is more effective than the linear loop trans-

formation framework and vet preserves its elegance. The main contributions of this dissertation

are:

I
.

We develop the basic CDA transformation framework. capable of restructuring nested loops

at the granularity of statements and subexpressions (Chapter 3).

An undesirable effect of CDA transformations is that the transformed loop has computational
and spatial overhead which a pure linear loop transformation would not have. \We describe

techniques to optimize the CDA transformed loops by reducing these overheads (Chapter ).

We identify several situations in which the performance of nested loops can be improved by
restructuring at statement and subexpression granularity. But because increased flexibility
for transformation within the CDA framework comes at a cost of vastly larger search spaces.
heuristics that use the knowledge about the optimization context are key in deriving CDA

transformations efficiently.

. We present an algorithm capable of heuristically deriving CDA transformations that optimize

nested loops in the context of reducing the number of cache conflicts (Chapter 5).

We present an algorithm capable of heuristically deriving CDA transformations that optimize
nested loops in the context of improving the efficiency of SPMD code on multiprocessors

(Chapter 6).

We illustrate the utility of CDA in improving the performance of nested loops in several other
contexts. including the context of increasing instruction level parallelism and of reducing the

number of barrier synchronizations required in parallel code {Chapter 7).

We illustrate the application of the CDA transformation techniques using example loop nests
[fom benchmarks. We compare the performance of the original and the CDA transformed
versions of the loops by executing them on both uniprocessor and multiprocessor platforms

(Chapter 8).



We begin by describing the linear loop transformation framework in the next chapter. since the
3 3 g p

CDA framework is a direct extension of that.



CHAPTER 2

Linear Loop Transformation Framework

What need have | of magic charms—
"Abracadabra!’ and 'Prestopuff’?
Transformed would | be to toad or lizard
— Robert Graves. Love and Black Magic
The linear loop transformation framework [10. 26. 29. 36. 48. 5] provides a formal and unified basis
for numerous loop transformations - loop reversal. interchange. permutation. skew. scaling. The
framework has been effective and has led to the development of many algorithms and tools for op-
timizing compilers. In this chapter. we describe methods underlying the linear loop transformation
framework because CDA is an extension of the framework to finer computation granularity.

We first describe the representation of nested loops and outline the representation of data flow
between the iterations of nested loops. We show how a linear transformation modifies the loop
structure and the data flow. and we present techniques to derive the transformed nested loop given
a transformation. We aiso illustrate how the linear algebraic representation in the framework can be
utilized to systematically and automatically derive transformations to achieve specific optimization

objectives.

2.1 Representation of the Loop Structure

In this section we describe the model of nested loops that can be linearly transformed. We then
present the linear algebraic representation of the loop bounds and the array references in the loop.
This representation of nested loops forms the basis for the analysis and transformation techniques

discussed in the subsequent sections.
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for [; =L,;.0,
for [ = La(ly). Ua(ly)

for [, = L,
H(l;.....!I
end for

I SR FYSUS T AN F FIRSY A
)

n

end for
end for

Figure 2.1: Model for perfectly nested affine loops.

2.1.1 Model of the Loop Structure

The linear loop transformation framework assumes perfectly nested affine loops. so they have the
structure depicted in Figure 2.1. This loop structure is sufficiently general to represent many
common nested loops. We say that the loop is n-dimensional. since the nest has n loop statements.
The body of the loop nest is denoted by H. which may be a sequence of statements including those
that coatain additional loops. [y..... [, are the iterators. L; and (, are the lower and upper loop
limits or loop bound expressions for iterator /;: they are assumed to be linear functions of [,. ... [,_|.
The loop is assumed to be normalized. so all iterators have a stride of one.!

The notion of perfect nesting characterizes well structured loops for which analysis and trans-
formation techniques are relatively simple. The loop nest formed by iterators | to I, is perfectly
nested iff for all iterators [ such that 1 < & < n — 1. [} encloses only a loop statement with iter-
ator [4+,: otherwise it is imperfect. Although the assumption of perfect nesting is algorithmically
convenient. it does exclude a considerable amount of application code. How to transform arbitrary
imperfectly nested loops is still an open issue. In later chapters we show how the loop model can
be extended to include some imperfect nestings.

Vector /= (I1.....1,)T is called the iteration vector. It spans the set of all loop iterations

represented by the iteration space. defined as follows:

Definition 1 (Iteration space) The integer space.

T={(i i) Ly S SO Rl e i) S 0n S Uty iny)} © 27,
is referred to as the iteration space. where iy. .... i, are the iteration indices. and (L. '), ....(Ln. U},)
are the respective loop limits. O

The iteration space is a convex polvhedron. The individual iterations in the iteration space are

' Nested loops can be normalized to have a unit stride [56]. and such a transformation is illustrated in Appendix A.1.
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Ally = L)+ AUl Ia = 1Y+ A =21, + 1)

Figure 2.2: Nested loop L.

denoted by integer n-tuples. and we define a lexicographical relation on these n-tuples.

Definition 2 (Lexicographical relation <) The lericographical relation. <. is defined such that
i< for n-tuples i = {i\..... in) and J = (jyi.....jn) iff there ecists an integer k. 1 < k < n such

that iy = jy. ....dk—y = Jk— and i < Ji. O

The lexicographical relation imposes an order on the iterations called the lexicographical order.
This lexicographical order is the sequential execution order on the loop iterations.? A linear loop
transformation. in effect. changes the lexicographical ordering of the iterations.

We will use the nested loop L of Figure 2.2 as a running example to illustrate the techniques
in the linear loop transformation framework. The loop L has a dimension of two. where /; and /I,
are the iterators and /= (I1. I,)T is the iteration vector. The loop limits are constants — both [,
and [, have a lower limit of 0 and an upper limit of 5. Figure 2.3 on page 16 shows the iteration

space for loop L.

2.1.2 Representation of Array References

A tvpical reference to an m-dimensional array A in the loop body has the form A(f\ (/. .... ).
s fm (1. I)). where each f; is a function of the iterators and is called a subscript function.
When the subscript functions are linear. then the references can be represented in matrix-vector
notation. A reference to a p-dimensional array in an n-dimensional loop can be represented asa pxn
integer matrix . called a reference matrir. The reference matrix is typically extended to px (n+1)
to allow constant offsets in array subscript functions. where the last column of the reference matrix
corresponds to the offsets in subscript functions. The iteration vector is correspondingly extended

to [= {(l1..... I..1)T in this case. For example. array reference A(f; —2./,+ 1) in loop L is

?Note that the symbol < is used to compare numbers as well as to compare tuples. Although this may be some
what confusing at first. it simplifies the notation greatly, and the intended meaning should be clear from the context.
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represented by:

h
1 0 -2

£
01 1

L

Note that the reference matrix may. in some cases. be singular. such as for array reference A(/;./}).

2.1.3 Representation of Loop Bounds

The iteration space is a convex polvhedron and. as is evident from the definition of the iteration
space. is characterized by the set of inequalities corresponding to loop bound expressions. The
loop bound expressions can be written as inequalities in matrix-vector notation, since the bound
expressions are linear functions of the iterators.” These inequalities are represented by half spaces
that bound the iteration space. and are succinctly represented by a bound matrir. The set of lower

bound expressions can be represented by
SLfZ r

where Sy is an my x n lower triangular integer matrix. my is the number of expressions bounding
the loops from below. [ is the n x | iteration vector. and [ is an m x [ integer vector. Similarly.

upper bound expressions can be represented by

where S;- is an my- x n upper triangular integer matrix and m¢ is the number of expressions
bounding the loops from above. The m = m¢- + m inequalities corresponding to both the upper

and lower bounds can be combined to represent the polyhedral shape of the iteration space by:

Si>¢

*The nested loops with a structure as in Figure 2.1 are called affine loops. when the array references and the loop
bounds can be represented in a matrix-vector notation.



where

S is called the bound matrix. (where n is the loop dimension). When there are no maximum
or minimum functions in the loop bound expressions. then the number of inequalities. m. is 2n.
Otherwise. m will be greater than 2n. For example. if the lower bound expression for loop index I is
max(/y.5 — I). then [,—/;> 0 and [,+I,> 5 both belong to the set of inequalities S;. Sometimes
it is convenient to represent the loop bounds in the homogeneous co-ordinate system by inequalities
sz 0. where S includes the vector ¢ as the last column.*

As an example. consider the loop bounds for our running example loop L in matrix-vector

notation. From the upper and lower loop bound expressions of loop L we can identify:

=l
i

¥
~
|
—
(o=
—_—
3
o
—
(=]
[

[ = St =

f=}
—
—
o
o
—
Gt

1 0 0
0 1 hL 0
_— >
-1 0 I -5
| 0 -1 | [ -5 |

The constants on the right hand side can be incorporated into the bound matrix by using the

homogeneous co-ordinate system. For instance. the loop bounds for L can now be represented as:

l 00 0
Iy
0 1 0 0
[g 2 -
-1 0 5 0
|
| 0 -1 54 LO_

The bound matrix represents the four half spaces that bound the two dimensional iteration space.

In this particular case. the half spaces are /; > 0. [, >0.5-{; >0.and 5-17, > 0.

‘Ina homogeneous co-ordinate system. the iteration vector ({,..... [.,)T is extended to be (I;,.... In. l]T so that
linear equalities and inequalities in the system need not have non-zero constant terms on the right hand side.
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2.2 Data Dependence Analysis

Determining the precedence constraints on the execution of the statements of a program is a
fundamental step in parallelizing a program. The dependence relation between two statements
constrains the order in which the statements may be executed. For example. the statements in
the then clause of an if statement is control dependent on the branching condition. A\ statement
that uses the value of a variable assigned by an earlier statement is data dependent on the earlier
statement(8]. In this chapter. we concern ourselves only with data dependence.> We briefly discuss
the basic concept of data dependence and the computational complexity of deciding whether a
dependence exists or not. See Banerjee for a good reference of early development in the area [S].
Recent developments can be found in [37, 40. 43. 57].

There are four tyvpes of data dependences: flow. anti. output. and input dependence. The only
true dependence is the flow dependence. The other dependences are the result of reusing the same
location of memory and are hence called pseudo dependences. They can be eliminated by renaming

some of the variables [14]. We write 5,45, to mean flow dependence from S, to 5,.

Definition 3 (Flow Dependence) An iteration j € I is flow dependent on iteration i e 1.
denoted i8], iff there erists an element of an array assigned to in i and referenced in j. such that

i< J and there is no k. 1 < k < J with k] for the same array element.

The sequential semantics of a loop implies that a flow dependence always be positive so that the ar-
ray element in question is written to before the dependent iteration reads it. A loop transformation
is valid or legal only if the flow dependences remain positive.

Determining the dependences in a loop. however. is a computationally hard problem. Two

references to an m-dimensional array A. .4(f1(7). fm(f)) and A(g,(7). ....ym(f)) access the same
array element iff fi(2) = g1(J) « - fm(i) = gm () for iterations i and j. For conciseness. we denate

this set of equaiities by F(i) = G(f]. The dependence problem can then be stated as follows: Do

t

there exist iterations i’ and J7 in the iteration space such that F(#) = G{j%)? In other words. we

need to know whether the following integer programming problem has integer solutions:

Si>¢

®Control dependence is important to identify functional level parallelism. and to choose between various candidates
for data distribution. among other things. Since, our discussion is limited to data flow analysis between loop iterations.
control dependence does not concern us much.



This problem is NP-complete [20]. Moreover. for restructuring purposes we need more information
than the mere existence of a dependence. We often need to know all pairs of iterations that are de-
pendent and the precise relationships between them. An explicit representation of the dependences
between all pairs of iterations would be tedious. space consuming and hard to use. Luckily. the
structure of the dependences between all pairs of iterations of a nested loop is very regular because
we are dealing with perfectly nested loops. If there is a dependence between iterations / and { + k.
then there will also be a dependence between iterations j and j+ k. Therefore. all the dependences

can be concisely represented by a small set of dependence distance vectcrs.

Definition 4 (Dependence Distance Vector) For a pair of dependent iterationsi = (iy.....i,)7

(mdf ={1..--. Jn)T such that z—éj‘ the vectar‘f — 1= (1= i1e e dn—in)T is called the dependence

distance vector.

A dependence vector. sav (¢. b) in a 2-dimensional loop. represents dependences between all pairs
of iterations ({;.12)8(iy + ¢. {2+ b). For example. in our running example. loop L. iteration (/. [,)
is involved in 6 dependences: [A([y. ;). A([} — L. 1)), [A([1. L) AL L = D] [A(L. ). AL -
2L+ 0] (AL + L) AL L) AL L+ ) AL L)Y and [A(L 4201, = 1) A(. )], [n total.
there are R0 dependences in the iteration space as shown in Figure 2.3. All of these dependences
can be represented by 3 dependence distance vectors. namely (1.0}. (0. 1) and (2. -1).

A dependence distance vector is called constant or uniform if the elements in the vector are
constants. For example. (1.2) is a constant dependence®. In contrast. (i.0).is a linear dependence.
The dependence distances in the examples of this chapter are generally uniform. so for conciseness.
we refer to a uniform dependence distance vector as simply a dependence.

A vector of symbols +. — and 0 corresponding to whether the elements of the dependence vector
are positive, negative or zero is called a direction vector. The dependence direction vectors for our
running example are (+.0). (0.+) and (+.-).

A dependence (d;....d,) is positive if the first non-zero element d; is positive. and we say that
the dependence is carried by the &** loop. The dependence in the loop are represented by the

dependence matriz, D. an n X m integer matrix. where n is the dimension of the nested loop and

%In order to improve readability, we will use row vectors to represent dependence distance vectors, whenever
paossible.
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Figure 2.3: Dependences in iteration space.

m is the number of dependences. That is. each column of D corresponds to a dependence D;. The

matrix for loop L is

D =

A dependence matrix is lexicographically positive. when all the dependences in the matrix are
lexicographically positive.

Because the problem of determining the existence of a dependence is NP-complete. one often
employvs a more efficient algorithm in practice that solves restricted cases or provide approximate
solutions. The GCD test. for example. finds the existence of an integer solution to the dependence
problem with only a single subscript in an unbounded iteration space [8]. Some algorithms find
real valued solutions in bounded iteration spaces with dependence direction information [37. 57].
However. Pugh recently noted that integer programming solutions. with exponential worst case
complexity have much lower average complexity [43]. He modified the Fourier-\Wotzkin variable
elimination technique [19] to produce exact solutions in a reasonable amount of time for many. but

not all. problems.

2.3 Mathematics of Linear Loop Transformations

In this section. we describe the basic techniques of applying linear transformations to perfectly

nested affine loops. including methods to derive the new dependences. references and loop bounds.



2.3.1 Basic Transformation Technique

A linear transformation of an n-dimensional perfectly nested affine loop is defined by an n x n non-
singular integer matrix ", which maps the iteration space of the original loop onto a new iteration

space so as to define a new loop nest. As a result of this transformation. the original iteration

vector [ is changed to a new iteration vector A = (A’....A,;)7.

Ul=R (2.1)
and each dependence vector D; in D is changed to a new vector D!:
[UD; =D (2.2)

The transformation {  is legal iff each of the D! is lexicographically positive. The positivity of the
transformed dependences is a necessary and sufficient condition for the legality of the transform.
As an example. consider a linear transformation of loop L. Suppose transformation (" is applied

to L. where

Then. we have

Ni=h+06L. K,=1

The dependence matrix D for loop L.

D= {(1.0).(0.1).(2.-1)}
is changed to a new dependence matrix D”:

D' = {(1.0). (L. ). (1. =1)}

Note that all of the transformed dependences are lexicographically positive. so [’ is a legal trans-
formation.
A linear transformation maps each iteration in the original iteration space onto a new point

in the new iteration space. Hence. a linear transformation only modifies the ordering of when
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an iteration is executed relative to other iterations: it does not change what is computed in an
iteration. Thus. with a linear transformation (', both an iteration (i,.......i,)T of the original
iteration space. and the corresponding iteration { (¢ ()7 of the new it i

ace. g Tovevens n 1teration space access

the same set of array elements. Therefore. a reference matrix R in the original loop is modified

to be matrix B = RU™!. since RI = RU~'U'T = RU'K. For example. the array reference
l 1 -1
A(fy + I5. 1) has a reference matrix of which is modified to be =
0 1 0 1 0 1
L 0 , -
.since (7! = . The the new array reference thus becomes A{R’|. \',).
0 1 0 1

2.3.2 Derivation of New Loop Bounds

The bounds of the original loop are represented by inequalities:

SI>0
which is equivalent to
SUTtrr>o.
Since {'[ can be replaced by K. we have
SU'A >0 (2.3)

which is a set inequalities in terms of the new iteration vector. This set describes a convex poly-
hedron. and the sought after loop bounds are the set of integral. affine functions that bound the
polvhedron.” The new bounds matrix is S’ = SU~'. The new loop bounds can be obtained di-
rectly from the rows of S’. when each row of S’ contains a single non-zero integer. If this is not
the case. but the original loop bounds are simple (i.e.. constants or simple functions of iterators).
then it is possible to analytically derive symbolic expressions for the new loop bounds in terms of
the original loop bounds and the elements of the transformation matrix {10, 28]. However. these
svmbolic expressions tend to be complex when the loop has more than three dimensions or has
loop limits that are not constants.

The most general way of deriving the bounds from S’ is to apply a variable elimination technique

"An integral, affine function can be represented by - [ = c. where & is an integer vector. [ is the iteration vector
and c is an integer.
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such as Fourier-Motzkin [47. 19]. This variable elimination technique derives the bounds for the new
iterators inside out. that is A, to A'|. It first rearranges the inequalities of S’ such that A, is alone
on one side of inequalities. This rearrangement results in two sets of inequalities: in one set. A,
is more than or equal to an expression in iterators A ..... N, i.e. K, > a(/eq..... AN, > ai/o
(where a;’s are linear expressions in A'y..... A,,_; and ¢;’s are non-zero constants). and in the other
set K, is less than or equal io an expression in iterators Ay..... KNo_j.te. K, < 31/by..... K, <
Ju/by (where 3;"s are linear expressions in A'y..... N\,—; and b;’s are non-zero constants}. The first
set of inequalities defines the lower bound for A',. namely mcx([a,/c(].....[a;/c]) and the second
set defines the upper bound for K. namely mir(|[.3,/bi]..... [Fu/by]).

At this point. A', can be eliminated from the two sets of inequalities by considering the [ x u
pairs of inequalities from the two sets. An inequality A, > «;/c; from the first set and an inequality
K, < 3,/b; from the second set can be combined into a;/c; < K, < 3;/b,. where 1 < i <[ and
I < j < u. after which A'; can be dropped to obtain a;/¢; < J3,/b, or simply b,a; < ¢;.3;. These
new inequalities without A’y can then be used to derive the bounds for A',_; as we did for K,3
The process is then applied to eliminate A, _,..... K. in that order. The bounds for A’} will be
constants.

In order to illustrate the derivation of loop bounds using the Fourier-Motzkin variable elimina-

11
tion technique. consider the transformation of loop L by the transformation matrix (" =

0 1
The loop bounds for loop L are represented by inequalities:

] 0 0
0 1 0 0
e >
-1 0 Iy -3
| 0 -1 ] | -3 ]

- - - _
I -1 0
0 1 I 0
2
-1 1 [\—2 -5
[ 0 -] [ =5

%Note that some of the new inequalities may be redundant.
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We apply the variable elimination method in the following way. From the new set of inequalities,

it is clear that.

[\'1 - [\-2 2 Q. I\-;) 2 0. —I\-l + [\-2 > -3. —[\-2 2 D)

which are rearranged to obtain inequalities:

Ky<h;. K;20. Ky>2R, -5 K <5
From these inequalities we obtain the bounds for A’; to be:

Ky > mer{(K| - 5.0) and A'; < min{K,.3)

or

0< [\-2 < 5 and l\-l -5 S [\—2 S .’\.1

from which we obtain

0< [\-2 < [\—1 and [\.1 ) < [\-g < 3

K5 is then eliminated from these inequalities to obtain four inequalities involving only A'y:

0<5 R <R +5 0<h,. Ay -5<5

[gnoring the first two redundant inequalities. we obtain constant bounds for A'y:
Ky >0and Ay £10

Figure 2.4 depicts the bounding lines for the transformed iteration space for loop L. The trans-
formed loop L is shown in Figure 2.5.

A unimodular transformation matrix ensures that the inverse of the transformation matrix
is also integer and unimodular. A unimodular transformation. therefore. maps from the original
iteration space to the new iteration space one to one and onto. That is. every integer point in the
original iteration space is mapped onto a unique integer point in the new iteration space and vice
versa. Therefore. both the original and the transformed loops have unit stride.

When the transformation matrix is non-unimodular, then the inverse transformation matrix is

not integer. In such a case. the transformed iteration space does not correspond to the original
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Figure 2.4: The transformed iteration space of loop L.

for Ky =0.10
for Ko = mar(0.K; —3). min(5. R,)
AR —Ro No)= K —No—L.Ra)+ AR — Rs. Ko = 1)
+AKN; = KNo = 2. Ra+ 1)
end for

end for

Figure 2.5: The transformed loop L.

iteration space cxactly, since some integer points of the new iteration space map to non-integer
points in the original iteration space. Therefore. it is necessary to have non-unit strides in the
transformed loop so that it executes only those iterations which correspond to iterations present
in the original loop. The strides for the transformed loop can be derived from the transformativn

matrix itself by simple matrix operations [17].

2.4 Advantages of Linear Loop Transformations

The linear loop transformation framework systematizes the task of a restructuring compiler in
t) representing nested loops and their transformations. i{) applyving loop transformations. iit) rea-
soning about the effects of the transformations. and iv) automatically deriving transformations that
achieve desired effects. In this section. we briefly discuss the first three aspects: the next section
describes techniques to derive linear loop transformations.

Firstly. the linear loop transformation framework provides a unified view of numerous trans-

formations that had existed prior to the introduction of the linear loop transformation framework.
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Figure 2.6: Example transformation matrices for two dimensional loops. including {(a) reversal of
outer loop. (b) reversal of inner loop. (c) reversal of both loops. (d) interchange. (e.f) skew by p in
second and first dimensions. and (g) wavefront respectively.

Before the framework was introduced. a restructuring compiler typically searched for an appropriate
sequence of loop transformations such as loop interchange. permutation. skew. reversal., wavefront.
and tiling.? \With the linear transformation framework. a single transformation matrix can rep-
resent many of these loop transformations. For example. the transformation matrix for a given
permutation is just a permuted identity matrix. A transformation matrix that reverses the A'"
loop level is an identity matrix with &' row multiplied by —1. Figure 2.6 shows matrices for some
important transformations of two dimensional loops.

With the linear transformation framework. a single transformation matrix can also represent
any compound application of these transformations. For instance. the compound transformation of
two loop transformations 7| followed by T’ is simply equal to their product: T = T,T,. Producing a
transformed loop with a single matrix representing a transformation sequence is more efficient than
producing the transformed loop as a sequence of individual transformations. \With a single matrix.
the expressions in array references and loop bounds tend to be simpler and thus more efficient to
compute. since the transformed loop structure is derived only once for the entire transformation
sequence.

Secondly. the linear algebra framework enabled the design of generic techniques to derive the
loop bounds. references and dependences of the transformed loop irrespective of the actual transfor-
mation being applied. As described in Section 2.5. these derivations generally involve only simple
linear algebra so they can easily be performed automatically by a compiler.

Finally. the linear loop transformation framework makes it easier to characterize aggregate

effects of transformation sequences. so as to reason about the “goodness™ of a sequence. This

*Appendix A provides details on these and several other loop transformations.



23

makes it possible to design heuristic algorithms capable of automatically deriving transformations
given specific optimization objectives [26. 29. 36. 48, 54]. The performance aspects of a nested
loop — such as parallelism at outer (inner) loop level. volume of communication. the average load.
and load balance — can be characterized in terms of the elements of the transformation matrix.
dependences. and original loop bounds [26]. As an example. consider the transformation of a nested
loop to maximize inner loop parallelism by transforming the loop so that the new dependences are
independent of the inner loop levels. A loop has inner loop parallelism whenever the first element
of each dependence vector is positive (non-zero) [10. 31]. Hence we require a transformation {’
such that the first element of all transformed dependence vectors are positive (non-zero). Any

transformation [ such that
Vd, e D. I, -d; >0

where {7 is the vector corresponding to the first row of {'. is a desired transformation. It can be
shown that such a transformation exists for all perfectly nested loops [10. 31].

As a second example. consider the synchronization overhead in a nested loop with only inner
loop parallelism. The number of svnchronizations is proportional to the number of iterations of the
outermost loop. For any candidate transformation L', the size of the outer loop is characterized by
the difference between the maximum and the minimum possible values for iterator A';:

mex(Cy - 1) - min((fl Y+ 1. Iel

r

where {7 is the vector corresponding to the first row of " (since Ay = (7 - [) [26]. This ex-
pression provides an objective function that can be used to evaluate the goodness of candidate
transformations.

As a final example. consider loop transformations to parallelize the outermost loop level. A
loop nest has outer loop parallelism if the first element of each transformed dependence vector is

0. A candidate transformation. U, parallelizes the outermost level if
Vd; € D. Uy -d; =0and Ud; >0

where {7 is the vector corresponding to the first row of {". That is. a transformation {" parallelizes
the outer loop if U is orthogonal to every dependence vector. The goodness of a candidate trans-
formation is also determined by the number of parallel iterations in the transformed loop. The
objective is. therefore. to select a transformation {” which parallelizes the outermost loop level and

maximizes:



mn.r(L-:I 0= min((?l DN+1.7TeT.

2.5 Techniques to Derive Linear Loop Transformations

The derivation of a linear transformation that is optimal for a given optimization objective is.
unfortunately, hard in general. The problem is NP-complete for unrestricted loops and even affine
ioops with non-constant dependence distances [13]. However. approximate solutions can be derived
efficiently by using the desired properties of the transformed loop to guide the search for a trans-
formation. For example. transformations to parallelize outer loops of a perfectly nested affine loop
can be derived in polynomial time by using the dependence matrix to guide the search {28, 29].
Typically. such algorithms apply a sequence of matrix row operations to transform the original de-
pendence matrix into a new dependence matrix that has only zeros in the first (or first few) row(s).
Each matrix row operation that is applied to the dependence matrix is also simultaneously applied
to a matrix that was originally started out as an identity matrix. The sequence of operations on
the identity matrix results in the transformations matrix. An important property of such matrix
manipulation based techniques is that the existence proofs tend to be constructive. That is. the
existence proofs entail algorithms that derive the sought after transformation.

The following subsections describe how a desired property of the transformed loop structure

can be used to derive a linear loop transformation in four different optimization contexts.

2.5.1 Deriving Canonical Loops

A nested loop is said to be in canonical form when a maximum number of its outermost loop levels
are fully permutable [55]. A loop nest in canonical form has the advantage that its outer loop levels
can be permuted or skewed in any way to suit the target architecture. For example. loop levels can
be permuted to bring parallelism to the outermost level and the loop nest can be tiled to improve
cache locality.

