
CDA: Computation Decomposition and Alignment

Dattatraya H. Iiulkarni

.-1 thesis submitted in conformit- with the requirements

for t h e degree of Doctor of Philosophy.

Craduate Department of Computer Science.

in the University of Toronto

@ Copyright by Dattatraya H. Kulkarni 1997

National Library 1*m of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. rue Wellington
OttawaON K 1 A O N 4 Ottawa ON K I A ON4
Canada Canada

Your n*, v m rerenma,

Our Ne Notre refdrtmce

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or othenÿise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/£ilm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation,

CDA: Computation Decomposition and Alignment

Dattatraya H. ICulkarni

Doctor of Phiiosoptiy. 199'7

Department of Computer Science

University of Toronto

Abstract

Restructuring compilers have been effective in tailoring nested loops and arrays so as to improve per-

formance on both uniprocessor and multiprocessor systems. The regular structure of nested loops

and arrays has enabled their systematic analysis and transfarniation. The focus of t his dissertation

is a new and generalized loop transformation framework. called Computat ion Decornposit ion and

.-tlignment (CD.&).

The linear loop transformation frametvork introduced in 1990 was a major breakt hrough.

partly because it provided a unified view of many of the earlier loop transformations. and partly

because it was a formal method based on linear algebra. Since then. the compiler comrnunity

h a s designed algorit hms w hicli automatically derive Iinear t ransformatioris t hat achieve specific

optimization objectives in given nested loops. The framework also sparked the development of

generic techniques to derive efficient code for the Iinearly transformed loop structures.

The main contribution of this dissertation is the CD.A transf~rmation framework. which is

capable of restructiiring nested Ioops at the granularity of statements and s u bexpressions. The

granularity of transformation is thus finer than in the linear loop transformation framework. tvhich

transforms nested loops at the granularity of entire iterations. .A CD.& transformation is applied to

a nested loop in ttvo steps. First. the loop iteration space is decomposed into multiple cornputution

spaces. each representing computations of a statement or a subespression. Second. each of the

com pu tation spaces is linearly t ransformed wit h a (possibly) different transformation matris.

CD.4 unifies into a single framework manv esisting transformations including al1 linear loop

transformations. .L\ linear loop transformation only modifies the execution order of the iterations.

while a CD:I transformation modifies bot h the composition of the iterations and the esecution

order of the re-composed iterations. This feature enables new optimizations which cannot be

obtained by Iinear loop transformations alone. In this tliesis, we show how CDA transformations

can achieve the effect of certain global data transformations. W e present heuristic algorithrns to

automatically derive CD.& transformations to reduce i) the number of cache conflicts and i i) the

number of ownership tests. and we show how CD.4 can achieve several o ther optimizations. We

also compare the performance of some benchmark loops t o t he corresponding CD.\ transformed

loops using a simulator and three different types of real computer systems.

Acknowledgments

First. I would Iike to thank Michael Stumm for instilling in me qualities essential in an inde-

pendent researcher. 1 wiII no doubt spend years learning his ability to distill myriad of information

into a crisp paragraph.

As a supervisor during my first year in the department. Hector Levesque encouraged me to

freely pursue any area t hat interested me. Ken Sevcik. Tarek A bdelrahman and Christina Christara

provided valuable feed back that greatly improved the quaiity of the t hesis. Discussions wit h t hem

in meetings and corridors Iiave contributed i n some or the other way to the direction my work

has taken. 1 thank Vivek Sarkar. rny external esaminer. For careful reading and suggestions that

surely will have a positive influence on rny future research plans. 1 than k Charles Clarke for careful

reading of the thesis even within relatively short time.

i ttiank Keeranur Iiurnar a t IBM T.J. Watson for introdiicing me to the esciting world of

compilers and for being a mentor. friend and family bundled in one. 1 am indebted to iny teachers

during al1 stages of rny schooling for recognizing my strengths and ironing away rny weaknesses.

3fIany friends and colieagues have brightened my life in Toronto. Sudarsan. Shankar and Ravin-

dran have atways been there for me. Brian, Daniel. Hui. Jaseemuddin. Jeannine. Karim. Luis.

Shailesh. Steve. and Yiming have often helped regain rny sanity.

Rad ha-Sudarsan, Jeannine.Llan. Lalita-Kuppu . Prabha-Pawan. Sliarada-Parameshivar, Rati-

Prakash, Sujata-John and Nalaivadis' have provided me family tlioiisands of niiles away from honie.

Thank you.