Algorithms to derive matrices that transform loop nests into their canonical forms use the
dependence matrix to guide the search. because the structure of the dependence matrix characterizes
full permutability. For the loop levels { to j of a loop nest to be fully permutable. the elements
di..... d, of each column (d,..... dn)T of the dependence matrix must all be positive [9]. The
algorithm by Wolf and Lam incrementally derives a list of outer fully permutable loop levels [55].

Starting with an empty list. the algorithm adds a loop level to the list by making the loop level
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Figure 2.7: Dependence internalization in two dimensional loop.
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permutable using permute. reverse and/or skew transformations. The authors argue that their
algorithm requires minimal number of these transformations when the the loop dimension is less
than five [55].

Algorithm to derive transformations for dependenice internalization. described next. can be

adapted as an alternative approach to derive transformations to obtain loops in canonical form.

2.5.2 Dependence Internalization

Dependence internalization transforms a loop nest so that a maximum number of dependences are
independent of the outer loop levels [26. 28]. They are designed to extract coarse grain parallelism
in nested loops. The algorithms to derive dependence internalization transformations also use
the dependence matrix to guide the search: in fact. the transformation matrix is constructed by
systematically manipulating the dependence matrix. The general framework for internalization and
algorithms to find a good internalization in polynomial time are given by Kumar et al. [28, 29].
As an example. consider the loop on the left hand side of Figure 2.7. Its (1. 1) dependence can
be internalized to be (0.1). so that the A'; loop level is parallel (i.e. has no dependences). This
transformation modifies the original loop on the left to become the loop on the right hand side.

One unimodular matrix [ (of several) that achieves the above internalization of (1.1) is:

1 -1
0 1

The algorithm to derive a dependence internalization of an n-dimensional nested loop consists of
two steps [28]. In the first step. the dependence matrix is re-arranged so that n — 1 selected depen-
dences form the first n — | columns.!® The dependences are selected as follows. Each dependence
(dy.....d,)T is treated as an integer point (d,..... d,). and a convex hull of the chosen integer
points and the origin is constructed. The dependences on a face of the convex-hull containing the

origin are selected as the first n — 1 columns. This ensures legality because a vector orthogonal to

°In order to simplify the presentation here. we assume that the number of dependences is greater than or equal
ton— L.
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these dependences can be the first row of the transformation matrix so that all the dependences
have a non-negative dot product with the first row.!! Thus. the first element of each dependence
is either non-negative or zero.!? [28].

As an example of the first step of the algorithm. consider dependences (1.1)T. (2.1)7 and
(1.2)T in a 2-dimensional loop. The convex-hull of integer points (0.0). (1.1). (2. 1). and (1.2)is a
polygon. where (1.2)T and {2.1)7 each lie on a line of the polygon that contains origin. Assuming
we select (1.2)7 as the first column of the dependence matrix. a perpendicular to (1.2)7. namely
(2,—1)T. would eventually become the first row of the transformation matrix. Note that all the
dependences have a non-zero dot product with (2, —1)7. On the other hand. selecting (1.1)7 as
the first column of the dependence matrix would make the transformation illegal. since (1. —1)7
would become the first row of the transformation matrix, which has negative dot product with
dependence (1.2)T.

[n the second step. the dependence matrix is augmented with the n-dimensional identity matrix.
The algorithm systematically applies matrix row operations to the augmented matrix to make the
elements of as many rows of the dependence matrix as possible zeros. For instance. when all
clements in the first row of the dependence matrix are zero. all dependences are internalized to
second level. so that the outer loop is parallel.

The basic idea in the technique just described for deriving transformation for dependence in-
ternalization can also be employed to obtain canonical forms of nested loops. The derivation of the
transformation matrix that makes a loop fully permutable has two steps. First. matrix row opera-
tions are used to make all elements of one row of the dependence matrix. say the last. positive.!?
This step involves dependence internalization followed by row operations to add multiples of the
rows containing the first non-zero elements of the dependences to the last row until it has only pos-

itive elements. In the second step. appropriate multiples of the last row (which has only positive

elements) are added to other rows that still have some negative elements.

2.5.3 Access Normalization

Access normalization [35] is a linear loop transformation to modifv the order in which array el-

ements are accessed so as to improve cache and memory access locality. Access normalization

""Note that the first row of the transformation matrix is not derived by finding the vector orthogonal to a hull-face.
The second step of the algorithm automatically derives all rows of the transformation matrix, once the dependence
matrix is appropriately re-arranged.

2 The first elements will all be zero when the rank of the dependence matrix is less than n.

3This is possible since each dependence has a non-zero positive element.
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Figure 2.8: An example access normalization.

transformations are derived using the array subscript functions to guide the search. Cache locality
is improved. when successive iterations access array elements that are either the same or spatially
close (i.e. in the same cache line or in the same page). Memory locality is improved. when more of
the data a processor must access is local so that fewer remote accesses are necessary. In order to
improve memory [ocality, a target loop has to be transformed so that more of the array accesses in
the iterations assigned to a processor are to those portions of the arrays mapped onto the processor.

As an example of improving memory locality. consider the loop on the left hand side of Fig-
ure 2.8. Suppose that the arrays A and B are distributed onto the processors by rows. and that
each iteration of the outer loop is executed in parallel. A processor executing an outer loop iteration
needs to access a new row of B in each j iteration and a new row of -l in every itcration. This
invariably results in an excessive number of non-local accesses. The number of remote accesses can
be reduced substantially by transforming the loop so that each outer loop iteration accesses mostly
the local rows of the arrays. In order to achieve this. the transformed loop should be such that the
row array subscripts of the references are simple functions of the parallel loop iterator.

Such a transformation matrix can be derived by first constructing a matrix. called the access
matrix. where the rows correspond to the subscript functions of the array references. For instance.
expressions j ~ i, j+ k. and ¢ in the loop on the left hand side of Figure 2.8 are represented by the

access matrix-vector pair:

-1 10 i j—i
01 1 il=1]Jj+k
1 0 0]k i

The representation is similar to the reference matrix in that the rows of the access matrix represent
the subscript functions in array references. However. a reference matrix represents all subscript
functions of the same array reference. where as an access matrix has selected subscript functions

from several array references. potentially to different arrays.



Figure 2.9: Choice of iterator to partition for good load balance.

The transformation matrix is then formed by selecting the first n rows of the access matrix
(where n is the loop dimension). The access matrix is suitably padded when it has fewer than
n rows. \When the first n rows do not form a legal transformation. then a legal transformation
matrix is formed by selecting fewer than n rows from the access matrix and suitably padding the
transformation matrix. For the example of Figure 2.8, the access matrix happens to be a legal
transformation matrix.

The access normalized loop is shown on the right hand side of Figure 2.8. As an effect of
access normalization. j — { became « and and j + k& became ¢. In the transformed loop. therefore.
all accesses to B are local. although A still has some non-local accesses. Clearly. the number of
non-local accesses is sensitive to the order of rows in the access matrix. A common heuristic to
reduce the amount of communication required is to place in the first few rows of the access matrix

the subscript functions in the array dimension(s) along which the array is distributed [35].

2.5.4 Balancing Processor Load

One of the major overheads associated with mapping parallel iterations onto a multiprocessor is
load imbalance. Load imbalance is greatly influenced by the choice of the iterator that is parallel.
For example. consider mapping the iterations of the 3-dimensional iteration space of Figure 2.9
onto a multiprocessor. Statically partitioning the loop along the i (or the k) loop dimension
results in load imbalance. since an unequal number of iterations are assigned to each processor.
Partitioning along the dimension j. on the other hand. achieves good load balance. To obtain a
good load balance. it is necessary that an iterator [ be selected such that i) the bounds of the other
iterators are not a function ! and i) the bounds of | are not a function of other iterators. It is

possible both to determine whether a loop nest can be transformed to have these two properties
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or not. and if so to derive an appropriate loop transformation [42]. [t should be noted. however,
that load balancing could offset other optimization objectives such as maximizing parallelism or
minimizing communication. Heuristics exist that are capable of identifying transformations that
balance the objectives of maximizing parallelism. minimizing communication and balancing the

load for perfectly nested loops with constant loop limits [26].



CHAPTER 3
Computation Decomposition and Alignment

Framework

Many small make a great.
— John Heywood: Proverbes. part 1. chap. ri.

3.1 Overview of CDA Transformation Framework

The mair idea behind CDA is to linearly transform loops at a granularity that is finer than what
the linear loop transformation framework allows. A linear loop transformation reorganizes compu-
tations in a nested loop at the granularity of iterations: each iteration in the original iteration space
is mapped onto a new point in the new iteration space. Hence. a linear transformation does not
affect what is computed in an iteration. but only when it is executed relative to other iterations.
In contrast. CDA can map just a portion of an iteration to a new point in the new iteration space.
Figure 3.1 shows how mapping at such fine granularity changes the composition of the iterations
themselves.

The basic transformation technique in CDA ¢) partitions the iteration space into possibly several
integer spaces and /) linearly transforms each of these integer spaces by a different transformation
matrix. and /i7) fuses the transformed integer spaces to obtain a new iteration space. The first two
steps are called Computation Decomposition and Computation Alignmenl. respectively.

As an example. consider the original loop on the left hand side of Figure 3.2. The iteration
space of this loop can be partitioned into two integer spaces. The first corresponds to the array
accesses due to reference B(:. ). and the second corresponds to the assignment to A(:. j) using the
result from the first space and the subexpression A(i.j)+ B(i+ 1l.j). The first space is applied
a simple linear transformation so that the B(i.j) reference becomes a B(i + I.j) reference.! The
second space is applied the identity transformation (and thus remains unchanged). The transformed

integer spaces are then fused together to form a new iteration space. The composition of these new

"That is. B(i.}) is accessed in iteration (¢ — 1.J) instead of in iteration (i. ).

30
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iteration i new iterations

o —00 1, "

- -

Original iteration space New iteration space

Figure 3.1: Mapping of portions of iterations in CDA. For clarity. this figure shows how the computations
of a single original iteration are mapped onto new iterations.

fori=1.n for t=0.n
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A1) —B[B‘(:L-J[};J(z.j)+ _ (¢ > 0) them A{e1) = He i)+
end for ‘ Al )+ Ble+ 1))
end for end for
end for

Figure 3.2: An example CDA transformation.

iterations is different from the original iterations with regard to the array elements accessed and the
computations performed. tlence this transformation could not have been achieved within the linear
loop transformation framework. This particular CDA transformation improves cache hit rates in
the loop for certain array sizes and target cache geometries (i.e.. cache size. associativity and cache
line size).

Because CDA transforms loops at a relatively fine granularity and rearranges the order in which
instructions are executed. it is. in some ways. similar to instruction scheduling techriques that are
common in today’s optimizing compilers. Software pipelining [30] is such an instruction scheduling
technique that moves instructions from one iteration to an earlier one so as to hide latencies and
tc improve instruction level parallelism. However, CDA differs from these instruction scheduling
techniques in a number of very fundamental ways. First, CDA typically transforms code at a
coarser granularity than the instruction scheduling transformations of single instructions, because
CDA is a source level transformation. Second. CDA can map computations onto any point in the
new iteration space. whereas instruction scheduling techniques typically move instructions within

a basic block or to the previous execution(s) of the innermost loop. Third. the formal frameworks
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underlying CDA and instruction scheduling techniques are fundamentally different. Finally. CDA.
and linear loop transformation techriques in general. are used to target higher level optimization
objectives than instruction level parallelism.

The granularity at which computations are mapped in CDA can vary from subexpressions. to
assignment statements. to conditionals. to loop statements. and to entire iterations. \When the
granularity is an iteration. then the CDA transformation is equivalent to a linear loop transfor-
mation. so CDA subsumes linear loop transformations. However. by being able to also transform
loops at a finer granularity. CDA provides additional opportunities for optimization.

The CDA framework retains the elegance and advantages of linear transformations while en-
abling new code optimizations. However. relatively fine-grained restructuring in the CDA frame-
work tmplies that deriving CDAs is more complex than deriving linear transformations. There-
fore. heuristic algorithms are kev to efficient derivation of CDA transformations. Also. a CDA
transformed loop typically has more overheads than a linearly transformed loop. so techniques to
minimize the overhead become necessary.

[n this chapter. we describe the CDA transformation technique in detail. The following chapter
describes techniques to minimize overheads in CDA transformed loops. Later chapters present

heuristic algorithms to derive CDA transformations in specific optimization contexts.

3.2 Representation of the Loop Structure

The CDA framework can transform nested loops of the tvpe shown in Figure 3.3. Each statement
L, can be either an assignment statement. a conditional statement. or a perfectly nested loop. As
with the perfectly nested loops of Chapter 2. the loop bounds are expressed by [; and u;. which
are integral. affine functions of the enclosing iterators.? The loops are normalized so that the step
size is one. The arrays in the loop body are indexed by integral. affine functions of the enclosing
iterators.

When the L, are loop statements. then we assume that theyv are perfectly nested, and that the
dimension of all L; is the same, namely (n - k) for some n > k. This allows for transformation of
integer spaces of the same dimension.® This program model is quite general. When there is a single

sub-nest Ly, then the loop is an n-dimensional perfect nest. If n = &, then L; are all non-loop

ZAn integral. affine function can be represented by - [ = c. where & is an integer vector. [ is the iteration vector

and ¢ is an integer.
*The model of nested loops can be extended to the case where L, have different dimensions by adding dummy

loop statements which iterate once.



for [, =1;. u

for [s =1(1;). ua(1y)

for L=l ...l p)ouc(Ty. ... Ix_y)
Ll :

a

end for
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end for

Figure 3.3: The program model

statements. so that we have a k-dimensional perfect nest. If £ = 0. then L; and L, are statements
(loop or otherwise) with no common nesting. If £ # 0 and n > k. we have an imperfectly nested
loop. where perfectly nested sub-nests L, are enclosed by a k-dimensional perfect nest.

In general. the iteration vector [; for loop L; is ([;..... I}, I,i+l. ... 1), where Ly oens [} are the
iterators inside L;. The iteration vector specifies an integer point representing an iteration in the
iteration space under consideration. The bounds of f,,.... [}. [,i_*_l. .... It characterize the iteration
space where each integer point corresponds to an execution of L;'s body. When the context of the
loop under consideration is clear. the iteration vector is denoted simply by [ = (I1.....[,) and the
corresponding iteration space by Z. Also. when the use of homogeneous coordinate system is clear.
[ denotes (Iy..... .. 1). Asin the linear loop transformation framework. an array reference can be
represented by an m x (n + 1) reference matrix and the iteration vector.

In this chapter. we consider only perfectly nested loops. This allows us to focus exclusively
on optimization opportunities in transforming statements and subexpressions at the same nesting

level. Section 7.1 describes specific application of CDA to imperfect loop nests.

3.3 Computation Decomposition

Computation Decomposition is the first step in a CDA transformation. The main objective of Com-
putation Decomposition is te partition the iteration space into possibly several integer spaces. each
representing a space of computations of a granularity that can be smaller than an entire iteration.
Since it is natural to do so. we first describe Computation Decomposition as a transformation of
the loop body. We will follow this description with a formalization of Computation Decomposition

as a partitioning of the iteration space.
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The CDA framework transforms nested loops at the textual granularity of loop fragments. where
a loop fragment is a portion of the loop body. such as a subexpression. a conditional. an assignment
or loop statement, or the entire loop body. The objective of Computation Decomposition is to
divide or decompaose the loop body into several chosen loop fragments. so that each statement of
the new loop body corresponds to a loop fragment. First. it divides the loop body into its individual
statements and then may additionally decompose individual statements into new statements of finer
granularity that together have the same semantics as the original statement that was decomposed.

We first focus on the decomposition of assignment statements. An assignment statement is
decomposed by rewriting it as a sequence of smaller statements that accumulate the intermediate
results and produce the same final result. Consider an assignment statement. S,. in a loop body

with at least one binary operator op:
S, owy e flu(R ) op fi2(R;2)

where w; denotes the left hand side (lhs) reference. R, and R, are the sets of references in

subexpressions f; (R, ) and f;2(R,.,) respectively. The above statement can be decomposed into

the following two statements to produce the same resuit :

Spa: oty = fLulR)
Siat wjet,op fi2(R,2)

-

where ¢, is a temporary variable introduced to accumulate the intermediate result.

[he choice of subexpressions that are to be elevated to the status of statements is a key decision
in CDA optimization. As we will see in later chapters. the specific optimization objective being
pursued influences this decision. \¥e can repeatedly decompose a statement into possibly many
statements. with the result of each new statement held in a different temporary variable. The
temporary variables are typically organized in arrayvs of the dimension and size of the iteration space.
This gives Computation Alignment. which follows Computation Decomposition. more opportunities
for optimization than just using scalar temporary variables. In particular. it ensures that there are
no output dependences on the temporaries to constrain the number of candidate Computation
Alignments. (While the introduction of the temporaries adds overhead. this overhead can be
substantially reduced by the optimizations discussed in Chapter 4.)

Optimizing compilers implicitly decompose a conditional statement if (condition) then body
into two statements t = condition and if (t) then body. This decomposition allows for sepa-

ration of computations for the condition and the body, which can be used to improve instruction
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Figure 3.4: Running example and new loop body after Computation Decom position.

scheduling by knowing the branching ahead of time. However. in this thesis. we focus only on the
advantages of decomposing the assignment statements in the body of the conditional statements.
A subnest of the loop body is decomposed by decomposing the body of the subnest.*

As an example of Computation Decomposition. consider the top half of Figure 3.4. which shows
a 2-dimensional loop. We will use this loop as a running example to illustrate the CDA transfor-
mation technique. The bottom half of the figure shows the running example after Computation
Decomposition. In this case. Computation Decomposition first decomposes the loop body into
statements S) and S,. Statement S is further split and replaced by two statements. S;; and
S1.2. The result of Sy is stored in the temporary ¢(:. j), which is then subsequently used by 5.
Although not a requirement. we have chosen to have the reference matrix of the temporary array
be the same as that of the lhs of the original statement S;. Note that the bounds of the loop do
not change when it is decomposed.

We can now formalize Computation Decomposition as a partitioning of the iteration space into
several integer spaces. A computation of a loop fragment. s, in an iteration of the loop is defined
to be the execution of s in the iteration. The computation of s in iteration (iy.....i,) € I, of an

n-dimensional loop is denoted by c(ij.....i5:s). For example. the computation of L, in iteration

*We do not decompose the loop statement of the subnest itself. say for i=1, u. into multiple loop statements,
say for i=11, ul and for i=12, u2. since the loops typically do not have opportunities for aligning one portion of
the iteration space to another portion.
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({1..... 1) of the loop of Figure 3.3 is denoted by c(iy..... 1x: L;). When s is the entire loop body.
then c(i;. .... I,: s} denotes a complete iteration. Also. for completeness ¢(o. s) denotes the execution
of s. where s does not have any enclosing loops.

Similar to an iteration space. we can now define an integer space of computations for a given

loop fragment. called a computation space.

Definition 5 (Computation space) The computation space of loop fragment s in the loop body
of an n-dimensional loop. denoted by C'S(I,.s). is an integer space representing the set of all

computations of s in iteration space I,

CS(I“.S) = {C(i[..... in;S) | Y (l'l.....l.n) € In }

Computation spaces are convex polyvtopes similar to iteration spaces. The computation space for
L, of Figure 3.3 is C'S(Zy. L,). where I is the k-dimensional iteration space. When L, itself is an
(n — k)-dimensional nested loop. and s is a statement in its loop body then ¢({y, ..., i;. z‘}CH. ey 111 8)
is a computation and C'S(Z. s) is the corresponding computation space. which is n-dimensional.
When the context is clear. the computation space of s refers to the entire set of computations due to
all the enclosing iterators. so that it can be denoted simply by C'S(s). The objective of Computation
Decomposition can now be defined as a partitioning of the iteration space into several computation

spaces.

Definition 6 (Computation Decomposition) A computation decomposition of an n-dimensional

loop with loop body S is the creation of m computation spaces C'S(Sy). . ... C'S(S,,). where for every
iteration (iy..... i,} € I, the computation c(iy.....i,.S) and the computations

ciy..... i Sy)e-... ety ... h:Sn)
erecuted in order produce the same result. a
When m = | in the above definition. then S,, = S. so the computation space is the same as

the iteration space. The bounds of each of the computation spaces are the same as those for the

iteration space before applying Computation Alignment.
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Figure 3.5: Computation spaces for the running example.

Figure 3.5 shows the decomposition of the running example in terms of the computation spaces.
The iteration space is first decomposed into two computation spaces. one for each statement. as

shown in Figure 3.5b: that is:?
C'S(S) = {CS(51).C'S(S2)}

[n a second step. the computation space of S is decomposed into two finer computation spaces. as

shown in Figure 3.5c. so that:
CS(S) = {CS(51.1). CS(51.2). CS(S2) }

Although Computation Decomposition is a simple transformation. it is effective in exposing

opportunities for fine grain restructuring of the loop.

3.4 Computation Alignment

Computation Alignment is the second step in a CDA transformation. Computation Alignment
applies a separate linear transformation to each of the computation spaces. It modifies the loop
bounds. dependences and array references. and the loop fragments that constitute the new ioop

body may be different from the loop fragments that constitute the original loop body.

Definition 7 (Computation Alignment) 4 Computation Alignment of an n-dimensional nested

loop with statements S,.....Sy, in the loop body is the application of linear transformations Ty. . ... T

*Here, we read = as “equivalent to”.



to the computation spaces CS(Sy)..... CS(S5m). respectively. a

As in the linear loop transformation framework. the transformation matrices are integer and non-

singular.

Constitution of the new iterations: I[ntuitively. Computation Alignment results in a relative
movement of the individual computations across iterations. As a result. a new iteration may consist
of computations that originally belonged to different iterations. With (¢;.....7,:5,) denoting the
computation of statement S, in iteration ({;..... 7). an iteration (¢)..... in) in the original iteration

space consisted of computations:

(ireeiin) = {(i1e e ini S lite oo ini Sm)}

where
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New array references: The new references within a given statement are derived as in the linear
loop transformation framework: if computation space ("S(S) is transformed by transformation T.
and r is a reference in statement S with reference matrix R. then r has a new reference matrix.
R-T~! after the transformation. The array accesses in the transformed loop may be fundamentally
different from the accesses in the original loop. since all references are not modified using the same
transformation matrix.

Consider the Computation Alignment of the running example. The three computation spaces

in the decomposed loop can be computationally aligned by applying transformations

1 0 —1 1 0 O 10 O
Hi=l01 0 Twa=|0 1 0] and To=|0 1| -1
0 0 1 0 0 1 00 1
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Figure 3.6: [llustration of a simple Computation Alignment of the computation spaces.

to computation spaces ('S(S; ;). ('S{S;.2) and C'S(5,). respectively. These transformations are
intended to align most references to (!, ). The computation spaces C'S(S;,) and C'S(S,) move
relative to ('S(35).3). since T}, is the identity matrix. C"S(5,.;} moves one stride in direction { so
that the (i — 1, #) references in Sy ; change to (i. ) references. This is shown in Figure 3.8. C'S(S,)
moves one stride in direction j so that the B(i.j — 1) reference changes to B(i. j). [igure 3.6(b)
shows the transformed computation spaces and highlights three computations that are now executed

in one iteration.

New dependence relations: The CDA changes the dependence relations in the loop. When a
dependence exists between two references within a statement of the decomposed loop body. then
the new dependence can be derived as in the linear loop transformation framework. because both
the read and write references in the statement are modified using the same transformation matrix.
The dependence d between a write reference w and a read reference r of statement S is modified
to be Td assuming the computation space C'S(S) is transformed with matrix T.

The derivation of the new dependences between statements, however. has to take into account
the fact that the computation spaces may have been applied different linear transformations. Con-
sider statements S,. and S, in the original code. where S, is flow dependent on S,.. Let w be
the write reference in 5, and r be the corresponding read reference. The flow dependence can be

represented as:

write(w. dyr-I) = read(r. )
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which denotes that an array element read in iteration / due to the reference r to the array was
written in iteration d,.r/ due reference w to the array. If T, is applied to CS(S,.) and T, is applied

to C'S(S,). then the dependence relation is then transformed to:
write{w. T,L,(lu.,.f) — read(r. T,T)

When the dependences continue to be uniform. then the following dependence will also exist. since

the dependence relation is independent of particular values of I

write(w. {Tpdyr — T)I) = read(r. 0}
The dependence can be rewritten as:

write(w. d'.T) — read(r. 0)

wr

. (4
where d],,

=T.dpr —T,.
In general. the CDA transformation is legal iff all new dependence relations remain positive.

This can be easily verified if the new dependences are uniform. such as when the matrices d,,.,. T,

u
and T, are of the form . where [ is the identity matrix. In this case. we can verify that

0 1

the write occurs earlier than the read by ensuring that the last column in ;_, is lexicographically

negative. If the dependences are non-affine. such as when the matrices d,.,. T,, and T, are of the
U . : : . :

form . where (" is any integer matrix. then more sophisticated techniques are necessary.
0 1

such as those that reason with symbolic affine constraints {17. 46].
[n our running example. the Computation Alignment changes the dependences from:
Sflow : {(1.1).(0.1). (1. =1). (L.0)}.anti: {{0.1).(0.2)}}
to:
Sflow : {(0.1).(1.0)}.anti: {(0.1)}. output: {(1.0}}}

There are cases. when after a CDA transformation the only violated dependences are loop
independent flow dependences between statements. In this case. it is sometimes possible to make
all dependences legal by textually interchanging some of the statements in the loop. Suppose, a
statement S, is flow dependent on statement S,.. and the new dependence is loop independent.
The transformation applied is illegal if statement S, appears before statement S, in the text of the
new loop body. However. the applied transformation can be made legal by textually interchanging

the statements so that S, is after S, in the text of the new loop bodv.® In our running example.

®Textual interchange cannot make a transformation legal when statements S, and 5. participate in a a cycle of
loop independent flow dependences.
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it is necessary to change the order of the statements in the loop so that S| is executed after Sy,
and S to maintain legality. Before the transformation. S;; had a loop carried flow dependence
from both S| and S>. These dependences become loop independent after the alignment. thereby

necessitating the recrdering.

3.5 Generating New Loop Bounds

In this section. we discuss a technique to generate the bounds of a CDA transformed loop. The
technique described here is a natural extension of the bound generation methods used in the
linear loop transformation framework. The bounds of a linearly transformed loop are typically
derived using either analytical techniques or the Fourier-Motzkin variable elimination technique [9].
as described in Section 2.3.2. These techniques can also be used to derive the bounds of the
transformed computation spaces. However. the derivation of the new loop bounds of the CDA
transformed loop is more involved. since all transformed computation spaces together define the
new iteration space.

The algorithm we describe here projects the transformed computation spaces onto an n-dimen-
sional grid. which becomes the new iteration space. Algorithm CDA-bounds. outlined in Figure 3.7.
directly adapts the Fourier-Motzkin elimination technique [3. 47, 19] to derive the bounds of a CDA
transformed loop. Step 1 derives the new bounds for each of the computation spaces by variable
elimination. \We use J(5,) to denote the original bound matrix for computation space C'S(S,).
I < j £ m. Ifstatement 5, is aligned by T,. then The new bound matrix. .3'(S,). can be computed

from the original bound matrix as:

F(S,) = ST

The loop bounds of the transformed computation space are obtained from the new bound matrix
by applyving the Fourier-Motzkin variable elimination technique as described in Section 2.3.2 for
linearly transformed loops.

Step 2 of CDA-bounds derives bounds for the new iteration space so that they subsume the
bounds for all of the computation spaces. The new iteration space thus includes all the projected
computation spaces. This is achieved by computing the lower bounds of the transformed iteration
space as the minimum of lower bounds over all computations spaces. Similarly, the upper bounds
are obtained by taking the maximum of upper bounds over all computation spaces. This step is

similar to the derivation of the union of a set of data access descriptors [7].
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Algorithm 1 : (CDA-bounds():

/¥ Compules the bounds for CDA transformed loop */

input: Original loop bounds L; and U;. 1 < i < n and Computation Alignments. T).. ... T,
output: L'; and U, the new lower and upper bounds for iterators 1 < i< n

begin
1.//Find new bounds for each computation space
for j=1. m
3(S,) « S, bound matrir
T, « Transformation matric for C'S{S;)
IS« HS)TT!
fori=n.1
eliminate(3'(S,). I,)
// bounds for I; due to transformed S;
L" «— mac(lower bounds for I;)
U «— min(upper bounds for [;)
end for
end for
2. // Derive subsuming bounds for the new ileration space
for i =1.n
L« min(LY.1 < j < m)
()« mar(U?. 1< j< m)
end for
end

Figure 3.7: Algorithm CDA-bounds to derive new loop bounds.

As an illustration of the algorithm. consider the bounds of the running example after the CDA
transformation. Since the transformation matrices are simple offsets. it is easy to see that the new

bounds aof the computation spaces are:

CS(S511): 0<i<n=-1.1<

~
IA
S

CS(S12): 1<i<n 1<j<n

CS(Sia): 1<i<n 0<j<n—-1

The subsumption provides the following bounds for the new iteration space:

0<i<n0<j<n
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for t=0.n
for ;j=0.n
Spa: (e>0.3>0) Ag)=ta))+Ba.g+ 1)+ Ay = 1)
Sa (¢>0.)<n) Blejg)=A. )+ Ble.j+1)
Sprs(e<n,y>0) He+1.g)=A(eg)+ Aty = 1)+ B(r.y)

Figure 3.8: CDA transformed running example loop.

Algorithm CDA-bounds of Figure 3.7 is simple and retains the elegance of the bounds genera-
tion techniques used within the linear loop transformation framework. The new loop bounds are
conservative in that the algorithm derives a convex polytope that subsumes the union of projected
computation spaces. even though the union itself may not be convex. This does. however. have
two problems. First, the iterations of the CDA transformed loop are not uniform in that not all
iterations contain all of the computations. For instance. iteration (0. 1) of the transformed running
example only executes statement Sy ;. but not S| and S>. Second. the transformed loop may have
new. previously non-existing iterations with no computations to execute. For instance. iteration
(0.0) of the CDA transformed running example does not correspond to any iteration of the original
loop. and its execution is unnecessary. For these reasons. a mechanism is needed that enables
the computations in the transformed loop to be executed that should be executed. but disables
those that should not. e use for this purpose conditional statements called guards in the loop
body that allow the execution of appropriate computations and prevent the execution of the other

computations.

Definition 8 (Guard) . guard g{S) for a statement S is a conditional statement whose condition
is true only in those iterations that are within the bounds of the transformed computation space of

S. a

The guard for a statement is just a conjunction of conditions on the iterators. Figure 3.8 shows
the guards inserted in the loop of the running example. The guard for $; 2 prevents its execution in
iteration (0.0). Similarly. the guard for S, prevents its execution in iterations (0. ) and (*.n). and
the guard for S;; prevents its execution in iterations {n, ¥} and (*.0). where * denotes all integers
¢t such that 0 </ < n.

The derivation of the loop bounds for the transformed loop of the running example was relatively
simple because the transformation matrices were simple offsets. In order to illustrate the derivation

of loop bounds with general integer transformation matrices. consider the loop of Figure 3.9. The



for 1=20.n

for j=0.n
S Al fy=Au—-1.p-1)
Sa: B(iu.y)= A\ +7.7)
end for
end for

Figure 3.9: An example loop used to illustrate overhead of empty iterations.
bounds of both C'S(S)) and C'S(S>) in the crigiral loop are:
0<i<n0<;<n

which can be represented bv bound matrices 3(57) and J(55):

I 0 0

. . 0 1 0
I(S1) = 3(82) =

-1 0 n

0 -1 n

[ 1 0
=101 0
L 0 0 1
[n this case: .
I -1 0
L'=l0 10
[0 01

1 0 0 | Lo 1 -1 0
0 1 0 0 1 0

J(S2) = 3(52)Th-1= 0 1 0|=
-1 0 n 0 0 1 -1 1 n
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Figure 3.10: Deriving new loop bounds.

Applying Fourier-Motzkin variable elimination to 3/(S3) results in the bounds:
0<:i<2n and max(0.i—n) < j< min(n.i)

Combining the bounds for the two transformed computation spaces. we obtain the following bounds

for the transformed loop:
0<i<2n and min(0.mar(0.1— n)) < j < mar(n.min(n.i))

which can be simplified to be:

0<:i<2n and 0<j<n

These bounds subsume the bounds of the individual transformed computation spaces C'S(S;) and
C'5(57).

Figure 3.10 shows the original iteration space on the left hand side and the transformed com-
putation spaces on the right hand side. The conservative bounds, 0 < { € 2n and 0 € j < n, of
the transformed iteration space. as calculated by CDA-bounds, are shown as a dashed box. The
transformed iteration space consists of four regions marked pl to pd. l[terations in pl have nei-
ther of the two computations: iterations in p2 have only S» computations: iterations in p3 have
both 5, and S; computations: and finally iterations in pd have only S| computations. Clearly,
statements S; and S5; must have guards to ensure correct execution of the transformed loop. The

guards for S| and S, in the transformed loop evaluate conditions 0 < i < n A 0 < j < n and
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for ¢ =0.2+n

for j =maz(0.1—n).n

Sp: (1< n) A gy=Ae-1.) - 1)
Sa: (y>t1—n. j<mn{i.n)) B(t—J.5)= A1)
end for
end for

Figure 3.11: Transformed loop after simple guard optimizations.

0<:i:<2n A max(0.i — n) < j < min(n.i}. respectively.

Generating the loop bounds this way is sufficient when the majority of the new iterations contain
all the statements. The running example loop was transformed with matrices that have small offsets
so there were only two empty iterations. However. the transformed iteration space of Figure 3.10
has as many as a quarter of the iterations that contain no computations. [t is possible to optimize
the bounds to minimize the number of empty iterations. For instance. modifving the lower bound
of j from min{0. max(0.:— n)) to mar(0.i — n}. steps off all empty iterations in region pl of the
new iteration space. This type of optimization is important because the evaluation of guards can
add significant run-time overhead due to the additional computation for checking the inequalities.
[n the next chapter. we discuss techniques to derive CDA transformed loops with minimal empty

iterations. and we discuss techniques to minimize the overhead of guard computations.

3.6 Applications of CDA

CDA transformations can be used to optimize nested loops in a number of contexts. For example.

CDA can be used to perform the following optimizations:
e reducing the number of cache conflicts.
e improving the efficiency of parallel SPND (Single Program Multiple Data) programs,
e improving instruction level parallelism.
e eliminating barrier svnchronizations.
e improving loop performance using CDA as generalized loop distribution transformation. and

® improving loop performance by transforming certain imperfect loop nests.
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The first two optimizations are covered in Chapters 5 and 6 respectively. The remaining optimiza-

tions are covered in Chapter 7.

3.7 Disadvantages of CDA

Additional optimization opportunities that CDA provides are at an additional cost because CDA

transformations also have some disadvantages:

e Good heuristics are the key to efficient derivation of CDA transformations. The relatively
fine-grained restructuring that is possible within the CDA framework implies a vastly larger
search space than when deriving a linear loop transformation. In the following chapters we
show that, with the knowledge of the optimization context. CDA transformations can be

derived efficiently.

e CDA transformed loops tvpically have more overheads than linearly transformed loops in
that they have empty iterations and guard computations and require storage for temporary

variables. In the next chapter. we describe methods that substantially reduce these overheads.



CHAPTER

Optimizing CDA Transformed Loops

Any change or reform you make is going to have consequences you don't like.
— ['dail’s Fourth Law
The previous chapter presented the basic CDA transformation technique and the formalism under-
lying the CDA framework. It was noted that CDA transformations introduce overheads that purely
linear transformations would not. These overheads include empty iterations. guard computations
and additional storage for temporary variables.

[n this chapter. we focus on techniques to improve the efficiency of CDA transformed loops by
reducing these overheads. The techniques we present can be quite effective. \We illustrate the effect
of the techniques on the overhead generated by two different the CDA transformations on the loop
of Figure 1.1. The transformed iteration space for the first transformation is shown on the left hand
side of Figure 4.2, where one of the computation spaces is applied an offset alignment of (A.£).
where & is a positive integer. The left hand side of Figure 4.3 shows the transformed iteration space
for the second transformation. where one of the computation spaces is skewed with respect to the
other. \We will refer to the CDA transformed loops for these two transformed iteration spaces as
Loop | and Loop 2. respectively. For the purpose of the experiments the loop size n was set to
1000 and & was set to 3. unless otherwise specified. Also. the execution time measurements were
taken on a SUN workstation with hyperSPARC CPLU.

The overhead of Loop [ with the loop bounds generated by algorithm C'D:A-bounds of Section 3.5
is shown as first five bars on the right hand side of Figure 4.2. This overhead is mainly due to empty
iterations and guard computations: it increases slightly with an increasing k. due to increasing
number of empty iterations and guard computations. For & = 5. this overhead is about 22% of the
execution time of the original loop. The overhead can be reduced significantly by optimizing the
CDA transformed loup with techniques described in this chapter. The last five bars on the right

hand side of Figure .2 correspond to the optimized Loop !. where the overhead is less than 0.1%

48
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for 1=0.n
for )y =0.n
U j) = c(0) « (1))
R(1.j) = c(0) « R(1.))
end for
end for

Figure 4.1: The loop used to illustrate the effect of techniques to reduce overheads.
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Figure 1.2: Overheads in a CDA transformed loop. called Loop [. with offset alignment (k. k). In
the bar chart above. the bars on the left correspond to the execution times of Loop | with overheads.
whereas the bars on the right correspond to the execution times of Loop [ after reducing overheads
with techniques described in this chapter.

of the original loop. The optimized loop has neither empty iterations nor guard computations.

The overheads can also be reduced significantly when the alignments are more general than
offsets. The overhead of Loop 2 with the bounds generated by algorithm C'DA-bounds of Section 3.5
is shown as the first bar on the right hand side of Figure 1.3. The overhead can be much higher
than when using offset alignments (nearly 78% of the original loop in this case}. since nearly one
quarter of the iterations are empty. However. the overhead is reduced to about 5% of the original
loop when Loop 2 is optimized by removing empty iterations and guards, using the techniques
described here.

In this chapter. we describe:

e an algorithm to tighten the bounds so as to reduce the execution overhead of empty iterations

in the transformed loop:
e methods to reduce run-time overhead of guard computations: and finally

e techniques to reduce the storage requirement for temporary variables.
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Figure 1.3: Overheads in a CDA transformed loop with a linear alignment. called Loop 2.
4.1 Removing Empty Iterations

The iteration space of a CDA transformed loop is the union of the transformed computation spaces
projected onto an integer space (which we refer to as the union of computation spaces for concise-
ness). However. the bounds of the CDA transformed loop. as derived in Section 3.5. were chosen
so that the new loop scans integer points in a convex polytope which is a superset of the union of
computation spaces. Therefore. the derived loop bounds will not necessarily be tight in that the
CDA transformed loop will contain empty iterations {(namely, those outside the union of compu-
tation spaces). which do not contain the execution of any of the statements. [n this section. we
show how to derive tight loop bounds so that a CDA transformed loop scans integer points in the
smallest convex polvtope containing the union of computation spaces. With tighter loop bounds.
the overhead of empty iterations and the guard computations they contain is reduced.

While deriving tight loop bounds. it is desirable to keep the CDA transformed loop perfectly
nested. because it may be necessary to apply other loop transformations later on, and most trans-
formations require that the loop be perfectly nested. In order to obtain a perfectly nested CDA
transformed loop. the polytope that the loop scans must be convex: only in some cases do non-
convex polytopes correspond to perfect nestings. Some examples are shown in Figure 4.4. The
convex polytope of Figure 1.4(a) corresponds to a perfectly nested loop with simple integral, affine
expressions ol iterators in the loop bounds. Some non-convex polytopes. as in Figures 4.4(b) and (c).
also correspond to perfectly nested loops. where the loop bound expressions contain minimum or
maximum operators on integral. affine functions of iterators. These two non-convex polytopes

happen to have the property that for given range of /; values. there exists a continuous range of
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Figure 4.4: Shapes of iteration spaces

[ values. which defines the loop iterations.! On the other hand. the non-convex polyvtope shown
in Figure 4.1(d} cannot be represented by a perfectly nested loop. since for certain ranges of [,
values. the range of [, values is discontinuous. requiring a separate [/, loop inside the /, loop for
each continuous [, range.

The technique described in this section derives tight loop bounds by constructing the convex-
hull [44] of the union of computation spaces. Algorithm CDA-bounds-perfect of Figure 1.5 finds
this convex-hull.? The algorithm finds the smallest convex polyvtope that contains the union of the
computation spaces. When the union is a convex polytope itself. then the derived loop bounds are
exact in that the transformed loop does not have any empty iterations.

Step 1| of algorithm (C'DA-bounds-perfect finds the extreme points. E;, of each transformed
computation space. C'S’(.S;). The extreme points of a polytope are integer points on the boundaries
of the polytope so that the convex-hull of these points bounds the polvtope. For example. the four
corners of a rectangular area are its extreme points. since a convex-hull of the corners defines the
rectangle.

The extreme points of a computation space are obtained from its bound matrix as follows. The
inequalities represented by the bound matrix of a computation space define half-spaces. and the
intersection of all half-spaces defines the integer points in the computation space. The equations
for the hyperplanes bounding a computation space can therefore be obtained by replacing > and <
operators in the inequalities by the = operator. The extreme points of an n-dimensional computa-
tion space are obtained by solving combinations of n hyperplane equations. The solutions for these

combinations of equations are points where the hyperplanes intersect. Qut of these solutions. the

*There may be periodical “holes™ left by non-unit strides due to non-unimodular transformations.
*The word perfect in the name of the algorithm highlights that the objective of the algorithm is to generate a
perfectly nested transformed loop.



Algorithm 2 : CDA-bounds-perfect
/¥ Computes tight bounds. */
input: bounds for computation spaces CS'(5))..... CS5'(Sm)
output: bound matrir 3' of the smallest conver polytope containing the computation spaces
begin
[.fori=1 m
E; < erxtreme points of C5'(S;)
end for
2. H « Conver hull(Uij=; m E})
3. u « any pont such that u € CS'(S;). forsomet, 1 <i<m
{. 3~o0 _
3. for each bounding hyperplane (h(l) =0) € H
Fh(u) <0 then
3« JUth(l) <)
else
J e Juh(l) >0)
end of
end for
6. 3 «— Fourier _Motzkin(.3)
end

Figure 1.5: Tight transformed bounds

ones that are integer points within the computation space are chosen as desired extreme points.

Step 2 of the algorithm computes the convex-hull of the union of extreme points. £y U...UE,,.
by applving any of the well known techniques such as the gift-wrapping or the beneath-beyond
methods [-1]. The convex-hull is defined by a set. /. of bounding hyperplanes of the form h(f) =0.
cach being either a lower bound or an upper bound of the transformed iteration space. Whether it
is an upper bound or a lower bound depends on which side of the hyperplane an integer point in
the union of computation spaces lies.

For this purpose. Step 3 chooses an arbitrary point « known to be in the union of computation
spaces. In Step 4. a set of inequalities. J. is initialized to the empty set. Step 5 adds an inequality
to .7 in each iteration so that at the end of the iterations, 3 represents the bounds of the smallest
convex polyvtope containing the union of the computation spaces. Whether a hyperplane is added
as an upper or a lower bounding hyperplane is determined using integer point u: For hyperplane
R(1) = 0in H. h(I) < 0is added to 3 if A(x) < 0: otherwise A({) > 0 is added to 3. Finally. in

Step 6. we apply Fourier-Motzkin variable elimination to 3 to obtain the bound matrix .¥'.
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Figure -1.6: Empty iterations in an iteration space with tight bounds.

As an example of applying algorithm CD.A-bounds-perfect. consider again the transformed com-
putation spaces for Loop 2 on the left hand side of Figure 4.3. The extreme points of the first trans-
formed computation space. C'S’(S;). are (0.0). (n.0). (0. ) and (n.n). and the extreme points for
the second transformed computation space. C'S’(S;). are (0.0). (n.0). (2n. r) and (n. n). Therefore.

Step 2 in the algorithm computes the convex-hull as defined by the lines®:
t=0. t=2n. j=0. j=n. j=i—-n
from which Step 5 produces the following inequalities:
t20. 1<2n. j20. j<n, j2i—n
After variable elimination. these inequalities provide the loop bounds.
0<i<2n. maxr(0.i—-n)<j<n

These inequalities bound the shaded area in the figure. The loop bounds are exact in this case.
since the union is a convex polygon. so it no longer includes empty iterations.

[n some cases. the bounds derived using algorithm CDA-bounds-perfect are in-exact in that not
all empty iterations are removed. Consider the union of the computation spaces of Loop [ depicted
on the left hand side of Figure 4.2, where the union is a non-convex polygon. The dotted lines on
the left hand side of Figure 4.6 show the loop bounds that are derived by algorithm CD.A-bounds

of Section 3.5. The dotted lines at the center of the figure show the bounds obtained by using

*Because we are operating in a 2-dimensional space, the hyperplanes are actually lines.
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Figure 1.7: Performance benefits of eliminating empty iterations.

algorithm CDA-bounds-perfect.?

Figure 4.7 compares the overhead of the unoptimized Loops ! and 2. where the bounds are
derived using algorithm C'D-A-bounds. with the overhead of the optimized loops. where the bounds
are derived using algorithm C'D:A-bounds-perfect. The reduction in the overhead of Loop I (of
Figure -1.2) is not significant. since it contains only a small number of empty iterations. The
application of algorithm CDA-bounds-perfect to Loop 2 (of Figure 1.3) reduces the overhead by

about 153%. since nearly one quarter of its iterations were empty.

4.2 Reducing the Overhead of Guard Computations

Guards are often necessarv in CDA transformed loops both to step off empty iterations and to
prevent inappropriate computations from executing in the new iterations. Guards may incur con-
siderable run-time overhead. but it is possible to remove them during compilation time in many

cases. \We describe three techniques to reduce the number of guard computations required:

) Algorithm C'DA-bounds-perfect described in the previous section minimizes the number of
empty iterations and hence removes the guard computations in the eliminated empty iter-
ations (although it does not eliminate all the guard computations). The algorithm can be

applied in conjunction with and prior to applying techniques (i{) and (ii¢) below.

*Algorithm CDA-bounds-perfect can be used in contexts other than CDA transformations. for example when
computing the union of Data Access Descriptors [7]. Data access descriptors are descriptions of sections of arrays
accessed in a loop or a procedure. The union of data access descriptors might be computed, for instance, to determine
whether two procedures access the same set of array elements. The data access descriptors can be represented by
bound matrices. which allows algorithm CDA-bounds-perfect to be used to compute the union of data descriptors.
Algorithm CDA-bounds-perfect can also be useful in other contexts that require the computation of unions such
as array privatization (53, 16]. In both of these contexts. the algorithm provides tighter unions than the existing
algorithms prevalently do.
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11} The second technique incrementally eliminates guard computations from the iterations in
those regions of the new iteration space in which all statements are to be executed. This
technique is useful. for example. when most iterations must execute all statements. (This

tvpically occurs when the transformation matrices for the statements are similar.)

i17) In the third technique. the union of the computation spaces is partitioned into homogeneous
segments. where each segment must execute the same set of statements. The technique then
generates a loop structure that iterates through the segments. where the loop body of the
subnest corresponding to each segment contains only those statements that the segment must
execute. Although this technique can eliminate most of the guard computations. it usually
generates complex and imperfect transformed loops. Therefore. this technique would typically
be used at a final stage to eliminate guard computations that might remain after any other

loop transformations that mayv be applied and after the application of technique (7).

\We describe techniques (i) and (ii/) above in the following two subsections.

4.2.1 Incremental Removal of Guards

This section describes a technique that incrementally removes guards from selected regions of the
union of computation spaces. [t is targeted primarily towards CDA transformations. where the
intersection of the computation spaces makes up a large portion of the union of the computation
spaces.

The technique we describe here is somewhat involved. so we first describe it with an example.
namely the transformed iteration space on the left of Figure 1.8.> We refer to the CDA transformed
loop corresponding to this iteration space as Loop 3. Algorithm CDA-guard-rem of Figure .10

removes guards using the following steps:

l. The bounds of the intersection of the computation spaces are derived. For instance. the
shaded area in Figure 4.8 is the intersection of the three computation spaces. The iterations
in the intersection entail the execution of all three statements 5;. 5> and S5. Therefore. if we
partition the new iteration space to separate out the intersection. the code generated for the

iterations in the intersection does not require any guards.®

*The CDA transformations in the figure are such that the computation space of statement S, is moved up by &
in the [; direction with respect to the computation space of statement $;. and the computation space of statement
Sa is moved right by & in the /; direction with respect to the computation space of statement S;.

®Thus, algorithm CD.A-guard-rem generates code so that all iterations of the intersection are in a subnest of their
own.
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// code for L3

Figure 1.8: Transformed computations spaces to illustrate steps in algorithm C'DA-guard-rem. The
transformed loop corresponding to the transformed computation spaces is called Loop 3.

2. The iteration space is partitioned along the first dimension /; so as to delineate the intersection
in that dimension. In our example, the CDA transformed iteration space of Figure 4.8 is
divided into three partitions. namely, L,. L, and Lj. based on the fact that the I bounds
for the intersection are k and n. Partition L, has iterations with [ values between 0 and
k — I: partition L, has iterations with [ values between & and n. (the two [, bounds for the

intersection): and partition L3 has iterations with the I, values between n + 1 and n + k.

3. Code is generated for partition L,. This code consists of a sequence of subnests. The first
subnest includes those iterations with [, values that do not belong to the intersection. thus
requiring guards. The second subnest includes the iterations that belong to the intersection.
This code constitutes most of the iterations of the loop that need to be executed and require
no guards. The final subnest includes those iterations with [ values higher than those of the
intersection. thus requiring guards again. The three subnests for our example are shown on
the right hand side of Figure 1.8. Note that the subnest corresponding to the intersection

does not have any guard computations.

1. The algorithm is applied recursively to remove guards from partitions L, and L3z. The iter-
ations in these partitions contain only a subset of the statements of the original loop body.
Thus. only a subset of the computation spaces participate in the intersections of these parti-

tions. For partition L. it is necessary to consider only the computation spaces for statements
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Algorithm 3 : C(CS-intersect(L)
input: Loop L with loop body g(S1) : Sy:...9(Sk) : Sk
output: Bounds of the intersection of the computation spaces
begin
/S 3S). ... J(Sk) + bounds for transformed C'S(S,).. ... CS(Sk)
// (L) «— bounds of iteration space partition
1. for each 5;. | <i <K
if Fourier_Motzkin(3(5;)U 3(L)) tnconsistent then
remove S; from L
end if
end for
2. Remove L if all statements are removed
3. for it =n. !
// Bounds of iterator I; in CS(S;) are L] < [; < 7.
L'y « mar(L!.1<j<R)
Uy — min(U7.1<j<K)
end for
4. HC ) + bound matriz for the intersection
end

Figure 1.9: Merging Guards for statements S..... Sk

Sy and S». and for partition L3 it is necessary to consider only computation spaces for state-
ment S3. Recursive application of the algorithm to partition L,. does not partition it further
along /;. since the intersection of computation spaces for S| and S, spans the entire [, bounds
of L. The intersection in L; has I, bounds of k and n. and guards can be similarly removed

from Ll'

The result of applying algorithm CD.A-guard-rem is thus a sequence of loop nests. which typ-
ically are imperfectly nested. The right hand side of Figure 4.8 shows a template of the code
generated for the transformed computation spaces on the left hand side. The technique in C'DA-
guard-rem is similar to the method by Knijnenburg and Bik [24]. where a perfectly nested loop
with a single if (condition) then-else-endif statement in the loop body is restructured so as
to eliminate the need for evaluating the integral. affine condition in the statement.

In order to simplify the description of algorithm C'DA-guard-rem. a loop L and its iteration space
are used interchangeably. and the notation for its bound matrix and that for the set of inequalities it
represents are used interchangeably. The input to the first invocation of algorithm CDA-guard-rem

is the entire iteration space of the CDA transformed loop; the input to later. recursive invocations is



Algorithm 4 : CDA-guard-rem(L)
input: Loop L guarded with g4(Sy) :Sy:...9(Sk): Sk
output: Code for L with fewer guards
begin
// 3(L) « bounds for L
1. 3CI) + CS-intersect(L)
// CS-wntersect returns 3(C[). bounds of intersection of S\, .. .. Sk
2. L9 <, U« I bounds in 3(L)
3. Ly < <) « [, bounds in 3(CI)
{. Generate three partitions. Ly, L1 and L3
L) = HL)U{LY <L < Ly -1}
I(Lz) « HL)U{L <N <}
(Ls) = HLYu{lh+ 1< <Y}
// Remove guards in L. L1 and Lj
3. CDA-quard-rem(L,)
// generate code for subnest L
6. print: for Iy = L;. U,
if n>1then // the loop s at least 2-dimensional
Gen-subnest(3(L).3(C'I). 2}
end if
print: end for
7. CDA-quard-rem(L3}

end

Figure 1.10: Remove guard computations in L.

a portion of the iteration space. We assume that the bounds of the iteration space were generated by
algorithm C'D:A-bounds-perfect and that the bounds of the iteration space partitions were generated
during the previous invocations of algorithm C'DA-guard-rem.

The first step of algorithm CDA-guard-rem invokes algorithm (CS-intersect. which primarily
generates the bound matrix J(C'[) for the intersection of the computation spaces. (The *C'I" in
J(C'I) stands for Computation space Intersection.)