I hake been lucky to have a large number of friends in india an3 Sorth America wtio have

congratulated m e on successes and consoied m e on failures. 1 cannot imag ine living through the

graduate school frustrations without the reassuring caIls from Xnand, Dattaraj. Nagaraj. Xarayan.

Xaren. Sharad, and i'inayak.

l l y parents and family have relentlessly cheered me on on every single day of nearly a quarter

century of schooling. My dad, my first Guru. has always been a source of strengt.h and insight into

life which have made me the person 1 am today. My brother has been the master planner of rny

academic career. He has always believed in my ability even when I had doubts during graduate

school. 1 thank my sisters for not asking the questions a graduate student dreads most - "When

arc you going to graduate?". Finally. Suhasini brought the first ray of light when the end was in

siglit and has cheered me on through the crucial last miles of the tunnel that had otherwise seerned

endless.

To rny loving parents and my brother

Contents

1 Introduction 1

.. 1.1 Linear Loop Transformations :3

...................... 1.2 Cornpu tation Decomposition and Alignment Transformations 5
- .. 1.53 Contributions of t h e Dissertation ,

2 Linear Loop Transformation Framework 9

.. 4.1 RepresentationoltheLoopStructure 9

.. 2.1.1 AIodel of t h e Loop Structure 10

....................................... 2.1.2 Representation of rray References 11

... "1.3 Representation of Loop Bounds 12

.. 2.2 Data Dependence ..I naIysis 14

..................................... 3 l la thernat ics of Linear Loop Transformations 16

.. 2.3. 1 Basic Transformation Technique 17

.. 2.3.2 Derivation of Sew Loop Bounds 18

...................................... 2.4 Advantages of Linear Loop Transformations 21

................................ 2.5 Techniques t o Derive Linear Loop Transformations 24

.. 2.5.1 Deriving Canonical Loops 24

... 2.5.2 Dependence Internalization 25

.. 2.5.3 Access Yormalization 26

.. 2.5.4 Balancing Processor Load 28

3 Computation Decomposition and Alignment Framework 30

.................................... 3.1 Overview of CDA Transformation Framework 30

.. 3.2 Representation of t h e Loop Structure 32

3.3 Conipu tation Decomposition .. 33

.. 3.4 Computation Alignrnent 3';

... 3.5 Generating New Loop Bounds 41

.. 3.6 Applications of CD.=\ 46

.. 3.7 Disadvantages of CDA -47

4 Optimizing CDA Transformed Loops 48

... 4.1 Rernoving Empty [terations 50

.................................. 2 Reducing the Overhead of' Guard Computations 54 .

... 4.2.1 lncrementai Rernoval of Guards 5.5

4.2 . 2 Partitioning the Iteration Space into Hornogeneoiis Segrncnts 61

...................................... 4.2.3 Optimizing the Evaluation of Ciuards 62

................................. 4.3 Optimizztion of Space Overhead for Temporaries 63

5 Application of CDA to Reduce Number of Cache Conflicts 65

................................... .i . 1 Reducing the Number of Cache Conflict Misses 6.5

.. 5 . 2 Representation of Cache Conflicts (j l

.................................... 5.3 Derivation of a Suitable CD:\ Transformation 68

....................................... 5.3.1 Initial Computation Decomposition 69

..................................... 5.3.2 Deriving the Coniputation Alignment 70

... 5.4 Comparison of CD.4 witl i Padding 76

6 Application of CDA to Remove Ownership Tests from SPMD Codes 79

.. G . 1 P-cornputes: Flexible Coniputation Rules SO

. 6.2 Renioving Ownersliip Tests in P-cornputes rules 82

............................. 6.3 Derivation of CD.=\ Transforniation to Pack Iterations 85

................................. .. 6 3.1 Derivation of Cornputation Decomposition 1'3.5

..................................... 6.3.2 Derivation of Computation Alignment 86

..................................... 6.3.3 Data .. Ilignment of Temporary .A rrays 90

..................................... 6.3.4 Summary of Stages to Pack Iterations 90