In algorithm (C'S-intersect of Figure 1.9, L corresponds to the iteration space under considera-
tion. and J(L) denotes its bounds. Step 1 identifies those statements that are not executed in any
iteration of L (a case. that only occurs on recursive invocations of CDA-guard-rem). Such state-
ments are recognized by checking whether their guards are inconsistent with J(L). {f the guards
are indeed inconsistent with J(L). then the guards will not be true in any iteration of L. Hence.
such statements can be removed from L. For instance, a guard { < n is inconsistent with J3(L).

when J(L) contains the inequality { > n. If none of the guards are consistent with 3(L). then L
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is a partition containing only empty iterations. and can consequently be removed (Step 2). Step
3 computes the bounds for the intersection of the computation spaces of the statements. These
bounds are represented in bound matrix form in Step .

We now continue with the description of algorithm CDA-guard-rem. shown in Figure 1.10.
Steps 2 and 3 extract bounds along [; for iteration space partition L and the intersection C'/ of
the computation spaces. respectivelv. These [; bounds are used in Step 4 to derive the bounds for
partitions L;. L, and Lj of partition L. Partition L consists of iterations in L for which [, values
lie between the lower bound of [, in L and the lower bound of I{ in C'[. Partition L, has iterations
in L for which [, values lie within the [, bounds of C'[. Partition L3 has the remaining iterations:
that is. those iterations in L for which the [, value lie between the upper bound of I, in C'/ and the
upper bound of [, in L. Such a partitioning of the iteration space is always possible. because C'/
is contained entirely within L.” We then recursively apply algorithm C'D:A-guard-rem to partitions
Ly and L3, in Steps 5 and 7. respectively. This recursive application removes guards by isolating
the intersection of (fewer) computation spaces from L; and Lj. respectively.

In Step 6. the subnest corresponding to the iterations in partition L, is generated. This involves
generating a loop statement that iterates from the lower bound of C'/ to the upper bound of C'I:
and contains a sequence of subnests. as generated by algorithm Cen-subnest.

Algorithm (Fen-subnest. shown in Figure 4.11. generates code for each partition created by algo-
rithm C'DA-guard-rem. (‘en-subnet is recursive. and each invocation produces the loop statements
necessary for the next iterator /.. The iteration space is partitioned along the r** dimension by
identifving three ranges for iterator /.. similar to the partitioning of the iteration space along the
first dimension in algorithm CDA-guard-rem. Steps | and 2 extract the bounds fer iterator /. in
L and C'I. respectively. In Step 3. we print a loop statement for iterator /. that iterates from the
lower bound of /. in L to one less than the lower bound of /- in C'f. The code for the remaining
iterators /.41 to [, of this subnest (assuming the loop has dimension n) is generated using their
bounds in L. since these iterations are not in C'/. [n Step i, we then generate a loop statement for
iterator [, using the bounds for /. in C'I. The code for the remaining iterators is generated by a
recursive call to algorithm (en-subnest. Finally, Step 5 generates a loop statement for iterator /,
that iterates from the upper bound of /. in C'I plus one to the upper bound of I. in L. The code

for the remaining iterators [.4) to [, of this subnest is generated as in Step 3.

“That is, for each iterator. the lower bounds of Cf are greater than or equal to the lower bounds of L and the
upper bounds of C'[ are lesser than or equal to the upper bounds of L.
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Algorithm 5 : Gen-subnest(3(L).3(CI). r)
input: Loop L. tntersection (C[ and nesting level r
output: A sequence of subnest without quards for the intersection
begin
[ LY <. <U? « [ bounds in 3(L)
2 L, <. < & I bounds in 3(CI)
// This subnest has guards
3 prnt: forl, =L% L, -1
if r<nthen
Generate code for tterators [, to [, using eristing bounds n L
else return
end if
print: end for
// Only some subnests here have gquards
4. print: for I, = L,, U,
if r<nthen
Gen-subnest(3(L).3(CH.r +1)
else return
end if
print: end for
// This subnest has guards
5. print: for [, = U, + 1. U®
if r<nthen
Generate code for werators [ to [, using ertsting bounds in L
else return
end if
print: end for
end

Figure 4.11: Generation of code for subnests.

Figure -1.12 shows the effectiveness of algorithm CD--guard-rem in removing guards. The dark
bars correspond to CDA transformed code with guards, where algorithm CDA-bounds-perfect was
applied to remove as many empty iterations as possible. The grey bars correspond to code for
which algorithm CDA-guard-rem was applied. The figure shows that additional removal of guards
can reduce the overhead substantially. when the loops are transformed by offset alignments. The
reduction in overhead for Loop 2 was not as large as for Loops ! and 3. since the code for Loop
2 continues to have guards in nearly one quarter of the iterations. but the benefits of applying

CDA-guard-rem is still significant.

8These iterations correspond to the region bounded by 0 <1 < nand i + 1 € j € n on the left of Figure 4.3.
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Figure 4.13: Partitioning union into homogeneous segments.

4.2.2 Partitioning the Iteration Space into Homogeneous Segments

The technique for incremental elimination of guards can be further refined so that the transformed
iteration space is partitioned into homogeneous segments. where all iterations in a segment execute
exactly the same set (although not necessarily all of the statements). The code generated would
then iterate separately through each of these segments. and the subnest generated for each segment
would contain only those statements in the segment that need to be executed: no guards would be
necessary. We refer to this technique as Homogeneous-partitioning. The idea behind Homogeneous-
partitioning is utilized in several existing algorithms [12. 22. 23. 24, 27. 51. 52].

In this section. we only illustrate the basic approach in Homogeneous-partitioning by example
through the iteration space of Figure 4.13. The iteration space is partitioned into cight homogeneous
segments. and loop dimensions /, and I, are partitioned so as to demarcate these segments.? Given

these segments. Homogeneous-partitioning generates a sequence of four nested loops. one for each

*Actually, the union has only five homogeneous segments, but they are easier to work with when treated as eight
segments.
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Figure 1.14: Performance benefits of scanning in homogeneous segments.

defined /| range. Each of these nests consists of a sequence of inner [, loops. one for each segment
defined in that particular /), range. The individual bound expressions are chosen so as to delineate
the segment. For the /) range [1. n/2), three segments must be delineated. Accordingly. the [; axis
is further split into ranges [L./[;]. ([;.21,] and (2/,.n]. Similarly, the /, ranges can be found to
delineate remaining segments in other [; ranges.

We use Loops [. 2 and 3 to compare the effectiveness of C'DA-guard-rem and Homogeneous-
partitioning. In Figure 1.14 darker bars correspond to the application of CDA-guard-rem and
lighter bars correspond to the application of Homogeneous-partitioning. Algorithm CDA-guard-
rem removed a significant number of guards in Loops ! and 3. Hence. applying C'DA-guard-rem
may suffice when the intersection has a large number of iterations relative to the total number
of iterations. VWhen this is not the case, as in Loop 2 then Homogeneous-partitioning is capable
of removing a large proportion of the overhead. However. the performance differences between
CDA-guard-rem and Homogeneous-partitioning will be further reduced when we apply techniques

discussed in the next subsection to optimize the evaluation of the guards.

4.2.3 Optimizing the Evaluation of Guards

The run-time overhead of evaluating guards that may remain after having applied the guard elimi-

nation techniques described earlier can be further reduced by optimizing the clauses in the guards:

e Some of the guards may be redundant. in which case they can be removed. Clause ¢; is
redundant in guard ¢; A...cj...Ack, when c; A L..AT AL A AC is false. where C'

is the conjunction of clauses corresponding to the bounds of the enclosing iterators. For
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instance. in Figure 1.8, some of the clauses in the guards of the code generated for the range
k<I; <nand 0 <[, <k -1 areredundant. Statement S, of the loop body has the guard
@< ) A ([} £n} A(0L ) A (I, € n). We can verify that the clauses (0 < ) and
(I} < n) are redundant. since the enclosing I, iterator has a range of & < I} < n. Similarly.

(0 < I) and ([> < n) are redundant. Hence. we can conclude that statement S; (and similarly

S,) does not need guards in the subnest considered.

e The guards for some statements may be inconsistent among themselves or with the bounds of
the enclosing iterators. which implies that these statements are never executed. The overhead
of guard computation for such statements can be eliminated by removing the statements
altogether. When none of the guards in a subnest are consistent among themselves or with the
bounds of the enclosing iterators. then the subnest only iterates through empty iterations, so
the entire subnest can be removed. For instance. in the subnest of Figure 4.8 with A </, < n
and 0 < [, € & — | statement 5, is never executed. This is because the clause £ < [, in the

guard for statement S, is inconsistent with the bounds of the enclosing [, iterator.

e Guards can be further optimized if the clauses in the guards are all in canonical form. where
the conditions on [, only involve expressions in the enclosing iterators [} to /._;. This allows
the conditions on iterator /. to be evaluated and stored as boolean values before the beginning
of the I, iterations. The statement guards can then be reduced to a conjunction of previously
computed boolean values. In general. it is beneficial to move the evaluation of the guards. to

the outermost loop level possible.

4.3 Optimization of Space Overhead for Temporaries

The temporary variables introduced during Computation Decomposition may increase the number
of references to memory and may add to space requirements and the cache footprint. A number of

optimizations can reduce some of these overheads.

e Temporaries needed in a loop may be replaced by dead variables. which are not used in the

later flow of the program.

e \While decomposing a statement. it is possible to eliminate the need for temporary variables al-

together by using the lhs array elements to store the intermediate results. Such a replacement
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is legal if the dependence relations remain legal. Even though a Computation Decomposi-
tion does not modify dependences, eliminating the temporary variable this way can modify

dependences. For example. it is legal to replace ¢(i. j} by a(:. j) in the following decomposition.

a(z.;)
a(e.jy = a(r.j)+a(t = L))+ ale.)— 1) N Zﬁ%i‘:&;:g%:jiﬁ

a(e. )
However. such a replacement would be illegal in the following decomposition. because a(:. j)
would be modified before it is used in the second statement so the temporaryv variable needs
to be retained.

te.))=ale = L.y)y+a(e.y = 1)

a(i. )y =aleg)y+a(t = L.jy+a(i.y—=1) - ale)) = t(i.)) +alr.)

Hence. storage requirements can be reduced in this way for only some decompositions. More-
over. it must be noted that the dependences introduced by replacing the temporary variable
can constrain later opportunities for Computation Alignment. It is therefore better to replace

the references to the temporary by references to the lhs after the CDA transformation.

Temporary variables that were been introduced can be reused in subsequent loops. This is
possible since the temporaries are intended to store only the results inside a loop. and these

results are not needed outside the loop.

Temporary arrays are typically initially chosen to have the same dimension and size as the
iteration space. since the subexpressions that generate values for the temporaries potentially
have a new value in each iteration. The dimension and size of the temporary arrays can
be reduced following the CDA transformation. It is only necessary to have as many storage
locations as there are iterations between when the temporary is defined and when it is used.
For simple offset alignments, the size of the temporary arrays can be just a fraction of the
size of the iteration space. For example. consider the decomposition of a statement S in a
two dimensional loop into statements S; and S;. The results of S are stored in a temporary
array t. When statement S, is aligned to statement S; along the outer loop level by an offset

c. then t need only be of size ¢ x n, assuming n iterations in the inner loop.



CHAPTER 5
Application of CDA to Reduce Number of Cache
Conflicts

Arms on armour clashing bray'd
Horrible discord. and the madding wheels
Of brazen chariots rag'd: dire was the noise
Of conflict.

— John Milton. Paradise Lost

5.1 Reducing the Number of Cache Conflict Misses

[n this chapter. we show the application of CDA to reduce the number of conflict misses in the cache.
Cache conflict misses occur when different memory references map to the same location in the cache.
Conflict misses can drastically reduce the cache hit ratio and thus significantly increase execution
times. Therefore. reducing the number of cache conflict misses for improved cache utilization is an
important optimization objective.

Traditional techniques used to reduce the number of cache conflicts modify the layout of arrays
in memory. Array padding is one such technique. which modifies the array layvout by manipulating
the array sizes [5. 6]. Cache partitioning is a more recent technique. which modifies the array
layout by introducing a suitable number of dummy locations between the arrays [39]. Bacon et
al. describe an algorithm to derive a suitable array padding to remove cache conflicts in innermost
loop iterations [5]. The cache partitioning algorithm. on the other hand. considers cache conflicts
arising in all levels of loop nesting so as to remove cache conflicts between reusable portions of
arrays. However. modifications to the array layout are global changes. The objective of this
chapter is to show how CDA can be used as an alternative technique when global changes to the
array layout are undesirable.

In order to determine the location of array elements in the memory and cache. we need to be
able to represent the number of elements in an array between the first element and a chosen element

of the array. For this purpose. we use an integer vector, V= (vpoeenn tm)T. called the mapping
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vector such that v; is the size of the m-dimensional arrayv along array dimension 1+ 1. and ¢y, is
1. Then. the array element accessed using reference matrix r in iteration [is ri-V array elements
away from the first element of the array. As an instance. the mapping vector for a two-dimensional
n x narray is V' = (n.1)T and reference A(i.J) in iteration (10.5) accesses an element which is
10n + 5 elements away from element A(1l.1).

A conflict in a direct-mapped cache is depicted in Figure 5.1(a). An array access in iteration I3
with reference matrix R, maps to memory location M; = (1 + R,[-V. where C| is a constant and
¥ is the mapping vector. A second array access in iteration I with reference matrix R, maps to
memory location M, = () + RsT - V.Y A cache conflict occurs for these two accesses if the cache
geometry is such that both A} and M, map to the same cache line.

The cache conflict shown can be eliminated by suitably modifving the number of elements
between 3/, and ;. so that the accessed data elements map to different cache lines {Figure 5.1(b)).
Modifving V" changes the array sizes. and is referred to as intra-array padding: this is achieved by
changing the declaration of the arravs to become larger along one or more dimensions. Modifyving
the C';'s changes the placement of the arrays in memory and is referred to as inter-array padding;:
this is achieved by inserting dummy variables between the array declarations.

The main idea behind using CDA to reduce the number of cache conflicts is to spread the
conflicting accesses of an iteration into different iterations. While modification to arrayv layout
moves conflicting array accesses apart in space. CDA moves conflicting array accesses apart in
time. In the example we are considering. the time (in number of iterations) between the access
to M, and access to M, can be changed by aligning the statement containing R, relative to the
statement containing R;. In other words. the statements containing R; and K, can be aligned so
that R, and the aligned R,, R),. do not access M, and 1, in the same iteration: in iteration I. R,
would continue to access M. whereas R, would access a new location 1. In Figure 5.1(c). Ry is
changed to R so that the new memory location M} = Cy+ R3[ -V and M, map to different cache
lines.

The following sections show how a CDA transformation can be efficiently derived that reduces
the number of cache conflicts. It uses an algorithm that is similar to the one used to find appropriate
array paddings [3]. In the next two sections. we describe a representation of cache conflicts and an
algorithm that uses this representation to derive a CDA transformation. In the last section of this

chapter. we compare the application of CDA and the application of array padding to reduce the

'Without loss of generalization we can assume here that arrays have the same size.
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Figure 5.1: Reducing cache conflicts with modification to array lavout and CDA.

number of cache conflicts. [n Chapter R, we provide experimental results comparing the effectiveness

of these two techniques on example nested loops.

5.2 Representation of Cache Conflicts

The detection and representation of cache conflicts is. in general, complex. We represent the cache
conflicts in a loop with a conflict graph G = (V. E). where V' is the set of array references in the
loop and (u.v) € E when accesses to u and v result in a cache conflict for a given (i.e.. first)
iteration and for a given cache geometry. Although the conflict graph is a simple representation.
it suffices to characterize the cache behavior with respect to cache conflicts. This representation is
useful based on two main observations which padding algorithms have also exploited. First. cache
conflicts are most expensive when they occur due to accesses in the same iteration: these should
therefore be the main target of elimination. Second. iterations tend to be uniform in that they ail
have similar behavior with respect to conflict misses. Therefore. it suffices to represent the cache
conflicts of just one iteration. such as the first. The uniformity ensures that the transformations
based on analvzing these conflicts will typically be effective across all iterations. Figure 5.2 shows

the conflict graph for a loop body containing the following statement:

St A )=Bu.j}+B—-L. )+ A=)+ At + 1))
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Figure 5.2: Conflict graph for statement S.

(assuming the data and cache sizes are such that the shown conflicts occur).

For this discussion, we assume that the cache is direct-mapped. This reduces the complexity of
the decomposition problem and also makes the solution resilient to the order of references. patterns
of variable reuse and dependence constraints on alignments. The derived CDA is still effective
for other cache geometries. since accesses that do not usually conflict in a direct-mapped cache
also do not conflict in caches of higher associativity. Moreover. the algorithm can be expanded to
account for other cache geometries in a straightforward manner by modifying the steps to derive
computation decompositions.

A CDA transformation of a loop modifies its conflict graph. Computation Decomposition can
be viewed as a partitioning of the conflict graph. and Computation Alignment adds or removes
edges in the graph as the references in partitions are aligned. The goal is to derive a CDA which

minimizes the number of edges in the conflict graph.

5.3 Derivation of a Suitable CDA Transformation

A CDA transformation to reduce cache conflicts may be derived in a number of wayvs. Bottom-up
and top-down represent two extreme approaches. In a bottom-up approach. statements might be
decomposed down to the granularity of individual references before they are aligned. While this
approach maximizes the search space for alignment. it also leads to an extreme number of alignment
possibilities with correspondingly high search complexity; the transformed loop body invariably has
more statements than necessary. In a top-down approach, the decomposition would be determined
by a heuristic before applying Computation Alignment. but because a heuristic is being used. this
approach may not expose all optimization opportunities.

[n this section. we consider a “hybrid™ approach: a heuristic is used to determine an initial

decomposition as in the top-down approach. but statements may be further decomposed while
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searching for alignments in order to increase the size of the search space when necessary. In this
approach. the overhead of decomposing additional statements is incurred only when it is necessary

to explore additional opportunities to reduce the number of conflicts.?

5.3.1 Initial Computation Decomposition

The number of ways a statement can be decomposed is exponential in the number of array refer-
ences. Algorithm A7 of Figure 5.3 heuristically derives an initial decomposition of a statement.
using a greedy approach. [t partitions the conflict graph into independent sets. where a set contains
references that only conflict with references in other sets. The number of independent sets is kept as
small as possible so that the complexity of the subsequent alignment and the number of temporary
variables needed is reduced. The algorithm does not attempt to partition the conflict graph into
the minimum number of independent sets. because the problem of finding the achromatic number
or the minimum number of independent sets of a graph is NP-complete [20].

Each iteration j of Step 2 extracts a mazimal independent set V' from the remaining vertices of
the conflict graph. Step 3 chooses the first vertex of this set as the one with the smallest degree (i.e..
having the fewest conflicts) from the remaining vertices of the conflict graph. Step 4 constructs the
subset. [, of all vertices which do not have 2 common edge with any vertex in 1';. The members of
U are all candidate vertices that may be added to ;. The vertex in {" with the smallest degree is
chosen and added to V: at the same time it is removed from the conflict graph. When " is empty.
then there are no more vertices to be added to V). Vertices with smallest degree are chosen from
[" (and added to 1) because this increases the chances that more vertices can be added to 1/ in
subsequent steps. since there are a larger number of vertices left outside 1, which do not have an
edge with the vertex with smallest degree.

Algorithm A/ partitions the conflict graph of Figure 3.2 as shown in Figure 5.4. The decom-

posed loop body corresponding to this partitioning is:

12t g)=Bg)+ Ble—1.))
2 At )=t )+ A = L)+ A+ 1))

',

The references in each of the statements are conflict free. and hence the conflicting references of

the original statement were distributed into the two statements.

?We continue to assume that the array references are affine functions of the iterators. Thus. the subscript functions
may be coupled. although they tend ro be simple when cache conflicts occur uniformly in all iterations. The subscripts
in some array dimensions may be independent of the iterators. The array and loop dimensions may be different.



Algorithm: A/
input: Statement S
output: Initial Computation Decomposition

begin
l. G« (V.E). such that
1" = references in 5. and
(u.v) € E iff uand v conflict in cache
J=0
2. loop
J +— j+1
3. Vi & {v} where v € 1" has smallest degree
4. repeat
U« {w|Vuel (vu)g¢E}
r « reference with smallest degree in {”
Vi« 15U {r}
Ve V= {r}
until U = o
end loop
end

Figure 5.3: Algorithm A derive initial Computation Decomposition.

Note that the conflict graph does not have vertices corresponding to temporary array references.
This is because temporary variables are either re-indexed or chosen to have suitable size so that they
do not introduce new set of conflicts. Thus. Computation Decomposition itself does not introduce

additional constraints on Computation Alignment.

5.3.2 Deriving the Computation Alignment

After the initial decomposition. we search for the Computation Alignment that minimizes the

number of conflicts. We consider only integer offset vectors for alignment. This has two advantages:

t) The search for offset vectors is significantly simpler than a search for all alignments. Con-
sidering all possible alignments would be inefficient. since potentially all (n + 1)-dimensional
non-singular integer matrices would have to be examined for each of the statements in the
loop body. In contrast. the search for offset vectors involves the search for only n integer

values for the elements of the vector.
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Figure 5.4: Initial decompositions of conflict graph for statement S.

Alignment by offset vectors can be as effective as general non-singular integer matrices in
reducing conflicts. This is because the objective of a transformation is to modify the distance
(in time) between conflicting accesses. [t is not necessary that this distance be a general

linear function of iterators.

i{) Alignment by integer offset vectors produces more efficient transiormed code than alignment
by general non-singular integer matrices: the loop bound expressions and the array references
tend to be simpler. and guard elimination techniques can be more effective with the majority

of the iterations executing all statements.

In order to show how integer offset alignments can be found. consider again the initial decom-

position of statement S

Sr: Hej)=B(i.))+ Bli—1.))

Se: AL )= ti )+ Ali=1.3)+ A(t+ 1))

To reduce the number of cache conflicts. the array accesses in S| can be moved in time along the
! iterator relative to arrav accesses in S;. Assuming a row-major storage order. our first attempt
should be to align computations (i + L. j: S} to (i.j:S2), which changes reference B(i.)) in S;
to B(i+ 1.j) and reference B(i — 1.j) to B(i,j). With this alignment. the statements continue
to have conflicts. namely between B(i + 1.j) and A({+ l.J) and between B(i.j) and :A(:. ). so
further alignment is necessary. Continuing in this fashion, all conflicts can be eliminated in this
case by shifting the §) computations further, aligning (i +3. j: S;) to (i. j: S2}. This transformation

produces the new loop body:
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ti+3.7)=Bu+3.J)+Bi+2.))
Al ) =t )+ A= L))+ A(e+ L))

7,
1 o~

Note that the subscript functions in the references to the temporary ¢ may have to be changed
suitably so as to not introduce any conflicts. An alternative is to choose a non-conflicting size for
t.

Statements S; and S; can also be aligned along the the J iterator to eliminate the conflicts. In
this case. however. it turns out that the value of the offset has to be the number of array elements
in a cache line.

This technique to find a suitable Computation Alignment for reducing the number of cache
conflicts is similar to the technique used by padding algorithms. In order to eliminate the conflict
in statement S. padding algorithm would typically add a dummy row between A and B. but this
will just cause conflicts between (i + 1.j) and B(i.j) and between A(:. ) and B(i — L. j). since
B(i.j) and B({ — 1.j) are now mapped to locations previously occupied by B(: + 1. j) and B{(t. j).
respectively. Adding two more dummy rows between A and B removes all conflicts.

Algorithm 12 of Figure 5.5 uses this technique to search for suitable offset alignments for each
statement so as to minimize the number of cache conflicts. An exhaustive search for alignmenis
is not practical for larger loop dimensions and loop bodies. since there are exponentially many
possible offset alignments. For example. with A" statements in the decomposed loop body and C
integer offsets for each of the n dimensions of legal offset vectors. we would need to examine €™
alignments. Moreover. C' can be very large in practice. Hence. algorithm .12 uses techniques similar
to those of array padding algorithms to heuristically align statements in a more efficient way. The
statements are aligned in some sequence. and once a statement has been aligned. it is no longer
changed. This is similar to how padding algorithms work: the padding between two arrays is not
changed once set. and especially not due to paddings between other arrays that are set later. This
is a greedy approach which is polynomial. but it may not produce an optimal solution in that it
may not be able to eliminate all conflicts. Our algorithm refines decompositions at the point where
it is determined that it is not possible to eliminate all conflicts with this heuristic and the original
decomposition.

In algorithm 42, each iteration of the outer while-loop of Step 1 derives an integer offset
vector a for a statement S; of the loop body. The order in which statements are considered is
not important. since the transformations are relative and decompositions are iteratively refined.

[nitially. all elements of vector a are zero. implying no alignment. Step 2 creates a [ist of candidate
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Algorithm: 12

input: Decomposed loop body with statements 5) ... Sg
output: [nteger offset alignment for each statement
begin
1. while there is a statement S; to align
a’ «—[ay.....an. 1] with a; = 0. Vj
T, — [Iid] // Ti is an alignment transformation for 5;

Saur — @
Construct a [ist of candidate iterators that appear in the array references of 5,.
Order the iterators in the list.
for each i; in the list
while conflicts exist due to S; references using i;
6. while T; is legal and conflicts exist due to S, references using i,
a; & a; — I
end while
T. « [I]aq]
if T; is illegal then
// attempt offsets in opposite direction
aj 0
while T, 1s legal and conflicts exist due to S, references using ¢;
a; «—a; +1
end while
end if
T; « [I]d]
if T; is illegal then
aj 0
T, « [/1d]
R« set of references in 5; whose dependences are violated
if R contains all references in S; then
break out of innermost while-loop
else
decompose S; so that S, contains all references in R
end if
end i f
end while
9. if all conflicts w.r.t. S; references are eliminated then
break out of for-loop
end if
end for
end while
end

ISR &
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Figure 5.5: Algorithm A2 to derive alignments that reduce cache conflicts.
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iterators for alignment. The list contains only those iterators used in the array references of the
current statement S;. We need to consider only these iterators. since the data elements accessed in
a loop are invariant across iterators absent in the array subscript functions.® From this list. we also
exclude those iterators that are useful in eliminating cache conflicts.? An iterator i is not useful in
eliminating conflicts if for every reference r in statement S;, array elements ri and T map to the
same cache line. when r’ is obtained by replacing every occurrence of i in r by { + 1 and [ is an
iteration (such as the first).®

Step 3 orders the iterators in the list heuristically. taking into account such factors as parallelism.
variable reuse and the sizes of the temporary arrays. For example. ordering the list from innermost
iterator to outermost iterator tends to preserve outer loop parallelism. since the dependences that
alignment may introduce will then tend to be at the inner loop levels. This ordering also reduces
the sizes of the temporary arrays. When the target architecture is a uniprocessor. ordering from
outermost iterator to innermost tends to improve data reuse. This is because alignment along the
outer iterators moves the conflicting accesses farther apart in time than if the alignment were along
the inner iterators. Such an ordering increases the probability that an array reference involved
in the conflict is not moved to an adjacent iteration where it conflicts with previously accessed
data elements that may be reused. When both data reuse and parallelism are important, as on
shared memory systems. then a combination of the above two orders should be applied. Aligning
the non-parallel iterators preserves parallelism: and among the non-parallel iterators. aligning the
outermost iterator first improves data reuse. It shouid be noted. however. that the order of iterators
in the list does not affect the ability to remove cache conflicts.

For each iterator ¢, in the list. the loop of Step 5 considers all legal offsets to determine whether
they remove conflicts. The search stops when there are no conflicts due to S; references or when
dependences prevent further alignment. Both negative and positive offsets are considered. The
positive offsets move the computations of S; earlier in time with respect to dimension i;. while
the negative offsets move the computations of S; later in time with respect to dimension ;. Step
6 iteratively tries larger and larger negative offsets along iterator i;, until there are either no

more conflicts due to the S; references using i; or the alignment becomes illegal. The offset is

*For instance, in a loop with f. j and k iterators and a reference A(i. k). only alignments along i and & have an
effect. Clearly. cache conflict between array references that use only constants, such as A(1,1) and B(l, 1) cannot be
eliminated as the same elements are accessed in all iterations, and array padding would have to be used in this case.

*We need to eliminate these, to prevent infinite iterations in the algorithm.

*When iterator : indexes into the last dimension of the array referenced by r. then r' is obtained by replacing
every occurrence of i in r by ¢ + {, where { is the number of array elements in a cache line.
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generally decremented by 1 at a time, but as an optimization. the offset could be decremented by
the size of the cache line when the iterator indexes into the last dimension of an array. When the
transformation T; being considered is illegal. then larger and larger positive offsets are tried in Step
7. Generally. the offsets required in Steps 6 and 7 are typically small. just as padding typically
requires only a small constant number of rows/elements. so that only few iterations of these steps
should be necessary.

There are two cases to consider in Step 8 when Steps 6 and 7 cannot find a legal alignment
T;. When dependences are violated for all references in S;, then we revert back to a zero offset
by breaking out of the while loop (to try offsets along other iterators in the list). The second
case to consider is when 7; violates dependences for only some references in S;, but is legal for
the remaining references. In this case. we refine the decomposition to isolate those references that
cause T to be illegal into a newly created statement S,,r. Statement S,,, is aligned separately
in a later iteration. and the search for an appropriate alignment for the now smaller statement S;
continues. (It may be necessary to continue. because the illegal T, may have stopped iterations of
Steps 6 or 7 before all the conflicts were eliminated).

As an example of refining a decomposition. consider the alignment of statement S which was

decomposed earlier into the following statements S; and Sa:

t{1.)=B(e.))+ Ba = . ))
o Al )=t )+ A -1y + A+ 1)

L
Y-

Aligning computations (7 + 1. j: Sy) to (i. j: S9) changes reference B(i.j) to B{i + L. ) and reference
B(i — 1.j) to B(i.j). Suppose this violates dependences between S| and another statement in the
loop body. say due to reference B(i — 1. j). Step 8 then decomposes 5. so that the new statement

Sgur contains B(i — 1. j).

Saur: t:?(lj)ZB(l—I._})
S te,g) = B(g)
So: A=ty +20,))+ A= 1.+ A+ L))

At this point, there are still conflicts between references A(:. j) and B(¢. j) and references A(: — 1. J)
and B(i — 1.J). Therefore. the next iteration of Step 5 aligns S| so as to change reference B(t. j) in
statement S to reference B(i + 2. j), effectively eliminating the conflict between A(:. j) and B(:. j).

Statement S,,; is then later aligned in a subsequent iteration of Step 1. along the j iterator. One
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such alignment along the j iterator will change reference B{i — 1. ) to reference B(i — l.j +1).
where [ is the size of the cache line.%

The initial decomposition in Algorithm A/ ensures that there are no conflicts between references
within any single statement of the decomposed loop body. This allows each statement to be applied
as large an offset alignment as required to remove the conflicts. On the other hand. if the original
loop has dependences. then 1/ and 12 may only reduce the number of conflicts. but not remove

them all. The impact of dependences on the algorithms can be summarized as follows:

i) CDA transformations derived for loops with dependences will generally have more decompo-
sitions than the transformations derived for loops without dependences. This is because any

decompositions will be further refined when a candidate alignment violates a dependence.

it) Dependences with larger elements in the distance vectors allow larger offset alignments. This
is because larger elements imply that the dependent iterations are farther apart in time. so

that there are a larger number of iterations into which array accesses can be moved.

{ii) While aligning decomposed statements, flow dependences are stricter constraints than anti-
dependences. With an anti-dependence. the read access can be moved to any iteration before
the iteration in which corresponding write access occurs, whereas with a flow dependence.
the earliest a read access to an array element can be is in the iteration in which the element

is written.’

ir) A flow dependence in the innermost dimension. such as between references A(:. f) and
A(i.j—=1) in a 2-dimensional loop with j as its inner iterator. is a very strict constraint.
This is because the only alignment possible (other than the identity transformation) modifies
A(i.j = 1) to A(:i.J). On the other hand. a dependence between A(i.j) and A(: — 1. J) has

several legal alignments along the j iterator (and only one along the ¢ iterator).

5.4 Comparison of CDA with Padding

Modification of the array layout using padding is relatively easv to implement and can be very

effective. However, it does have a number of drawbacks, and CDA can be used as an alternative

®Note that if dependences due to all references in S; were violated, then Step 4 would align $; along the
dimension.

"With a flow dependence, the read access in a decomposed statement cannot be moved later in time. since doing
so would violate the flow dependence on the temporary variables.



technique when these drawbacks prevail. Some of the drawbacks of modifving the array layout are:

e [t changes the data declarations. so it has a global effect: an effective padding for one loop

can introduce interferences in another loap.

e There are situations where modifving the array layout is illegal such as when the program
accesses an array in a shape different than the one declared. For instance. n? elements may
be accessed in the same program both as an n x n 2-dimensional array and as a n*® element
linear array with another name. These situations are difficult to identify without integrated

support for inter-procedural analysis.

e Array padding cannot be adapted to suit a range of data sizes. since it shifts the data size
for which interferences occur by just manipulating array sizes. Therefore. it is not possible

to ensure conflict-free cache behavior for a range of data sizes.

CDA can be emploved in place of and in conjunction with the previously existing techniques. In

this regard. CDA has some advantages:

e [t makes only local changes. so unlike padding. it does not introduce additional global con-

straints.

e Since it does not change the data declarations. programs relving on the original lavout of

arrayvs will work correctly.

e To support data sizes that are unknown at compile time, it is possible to generate multiple
CDA-transformed loops and then dvnamically choose an appropriate one at run-time when

the data sizes are known. Such an option is not possible with padding.
The application of CDA to reduce the number of cache conflicts also has some disadvantages:

e CDA transformations may not be able to eliminate all the cache conflicts in the loop in the

presence of dependences.

e CDA transformation may not eliminate cache conflicts that occur in the outer iterations of

the loop.

e CDA transformed loops require additional storage space for the temporaries and in fact

increase cache footprint. The transformed loop also incurs overhead due to references to



temporary array elements (which are designed to be cache hits). However. these overheads

can be optimized as described in Section .3.

e CDA transformed loops can be much larger than the original loop and hence they can take

longer to compile.

Overall. our experiments of Chapter 8 show that loops with cache conflicts removed through
array padding tend to run somewhat faster than code with cache conflicts removed through CDA
transformations because of the overheads CDA introduces. Nonetheless. CDA is effective in signif-
icantly improving the run-time of loops with cache conflicts. as it is useful for those cases where

array padding cannot be usefully emploved.



CHAPTER 6
Application of CDA to Remove Ownership Tests from
SPMD Codes

! pass by that way in the gloaming with Mary;

‘| wonder,” | say, ‘who the owner of those is’.

‘Oh. no one you know,  she answers me airy ...
— Robert Frost, Asking for Roses

[n a parallel programming environment. such as for HPF [I8]. data and computations are
mapped onto the processors in two steps. First, either the user or an automatic tool aligns and
maps the arrays onto the processors. Then. the computations are mapped onto the processors
depending on how the data was mapped. The compiler generates a single SPND (Single Program
Multiple Data) program that is to be executed by all processors. This program uses a computation
rule to dvnamically determine at run-time which computations to execute on which processors.
given the data they own. One computation rule. which is used almost exclusively. is the owner-
computes rule. With this rule. a statement is executed on the processor that owns the lhs data
element of the statement. For this purpose. an intrinsic function is needed for each processor to
execute the tests for ownership in order to decide whether a statement in an iteration should be

executed or not [18. 21]. Thus. the efficiency of SPND code depends in part on:
() the number of non-local accesses each processor must perform. and

(¢t) the overhead of the chosen computation rule: in particular. how often ownership tests must

be executed.

By choosing a computation rule other than owner-computes it may be possible to improve
the efficiency of SPMD code significantly by reducing the number of non-local accesses. For this
purpose, we first define flexible computation rules in this chapter. called P-computes rules. P-
computes rules are more general than the owner-computes rule in that they consider the location
of all the data needed for a computation instead of just the lhs. For simplicity. we also refer to the

intrinsic functions used in implementing flexible computation rule as ownership tests. e then show

9
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how the efficiency of SPMD code can be further improved by reducing the number of ownership
tests using CDA transformations.

It is possible to improve the efficiency of SPMD code in a separate and later phase by additional
optimizations such as inserting collective communications. The efficiency of SPMD code ; can also
be improved by applying subspace analysis developed recently by Knobe [25]. [n this context. CDA
can be viewed as a transformation capable of reducing the natural subspace of the loop body.

[n the first section, we introduce P-computes rules. which can be used to map computations
onto processors so as to minimize communication. In Section 6.2. we describe how ownership
tests can be removed by using data alignment and CDA transformations. In Sections 6.3 and 6.4
we describe an algorithm to derive CDA transformations that remove ownership tests in SPMD
programs which use P-computes rules. [n Chapter 8. we provide experimental results to show the

effectiveness of applyving CDA to remove ownership tests.

6.1 P-computes: Flexible Computation Rules

Computation rules. such as the owner-computes rule. can be called fired computation rules in that:

(i) they do not consider the locations of all the data elements accessed in the computations of a

statement.
(i1} the rules are applied at the granularity of entire statements. and

(£t} all the statements in a program are (tvpically) mapped using the same rule.

Fixed computation rules do not result in optimal mapping of computations because the fixed com-
putation rules do not consider the locations of all the data elements accessed in the computation.
For example. with the owner-computes rule. the computations of a statement are executed by the
owner of the array element on the lhs of the statement. even though fewer non-local accesses may
be required if executed by the owner of an array element being accessed on the rhs of the statement.
The appeal of fixed computation rules is that they are simple. and not that they are communication
optimal.

Flexible computation rules. on the other hand. are more general than fixed computation rules

since:

{i) they can consider the locations of all the data elements accessed in the computations in

question.
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(¢f) they can map individual sub-expressions onto processors and not just entire statements.

Flexible computation rules provide more opportunities for optimizing communication. because a
computation can be mapped onto the processor which owns most of the data elements needed to
execute the computation. Therefore. flexible computation rules are significantly more powerful
than fixed computation rules.

I These rules

In this section. we introduce flexible computation rules called P-computes rules.
are specified by % operators. which are inserted into the code either by the programmer or by a
restructuring compiler. An expression with the .= operator. =, (expr). specifies that the expression
expr is to be executed on processor p. In general. p and erpr are functions of the enclosing loop
iterators. and expr may also contain other > operators.

In &, (expr). function p is typically chosen so as to minimize communication when executing
erpr in the current iteration. If erpr is an entire statement, then the result of rhs is to be sent
from the processor it is executed on. namely p. to the owner of the lhs who performs the and
assignment. If expr is a sub-expression. then the result of executing Z,(erpr) is sent from the
processor designated by p to the processor designated by the enclosing > operator.

The specification of p in 2p(exrpr) can be either direct. where the identity of a processor is
directly specified as a function of the iterators, or indirect. where the processor is indirectly specified
in terms of the location of array elements. Direct specification is powerful. but non-intuitive.
[ndirect specification makes the flexible rules a natural extension to the owner-computes rule. [t
also enables reasoning about the mapping of computations relative to the array elements used to
specify mapping. For instance. if the array elements used to specify the rule are co-located. then
we can reason that the computations will be executed on the same processor as well.

Indirect specification is achieved through an intrinsic, owner(e}. which returns the processor
that owns data element e. This intrinsic is similar to town(e). which is used by the owner-computes
rule and evaluates to true on the processor that owns data element e and false on all others. In
fact. louwn(e) is equivalent to the conditional (myid = owner(e)).

The = operator is very general and can be used to express a varicty of computation rules.
Consider the following examples:

Downer(A)) (AU) = A() + B(4))
Sidiv 51y (A1) = 2¢ die 82)(BU) + 2(i moa pY(C (1) + D(i))))
Douwner(A() (A) = Sawmer(8(i)) (B(E) + C 1)) + Douner(cin(C(§) + D(0)))

'P is for Processor.
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The first example implements a rule equivalent to the owner-computes rule. The second example

specifies the processors directly as a function of the loop iterator. whereas the mapping is indirect
in the last example.

The techniques presented in this chapter assume that the owners of computations are specified
indirectly. For brevity. we sometimes use = 4(;y to mean Zowner(A(1)-

The derivation of the optimal computation rule is computationally hard (although it is possible
to derive optimal computation rules automatically for restricted classes of expressions and machine
topologies [13]). A programmer usually has much better insight into the application. so she is most
suitable for specifying the rules. It is possible to derive optimal computation rules automatically
for restricted classes of expressions and machine topologies [13].

The choice of which flexible computation rule to use is often a trade-off between the opportuni-
ties for communication optimization and the simplicity with which SPMD code can be implemented.
For example. generating efficient SPMD code with flexible computation rules is more complex than
with fixed computation rules: the removal of ownership tests becomes more challenging. since each
sub-expression may be mapped differently. [n the section that follows we show how CDA can be
used to reduce the intrinsics associated with P-computes rules. The techniques are clearly also

applicable in the context of a fixed computation rule such as owner-computes.

6.2 Removing Ownership Tests in P-computes rules

In this section. we show how ownership tests in P-computes rules can be removed. first by using
data alignment and then by CDA transformations. To show how the overhead associated with
ownership tests can affect the efficiency of SPMD code. consider the loop on the left hand side of
Figure 6.1. The computations are to be mapped onto P processors numbered from 0 to P — 1.
Assume that the arrays are aligned so that A(i.j) and B(i.j) are co-located. and that the arrays
are distributed so that rows / of A and B are mapped onto processor ¢ div b. and b = [5]. Each
of the P processors contain b consecutive rows of A and B.? The indirect P-computes rule in this
case happens to be equivalent to the owner-computes rule. Each processor executes every iteration,
and a processor executes S; or S; only when it owns the lhs array elements.

This SPMD code is inefficient (even if it minimize communication). since a majority of the

*The boundary processors 0 and P — | may contain fewer rows. For simplicity. we will assume here that P divides
n evenly.
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align B().1) to A(:1.])

for i=1t.n fori=pxb {p+1)xb—1

for j=1.n fort=p*b(p+1l)eb~1 for yj=1.n
St Downer(aagy ( AL gy =...) for j=1.n S Ay =
Sa: DownerBan ( BU)=.00) Sy Aleg)= ... Ss: B(ig)=...
end for So: B(.1)=... end for
end for end for end for
end for

Figure 6.1: SPMD codes for an example loop.

iterations executed by the processors do not need to execute either the Sy or S, computations. In

3 in the

particular. processor p has computations to execute in only 2bn — b* of the n? iterations:
other iterations it executes only ownership tests. Qut of the 26n — b? iterations. only b iterations
have both S; and S, computations. Some bn — b? iterations have only S| computations and the
remaining bn — b? iterations have only S» computations.

This SPMD code can be optimized at compile-time to minimize overhead at run-time. Our

objective is to modify the code so that:
(1) all computations of an iteration are to be performed by the same processor. and
(i) a processor examines only those iterations where it is guaranteed to find work.

In the ideal case. when these objectives have been achieved. then a processor will execute only
those iterations that have been allotted to it. without requiring any ownership tests at all. These
objectives can often be achieved through appropriate data transformations or code transformations.

Consider first removing ownership tests through data alignment. The arrays referenced in the
lhs of the statements can be aligned (or re-aligned) so that the same processor owns all lhs elements
of an iteration. The loop bounds can then be modified so that each processor scans only the subset
of the iteration space that contains the lhs data elements local to the processor.

The SPMD code on the left hand side of Figure 6.1 can be optimized to the code in the middle
of the figure using proper data alignments. I[n this case. arrays A and B were re-aligned so that
B(Jj. i) and A(!.J) became co-located for every i and j in the array bounds. Using the function
that maps the rows of the arrays onto processor. the lower and upper loop bounds are derived so
as to scan only the iterations that access local elements of the lhs arrays. In this case, the lower

and upper bounds for processor p are p+ b and (p+ 1) b — 1. respectively.

3Processor p has computations to execute only in iterations (t.«), where 1 div b = p, and in iterations (7. *),
where 7 div b=p.
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[t should be pointed out. however. that data alignment cannot remove ownership tests when
multiple ths references in an iteration are to the same array. Also. data alignment has the drawback
that it is a global transformation: it can interfere with and constrain data alignment for optimizing
communications. While it is possible to re-align data at run-time. it is expensive to do so. since it
involves data movement.

CDA transformations can be used as an alternative to and in addition to data alignment. since
there is a duality in aligning computation spaces and aligning arrays. Computation spaces can
be aligned without changing existing data alignments. and so it is not necessary that all lhs data
elements in the new iterations are owned by the same processor. The loop on the right hand side of
Figure 6.1 is a result of a Computation Alignment. In this case. the computation space for 5, was
transposed with respect to the computation space for S| so that A(:.j) and B(i. ) are accessed in
the same iteration. Moreover, the loop bounds were modified so that each processor scans only its
lacal iteration space.

The main advantage of using a CDA transformation is that it is possible to align computation
spaces of two statements. even when they reference the same array on the lhs. something that
cannot be achieved through data alignment. However. it should be pointed out. that it is not
always possible to find a legal CDA transformation capable of removing ownership tests. Hence.
CDA must be viewed as a complementary transformation that can be used in conjunction with
data alignment.

The general strategy to remove ownership tests is to modify the SPMD code so that. in the
ideal case. each processor executes all computations in all of the iterations it executes. Towards

this goal. we transform loops in two steps:

(¢) Packing iterations — we use CDA transformations to minimize the number of processors that
need to execute computations of an iteration. This allows us to coalesce the ownership tests
of an iteration into fewer tests: they can be coalesced into one test in the ideal case when all

computations of an iteration are to be executed by the same processor.

(!} Scanning local iteration space — we use a technique similar to the guard elimination technique
described in Section 4.2 that allows each processor to execute its local iteration space. In
many cases. one can eliminate the need to execute ownership tests entirely by appropriately

modifyving the loop bounds as was done for the loop in Figure 6.1.
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6.3 Derivation of CDA Transformation to Pack Iterations

In this section. we describe an algorithm capable of deriving a CDA transformation that packs
iterations in such a way that the computations of an iteration belong to as few processors as
dependences permit. \We assume that the P-computes operators are specified in the target loop.

The CDA transformation is derived in three stages:

(/) The target loop is decomposed such that each sub-expression enclosed by a P-computes

operator becomes a separate new statement.

(i) The statements of the decomposed loop body are computationally aligned so that the state-
ments are mapped onto a single processor if possible: when dependences prevent such an

alignment. then the statements are mapped onto as few processors as possible.

{(i/) Finally, temporary arrays. if they exist. are data aligned to the other arrays on the lhs so
that the computation rules for the statements with temporary lhs can be specified in terms

of the temporary arrays.

The three stages are described in the following subsections. We continue to assume that the
references are affine functions of the iteration vector [ and are represented by reference matrices. In
order to simplifv our notations. the function f in an array reference A{ f{ -)) is also used to denote
the reference matrix. Data alignments also have a matrix representation: the data alignment

transformation of an array. represented by non-singular integer matrix d,. changes cach reference

matrix r of the array into reference matrix d;r.

6.3.1 Derivation of Computation Decomposition

Algorithm B! in Figure 6.2 decomposes a statement S in the loop body such that after the de-
composition each = operator applies to a separate statement. Algorithm B/ is applied to each
statement of the loop body. with the statements being selected in an arbitrary order.

In algorithm B!. variable : is a counter for the number of statements generated as a result of
decomposing 5. [n each iteration of Step 2. we choose an innermost = operator-expression of S
and make it a new statement with a new temporary array element as its lhs (Steps 3-3). In Step
6. the rhs of statement S is modified so that the sub-expression chosen in Step 3 is replaced by
the corresponding reference to the temporary. In Step 7. statement S is replaced by statement S,

where the rhs has been modified by the decompositions of Step 2.
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Algorithm: B{

input: An arbitrary statement S : 9 = (lhs = rhs) of the loop body.
owner (A(f()))

output: Decompose S at D operators.

begin

I, &1

2. while rhs of S has a P-computes operator

3. Choose an innermost & ~ f(expr)in S
owner (Blg(l)}

4 i <= new temporary array

b generate statement S; : :Dmm" (Blatin) (t,(_f] = erpr)

6. replace :B-mer Blai (expr) in rhs by t;(/})

te—141
end while
7. generate S; : :3own" At (ths = rhs)
end

Figure 6.2: Algorithm B! to decompose statements.

As an example. consider the 2 operators in the loop on the top half of Figure 6.3. Algorithm
B! decomposes the only statement of the loop into two statements so that each new statement has
a single = operator. A temporary array ¢t is used to store the intermediate results. The decomposed

loop is shown in the bottom half of the figure.

6.3.2 Derivation of Computation Alignment

Algorithm B2 of Figure 6.4 searches {or computation alignments for each of the statements gener-
ated by algorithm Bf. We assume that the result of applying algorithm B! to the original loop
is a new loop body with A" statements. The objective is to pack iterations in such a way that the
computations of an iteration belong to as few processors as dependences permit. The search space
of all legal computation alignments is large. so it is not possible to exhaustively search this space
in reasonable time. Unfortunately. however, it is also not sufficient to limit the search to offset
alignment vectors in this case, as was done when reducing cache conflicts. This is because the
statements may have reference matrices that would require non-singular transformations to trans-
form the statements. In algorithm B2. we restrict the number of candidate alignments by focusing
the search to alignments that make the array references in the & operator-expressions similar.

Algorithm B2 first attempts to map all statements onto a single processor (Steps 1-3). and
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for 1=2.n
for j=2.n
St Zaapn (A= Sac-ipny (A -1 ) +BU~ 1. )+ Cli— 1))+
A=l y—=-1)+Bt—1.j-1D+Ci=1t.J-1)]+
A j-N+Blu.j-0)+Ci.j-10)]
end for
end for
for 1=2.n
for j=2.n
SIl: Sa-ipy o N=A=-1.)+Bli—1. )+ Cli—1. )+

A= 1 -0 +Bli—1. )= 1)+Cli—-1.5—1)]
S$1.2: Sany [A ) =t )+ A = 1)+ By — 1)+ Cla.j—1)]

~

Figure 6.3: Computation Decomposition of a loop with =

operators.

then. if necessary. attempts to map the statements onto as few processors as dependences ailow
(Steps 6-12).

Step 2 constructs A sets of possible candidate alignments for the A’ statements in the loop
body. The first set aligns each statement to S|. the second set aligns each statement to S2. and so
on.' The set of transformation matrices that align each statement to statement S; is denoted by
a;. The set of all @;. 1 < i< K. is denoted by A,;. Each transformation matrix is derived similar
to the way the transformation matrix is derived for elemnent-wise data alignment. Consider the two

statements:

S :
S,

:3ou'ner (A )

Cowner (A, )

where A; and A; are different arrays. The objective is to modify the statements so that the

intrinsic owrer function in both statements evaluates to the same processor. An element-wise

data alignment achieves this by making the reference matrix for 4; the same as that for ;. The

data transformation matrix t; = ﬂfj'l applied to array 4; modifies the reference .‘1J(fj([—)) to be

.»lj(tjfj([-)) which is the same as .-lj(f.(f)). so both lhs data elements are co-located.
Computation Alignment can achieve the same objective in an analogous fashion. First assume

that there is no pre-existing data alignment between arrays 4, and 4;. thatis A,»(r(f)) and .4j(r(f)]

are co-located. for some reference matrix r. Instead of aligning the arrays. statement S; can be

computationally aligned to statement S; by transforming S; using matrix 7, = f,~!f;, which

*Ouly some of these alignments may be legal.



Algorithm: B2

input: A statements D (Si). fori= LA

swner (A (1))
output: Alignment transformation T; for each 5;

begin
1. if statements are mapped onto a single processor then return // Since. there is no need for alignment.

// Search for legal alignments with a single processor
2. fori=1K
a; ¢« 0O
forj=1K
// add to «; transformation to align S; to S;
a; — a; U{I;}. where T; = f7'd, f;. assuming A; is data aligned to 4; by d;.
end for

end for

3. ae{l..... [}
o fori=1.K
if a; € Aqu is legal and has lower communication than o then
& — (x;
end if
end for
5. ifa#{l.....[} then return // found a legal alignment

// The only legal alignment with one processor is the identity or legal alignments
// have higher communication than the identity alignment.

// Therefore. search for legal alignments with fewest possible processors

6. S« {5 | | <i<RA}

7. while S is not empty

forj=1.m
gj — {5 | 1 <i< K and 5; mapped onto processor j}

end for
X, Ge{gi | L <i<m}
9. g + largest set in G
10. Se—=S~-yg
Il order statentents in S5 (which are not in g) in increasing size of sets of G they are in.
12. for all statements S; of S in the order

T; « transformation to align 5; to a statement in g

if T; is legal then
// T is the selected transformation for 5;
g+ guU{Si}
S« S5—-{S:}

end if

end for
end while
end

Figure 6.-4¢: Algorithm B2 to derive Computation Alignment.
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ensures that owner (Ai(fi{I)}) and owner (A;(f/(7))) both refer to the same processor. when f;
is the new reference matrix after applying T,. The transformation matrix T is derived by solving
£ T;l = f; for T,. First. both sides of the equation by are pre-multiplied f;l. and then. both sides
of the equation are inverted. A pre-existing data alignment between arrays A; and ;. say d;. can
be accounted for by computationally aligning S; to S; by transformation matrix f;~'d, f,.

Given the computation alignments in A,;. we search for those that are legal in Steps 3-5. and
choose the one with lower communication overhead. As our initial point of comparison. we choose
the identity transformation. where the statements are not transformed at all (Step 3). In Step 4.
we iterate through the sets of alignment in Ay and select alignments a which results in a legally
transformed loop with lower communication overhead.