.. 6.4 Scanning Local Iteration Space O 1

7 Other Applications of CDA 94
. .. I -1 lmproving Instruction Level Paralleiism 94

vii

1.2 Elirninating Synchronizations . 96
. 3 Generalizing Loop Distribution . 99

1.4 Transforming Imperfect Loop 'iests .. 103

7 3 Using CD.\ t o Improve Global Optirnization 10.5

7.6 Summary .. 106

8 Application of CDA to Example Nested Loops 107

... .3 . l Reducing t h e Yumber of Cache Conflicts 108

1 Rtmg Loop .. 109

S . . 2 . \fg Loop .. 112

5.1.3 Ilpentn Loop .. 117

8.2 Rernoving Ownership Tests .. 120

8.2.1 I i l n a l Loop ... 121

8.2.2 Swm Loop ... 123

9 Concluding Remarks 126

9.1 Siimrnary .. 12G

9.2 Future \York .. 128

A A Catalog of Loop Transformations 132

.A . 1 Preliniinary Transformations .. 132

.. i . 2 Priniary Transformations .. 13.5

A . 3 Seconda ry Transforniations .. L-!O

...
V l l l

List of Figures

...................................... 1.1 -4 loop transformation t o expose parallelism 2

-1 1.2 :\ loop transformation t o improve memory access behavior ,

.. 1.3 T h e linear loop transformation framcwork 4

1.4 The CD.\ transformation framework ... 5

.................................... 1 ..5 .4 CD.4 transformation of a 2-dimensional loop 6

LIodeI for perfectlÿ nested affine loops .. LO

Xested loop L ... 11

... Dependences i n i teration space 16

.. Tlie transformed itcration space of loop L 21

... The transformed loop L 21

Esani ple transformation mat rices for two dimcnsional loops . including (a) reversal

of outer loop . (b) reversal of inner loop . (c) reversal of botli loops . (d) interchange .
. (e.f) skew by p in second and first dimensions . and (g) wavefront respectively 22

............................... Dependence internalization in two dimensional loop 25

.. An example access normalization. ' L i

............................... Choice of iterator t o partition for good load balance 28

3.1 Mapping of portions of i terat ions in CD.\. For clarity. this figure shows how t h e computations

............................ of a single original i terat ion are mapped ont0 new iterations 31

... 3.2 An esarnpte CDA transformation 31

3.3 The program mode1 . 33

............ 3.4 Running esample and new loop body after Cornpiitation Decomposition 3.5

..................................... 3 . 5 Computation spaces for the running example 37

.......... 3.6 Illustration of a simple Computation Alignment of the coniputation spaces 39

................................ 3.7 Algorit hm CD;\- bounds to derive new loop bounds -42

.. 3.8 CD.\ transforrned running esarnple Ioop 43

.................... 3.9 An esample loop used to illustrate overhead of empty iterations 44

... 3-10 Deriving new loop bounds 4.5

................................ 3.1 1 Transformed loop after simple guard optimizations -16

............. 4.1 The loop used to illustrate the effect of techniques to reduce overheads -19

4.2 Overheads in a CD.4 transforrned toop . called Loop 1 . with offset alignrnent (k . k) .

I n the bar chart above . the bars on the Ieft correspond to the esecution times of

Loop f with overheads . whereas the bars on the right correspond to the erecution

times of Loop 1 after reducing overheads ivith techniques described i n this chapter . . -49

4.3 Overheads i n a C'D.4 transformed loop witli a linear alignment . called Loop 25O

... 4 . Shapes of iteration spaces 51

... 4.5 Tight transformed bounds 52

.......................... . 4 6 Empt- iterations in an iteration space ivith tight bounds 53

.............................. 4.7 Performance benefits of elirninating e m p t l iterations 54

4.8 Transforn~ed computations spaces to illustrate steps in algorit hni C'D.4-gunrd-mm.

The transfornied loop corresponding to the transformed compiitation spaces is called

Loop Y ... 56
- - 4.9 Merging Ciuards for statements Si Sti a i

.. 4.10 Reniove guard computations in L 58

.. -1.11 Generation of code for subnests 60

..................... 4.12 Performance benefits of rernoving guards by CD.4.guard.r~m.. (il

.................................... 4.13 Partitioning union into homogeneous segments fil

........................ 4.14 Performance benefits of scanning in homogencous segments 62

.............. 5.1 Reducing cache conflicts with modification to array Iayout and CD.4. 67

... 5.2 Conflict graph for statement S 68

. 3.3 Algorit h m -4 1 derive initial Computation Decomposition 70

............................ 5.4 Initial decompositions of conflict graph for statement S 71

..................... 5 . 5 :Ilgorithm -4 2 to derive alignrnents t hat reduce cache conflicts 73

.. 6.1 SPkID codes for an example Ioop $ 3

6.2 Aigorithm BI t o decompose statements .. 86

........................... 6.3 Computation Decomposition of a loop with :3 operators 8i

.................................. 6.4 Algorit hm B2 t o derive Computation Alignment 88