If none of the alignments in A,y are legal. then Steps 6-12 derive alignments that map the
statements onto (more than one. but) as few processors as dependences permit. In Step 6. S is
initialized to be set of all A" statements in the loop body. In each iteration of Step 7. we remove
from S the statements that can be legally mapped onto the same processor. The statements in S
are organized into sets g;. where statements in a set g; are all mapped onto the same processor i: &G
of Step 8 is the set of these sets g;. In Steps 9 and 10. we select the largest set g in (G and remove
the statements of g from S. The objective of Steps 11 and 12 is to add to g as many statements
from remaining statements in S as possible. [n Step L1. we order the statements in S according to
the size of the set g, they are in. starting with the statements in the smallest sets. In Step 12. we
attempt to align the statements in S to the statements in ¢ in the order specified. A statement 5;
that can be legally aligned to the statements in g is aligned. added to g. and removed from the set
S. The rationale behind the ordering in Step 11 is that the probability is higher that all statements
of a smaller set can be aligned to g. resulting in a smaller number of sets in (.

As an example of applyving algorithm B2, the loop on the top of Figure 6.5 is transformed into
the loop at the bottom. The only candidate alignments are aligning S1.1 to S1.2 or aligning S1.2
to S1.1. Both alignments are equivalent in that they are inverses of each other. The transformed
loop shown has S1.1 aligned to S1.2. Note that, both S1.1 and 51.2 are now mapped onto the
same processor in every iteration. Note that the guards can be removed from the transformed loop

with the techniques discussed in Section -.2.
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2.n

Bac-rp [ty = Ali= L)+ Bli— L)+ Cli = [.))+
Ali=1 - 1)+Bi—-1.y=-1)+Clu—-1.5—1)]

5.2 Dauy) [ )=t )+ At j= 1)+ Bli.) = 1)+ Cle.j=1)]

end for
end for
for 1=1,n
for j=2.n
SL2:(t>1) Zae, [AMe))=Hi )+ Ay~ 1) +BU.y- 1)+ Clig—-1)]
St.l:(i<n) S0, [ta+L)=A )+ Bl.g)+ Cle )+
A(ig-1) + B(id-D+C(ig-1) |
end for
end for

~

Figure 6.5: Computation Alignment of a loop with = operators.

6.3.3 Data Alignment of Temporary Arrays

Algorithm B3 of Figure 6.6 is applied after algorithm B2 in order to properly data align the
temporary arrays that may have been introduced by algorithm B/. B2 data aligns each temporary
array to the array used in the : operator for the respective statement. If T, is the alignment
transformation that algorithm B2 applied to statement S;. t;(T;~( 1)) is the lhs of the transformed
5;. and :?:'.‘1.(./.T.“(1-)) is the operator that maps transformed S; onto a processor. then algorithm
B3 data aligns ¢, to array 4; by transformation matrix f;. As a result of this alignment, ti(T 4))
becomes ¢, (f;T,~!( —'))‘ Because the reference to A; in the 7 operator and to the ¢, on the lhs are
now the same. the A, reference in the = operator can be replaced by ¢,. In the example loop of

Figure 6.5. ¢ is aligned to A such that {(i{ + 1. j) becomes t(i.j) and (. j) becomes t(t — 1. ).
6.3.4 Summary of Stages to Pack Iterations

The three stages in packing iterations can be summarized as follows:

(i) Algorithm B! decomposes the statements so that each statement of the decomposed loop

body has a single = operator for the entire statement.

(i7) Algorithm B2 aligns the statements of the decomposed loop body so that they are mapped

onto as few processors as possible.

(i1t) Finally. algorithm B3 data aligns temporary arrays on the lhs of the decomposed statements

to the arrays used in the respective 5 operators.
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Algorithm : B3
input: Alignment ax = {T1.....Tx }.
output: Data alignment for temporary arrays introduced in Stage 1.

begin
for each statement 5; : :3_4'(‘{'([—_’7"‘__1) (Si) with lhs ¢;
data align ¢; to A; by f;
end for
end

Figure 6.6: Algorithm B3 to data align temporary arrays.

As a result of applying these stages. any ioop with (possibly multiple) > operators at the subex-
pression granularity is converted to an equivalent loop for which the familiar owner-computes rule

is to be applied.

6.4 Scanning Local Iteration Space

[n this section, we show how to derive new loop bounds so that the processors execute only their
local iteration space. We adapt the guard elimination techniques described in Section 4.2 for this
purpose. The techniques described here can be viewed as a generalization of existing techniques
that peel iterations off the local iteration space in order to isolate the iterations where all statements
are mapped onto the same processor [21].

The local computation space of a statement for a given processor is a subset of the total
computation space for the statement. The extent of the local computation space for each processor
is determined by the ownership test for the statement: the computations are executed only in those
iterations where the ownership test for the statement evaluates to true.> The local iteration space
of the loop body is the union of the local computation spaces of all the statements of the loop body
projected onto a grid that has the same dimension as the loop.

We distinguish between three types of loop bodies — a loop body with a single statement. a
loop body with multiple statements which are all mapped onto the same processor. and finally. a
loop body with multiple statements which may be mapped onto more than one processor.

First. consider the derivation of the loop bounds for the local iteration space of a loop body

with only one statement. Obviously. the local computation space of the statement is also the local

At this stage, after having applied BI. B2 and B3. there exists a single S operator in every statement.
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iteration space of the loop body. When the computation rule for the statement is specified indirectly
using an array -i. then the bounds of the local iteration space are obtained by analyzing the local
data space of . the set of elements of A mapped locally onto the processor.® We first represent
the local data space of the array with a set of inequalities. and use this set and guard elimination
techniques to derive a set of inequalities representing the local iteration space.

To see how to represent the data space of an array as a set of inequalities. consider a 2-

tis the vector that indexes elements of the

dimensional array distributed by rows. If Iy = (i}. i2)
array. then the inequalities [ < iy < u and 1| < i3 € n represent a block of rows. where [ and
u provide bounds for the block of data on a processor.” For the loop on the extreme right of
Figure 6.1 on page 83. [ and u for both arrays - and B were p* b and {p + 1) *b — 1, respectively.
The inequalities for the local data space for - can be represented by matrix-vector notations. say
Jg¢fy > 0. similar to the specification of an iteration spaces.

For a statement S : .. the local iteration space can be derived from A’s data space.

“ahy
sl > 0. by replacing [y by fI to become def?_ 0. since the reference matrix f provides indexes
to array elements. Now. inequalities defz 0 are similar to a guard for the statement. Therefore,
the new loop bounds can be obtained by applying the guard elimination techniques of Section 4.2.
where the statement has guard of 3;f7 > 0 and original loop bounds are specified by. say 37> 0.

Now consider the case where a loop body contains multiple statements mapped onto the same
processor. The method outlined above for a single statement loop body is also applicable in this
case. since the local iteration space of any of the statements in the loop body is also the local
iteration space of the loop body.

Finally, consider a loop body with multiple statements. which are not all mapped onto the
same processor. [n this case. the loop bounds should be modified so that the processor iterates
through the union of local iteration spaces for the statements. The bounds of the local iteration
space for each statement are obtained by analyzing the local data spaces as we did for a loop body
with a single statement. The inequalities describing the local iteration space of a statement serves
as its guards. The guard elimination techniques can then be used to isolate iterations where all
statements are mapped onto the same processor.

As an example of deriving new loop bounds for a local iteration space. consider the nested

loop on the top of Figure 6.7, which is the core of the CDA transformed loop at the bottom of

8The arrays are typically mapped onto processars using some basic distribution strategy such as distribution by
rows, columns. blocks etc.
"Cyclical mapping functions are characterized by non-unit strides.
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for 1=2 n-1
for j=2.n
St.2: Saay A )=t -1 )+ A j—-1)+B.j-1)+Cli.j—-1)]
S1.0: S [t ) =40 N+BUN+Cle. )+ A j—= D+ Bla.j— 1)+ Cley - 1) ]
end for
end for

for 1=2.n-1
for j=2.n
St 2:(L<i<u)A({, <)< y)
AU )=t~ L)+ A=)+ Bli.j— 1)+ Cli.j—1)
St (b€t Lu)A(, <5< )
He. )= )+ B )+ Cla )+ At y= 1Y+ Bleg= )+ Ce.y— 1)
end for
end for

for 1 =1 u,
for j=1.u
S1.2: A j)=tu-=-1. )+ At j=1)y+Bi.j—-1}+C(e.j— 1)
St He.)=AQG@ )+ B )+ Clj)+ Ay = 1)+ B j- 1)+ C(t. )= 1)
end for

end for

Figure 6.7: Modification of loop bounds to scan local iteration space.

Figure 6.5 after eliminating guards. Let the arrays accessed in the loop be distributed along both
array dimensions such that a processor’s data space is {; < i} < u; and [; < iy < up. where the
I's and u's are functions of array size and a number identifving a processor. In this case. the
inequalities for the local data space also serve as the inequalities for the locai iteration space. since
the reference matrices for both A(i.j) and (i, j) are the identity matrix. These inequalities are
used to guard the statements of the loop as shown in the center of the figure. Eliminating these
zuards as described in Section 1.2 leads to the new loop bounds that scan the local iteration space

as shown at the bottom of the figure.®

%The local data space may not always define the bounds for all the iterators. This happens in cases where the
array reference used to derive the data space is a function of only some of the iterators. and in cases where the loop
has a dimension different from the array dimension. In these cases. instead of taking the bounds for the iterator from
the bounds of the local data space. they are taken from the bounds of the loop iteration space.



CHAPTER 7

Other Applications of CDA

Il can he rule the great that cannot reach the small.
— Edmund Spenser: Book v. Canto n. St. {3

In this chapter we describe five additional applications of CDAs to:

l. Improve instruction level parallelisim.
2. Eliminate synchronizations,
3. Generalize loop distribution.
4. Transform impertect loop nests. and

. Improve global optimizations.

(1]

\We primarily use examples to illustrate these applications of CDA.

7.1 Improving Instruction Level Parallelism

Most processor architectures support instruction level parallelism. say in the form of instruction
pipelines and multiple functional units. A compiler targeting these processors applies techniques
that re-order instructions so that this parallelism can be better exploited in order to improve pro-
cessor efficiency. These techniques often attempt to group unrelated instructions (i.e. those having
no dependences between them) so that their execution can be overlapped. Software pipelining is
one such compiler technique: it interleaves instructions from adjacent loop iterations [30]. CDA
can also be used to interleave computations from multiple iterations. and can thus be viewed as a
generalization of the software pipelining principle. In the case of CDA. the objective is to modify

the constitution of iterations to have as few dependences as possible. thus allowing instruction
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for j=2.n
for 1=2.n
S:A ) =A@ —-1.3)+Bli=1.4)+ Cla = L. j)+ Ay - D)+
Bli.j— 1)+ Cluj=1)+A -1 3-0)+B(t -1 )= 1)+ Cla— 1.5 1)
end for
end for
for j=2.n-1
for 1=2.n
— S A ) =A==t ))+B(e—1.j)+Cla = 1))+ A(e.g = 1) + t(t.])
So:t(t. g+ 1)=B(i.j)+ Cle. )+ Ali = 1. ))+ B = L. )+ C(a—1.})
end for
end for

Figure 7.1: Application of CDA transformation to improve instruction level parallelism.

scheduler more freedom to schedule instructions. Thus, CDA can be used as a high order trans-
formation to strengthen existing instruction scheduling techniques. Nevertheless. CDA differs from

instruction scheduling techniques in a number of fundamental ways:

({) CDA is a higher order transformation than instruction scheduling — because CDA is a source
level transformation the granularity of the computations being considered in the CDA frame-
work is usually larger than the granularity of single instructions considered by the instruction

scheduling techniques.

(t¢) CDA can move instructions across iterations in any loop dimension. whereas instruction
schedulers move instructions within a basic block or across adjacent iterations of the innermost

loop.

(iif) CDA tends to be used to target higher level optimization objectives than instruction level

parallelism.

({r) CDA introduces overheads that arise from modification to the loop structure. including the
need for guard computations and storage requirements for the temporary variables. In con-
trast, instruction scheduling techniques have much lower overhead. For example, the over-

heads of software pipelining are limited to the loop overhead in prolog and epilog loops.

As an illustration of applying CDA to improve instruction level parallelism. cousider the loop
at the top of Figure 7.1. The left to right execution semantics in Fortran results in a linear chain

of dependent arithmetic operations for statement S. That is, the instruction sequence generated
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tor the rhs of statement S is such that each instruction in the sequence is dependent on the result
of the previous instruction in the sequence. I[nstructions tn such linear chains cannot be easily
re-ordered. since the dependences prevent the movement of instructions for interleaved execution.
[f. in addition, the instructions require multiple cycles to complete then the pipeline cannot be
kept full. For this reason. instruction schedulers attempt to fill the pipeline with other instructions
that do use the result. Unfortunately. in the case of the loop considered. dependences prevent the
interleaving of any of the addition operations. Similarly. on a processor with multiple functional
units. the execution chain only allows the emplovment of only one unit at a time.

An appropriate CDA transformation can help in this case. For example. the equivalent CDA
transformed loop at the bottom of Figure 7.1 leaves open much more opportunity for instruction
scheduling. The additions are now arranged in two linear chains. one for each of statements S; and
S,. The additions in the two chains originally belonged to two different iterations. namely j and j+
1. Although there are dependences between additions in a chain. there are no dependences between
the two chains. Therefore. the execution of instructions in the two chains can be interleaved. while

preserving the left to right Fortran execution semantics of the original loop.!

7.2 Eliminating Synchronizations

Dependences in a loop can limit the availability of coarse-grain parallelism. When the rank of the
dependence matrix is not less than the loop dimension. then the loop nest does not have any parallel
outer loops (although all the inner loops can be made parallel) [29]. Unfortunately. the performance
of parallel inner loops is not scalable. since the dependences in the outer loops manifest themselves
as barrier synchronizations. CDA transformations can be used to modify the dependence matrix
of some loops. so that the rank becomes less than the loop dimension: this effectively eliminates
the need for synchronization and thus introduce the availability of coarse-grain parallelism.

In this section. we show how to derive CDA transformations that eliminate synchronization by
modifving loop carried dependences between statements into loop independent dependences. The
technique is general in that it can be used to modify a loop carried dependence d between two
statements S,, and S, into any desired dependence d. although in this case we would modify d' to

be 0. Let A and A, be the reference matrices of the write reference w to an array in statement S,

'Such opportunities to interleave operations are also essential to pack the instructions of very large instruction
word (VLIW) machines with useful computations.
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and a read reference r to the array in statement S,. respectively.? We can derive a matrix f. which
transforms the computations of S, so that the dependence between w and the modified reference

r’ becomes d'. as follows. Let A,. 4, and f~! be:

-

U O L, d,] = T ¢
o 1| 0 1 0 1

Transforming the computations of S, by matrix f modifies the . reference matrix A, to become
A, f~L. If the dependence between statements S, and S, in the original loop was d. then reference
matrices .»l,L.f and A, 7 + A,.d both access the same array element in the original loop. ‘e would

like A, 7 and AT + A.d' to access the same array element after the transformation: i.e.

By substituting for 4,. 4, and f~! in this equation, we obtain:

[, 01 - T Uf+d. L
[:: ([+(l’)
0 1 0 1

After expanding the matrix-vector multiplication on the right hand side we have:
Ul = U, T(T+ dY + U 0+ d,
which can be expanded into:
U d=0TH+UTd + U+ d,.

For this equation to be true for all iterations 1. it is necessary for T to be equal to {7!'(’,.. and for

Ui to be equal to =, Td" — d,. By substituting T = {/~'{",. in this latter equation. we obtain:

U = ~Upd —d,

*The matrices are suitably padded when the array and loop dimensions are not the same.



for i=1.n forall 1 =0.n
for j=1.n for j=1.n
S Al g) = Ay - 1) (1>0) 5;: Ae))= A= 1)
So: Bli— 1. j}y=Ae—1.)) — (1< n) So: B(i.jg) = A(e.g)
end for end for
end for end for

Figure 7.2: CDA transformation to eliminate barrier synchronization.
which we can solve for { by pre-multiplying both sides of the equation by {!:
F=-U"'"0.d - U\d,
Therefore. matrix f is defined such that:

(‘r—l(-w —(.’_—ltru_v{i, - L'r-ldr;-
0 l

=

which modifies dependence d between statements S, and S, to be d’. I particular. when the

desired dependence d is 0. then the transformation f is defined such that:

J=. [ U, UM,
1 0 !

In order to illustrate such an application of CDA to expose outer loop parallelism. consider
the loop on the left hand side of Figure 7.2. This loop does not have any outer loop parallelism
because of the (1.0) and (0. 1) dependences. That is. iterations (i.j) must wait until iterations
{t — 1.j) and (i.j — 1) have completed. Because the loop has only inner loop parallelism. barrier
synchronization between outer loop iterations is necessary. The (1.0) dependence can be eliminated
by linearly transforming the 53 computation space relative to the S| computation space. defining
transformation matrix f such that 7 is the identity matrix and ¢ is (1.0)'. The transformed loop
is shown on the right hand side of Figure 7.2. The transformation modilies the (i — 1. J) reference
in S to A(¢.j). so that the transformed loop now only has a (0. 1) dependence. Thus the new loop
nest has an outer loop that is fully parallelizable.

The technique we just described is a generalization of loop alignment [2]. While loop alignment
considers only offset alignments between statements. CDA transformations can be any non-singular

integer matrices. Moreover. our generalization can align subexpressions, statements or subnests in



99

for 1=1.n

forS;i:.-{I(‘l’)-l: I 51 . -1(1) =r
So: C()= A4~ 1)+ D1 =1) Edeo:I
S3: D) = C(i) = forﬂz.— .n | ,
end for Sa: Ci)=A(t= 1)+ D(i = 1)

S1: D) = C(1)
end for

Figure 7.3: An example loop distribution.

the loop body.? Thus, CDA can be viewed as unifving loop alignment and its generalization into a

linear algebraic framework.

7.3 Generalizing Loop Distribution

Loop distribution divides a loop body into groups of statements and creates a separate nested
loop for each group [56. 38]. In this section. we show how CDA includes loop distribution and its
generalization into the linear algebraic framework.

As an example of loop distribution. consider the loop on the left hand side of Figure 7.3.
This loop is distributed to create two loops. the first with statement S| and the second loop with
statements S; and Sj.

Loop distribution can be effective in improving parallelism. since the new loop nests contain

! However. loop distribution is restricted in

only a subset of the dependences in the original loop.’
that a loop distribution is legal only if it keeps the statements participating in a dependence cycle
in the same loop nest. For instance. statements S, and S3 of loop on the left hand side of Figure 7.3
participate in a dependence cycle. so they must belong in the same loop. Hence. some nested loops
such as the loop shown in Figure 7.4 cannot be distributed. since all of the statements in the loop

body participate in a dependence cycle.

The CDA framework generalizes loop distribution in three ways:

e First. any loop distribution can be represented by a CDA transformation that decomposes

the loop body and applies appropriate offset alignment along the outermost loop dimension.

*When the dependences are between references of the same statement, then the rank of the dependence matrix
cannot be changed. because the effect of eliminating one dependence is offset by the effect of adding a new depen-
dence on references to the temporary array. In this case, a CDA transformation can only modify the structure of
dependences.

*Loop distribution is also useful in improving cache utilization and reducing register pressure by distributing array
accesses in the loop body into different loop nests.
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I.n
;0 D)= A=)+ A+ 1Y+ A+ 2)
o 1 A(1) = B(a) + C{1)

Figure 7.4: A loop that cannot be distributed.

for 1=1.n
S Al =r
So: Clt)=Alt- 1)+ D1~ 1) _—
S3: D) = C(2)

end for

for 1=1.2xn

S;:(l <i:<nj A() ==«
Sa:in+ 1 <1<2%«n) Cla—n)=At—n—-1)+D{1—n—-1) S
S;:(n+ ! <e<2%«n) Da-n}y=C(t—n)
end for
for 1=1.n
S Ay =r
end for
Jor i1=n+1.2xn
Se: Climn)=Ai=n—=1)+D(i—n—1)
S3: D{t —n)=C(t—n)
end for
Figure 7.5: Loop distribution as a CDA transformation.

to each group of statements (to be distributed) so that the computation space for each group
does not overlap with the computation space for any other group. The first group is aligned
by an offset of 0. whereas the i** group is aligned by an offset of ni — n. where n is the of size
of the outermost loop. For instance. the loop distribution of Figure 7.3 can be effected by
the CDA transformation that aligns statements S, and S3 by an offset of n. The transformed
loop with and without guards is shown in the center and right hand side of Figure 7.5. Note,
however. that the loops resulting from loop distribution and the loops resulting from the CDA

transformation differ in subscript functions.

e Second. with CDA. loop distribution can be performed at the granularity of subexpressions.
and not just entire statements. Computation decomposition can store the results of subex-
pressions in temporaries to isolate dependence cycles. Thus. appropriate computation de-

composition can be considered as a form of node splitting. which introduces temporaries to
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Sir t@)=A+ D)+ A+ 2)
Spa: D()y= A= 1)+ ¢t1)
Sat A(1) = B(1) + C(1) =
end for
for 1=1.3%«n
5 p (1< i< ) i) = AL+ 1) + A+ 2)
Sio:(2xn+ [ <1< 3xn) DU)=A(i—1)+t() —
Sa:(n+1<t<2xn) A1) =B+ C(1)
end for
for 1=1.n
Sirc )y = A+ 1)+ A+ 2)
end for

for 1=n+1.2xn

Sa: AQ) = B(1) + C(4)
end for
for 1=2«xn+41.3xn

Spa: Dy =A(t = 1)+ t(r)
end for

Figure 7.6: An example of breaking dependence cycles to enable loop distribution.

break dependence cycles [38]. For example, statement S| in the loop of Figure 7.4 can de-
composed into statements 57, and S|, as shown on the left hand side of Figure 7.6. The
decomposed loop does not have a dependence cycle. so it can now be distributed. The certer
of Figure 7.6 shows how the statements can be aligned to effect one possible loop distribution.
The net effect of this transformation is improved parallelism: the original loop could not be

parallelized. whereas all three loops shown on the right hand side of Figure 7.6 can be.

® Third. CDA makes partial loop distributions possible. A loop distribution separates all
instances of a statement from the instances of another statement in the loop bodyv. A partial
loop distribution separates only some instances of a statement or subexpression from the
instances of other statements or subexpressions in the loop body. A partial loop distribution
would be beneficial in a situation where a dependence cycle prevents loop distribution (and
where node splitting does not help break the dependence cvcle).
As an example. consider the loop on the left hand side of Figure 7.7 which has a dependence

cycle between statements S| and S,. The dependence cycle cannot be isolated with compu-

tation decomposition. since the dependences in the cycle are flow dependences.> However, S,

*That is. all statements of the decomposed loop will be in the dependence cvcle.
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L: for :=k+1I.n

for j=1.n
Sy B{e.))=A(t - 1.])
Sa 0 A1 j) =Bt —k.J) =
end for
end for

L: for t=1.n
for ;j=1.2%n
S;: (k+1<1<n) Be.y)=4A1-1.)

So: (I <j<n—=k) Alt+k.j)=B(1.}) ==
end for
end for
Ly: for 1=1.k
for j=1.n
Sp: Ale+4k.)) = B(i.))
wnd for
end for
Lo: for t=k+1.n—-k
for j=1.n

Sa: B(e.j)=A(e—=1.7)
Sy Ale+ k) = B(e.y)
end for
end for
Ly: for it=n—-k+1I.n
for j=1.n
Se: Blegy=A(t—1.))
end for
end for

Figure 7.7: CDA transformation for partial loop distribution.

can be aligned by an offset of —k to obtain the transformed loop shown in the center of the
figure. The CDA transformed loop after eliminating the guards is shown on the right hand
side of Figure 7.7. The transformation effected a partial loop distribution where only & com-
putations (out of n) of the statements S| and S, are separated {rom each other.® When the
dependent iterations are far apart (i.e. k is large). then partial loop distribution can separate

a substantial number of statement instances.

As another example. consider the loop on the left hand side of Figure 7.8 which cannot be
distributed due to a dependence cycle that cannot be broken. CDA can align S, by an offset
along the j dimension in this case so that the statements are distributed only with respect to
J and k dimensions. The CDA transformed loops with and without guards are shown at the

center and right of Figure 7.8.

®The dependence cvcle prevents the distributions of the computations of the statements in the remaining iterations.
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for t=1,n for 1=1.n
Sy A(.0)=C for j=1.n
for j=1.n U=1 5 A(1.0)=C
So: At y=A(ty-1)+D — So: A=Ay~ 0)+D
end for end for
end for end for

Figure 7.9: Converting a simple imperfectly nested loop into a perfectly nested loop.

for 1=0.n for 1 =0.2n+1
for j=0.n for j=mar(0.1—~n— [), mun(n.1)
Sy A=A —=1.))+ T, S;: (i1 <2n.mar(0.1—n) <)< nmun(i.n))
end for A=) =A0-1.1- )+ T,
for j=0.n == Sa: (1>l .mar(0.1—n—-1)<;< min(t—1.n))
So: Aleg)=Aleg+ 1)+ To AY.t—-) =1y =4A0Q.t=Jj)+ Ta
end for end for
end for end for

Figure 7.10: CDA transformation of an imperfectly nested loop.

Although transformation of unconstrained imperfectly nested loops is still an open issue. we show
in this section how some imperfectly nested loops can be successfully transformed using linear loop
and CDA transformations.

Simple cases of imperfect nests occur. for example. in order to perform boundary computations
or initializations. The cause of imperfectness is often a single assignment statement interspersed
between the loop statements of an otherwise perfectly nested loop. In this case, the imperfect nest
can be transformed into a perfect nest by moving the single assignment statement into the loop
and using guards [1. 56]. An example of this is shown in Figure 7.9. After this transformation. the
nested loop can be applied a linear loop transformation.

Another frequently occuring imperfectly nested loop structure. where the loop body of a per-
fectly nested loop consists of a sequence of perfect subnests is of particular interest to us here.
The left hand side of Figure 7.10 shows such an imperfect loop nest. Such nested loops can be
linearly transformed only in a hierarchical fashion — each of the perfect subnests can be linearly
transformed. and the loop nest containing the sequence of subnests can be linearly transformed.®
However. the entire loop nest cannot be transformed by a linear transformation.

With CDA. it is possible to transform this type of imperfect loop nest. For an example. the
imperfect nest on the left hand side of Figure 7.10 can be CDA transformed to the loop nest on

the right. CDA treats all computations of S; (in the i and j loops) as one computation space.

*ln particular. the loop on the left hand side of Figure 7.10 can be linearly transformed as two L-dimensional loops
with ; as their iterator. and as a l-dimesional loop with f as its iterator.