6.5 Computation -4lignment of a Ioop with 3 operators 90

..................................... 6.6 Algorithm bJ t o d a t a align t e m p o r a l arrays 91

........................... 6.1 hlodification of loop bou nds to scan local iteration space 93

1.1 Application of CD.A transformation to improve instruction level parallelistri 9.5

.......................... 1.2 CD.-\ transformation t o eliminate barrier synchronization 9S
. .. 1.3 An esampIe loop distribution 99

7.4 .A loop tliat cannot be distributed .. 100
- 1 . Loop distribution as a CD:\ transformation 100

.............. 7.6 An esample of breaking dependence cycles to enable loop distribution 101
- - 1 . 4 CD.& transformation for partial Ioop distribution L0'2
- I . S CD:\ transformation for partial loop distribution 103

............ 7.9 Converting a simple imperfectly nested loop into a perfectly nested loop 104

................................ 1.10 CD=\ transformation of a n irnperfectly nested loop 104

... 7-11 Effect of C'Dr\ on global optiniizatiori 10.5

S.1 C'onfIicting referencesin theoriginal rtmgloop 109

5 .2 The nurnber of cache misses in the original and the C'DA transforrned rtmg loops

... ivit h array sizes of 64sG-l 110

8.3 Esecution time of rtrng loop on a SPARC' 10 workstation 111

S.4 Esecution time of rtmg loop on a SP.4RC 10 ivorkstation for varying da ta sizes 111

.................... 8.5 Cache misses in the original and the CD.1 transformed mg loop 113

... 8.6 Confiict graph for the original mg Ioop 113

.................................. S.7 Confiict graph for the CD.4 transformed mg loop 114

8.5 Xumber of additional a r ray elements in the CD.4 transformed and the array padded

... mg loops 116

9 Esecution time of mg loop with 256s2.56s2.56 arrays on a SPJLRC 10 w-orkstation

and a single U R 1 processor ... 117

8.10 Cache misses in the original and the CD.4 transforrned cpenta Ioop 120

8.11 Esecution time of ~>penta Ioop on SP.LRC 10 workstation . a processor of t h e IiSRL

and RS/6000 ~vorkstation .. 120

8.12 Number of additional array elements required for the CDA transformed and the

array paclded cpenta Ioops ... 121

S.13 Esecution time of wanal loop on KSRl ... 122

S.14 Esecution time of .s wrn loop on KSR.1. ... 12.5

sii

Introduction

There is nothing permanent, except change.
- He raclil us

Restructuring compilers modiiy program structure in order to improve performance on target liard-

ware. On uniproc~ssors. restructuring compilers are often used to masirnize cache hit rates so as to

hide latencies of the mernory hierarchy. On parallel coniputer systems. restructuring compilers are

often used to parallelize the code and to masirnizc data acccss locality. Parallelizing code includes

the identificatiori of the paralletisrn i n the code. tlic evcn distribution of cornputations ont0 pro-

cessors. and the placement of data to match the mapping of parallel coniputations (or vice versa).

Iriiproving data access locality includes masimizing cache h i t rates and minimizing t lie riiirn ber of

remote accesses.

The restructuring techniques that have been proposed over the ycars focus prirnarily on nested

loops and arrays - loops. because they are a regular. well defined control struct lire that arc straiglit-

fonvard to nianipulate and because the- constitute the corc of rnany applications - arraj-S. also

t~ecause tliey have a regtilar structure. The structure of a loop and the layout of data iri nieniory

grcatly affect performance:

0 Tlie bop structure cietermines tlic data flow relations bettveen loop iteratioris. anri ticrice the

amount of parallelism available in the loop.

0 l'lie loop structure and data layotit determine the patterns i n which memory is accesscd.

and hence the spatial and temporal cache locality as w l l as the tiumber of rcmote meniory

accesses req ii i red .

0 The loop structure affects the number of iterations rnapped to each proccssor, and hence the

balance of computational load.

For t liis purpose. rest ructuring conipilers (among ot her t hings) apply loop and data transfor-

mations to modify the structure of nested loops and change the data layout so that the same result

jor r = l . n
!or j = 1 . n

S : .A(; . ;) = . 4 (t - l . j) + - 4 (z , j - 1)
end for

end for

/or i = 2 . 3
for j = mar(1.l - n) . m l n (n . 1)

1; = 1 - 1
5' : . - ! (1 ~ , j) = .4(1j - 1 , J) + . 4 (4 ~ . J - 1)

end for
end for

Figure 1.1: -4 loop transformation to espose parallelism.

for L = 1 . n
for j = 1 .1

3 ' : . 4 (1 - j . j) = , - l (t - j . j) + B (I - j . j)
cnd for z

end for

for r = O . n - 1
for j = 1 . n - t

5 . 4 (1 . J) = - - \ (l . J) + B (1 . J I
er;d for

end for

Figure 1.2: -4 Ioop transformation to improve memory access behavior.

is computed but wit h irnproved performance.