Ly: for 1=1.n L;: for 1=1.n
for j=1.n for y=1I.n
Aty =A@ g -+ C At )= Aty - 1)+ C
end for end for
end for end for
La: for v=1I.n — Ls: for 1=0.n
for j=1.n for j=1.n
Sp: Alyy=Aey=-1)+D Spr (0>0) A y=Aey—-1)+D
Sa: Ble.))=Au—-t.y-1)+ E Sa: (i<n) Blu+l.jy=A(e.y- 1)+ E
end for end for
end for end for

Figure 7.11: Effect of CDA on global optimization.

while all computations of S5 in { and j loops are treated as the second computation space. The
transformation first aligns the computation space of S, by an offset of —1 along the j dimension:
and then skews both computation spaces so that the dependences are internalized to the inner
loop. In the transformed loop. the flow dependence from S, to S, is loop independent. and the
flow dependence from S, to S is carried only by the j iterations. Therefore. the iterations of the
outer loop are independent, so that the outer loop can be executed in parallel. Transformations of
this type can expose additional optimization opportunities that linear loop transformations alone

cannot.?

7.5 Using CDA to Improve Global Optimization

CDA can also be used for improving global optimization [4. 19. 34]. since certain CDA transforma-
tions are duals of certain data transformations. For example. in Chapters 5 and 6. we described how
CDA transformations can be used to achieve the same effect as array padding and data alignment.
The advantage of using CDA instead of making global changes to data is that CDA only changes the
local loop structure and thus reduces the number of constraints on a global optimization algorithm.

CDA can also be used to modify a loop structure to suit the data partitioning imposed by
adjacent loops. For example, consider loop L; on the left hand side of Figure 7.11 alone. \When
array 4 is distributed onto processors by rows. then this loop does not require any communications.
since the (parallel) outer loop can then be mapped onto processors so that each processor accesses

the rows of - locally. However, if we consider both loops L; and L; together, then a row-wise

?A linear loop transformation cannot be applied to internalize the dependence and expose parallelism in the outer
loop, because the loop is imperfectly nested. Linearly transforming the ¢ loop or the j loops alone cannot not expose
parallelism either, since the dependences are across j subnests.
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mapping of 4 results in communication in L,: This is because linear loop transformations of L,
can only expose parallelism in the inner loop. and communications are necessary. [t is possible.
however, to eliminate communication by CDA transforming L, to suit the data partitions of A,
chosen according to L,. Communication arises in L, because of the (1.1) dependence between
statements S| and S». This dependence can be modified to be a (0.1) dependence by aligning
S to Sy. The alignment shifts the S; computations relative to the §; computations along the :
iterator of the L, loop. The transformed loop L) is shown on the right hand side of the figure.
which has a parallel outer loop and does not require communrication with a row-wise distribution

of A.

7.6 Summary

This chapter has shown that there are many uses for the CDA transformation framework that
go beyond what existing techniques achieve. In particular. we showed how some of the existing
loop transformation techniques and their generalizations can be unified into the linear algebraic

framework of CDA. However. CDA needs to be studied further with respect to:
e the heuristics to derive CDA transformations for the optimizations mentioned in the chapter.
e the extent to which CDA can be effective. and

e integration of CDA with techniques for which CDA is a dual.



CHAPTER 8

Application of CDA to Example Nested Loops

When the way comes to an end. then change - having changed. you pass through.
— [ Chung

In this chapter. we illustrate the application of CDA transformations on some example nested
loops. In particular. we describe how the algorithms described in Chapters 5 and 6 are applied to
derive suitable CDA transformations. which reduce the number of cache conflicts and the number
of ownership tests. respectively. \We use the CDA transformed loops to demonstrate that local
transformations such as CDA can be useful in reducing the number of cache conflicts and removing
ownership tests when it is undesirable to apply global transformations such as array padding and
data alignment.

For the purpose of illustration in this chapter. we chose five loops from the Riceps. Arco and
SPEC benchmarks [32. 41. 50]. and. in particular. loops that come from applications ritmg. mg.
vpenta. swm. and wanal. These loops are appropriate to use as examples. because linear loop
transformations alone cannot improve their performance and they thus demonstrate the usefulness
of CDA. The loops from rtmg and mg have a single statement in their loop body. so subexpression-
based transformation is essential. The loop in vpenta can be transformed both at statement and
subexpression granularity. The loops in sum and wanal can be transformed at statement granu-
larity.

In order to illustrate how the effectiveness of CDA transformations (at loop level) relates to the
performance of the entire applications. we also transformed all computation intensive loops in mg
and vpenta.

We compared the execution times of the original and the CDA transformed versions of the
loops by running experiments on SUN SPARC 10 and RS/6000 workstations. as well as on the
KSR1 multiprocessor. This allows us to show the effect of different cache geometries on the relative

performance of the original and the CDA transformed versions of the loops. The SPARC 10

107
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workstation has a 128K B direct-mapped cache: each node of the KSR1 multiprocessor has a 256 kB
2-way set associative cache: and the RS/6000 workstation has a 32KB -I-way set associative cache.
In addition. we simulated the original and the CDA transformed loops using the XCache simulator
from IBM that simulates a RS/6000 with varying cache sizes and geometries [43].!

Most of the results we show are for single. individual loop nests. However. it should be noted
that the benefits of local transformations such as CDA may be higher than corresponding global
transformations when applied to sequences of nested loops. because. global transformations must
consider simultaneously a much larger number of constraints arising from all the loop nests. More-
over. these constraints may sometimes prevent the application of global transformations. Overall.
we believe it is generally necessary to integrate CDA transformations with other local and global
transformation techniques for overall better performance.? We believe the kev idea should be to
use local transformations so that the total number of constraints that a later global transformation

must consider is reduced.

8.1 Reducing the Number of Cache Conflicts

\We use rtmg. mg and cvpenta loops to illustrate the potential performance benefits and potential
pitfalls of applying CDA to reduce the number of cache conflicts. relative to the application of
array padding. The amount of padding necessary for these loops was determined using the [BM
XL compiler. It should be noted that CDA is not capable of removing conflicts that array padding
can not. Hence. CDA transformed code can at best perform as well as array padded code. In
practice. DA transformed code performs worse than array padded code because of the extra
overheads that CDA introduces. Thus. the application of CDA for reducing the number of cache
conflicts is primarily of interest in those situations. described in Section 5.4. where it is undesirable
to modify global array layout using array padding.® Nonetheless. using rtmg and mg loops. we
show that using CDA can be effective in reducing the number of cache conflicts. Unfortunately.
however. the application of CDA can also result in poor performance. due to the introduction of

many new references. This is shown using the tvpenta loop.

'The largest direct-mapped cache that can be simulated on the XCache simulator is 64KB. Therefore, the data
sizes for the loops were selected to be relatively small so as to obtain simulation results for a range of cache geometries.

?For instance. global optimizations to reduce space requirements and cache footprint of the temporary variables
introduced help improve the efficacy of CDA transformations.

*Some example situations are 1) when the arrays are accessed in pre-compiled libraries and modules, i1} when the
arrays are accessed with different shapes in diflerent parts of the program. and iti} when programmer specifies that
it is unsafe to apply padding.
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p2(j,k-1) p2(i-2,k)

pifik)
P2(1,k)

PULK)  paike1) p2(i+1,k)
p2(Lk+2)  p2(i+2,k)

Figure 8.1: Conflicting references in the original rtmg loop.

8.1.1 Rtmg Loop

The rtmg loop from the Arco Seismic benchmarks suite is a two-dimensional loop with a single
statement in the loop body [11]):
for i = 3, n-2
for k = 3, n-2
pi(i,k) = p2(i,k) - p1(i,k) + p2(i+1,k) + p2(i-1,k) + p2(i,k+1) +
p2(i,k-1)- p2(i+2,k) + p2(i-2,k) + p2(i,k+2) + p2(i, k-2);

end for
end for

Nested loops such as this are used to implement finite difference operators while migrating seismic
sections [41]. References pl(i.+) and p2(i.*) conflict in a direct-mapped cache for certain array
sizes. as shown in Figure R.1. Figure 8.2 shows the number of cache misses when the loop with
array sizes of 64x6- is run on a machine with a direct-mapped or 2-way set associative cache of
size I6KB and 32KB. Note that that the loop has substantially fewer cache misses in 2-way set
associative caches.

We describe here how algorithms Al and A2 of Chapter 5 can be used to derive a CDA transfor-
mation which reduces the number of cache conflicts. Algorithm Al first decomposes the single state-
ment in the loop body into two new statements so that conflicts occur between statements. Step 3
of Algorithm Al on page 70 chooses one of the four references, namely p2(i + 1. k), p2(: — L. k).
p2(i+2.k), and p2(i — 2, k), as the first first member of set of partition V. After 8 iterations of
Step 4. no further vertices can be added to V}. At this stage, V] contains all the p2 references.
This will create a new statement with a temporary ¢ as the lhs and all references in V; on the rhs.
The second statement thus contains the pl reference and a reference to temporary t. With this
decomposed loop as input. Step 6 of algorithm A2 on page 73 first applies an offset of —1 chang-

ing the p2(i, «) references to p2(i + 1. ). However. this also changes the p2(i — 1. *) references to
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Cache misses in 64x64 rtmg loop
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Figure 8.2: The number of cache misses in the original and the CDA transformed rtmg loops with
array sizes of 64x6-.

p2(i.*) which conflict with the pl(:.x) references. Hence. algorithm A2 tries higher offsets and all
the conflicts are eliminated when the offset is —3. Thus. the required offset alignment is obtained
in 3 iterations of Step 6 of A2. The innermost iterator & was not included in the list of iterators
in order to improve the data reuse along cache lines. The size of the temporary array is chosen so
that its references do not conflict with pl and p2.

The structure of the transformed loop becomes:

for i = -1, 2
for k = 3, n-2
t(i+3,k) = p2(i+3,k) + p2(i+3,k+1) + p2(i+3,k-1) + p2(i+3,k+2) +
p2(i+3,k-2)+ p2(i+4,k) + p2(i+2,k) - p2(i+5,k) + p2(i+1,k);
end for
end for

for i = 3, n-5
for k = 3, n-2
t(i+3,k) = p2(i+3,k) + p2(i+3,k+1) + p2(i+3,k-1) + p2(i+3,k+2) +
p2(i+3,k~2)+ p2(i+4,k) + p2(i+2,k) - p2(i+5,k) + p2(i+i,k);
pi(i,k) = t(i,k) - p1(i,k) ;
end for
end for

for i = n-4, n-2
for k = 3, n-2
pi(i,k) = t(i,k) - p1(i,k) ;
end for
end for
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Performance of rtmg loop on SPARC 10
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Figure 8.3: Execution time of rtmg loop on a SPARC 10 workstation.
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Figure 3.4: Execution time of rtmg loop on a SPARC 10 workstation for varying data sizes.

The inner iterations of the transformed loop are conflict free as a result of the CDA transformation.
Figure 8.2 shows the reduction in the number of cache misses for 16IKB and 32KB caches. Figure 8.3
shows that CDA transformation reduces the execution time to about 35% of the original loop on a
SPARC 10 system with [28KB direct-mapped cache.

An equivalent array padded version of the loop has an execution time that is about 30% of
the original execution time. This is better than that of the CDA transformed loop. because the
CDA transformed loop has overhead by adding references to the temporary array. The CDA
transformed loop required about 50% more memory than the original loop due to the introduction
of the temporary array.

One of the problems with array padding is that it requires prior knowledge of the array sizes.

Often, array sizes are not known in advance, as for example is the case with library routines. In this
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case. it is not possible to benefit from any padding. Unaltered library routines can perform poorly.
if the parameter data results in excessive cache conflicts. This is illustrated in Figure 8.4 that shows
the execution time of rtmg loop (in its original form) for varying array sizes. There is a peak where
the arrays are 512x512. due to cache conflicts. [n contrast to array padding. it is possible to reduce
the number of cache conflicts even if the target array sizes are not known at compile time. by using
the following strategy. A version of CDA transformed code can be produced. with the assumption
of a given array size. and include it together with a version containing the original code. Which
version to run can then be selected at run-time based on the size of the array. In the example
shown in Figure 8.4 a version of CDA transformed code for 512x512 arrays is included and selected
if the input parameter has these sizes and the original code is selected in all other cases. The thick
line shows the execution time of rtmg loop using this strategy and it is apparent that the peak
execution time could be eliminated. Note that the execution time at the remaining two peaks at

511x511 and 513x513 array sizes can be reduced by other CDA transformed versions of the loop.

8.1.2 Mg Loop

Mg is an application in the NAS benchmarks suite [11] (and now also included in SPECfp95 [50}).
which was designed to demonstrate capabilities of simple multigrid solvers.!. Three-dimensional
loops such as the one below® form the core of the computations. This loop applies an approximate

inverse as a smoother [11].

for 1 =1
for j ,
for k = N-2
U(i,j,k) = U(,j,k) +
c(0)*( R(i,j,k) ) +
c(1)«( R(i~1,j,k) + R(i+1,j,k) + R(i,j-1,k) +
R(i,j+1,k) + R(i,j,k-1) + R(i,j,k+1) ) +
c(2)*( R(i-1,j-1,k) + R(i+1,j-1,k) + R(i-1,j+1,k) + R(i+1,j+1,k) +
R(i,j-1,k-1) + R(i,j+1,k-1) + R(i,j-1,k+1) + R(i,j+1,k+1) +
R(i-1,j,k-1) + R(i-1,j,k+1) + R(i+1,j,k-1) + R(i+1,j,k+1) ) +
c(3)*( R(i-1,j-1,k-1) + R(i+1,j-1,k-1) + R(i-1,j+1,k-1) + R(i+1,j+1,k-1) +
R(i-1,j-1,k+1) + R(i+1,j-1,k+1) + R(i-1,j+1,k+1) + R(i+1,j+1,k+1) );

I-2
1, J-2
1,

end for
end for
end for

“This is a simplified multigrid solver in two important respects: i) it solves only a constant coefficient equation,
and that only on a uniform cubical grid. 1t) it solves only a single equation. representing a scalar field rather than a
vector field [11]

*This loop forms the subroutine called psine.



113

Cache misses in 64x6-x64 myg; loop
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Figure 8.5: Cache misses in the original and the CDA transformed myg loop.
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Figure 8.6: Conflict graph for the original mg loop.

In a given iteration of the i loop. four ~planes™ of data. namely R{i — L.+, «). R(i.*.*). R(i + L. *.*).
and ('(i. +. *}. contend for the cache. Figure 8.6 shows the conflicting references when the cache
size is equal to the number of elements in a single plane of data.

A CDA that reduces the number of these conflicts is derived as follows. Algorithm Al de-
composes the (only) statement into four statements such that none of the references in the same
statement conflict with each other. The four statements correspond to the four independent sets in
the conflict graph of Figure 8.6. Derivation of the first three independent sets requires 8 iterations
of Step 4 of algorithm Al on page 70 for each set. The fourth set is formed with the remaining
two references. The first statement S has references to the i** plane of R (i.e. R(i.*.))}: a second
statement S has references to the (i — 1)** plane of R (i.e. R({i — 1. *.%)): a third statement S3 has
references to the (i + 1)** plane of R: and the fourth statement S, has the reference {'(i.j. k) and
references to three temporary variables introduced to store the results of the other three statements.

Algorithm A2 then aligns the statements as follows. The iterators are ordered from innermost
(k) to outermost (i) iterators — this allows the dimension of the temporary variables to later be

reduced from three to two — but the innermost iterator is removed from the candidate iterators in
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Figure 8.7: Conflict graph for the CDA transformed mg loop.

order to improve the data reuse along cache lines. Thus. increasing offsets along the j dimension
are attempted first for statement S). An offset of —1 does not suffice, since references R(i. j. )
would become references R(i.j + 1. =) which conflict with references R(: £ L. j + L. *) in statements
Ss and S3. Similarly an offset of —2 does not suffice since references R(i.j — 1. ) would become
references R(i.j+ l.#) which conflict with references R(i+ 1.+ l.#) in statements 5; and Sj.
The search stops when we arrive at an offset of —3. which eliminates all conflicts due to statement
S1. The derivation of this offset alignment requires 3 iterations of Step 6 of algorithm A2 of
page 73. Statements S, and S5 are aligned in a similar way so that thev have offsets of —6 and -9.
respectively, along the j dimension. Clearly. the derivation of these offset alignments requires 6 and
9 iterations of Step 6 of algorithm A2. Statement S, is aligned with the identity transformation.
Figure 3.7 shows the conflict graph for the transformed loop: there are no more conflicts in innermost
iterations.

The transformed loop is shown below. This loop is guarded: although a guard-free version of
the code was used for the experiments. it is not shown here. Since all alignments were along the j
dimension. having only three planes of array elements as temporaries. namely t1(0. x. x). t2(0. *. %)
and t3(0. *. %) is sufficient. The space overhead for the temporaries is only about 0.5% of the

memory required for the original loop.



for 1 =1, I-2
for j = -8, J-2
for k = 1, N-2
if (j > -3 22 3 < J-4)
/* Statement S1 */
t1(0,j+3,k) =
c(0)*«( R(i,j+3,k) ) +
c(1)*( R(i,j+2,k) + R(i,j+4,k) +
R(i,j+3,k-1) + R(i,j+3,k+1) ) +
c(2)*( R(i,j+2,k-1) + R(i,j+4,k-1) +
R(i,j+2,k+1) + R(i,j+4,k+1) );
if (j > -6 && j < J-T)
/* Statement S2 */
t2(0,j+6,k) =
c(1)*( R(i-1,j+6,k) ) +
c(2)*( R(i-1,j+5,k) + R(i-1,j+7,k) +
R(i-1,j+6,k-1) + R(i-1,j+6,k+1) ) +
c(3)*=( R(i-1,j+5,k-1) + R(i-1,j+7,k-1) +
R(i-1,j+5,k+1) + R(i-1,j+7,k+1) );
if (j < J-10)
/* Statement S3 */
t3(0,j+9,k) =
c(1)*«( R(i+1,j+9,k) ) +
c(2)*( R(i+1,j+8,k) + R(i+1,j+10,k) +
R(i+1,j+9,k-1) + R(i+1,j+9,k+1) ) +
c(3)*( R(i+1,j+8,k-1) + R(i+1,j+10,k-1) +
R(i+1,j+8,k+1) + R(i+1,j+10,k+1) );
if (j >0 && j < J-1)
/* Statement S& */
U(i,j,k) = U(1,j,k) + t1(0,j,k)+ t2(0,j,k)+ t3(0,j,k);
end for
end for
end for

Figure 8.5 shows the number of cache misses obtained in a simulation of the loop with arrays
U and R having size 64x64x64 for cache sizes 32KB. 64KB and 128KB. with a 128 byte cache
line and associativity varying from 1 to 4. The figure shows that the CDA transformed loop has
substantially fewer cache misses in most cases. However. for large caches (128KB in this case) and
4-way set associative caches. the CDA transformed loop has more misses than the original loop.
The CDA transformed loop has 20% more references in total than the original loop.® Moreover.
the original loop does not have conflicts in {-way set associative caches. since the loop has only
four planes of arrays conflicting for the cache. When the cache size is large, say 128KB. then all
four planes of the arrays fit in the cache in this example.

Figure 8.8 compares the number of additional array elements required for a CDA transformed

mg loop with that required for an array padded mg loop. [n general, the CDA transformed loop

®Figure 8.5 does not show the total number of references.
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requires substantially fewer additional array elements when the array dimensions are high.

Figure 8.9 shows the improvement in execution time of the mg loop with 256x256x256 arrays on
a SPARC 10 workstation and a single KSR1 processor. The CDA transformed loop ran faster than
the original loop by a factor of 3-6 on both platforms. although slower than but within 20%-25% of
the array padded version of the loop. The difference between CDA and array padded code is that
the CDA code still has cache conflicts in the iterations of the outer iterator i and increased number
of references due to the temporary variables that were introduced. For example. conflicts between
iterations in the outer loop exist because the array elements in the R(i + 1. *. «) plane accessed in
iterations (i. . ) are no longer in the cache when accessed in iterations (! + 1. *. *). having been
displaced by R(!.*.*)in (!.*.x) iterations.

We transformed the three dimensional loops in both psinv and resid subroutines. which account
for 90% of the computation in the benchmark. The transformed application ran 2.5 times faster
than the original version on a SPARC 10 workstation when the subroutines had cubical grid sizes
that create cache conflicts.” It is interesting to note that a padding algorithm will choose not to
pad the arrays considering the entire application. since the subroutines access the arrays in a shape

different from the declared shape in common blocks.
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Figure 8.9: Execution time of mg loop with 256x256x256 arrays on a SPARC 10 workstation and
a single KSR1 processor.

8.1.3 1penta Loop

Vpenta is part of NASAT7 in the SPECfp92 benchmark suite [50]. The programs in NASAT were
designed to represent typical numerical applications in engineering. Vpenta is designed to simul-
taneously invert 3-dimensional pentadiagenals [50]. Vpenta consists of two similar 2-dimensional

loops. one of which is shown below:®

for j =0, n
for k = 2, n-2
RLD2 = .01*A(k,j);
RLD1 = .01%(B(k,j) - RLD2*X(k,j-2));
RLD = C(k,j) - (RLD2*Y(k,j-2) + RLD1*X(k,j-1));
RLDI = .000000001*1.0/RLD;

F(0,k,j) = (F(0,k,j) - RLD2*F(0,k,j-2) - RLD1*F(0,k,j-1))*RLDI;
F(1,k,j) = (F(1,k,j) - RLD2+F(1,k,j-2) - RLD1*F(1,k,j=-1))*RLDI;
F(2,k,j) = (F(2,k,j) - RLD2#F(2,k,j-2) - RLD1*F(2,k,j-1))*RLDI;

X(k,j) = (D(k,j) - RLD1*Y(k,j~-1))*RLDI;
Y(k,j) = E(k,j)*RLDI;
end for
end for

Cache locality can be improved in this loop by performing a loop interchange (which can be
done with a simple linear loop transformation}, as all elements of the cache lines would then be
accessed in consecutive iterations. However, for certain cache geometries, the cache performance

can continue to be unsatisfactory due to cache conflicts. Figure 8.10 shows the number of cache

"Due to relatively high memory requirement of the application, we ran it only with 128x128x128 sized arrays.
8The 3-dimensional array F is of size 3x128x128 and the other arrays are of size 128x128.
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misses that occur when the loop is executed with arrays of size 64x64 on a machine with 32KB.
64kB and 128KB caches and associativity varying from 1 to 4. From the figure. it is clear that
increasing associativity and the size of the cache have only a moderate effect on the number of
cache misses if the loop is not transformed. Here. we show how CDA can be applied to reduce the
number of conflicts in the interchanged loop.

This is an example where array padded version performs much better than the CDA transformed
version. since CDA transformation introduces a large number of temporary arrays. The space
overhead of the transformed loop is nearly 60% of the memory required for the original loop.
For the experiment we did not decompose the statements. because algorithm A/ would be over
optimistic and decompose the first. second. third. eighth. and the ninth statement. causing each
new statement to have a single array reference on the right hand side.

The first four statements have scalars on the lhs; these are expanded into 2-dimensional arrays
so as to enable alignment. As before. dimension j was not included in the list of iterators to consider
for alignment so as maximize cache line reuse. Therefore. all alignments are along dimension £.
Also. we consider, the statements for alignment in the order they appear in text.

The reference to A in the first statement does not conflict with other references when the
statement is applied an offset of —1. It is not legal to apply either a positive or a negative offset
to the second. third and the fourth statements. due to dependences on variables RLD?2. RLDI1
and RLD. It is also not legal to apply a negative offset alignment to the fifth statement (due to
dependences on RLD2, RLD1 and RLDI). A positive offset of 1 removes conflicts due to F'(0, k. *).
making them F(0.%k — L. *). Statements six through nine are similar to the statement five in that
they cannot be applied negative offset alignment. Hence. they are applied increasing offsets of 2
through 5. The resulting CDA transformed loop is shown below. A guard-free version of this case

is used in the experiments.



119

for k = 1, n+3
for j=0, n
if(k < n-2)
RLD2(k+1,j) = .01*A(k+1,j);
if (k > 1 && k < n-1)

RLD1(k,j) = .01*(B(k,j) - RLD2(k,j)*X(k,j-2));
if (k > 1 &% k < n-1)

RLD(k, j) = C(k,j) - (RLD2(k,j)*Y(k,j-2) + RLD1(k,j)*X(k,j-1));
if (k > 1 &% k < n-1)

RLDI(k,j) = .000000001#*1.0/RLD(k,j);
if (k > 2 2% k < n)

F(0,k-1,j) = (F(0,k-1,j) - RLD2(k-1,j)*F(0,k-1,j-2) -

RLD1(k-1,j)*F(0,k-1,j-1))*RLDI(k-1,j);
if (k > 3 &% k < n+1)
F(1,k-2,j) = (F(1,k-2,j) - RLD2(k-2,j)*F(1,k-2,j-2) -
RLD1(k-2,j)=F(1,k~2,j-1))*RLDI(k-2,j);
if (k > 4 && k < n+2)
F(2,k-3,j) = (F(2,k-3,j) - RLD2(k-3,j)*F(2,k-3,j-2) ~
RLD1(k-3,j)*F(2,k-3,j-1))*RLDI(k-3,j);
if (k > 5 && k < n+3)

X(k-4,j) = (D(k-4,j) - RLD1(k-4,j)*Y(k-4,j-1))*RLDI(k-4,j);
if (k > 6 && k < n+4)
Y(k-5,3) =  E(k-5,j)*RLDI(k-5,j);
end for
end for

The number of cache misses in the CDA transformed loop is shown in Figure 8.10. For all cache
geometries. the transformed loop has substantially fewer cache misses than the original loop. The
execution times of the original. the CDA transformed. and an array padded (also loop interchanged)
code are shown in Figure 8.11 for the SPARC 10. KSR1 and RS/6000 platforms. The improvement
in execution times obtained by CDA transformation is rot as high as might be expected when
considering the reduced number of cache misses. The reason for this is that scalar expansion nearly
doubles the number of total references. Moreover, the CDA transformed code requires substantially
more memory than the corresponding array-padded code: Figure 8.12 compares the number of array
clements that are added for the CDA code to the number of elements added to the array padded
code. The CDA transformed loop would require substantially fewer additional array elements if
the loop were aligned along the j iterator (instead of the & iterator). but the execution time would
then be even higher because of the poor reuse of the cache lines.

Finally. we transformed the two-dimensional loops that together account for over 90% of the
execution time of vpenta. The transformed version of the entire vpenta program ran 1.5 times faster

than the original program. In comparison. the array padded version ran about 2.7 times faster than
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the original loop.

8.2 Removing Ownership Tests

We use wanal and swm loops to illustrate the potential performance benefits of applying CDA to
remove the ownership tests. The performance improvements are comparable to the performance

improvements due to guard elimination.?
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8.2.1 Wanal Loop

IWanal is a wave equation solver that is part of the Riceps benchmark suite [32]. The three-

dimensional loop from the benchmark shown below has two statements in its loop body.