Consider the nested loop on the left hand side of Figure 1.1. The loop, as is. cannot be directly

niapped ont0 a rnultiprocessor to run in parallel. Every esecution of statement S must wait for

the results of the previous esecution of S. A loop transformation can. liowevcr. re-arrange the

esecution order of the iterations so that each iteration requires data produced only by earlier i

iterations. allowing the j iterations to be esecuted i n parallel. The loop on the right Iiand side of

Figure 1.1 is a transformation of the loop on the left hand side. It coniputes the sanie result. but

eshi bits improved parallelism.

Loop transforniations can also be used to improve cache and niernory access behavior. Considcr

the two diniensional loop on the left hand side of Figure 1.2. This loop lias poor cache locality.

because a new cache line is accessed i n every iteration. and successive iterations do not use elenients

of previously accessed cache lines. The loop can be transformed into the loop on the rig1it hand side

of the figure. which is semantically equivalent to the original loop. The transformed loop performs

better than the original loop on both uniprocessors and multiprocessors if the niatrices are stored

in row major order. because the elements of a cache line are used in successive iterations.

The esample of Figure 1.2 also illustrates how a loop transformation can reduce the number of

remote memory accesses in the case where the loop is r u n in parallel ori a muitiprocessor. Consider

a parallel system with p processor-memory module pairs and a rnapping scheme where the outer

Ioop is esectited in parallel srich that al1 j iterations of an outer iteration i esecute on processor

i rnod pl :Usa assume that arrays -4 and B are mapped onto memory modules such that row k

of each array resides on memory module k rnod p. \Vith the original loop. processor P will necd

to access array elements .4(i - j. j) and B (i - j . j) remotely whenever (i - j) rnod p k. \ITith

the transformed loop. however, al1 array accesses in the loop are local. Hence, the transformation

increased locality. given the initial mapping of computation and data.'

This dissertation will focus on loop transformation techniques. The above esamples show that

the structure of a Ioop is critical for good performance.

1.1 Linear Loop Tkansformations

Over the years. many loop transformations have been developed and proposed - see Bacon et al.

for a good overview [fj]. Prior to 1990. it \vas found to be difficult for a compiler to determinc

how and in what order to combine and apply a sequence of transformations. 12'ithout a forma1

framework. reasoning about the effects of a sequence of transformations is ad hoc. niaking ttie

design of algorithms to automaticall~ transform loops difficult. Witliout a fornial rcpresentation

of the entire transformation sequence. code gencration is difficiilt as well. often producing coniples

loop bounds. Hence. there [vas a need for a formai transformation franiework that provides a

mat hematical ba i s for effectively:

repr~senting a set of loop transforniations in a concise and uniform way.

ren.wning abou t and conlparing alternative Ioop transformations and their effects using Forrrial
niet hods.

autoniaticall- deriring loop transformations that acliieve specific optimization objectives.
and

npplying loop transformations (i-e. generating the code for the transformed b o p) i n a n auto-
mated waj-.

Fortunately. vell st ructured loops are amenable to sucti a mat hematical formalization. I n t his

regard, the linenr loop tmnsformation f'ramework. introduced in 1990 [IO. 26, 29. 36, 541, ivas

a major breakthrough that great!y simplified the task for the compiler. partly because it was a

formal niethod based on linear algebra and partly because it provided a unified vie~v ool many of

ttie previously proposed loop transformations. With tliis framework. it became possible to design

algorit hms t hat au tomatically search for transformations for given optimization objectives.

'There are no data floa constraints for parallel execution. since ai1 iterations are indepcndent.
2Note that a colurnn major storage order will produce a completely different memory access behavior.

For i.j =

H(i.j)

end for

Original Loop
1

Iteration space

Transformation matrix T

for i'.j' =

H(i'.jW)

end for
i '

Transformed loop New iteration space

Figure 1.3: The linear loop transformation framework.

In the linear loop transformation Framework. iterations of a nested loop arc reprcsented by

an iterntiori spncc. which is an integer space bot~nded bk. Iiyperplanes corresponding to the Ioop

boitnds. .-\ non-singuIar integer matrix is used to lincarly transform the iteration space into a

rieiv iteration space."he new iteration space then corresponds to a new (noiv transfornied) loop.

Tlic relationship between the loops. iteration space and the transformation rnatris is illustrated in

Figure 1.3.

Tlie int rodtiction of t tie Iinear loop t rarisforrnation franie~vork vas a. significant corit ri bii tion

i n that i) it allon-ed a single matris to represcnt a conipotind trarisforniation of man? esisting

transformations siicli as skctv. reversal. interchange etc. ii) it allowd the developnient of a set

of gencric techniques to generate transfornied loop structures in a systeniatic way. iiidcpendcnt of

the particiilar sequence of transformations being applied. a d iii) it sparked the dcvelopnient of

algorit hms t.0 derive transformation matrices t hat achievcd specific objectives for a given nested

loop.

for i.j =

H(i.j)

end for

Original Loop Iteration spaïe Computation spaces

Transformation matrices
T 1 .T2.T3

A J

for i'.j' =

H(iV.j')

end for

Transformed loop Transformeci iteration space Ttansfonned cornpubtion spaces

Figri re 1.4: The CD:l transformation framework.

1.2 Computation Decomposit ion and Aligiinient Transformations

The niain contribution of t h i s dissertation is an estension to the lincar Ioop transformation fïaine-

work çalled tlie Cornputation Deconiposition and Alignment (CD.4) transformation frarnewark.

Ttic objective is to unify into a linear algebraic frarncwork a larger nrinlber of loop optiniizatioris

than possible within the linear loop transformation frarnework. :\ CD.61 transformation maps the

compiitations of an original nested loop into conipiitations in a neu-. transformed Ioop. It is applied

i n tnto steps as shown in Figure 1.4:

0 First. the iteration space of the loop is decomposed into multiple intcger spaces. calleci conz-

pirtation spnces, each representing computations of a statement or a s u bespression.

a Second. each of the integer spaces is linearly transforrned with a (possiblv) different transfor-

mation matris.

The transformed computation spaces togetlier define the traiisfornied iteration space. and thus,

the new CD.\ transformed loop. I t should be noted that a linear loop transformation is a spe-

3The linear loop transformation frarnework \vas originally introduced in the form of the unirnodular loop trzxfor-
mation frarnework, where the transformation matrices must have a determinant of f 1. The linear loop transformation
framcwork is a generalization of the unimodiiiar loop transformation framework. where the transformation matrices
may have an? non-zero determinant (including f 1).

for 1 = O . n

for c = 1 . n
for j = 1 . n

. - i (t . J) = B (1 . j) -+ -+- j) + B(i + 1 , ~) -
end for

end for

for j = 1.n
cf (1 < n) then

t (l + 3 .)) = B(r + 1 . J)

1/ (I > O) then
A (t . J) = t i c + 2 . J) + . 4 (1 . j) + B (r + 1 . J I

end for
m d for

Figure 1.5: :\ CD-.\ transformation of a 2-dimensional loop.

cial CD-4 transformation wiiicIi does not fi rst decom pose t lie iteration space. Hoivever. t lie CD--\

transformation framework differs frorn the linear loop transformation frametvork i n several ways:

(i) The Iinear loop transformation framework restructures loops at the granularity of iterations.

\v hereas the C'D.4 transformation framework can rest rticturc loops at a Jiner gran ulnrity of

st atenients and su bespressions.

(i i) --\ lincar loop transformation is defined by a single transformation niatris. tvliereas a CD.+\

t ransforrnation requires potentiallÿ .se wml trnn.cformtltion matrices. one for each computation

space.

(i i i) .A linear loop transformation only modifies the esecution order of the iterations. ivhile C'DA

transforntations niodify botti the composition of the iterations and thc eseciition order of the

re-corri posed iteratioris.

(i r) Ttic scnrrh spnce for legal CD.&\ transformations of a nested loop is considerably Iarger tlian

ttiat for legal lincar Ioop transformations.

(r) The CD.\ transformation framework un$es additional loop transformations besides those

unifieci by the linear loop transformation framcwork.

A s a n esample of a CD.&\ transformation. Figure 1.5 shows a loop tliat is CD:\ transfornied to

ttie loop on the riglit hand side. The transformed loop has a loop structure that is substaiitially

different than that of the original loop. and cannot be obtained by a direct application of an-

esisting loop t raiisforniation technique. The CD.4 transformation applied here in1 proves t he cache

utilization by reducing the nurnber of cache conflicts that occiir with certain certain cache and

array sizes.