1 = max(p#*b, 0); u = min((p+1)*b-1, M+1);
for 1 = M+1, 0, -1
for j = M+1, 0, -1
for k = 0,1
S1: if (i > 1-1 && i < u)
EL(2%1,2%j,k)=(EL(2%i+1,2#%j,k)+EL(2*i-1,2%j,k))/2
S2: if (j > 1-1 &% j < u)
EL(2%j,2%i-1,k)=(EL(2#j,2%i,k)+EL(2*j,2*i-2,k))/2
end for
end for
end for

This code performs poorly when blocks of array planes EL(i. +.+) are mapped onto the processors
and the statements are mapped onto the processors using the owner-computes rule: The array is
accessed in such a way that each processor owns the lhs of both statements in only a small number
of iterations. Thus. each processor must execute every iteration of the loop to determine whether it
owns one of the lhs array elements. [t is not possible to apply data alignment in this case. because
the lhs references are to the same array.

In applying CDA, it is not necessary to decompose the statements since the statements are
mapped in their entirety. Algorithm B2 identifies two alignment transformations for each state-

ment: first the identity transformation and a transformation that interchanges the i and j iterators

*The application of CDA can potentially improve the later communication optimizations. These improvements
result from increased opportunities for vectorizing communications.
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to align the lhs of the statements. Both alignment transformations are legal.
The CDA transformed loop where statement S| is applied the identity transformation and
statement S, is applied an interchange of the ¢ and j iterators is shown below:
1 = max(p*b, 0); u = min((p+1)#*b-1, M+1);
for i =u, 1, -1
for j = M+1, 0, -1
for k = 0,1
S1: EL(2#%i,2*j,k)=(EL(2*i+1,2%j,k)+EL(2%i~1,2#j,k)})/2
S2: EL(2#%i,2%j-1,k)=(EL(2%i,2%j,k)+EL(2*i,2%#j-2,k))/2
end for

end for
end for

[n this SPMD code. there no need for ownership tests. and each processor executes just a smaller
subset of the entire iteration space. Figure 8.13 compares the execution time of the CDA trans-
formed loop with the execution times of the wanal loop with ownership tests. The CDA transformed
loop improved the execution time by between 10% and 60% over with the number of processor
varying from 1 to 24. Since the KSR1 has a shared address space. the processor owning the lhs of
statement S| in an iteration can be forced to execute statement S; as well, even though it is not the
owner. For completeness. we show the execution time of this case by the bars labeled Non-owner
in Figure 8.13. For this experiment. the bounds of the / iterator were changed so as to scan the
local iteration space for S;. Hence, this version of the loop does not use any tests in the loop body.
The CDA transformed loop improved the execution time by about 10-25% over the this version
of the loop. This loop performs worse than the CDA transformed loop since it has poorer cache

locality while accessing array elements for statement S,.
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8.2.2 Sum Loop

Swm is the shallow water program of the SPEC benchmark suite designed for weather predic-
tion [50]. It consists of subroutines calc! and calc2 which contain similar nested loops that need
data alignments in order to eliminate ownership tests if we assume owner-computes rule. Here. we
use the loop in the calcl subroutine to show how CDA transformation can also remove ownership
tests.
This loop. here called. the swm loop. has 4 statements. with lhs references cu(i + 1. j). cv(i. j + 1).

s(i+ 1.5+ 1) and A(:.j). Assume the SPMD code with the arrays mapped onto processors by
blocks of rows of size b. In the swm loop shown below. expressions [ and u for processor p represent

the rows of the lhs arrays mapped onto the processor.

1 = max(p*b, 1); u = min({p+1)*b-1, n-1);
for i =1-1, u
for j =1, n-1

if (i < u) cu(i+i,j) 0.5*(p(i+1,j)+p(i,j))* u(i+1, j);

if (1 > 1-1) cv(i,j+1) 0.5%(p(4,j+1)+p(i,j))* v(i,j+1);

if (i < ) z(i+1,j+1) = fsdx*(v(i+1,j+1) - v(i,j+1)) - fsdy*(u(i+1,j+1) -
u(i+1,3))/p(1,3) + p(i+1,j)+p(i+1,j+1)+p(i,j+1);
p(i,j) + 0.256*(u(i+1,j)*u(i+1,j)+ u(i,jl*u(i,j) +
v(i,j+1)*sv(i,j+1) + v(i,jl+v(i,j));

"

if (i > 1-1) h(i,j)

end for
end for

The ownership tests for each statement appear as conditionals using the value of the i iterator. Due
to the (i + 1. «) references to cu and = on the lhs of the first and third statement. processors must
executle iterations i. where I — 1 < i < u: Statements 1 and 3 get executed in iterations (-1 < i< u
and statements 2 and 4 get executed in iterations { — 1 <1 < u.

This SPMD code incurs two overheads: first the execution of tests in every iteration. and second
the execution of one ¢ iteration more than necessary. The ownership tests can be eliminated by
data alignments which co-locate cu(i + 1. ). cv(i. ¥). =(¢ + 1. %), and h(:. *).

In applyving CDA transformation as an alternative to data alignment. it is not necessary to
apply algorithm B! to decompose the statements. since each statement of the loop is mapped ir
its entirety. Algorithm B2 identifies four candidate alignment transformations for each statement:
the identity transformation and three transformations each aligning the statement to one of the

other three statements.!'® These alignments attempt to align the statements such that all the lhs

"®There are only two unique alignment transformations for each statement.
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references are either of the form (i. «) or of the form (i+ 1. #). [n this case. all candidate alignments
are legal.
The CDA transformed code where the statements are aligned such that the lhs references are

cu(t. j). cv(i, j+ 1). z(i.j+ 1). and h(i.j). and where the guards have been removed is shown

below:
if (p == 1)
for j =1, n-1
cv(1l,j+1) = 0.5*(p(1,j+1)+p(1,j))* v(1,j+1);
h(1,3) = p(1,3) + 0.25%(u(2,j)*u(2,j)+ u(1,j)*u(1,j) +
v(1,j+1)*v(L,j+1) + v(1,3)+v(1,3));
end for
end if

// begin core

1 = max(p*b, 2); u = min((p+1)*b-1, n-1);
fori=1,u

0.5%(p(i,j)+p(i-1,j))* u(i,j);
ev(di,j+1) = 0.5+(p(4i,j+1)+p(i,j))* v(i,j+1);
z(i,j+1) = fsdx*(v(i,j+1) - v(i-1,j+1)) - fsdy*(u(i,j+1) - u(i,j))/
p(i-1,j) + p(i,j)+p(i,j+1)+p(i-1,j+1);
h(i,j) = p(i,j) + 0.25%(u(i+1,j)*=u(i+t,j)+ u(i,j)*u(i,j) +
v(i,j+1)*v(i,j+1) + v(i,j)+v(i,j));
end for
end for

// end core

if ( p == P)
for j =1, n-t
cu(n,j) = 0.5+(p(n,j)+p(n-1,j))* u(r,j);
z(n,j+*1) = fsdx*(v(n,j+1) = v(n-1,j+1)) - fsdy*(u(n,j+1) - uln,j))/
p(n-1,j) + p(n,j)+p(n,j+1)+p(n-1,j+1);
end for
end if

[n this SPMD code. there is no need for ownership tests inside the loop bodies, since each statement
of the loop now accesses the rows of the arrays mapped onto the same processor. The bounds of
the ¢ iterator in the core of the transformed loop were modified to be / and u so that the loop
scans the local iteration space of the processors. Note that the loop nests outside the core of the
transformed loop will still need one test each.

Figure 8.1-1 compares the execution time of the CDA transformed loop with the execution times

of the swm loop with ownership tests and with the execution of the array aligned swm loop. The
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three versions of the loop were executed on the KSR multiprocessor using the NUMACROS macro
package to execute the i loop in parallel [33]. The CDA transformed loop improves the execution
time by 25-30% over the case with ownership tests for 1 to 24 processors. The CDA transformed
loop performed slightly (1-5%) better than the data aligned loop. This improvement is mainly due

to distributing the computations of the statements into three subnests.



CHAPTER 9

Concluding Remarks

Woods are lovely, dark and deep
| have promises to keep
And miles to go before | sleep
And miles to go before | sleep
— Robert Frost

9.1 Summary

The main focus of this dissertation has been the design of the CDA transformation framework
that extends the linear loop transformation framework by a significant step. While. the linear loop
transformation framework has already been very effective in exposing parallelism and improving
memory and cache locality. our goal was to extend and enhance the capabilities of the linear loop

transformation framework. In particular. this dissertation makes the following contributions.

Granularity of loop transformations

First. we have shown that transformations of nested loops at statement and subexpression granu-
larity has potential with respect to performance. The linear loop transformation framework cannot
transform at this granularity. since it can only transform at the granularity of entire iterations.
A facility to transform loops at statement and subexpression granularity extends the linear loop
transformation framework. because it allows the composition of the iterations to be changed as well

as the execution order of the re-composed iterations.

CDA transformation framework

We have described the CDA transformation framework. which has two components: Computation
Decomposition and Computation Alignment. Computation Decomposition partitions the iteration

space into possibly several computation spaces. each representing the computations of a statement
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or a subexpression. Computation Alignment then applies a separate linear transformation to each
of the computation spaces. The transformed computation spaces are fused together to define the
new iterations. In the CDA framework. linear loop transformations are just a special case. where
each computation space is transformed the same way.!

Unfortunately. the price of additional flexibility in CDA transformation comes at the cost of
additional execution and space overheads in the transformed loops. The overheads arise in the
form of empty iterations. guard computations and space for temporary variables. We described
techniques that improve the efficiency of CDA transformed loops by reducing these overheads.

Simple transformations of the computation spaces. such as small offset alignments. tend to introduce

lower overheads than transformations which are defined by general non-singular integer matrices.

Opportunities for CDA transformations

We have identified several types of optimizations that can benefit from CDA. These optimizations
are either new transformations or generalizations of existing transformations. For example, the
CDA transformations for reducing the number of cache conflicts and the CDA transformations for
removing ownership tests are new in that they achieve by code transformations what has tradi-
tionally been achieved by data transformations: hence local transformations can now achieve what
traditionally was achieved with global transformations. Similarly. the CDA transformations for
improving instruction level parallelism are new in that they modify the composition of iterations
through relatively hign order transformations. As an example of how CDA generalizes existing
transformations. the CDA framework unifies loop distribution and loop alignment transformations
into a single linear algebraic formalism. The CDA framework generalizes loop distributions in
that it can effect partial loop distributions. and it generalizes loop alignments in that it allows the

alignment of statements by non-singular integer matrices.

Automatic derivation of transformations

The key to the success of a transformation framework is the availability of techniques to automati-
cally derive transformations appropriate for a given loop. The relatively fine-grained restructuring
that is possible within the CDA framework implies vastly larger search spaces for deriving transfor-
mations than those that exist when deriving a linear loop transformation. It is. therefore. necessary

to use heuristics to derive CDA transformations efficiently. as an exhaustive search would be com-

'Hence. Computation Decomposition is a redundant step for a linear transformation.
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putationally intractable. These heuristics must make use of the knowledge about the optimization
context in order to be effective.

[n deriving these heuristics. we attempt. whenever possible. to build on techniques that already
exist in other frameworks. For example. 2 CDA transformation to reduce cache conflicts attempts to
move conflicting references in an iteration away from each other and into adjacent iterations. That
is. conflicting memory references are moved away from each other in time. which is analogous to the
way array padding algorithms move array elements that are the target of conflicting accesses away
from each other in space. Similarly. a CDA transformation to remove ownership tests attempts
to move computations that are mapped onto the same processor together from different iterations
into the same iteration. We derive appropriate transformation matrices for this purpose similar to

the way data alignment modifies two array references te be similar.

Experimental demonstration

Lastly. we have illustrated how CDA transformations can be derived for example nested loops using
techniques discussed in this dissertation. The experiments demonstrate that local transformations
such as CDA can be useful in reducing the number of cache conflicts and removing ownership tests.
when it is undesirable to apply global transformations such as array padding and data alignment.
The experimental results also demonstrate that it is necessary to apply CDA carefully. since the
overheads introduced by CDA. at times. also reduce performance substantially. In our experiments.
we have focused on those loops that require statement and subexpression level restructuring, be-

cause linear loop transformations alone cannot help improve performance in these cases.

9.2 Future Work

[n exploring CDA. we have just scratched the surface. Much work is still necessary to understand
the full potential of this framework. The work described in this dissertation can be directly extended

in a number of directions.

Techniques for deriving CDA transformations

The techniques we described for deriving CDA transformations demonstrate that simple heuristics
may often suffice, even if CDA transformations are complex relative to linear loop transformations.

However, these heuristics can be improved further and extended. For example, the algorithm to
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derive CDA transformations for reducing cache conflicts can be extended to ¢) reduce conflicts from
outer loop iterations (as well as innermost iterations). i) align statements in an order determined
by dependences. iii) re-consider alignments for statements dependent on a statement S when the
candidate alignment for S is illegal. and iv) test for conflicts by symbolic pattern matching. The
algorithm to derive CDA transformations for removing ownership tests can he extended to consider
only those candidate alignments which preserve the rank of the dependence matrix (and hence
parallelism).

For the purpose of applving CDA to improve instruction level parallelism. it is necessary to
find heuristics to recognize iteration compositions that have improved parallelism. M\loreover. we
believe that partial distributions are a very useful generalization of loop distribution: further study
is required to identify situations where partial distributions improve performance and to be able to

automatically derive appropriate CDAs for this purpose.

Duality of transformations

\We showed that certain CDA transformations can be viewed as duals of certain data transforma-
tions. in particular arrav padding and data alignment. The data transformations and the corre-
sponding C'DAs each have their own advantages and disadvantages. We believe that an integrated
approach is better than using an exclusive-or approach. Further investigation is required to find
strategies for this integrated approach. It is also possible to CDA transform loops so that iterations
access data at cache line and page boundaries when the arrays are not explicitly aligned to these

boundaries.

Unified approach to optimizations

The execution time of a nested loop can be improved by applying loop transformations that improve
features of the loop such as cache access behavior. parallelism. instruction level parallelism, and
load balance. However, a loop transformation may improve one feature of the loop. but may at the
same time. worsen other features of the loop. Traditionally, such compatibility issues are resolved
by identifving features that most affect the loop performance and applying the loop transformations
in a fixed order. For example. when cache corflicts cause serious performance degradation, then a
transformation that reduces the number of cache conflicts may still significantly improve execution
time, even though the loop may continue to have ownership tests. [t is interesting to model nested

loops and machine architectures so that the impact of a transformation could be accurately deter-
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mined directly in terms of expected execution time of loops. It may seem that such an approach
makes it difficult to ensure reasonable compilation times. However. recent trends in analysis and
optimization techniques indicate that such an approach may have acceptable average time complex-
ity [45]. The algorithm recently proposed by Lim and Lam to derive the optimal transformation
that maximizes parallelism and minimizes the degree of svnchronization can be viewed as indicative
of techniques that will be designed in the future capable of deriving transformations optimal for

given target architectures [38].

CDA as a generalized transformation framework

Clearly. a transformation framework is only as good as the accompanying algorithms that can
derive appropriate and effective transformations. Much further work is necessary in improving
the algorithms described here and designing new algorithms for the other applications mentioned.
Moreover. although we found that simple heuristics that were natural for the optimization in
question were often quite effective. it is still necessary to test these heuristics on a wider variety of
nested loops to fully understand their usefulness and robustness.

The most appropriate way to do this is to integrate the CDA framework into an existing compiler
framework so that the ideas presented in this dissertation can be tested on the huge scientific and
engineering code base that already exists. The prospects for doing this have improved over the
last year or two with newer analysis and code generation techniques. However. the techniques
used in the CDA framework are much more involved than the techniques used in the linear loop
transformation framework. and the CDA transformed loops tend to be more complex and larger in
size. Hence. it might be useful to identify a subset of the CDA framework that can be integrated

with current compiler implementations with less effort.

9.3 Epilogue

[t should be noted that it took the compiler community over five vears and a huge amount effort
to fully realize the potential and develop efficient techniques for the linear loop transformation
framework to the point where they could be integrated into today's compilers. CDA will require a
much larger effort if its potential is to be fully exploited. We believe that it is important to invest
in this effort, because much more aggressive compiler techniques for restructuring programs will

become necessary in order to deal with the complexities that will be introduced with future advances
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in computing technology and architectures. Techniques such as CDA. as well as other non-linear
code and data transformations. will play a prominent role in the set of aggressive transformation

techniques that will become necessary to improve performance on future systems.



APPENDIX A

A Catalog of Loop Transformations

We classifv the transformations into preliminary. primary. and secondary transformations. Prelim-

inary transformations are the first to apply. and the purpose is to improve the data and control

dependence analysis. Primary transformations achieve the intended restructuring of the program.

Some of the objectives could be to enhance parallelism. load balance and/or locality. Secondary

transformations improve the performance of the programs further by fine tuning.

The loop transformations can change the dependence structure. Therefore. it is necessary to

ensure that a transformed loop preserves the sequential semantics. that is. produces the same results

as the original loop. A transformation is said to be legal if all the dependences in the transformed

loop are positive.

A.1 Preliminary Transformations

These transformations are intended to improve further analysis.!

Induction variable elimination

Simplifies the subscript analysis in dependence tests.

j=n

for i =0, n for i =0, n
A(i) = B(j-1) A(i) = B(n-i-1)
B(j) = C(i) ===> B(n-i) = C(i)
j =31 end for

end for

' Although most of the preliminary transformations were introduced in the context of vectorization. we leave out

vectorization techniques here.

132
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Normalization

Many transformations assume that the lower bound of a loop index starts with zero and has a

stride of one. ? Normalization makes a loop nest to conform to this assumption.

for i = 2, n, 2 for i = 0, n/2-1
for j =0, n for j =0, n
A(i,j) = A(i-2,)) ==== A(2i+2,j) = A(2i,j)
end for end for
end for end for

Forward substitution

Simplifies dependence analysis by substituting constants for the expressions in array references.

X =n +1

for i =0, n for 1 =0, n
A(i) = B(1) A(i) = B(1)
C(i) = A(x) ===> C(i) = A(n+1)

end for end for

False dependence elimination

Anti and output dependences are false as they arise just because of sharing the same storage

location. Idea is to eliminate these and work only with the flow (true) dependence.

A=B+C At =B+ C
A=D+E ===> A2 =D + E
= A ... = A2

Loop distribution or Fission

[n order to enable vectorization, or provide simpler loops for analysis, it distributes statements in

a loop into multiple similar loops.

for i =0, n for i =0, n

?As we sce later, hanging the stride itself is treated as another transformation called scaling.
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A(L) = x A(i) = x
C(i) = A(i-1)+D(i-1) === end for
D(i) = C(i) for i =0, n
end for C(i) = A(i-1)+D(i-1)
D(i) = C(i)
end for

Node splitting

Dependence cycles in a loop. prevent loop distribution and vectorization. It is possible to break the

cycles by introduction of temporary variables to keep copies of data. Node splitting is essentially

an introduction of temporary variable followed by loop distribution.?

for i=1,n for i = 1,n
A(i) = B(i) + C(1) A(i) = B(1) + C(i)
D(i) = A(i-1) + A(i+1) ===> Temp(i) = A(i+1)
end for D(i) = A(i-1) + Temp(i)
end for

The original loop contains a flow dependence (1) and an anti-dependence (—1) leading to a cycle,
and preventing the loop distribution. Introduction of temporary variable Temp to keep a copy of

A enables us to distribute the loop (and subsequently vectorize) as below.

for i = O,n
A(i) = B(i) + C(3)
Temp(i) = A(i+1)

end for

for i = 0,n
D(i) = A(i-1) + Temp(i)

end for

Loop fusion

The opposite of distribution (or fission}. Fusing adjacent loops increases the grain size and decrease

the overhead of a do-all loop. This can also improve cache performance by increasing reuse of

3Some consider only the introduction of temporaries as node splitting.



elements accessed in fused loops.

A.2 Primary Transformations

One may have to apply a sequence of these transformations.

Strip mining

' A dependence (c) becomes (0.c) and (l.c —

Strip mining transforms a 1-d loop into a 2-d loop.’
S —1). where S is the strip size (and assuming S > ¢). It is always legal tn do strip mining. (That
is. strip mining does not result in negative dependences in the transformed loop.) The bounds are

rectangular and easy to compute. Strip mining is done mostly to exploit the vector register size.

for i =0, nn for ii = 0, n, 64
A(1) = A(i-1) ===> for i = ii, min(ii+63, n)
end for A1) = A(i-1)
end for
end for

Loop interchange

interchanges nested loops.> A dependence (a.b) becomes (b.a). and thus interchange is not valid
if any dependence («.0) has a negative b. Loop interchange can enhance inner loop parallelization.
vectorization. outer loop parallelization. adjustment of array access stride. and match loop paral-
lelism to data distributions. Loop bound computation can be non-trivial if the iteration space is

non-rectangular.

for i =0, n for j =0, nn
for j =0, n for i =0, n
A{i,j) = A(i,j-1) ====> A(i,j) = A(i,j-1)
end for end for
end for end for
for i = m1, ni for j = m2, ni

1We see later in the document that strip mining is a trivial case of tiling.
°In a doubly nested loop this corresponds to transposing the iteration space.
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for j = m2, 1 for i = max(m1,j), ni
A(i,j) = A(1,j-1) ====> A(i,j) = A(i,j-1)
end for end for
end for end for

Loop permutation

Generalization of a loop interchange. Gives a loop that has indices that are a permutation of
1 2 3

the original loop indices. A dependence (a.b.c) with permutation becomes (c.a.b).
31 2

A permutation is valid if all the permuted dependences are positive. The above permutation is

valid if the dependences are {(1.1.0). (1. —1.1)}. not if a dependence (1.0. —1) also exists. Loop

bounds are again non-trivial to compute for non-rectangular iteration spaces. A permutation can

be realized as a sequence of interchanges. but finding legal sequences of interchanges is a difficult

task.
for i =0, n for k=0, n
for j =0, n for i =0, n
for k =0, n for j =0, n
A(i,j,k) = A(i-1,j+1, k-1) ===> ACi,j,k) = A(i-1,j+1,k-1)
end for end for
end for end for
end for end for

Loop Reversal

Reversing a loop may be necessary to enable loop interchanges. By reversal of a loop with lower
bound L and upper bound L. it is made to iterate from —{ to —L with the same stride. A
dependence (a.b) becomes (a,—b). Note that. whenever there are denendences carried by the
outermost loop. it is illegal to reverse it. For example. a dependence (1.2) becomes (—1,2) after

interchanging the outer loop. which is illegal as the new dependence is negative.

for i =0, n for i =0, n
for j =0, n for j = -n, O

AGi,j) = A(i-1,j+1) ====> A(i,-j) = AGi-1,-j+1)
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end for end for

end for end for

Loop skewing

A dependence (d1.d2) becomes (dl. fdl+ d2) where f is the skew factor. A valid skew can always

be found for a given loop.

With a skew factor of +1.

for i =0, nn for i =0, n
for j =0, n for j = i, i+n
A(i,j) = A(i-1,j) ====> A(i,j-1) = A(i-t,j-1)
end for end for
end for end for
Wavefront

The idea is to find a family of hvperplanes in the iteration space along which the iterations can
be executed in parallel. The loop is transformed in such a way that the hyperplanes are executed
sequentially. and all iterations on a hyperplane are executed in parallel (i.e. inner loop paralleliza-
tion). A wavefront transformation results in dependences carried by the outer most loop. A valid
wavefront can alwayvs be found.

Loop skewing is just a simple instance of wavefront transformation.

Unimodular and Linear loop transformations

A unified transformation that subsumes permutation. reversal. and skewing. It is characterized by

a unimodular matrix: the new loop bounds and new dependences are computed from this matrix.

0 1
A 2d loop interchange has the transformation matrix . These techniques are discussed

L0
in Chapter 2. Please refer to loop interchange for an example.

Internalization

A unimodular transformation specialized to exploit outer loop parallelism and locality for general

loops. The technique is discussed in Chapter 2. The basic idea is to transform a loop in such way
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that maximum number of dependences are not carried by the outer loop. and the size of the outer

loop is maximum. The technique can be applied to increase dvnamic locality as well.

Access Normalization

[t is similar to unimodular loop transformations in that a matrix transformation is used. However.
this matrix is derived from array access patterns. and need not be unimodular. The matrix is made
invertible if needed. The objective is to simplify the array subscript expressions so as to match the

simple data distributions and hence does not consider any other loop optimizations.

for i= p, N1-1, P for u= p, b-1, P
for j= i, i+b-1 for v= u, u+N1+N2-2
for k= 0, N2-1 read A(*,v)
B(i,j-i)= B(i,j-i)+ A(i,j+k) for w= 0, N1-1
end for B(w,u)= B(w,u)+ A(w,v)
end for end for
end for end for
end for

Note that addition of the line read A(*,v) is a secondary transformation.

Scaling

It is the converse of normalization in that it changes the loop stride from one to many. The
transformation is characterized by an invertible integer matrix (generally not unimodular). Since
most of the transformations operate on normalized loops. scaling is not generally employved. Scaling

can provide more natural looking subscripts and bounds.

for i = 0, n/2 for i =0, n, 2
for j =0, n for j =0, nn
A(21,3) = A(2i-2,j) ===> A(i,j) = AGi-2,7)
end for end for

end for end for
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Rotation

fterations in some dimensions can be shifted with respect to other dimensions so that the com-
munication patterns become uniform. The transformed loop executes the iterations in a toroidal
fashion. Although it does not change the shape of the iteration space. dependences are changed.

and the transformation is not always legal.

for i =0, n for 1 =0, n
for j =0, n for j =0, n
A(i,j)= === A(1,(j-i) mod (n+1)) =
end for end for
end for end for

The elements of A computed will be in the order (0.0).(0.1).....(0.n). (1. n).(1.0). ... (L.n —

1).(2.n = 1).(2.n).....(2.n = 2). ... instead of the usual lexicographic order in the origiral loop.

Combing

This is equivalent to interchanging the loops of a strip mined loop. It is not always legal.

for i =0, n for i = 0, 63
A(i) = A(i-1) ===> for ii =i, n, 64
end for A(1) = A(i-1)
end for
end for
Tiling

Tiling is also called blocking. It strips different loop levels to decrease the effective sizes of the inner
loops so as to increase reuse. [t can be viewed as increasing the grain size from an iteration to a
collection of iterations (tile). where the outer loops step through the tiles and the inner loops step

through the iterations in a tile. It is valid only if the loop levels to be tiled are fully permutable.

for i =0, n for ii = 0, n, Si
for j =0, nn for jj = 0, n, Sj

====> for i = ii, min (ii+Si-1,n)
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end for for j = jj, min (jj+Sj-1,n)
end for
end for
end for
end for
end for

A.3 Secondary Transformations

These are intended as improvements over transformed programs.

e [ntroducing communication primitives and changing them to more efficient primitives (like

block transfers).
e Prefetching.
e Register binding. and

e Temporaries for index computation.
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