1.3 Contributions of the Dissertatiori

The main objective of this dissertation is to show that there esist opporttinities to restructure loops

a t finer coni pu tation granularity t han t here esist within the linear loop t ransforniation framework.

The final otitcome is a transformation framework that is niore effective thaii the linear loop trans-

formation franiework and yet preserves its elegance. The main contributions of this dissertation

are:

1. LVe ddevelop the basic CD.-\ transformation frarnework. capable of restriicturing riested loops

a t the granularity of statements and si1 bespressions (Cliapter 3) .

A n LI ndesirable effect of C'D.4 transformations is t hat t iic transformed loop lias corn pu tational

and spatial overhead ~i-liich a pure linear loop transforniatiori woiild not Iiavc. ICé describe

tecliniqties to optimize the CD-\ transfortned loops by rediicing these overlieads (Cliapter -1).

\Cé identify several situations in which the performance of nested loops can bc improved by

restructuring at staternent and sub~spression granularity. But tiecaiise incrcasetl fi csibility

for transforniation ~t:ithin the C'Dr1 franiework cornes at a cost of vastly largcr searcti spaces,

lieuristics tliat use the kno~vledge about tlie optimizatiori contest arc key in dcriving CD.-\

t ransformatioris efficient[!-.

\\é present an algorithm capable of ticuristically deriving CD.\ transformations tliat optimizc

ncsted loops in t be contcst of reducing the riumber of cache conflicts (C'liapter 5) .

\\i. present an algorithni capable of heuristically deriving CD.-\ trarisforniations tliat optiniizc

nestcd loops in the coritest of irnproving the efficiencj. of SPl ID code on multiprocrssors

(C'hapter 6) .

\Ve illustrate the iitility of CD-\ in irnproving tlie perforniance of nested loops in several othcr

contests. including the contest of increasing instruction lcvel parallelisni and of rcducing the

riu niber of barrier synch ronizations required in paralle1 code (Cliapter 7) .

\Ve illustrate the application of t he CD.-\ transformation techniques using esample loop nests

[rom benchmarks. i\é compare the performance of the original and the CD..\ transformed

versions of the Ioops by esecuting them on both uniprocessor and rriuItiprocessor platforrns

(Cliapter 8).

Cire begin by describing t h e linear loop transformation frarnework in the nest ctiapter. since the

CD.4 frarnework is a direct estension of that.

Linear Loop Transformation Framework

What need have I of magic charms-
'Abracadabra!' and 'Prestopuff' ? ..
Transformed wouid I be to toad or Iizard
- Robert Grnces. Lore and Black .Ilagzc

The linear loop transformation frametvorli [IO. 16. 29. 36. 48. 5-l] provides a formal and unified basis

for nurnerous loop transformations - loop mrersal. interchange. permutation. s k w . scaling. Tlie

frarnework has been effective and lias led to the development of rnariy algorithnis and tools for o p

tiniizing compilers. In t his chapter. tve describe nitt hods uriderlying the linear loop transformation

frarnework because CD=\, is an estension of the framework to finer ccniputation granularit?.

We first describe the representation of nested loops and outline ttic rcpresentation of data fluw

bctweeii thc iterations of nestcd loops. \Cé show liow a finear transforniation modifies ttic loop

striicturc and the data Aow. and tve present techniques to dcrive the transforrned ncsted loop given

n t ransformatioti. IV? dso illustrate how the linear algebraic reprcsentatiori i n the franiework c m hc

iitilized to systematically and autoniatically derive transformations to actiieve specific optimizatiori

objectives.

2.1 Representation of the Loop Structure

In this section n-e describe the rnodel of nested loops that can be Iinearly transforrned. Ive then

present the linear atgebraic representation of the loop bounds and the array rcferences in the loop.

This representation of nested loops forms the b a i s for the analysis and transformation ~ecliniqiics

discussed in the subsequent sections.

...
for In = Ln (II In- 1). ï-n (i l . .-. In- 1)

H (I l 1,)
end for

. . *
end for

end for

Figurc 2.1: Alode1 for perfectly nested affine loops.

2.1.1 Mode1 of the Loop Structure

The lineâr loop t ransforrnation frarnework assunies p~rfcctly nested a f i n € loops. so t liey Iiave the

structure depicted in Figure 2.1. This loop striicture is sufficicn tly geiieral to represent niany

coninion nested Ioops. ?Ve say that the loop is n-dimensional. since the nest lias n loop statenicrits.

The body of tlie loop riest is denoted by fl. wliicli niay bc a sequence of statenients incliicling tliose

that contain additional loops. I I In art. the iterators. L , and C', are tlie lowcr and iipper loop

liniits or loop bound expressions for itcrator 1,: thcy arc assumed to be liriear functions of I l I , - [.

The loop is assumed to be normalized. so all iterators have a stride of one.'

The notion of perfect nesting characterizes well structured loops for tvhich anal?-sis and traris-

lorniatioii tecliniqucs are relatively simple. Tlic loop nest fornied by itrrators I l to I n is perfectly

nec-tecf i f f for al1 iterators Ik sucft that L 5 k 5 n - 1 . I k encloses only a loop statcnicnt witli itcr-

ator I k+ l : otlicrwise it is iniperfect. .-Ut liougli the asst~mption of perfcct riesting is algoritliriiically

corivenierit. it rlocs escltide a considerable amount of application code. How to transforni a r b i t r a r ~

iriipcrfcctlj* ncstecl loops is still an open issue. In later chapters ive sholv Iiow the loop iiioclel can

be estcrirled to include some imperfect nestings.
-

\ector I= (I l 1,)' is callcd tlie itcmtion rertor. It spans t be set of al1 loop iterations

rcpreseriteci by the itcmtion space. defined as follows:

Definition 1 (Iteration space) The in t eg~r space.

l = {(i l i,,) j L I < i l 5 L,(i l i n - [) < in 5 (*,(i l i n - 1)) Zn.

is r ~ f c r n d to ns the itcmtion spaccr. whcrc i l in are the itcrcition incliccs. and (, L I . IVi j. (Ln. L I I L)

arc the respect ire loop lirriits. 0

The iteration space is a conves polyhedron. The individual iterations in tlie iteration space are
- -

' Sested Ioops c ~ m be normalizcd to have a unit stride [XI. and such a transformation is illustrated in :lppendix A. 1 .

Figure 2.2: Sested loop L.

denoted by integer n-tuples. and we define a lesicographical relation on these n-tuples.

Definition 2 (Lexicographical relation <) Tite leticugrnphical rclatiori. < . is defined such that
- - 4 4

i < J for n-tirp!es i = (i l i,,) and J = (IL.. . . . J,) ig there ezists nn i n t q ~ r k . 1 < k < n .such

that il = jl ,ik- 1 = and ik < j k . O

The lesicographical relation imposes an order on the iterations called the lesicographical order.

This lesicograpliicai order is the sequential cseciition order on the loop iterations.' .-\ lincar loop

transforrnation. i n effect. changes the lesicographical ordering of the iterations.

CVe will use the nested loop L of Figure 2.2 as a running esaniple to illustrate the tech~iiques

i n the linenr loop transformation framework. The Ioop L has a dimension of two. wtiere I t ancl l2

are the iterators and f= (Il. is the iteration vector. Ttie loop lirnits are constants - botli I t

and I f 1iat.c a lower lirnit of O and an upper lirnit of .5. Figure 2.3 or1 page 16 shows the iteration

spacc for loop L.

2.1.2 Representation of Array References

A typical rcfererice to an rn-dimerisional array .4 i n t lie loop body lias t tic forni .A(f (I L. ln).

....f,,(Il. I,)). \vher~ each f, is a function of the iterators and is ca1lt.d a subscript function.

\Vhen the sirbscript functions are linear. then the refererices can be represented i n matris-vector

notation. A reference to a pdimensional array iri an n-climensional loop can be represcnted as a p x n

integer niatris R. called a refcrence mcrtrix. The reference nlatris is typically estcnded to p x (n + 1)

to allow constant offsets in array subscript functions. where the last coliinin of the reference nlatris

corresponds to the offsets in subscript functions. The iteration vector is correspondingly estcnded -
to I= (II In. 1lT i n this case. For esample. array reference :\(Il - 2. I z + 1) i n loop L is

* ~ o t e that the syrnbol < is used to compare numbers as well as to compare ti~ples. :lltliough tliis rnay be some
what confiising nt first. it simplifies the notation geat ly , and the intended meaning shoiild bc clecv from the contcxt.

represented by:

L J

and a reference .-1(11 -i- 4. I2 + 1) with coupled subscript functions would be represented with:

S o t e t hat t lie reference mat ris may. in some cases. be singular. sucti as for array reference .-1(I l . I l) .

2.1.3 Representation of Loop Bounds

Tite iteration space is a conves polyhedron and. as is evident from ttic definition of tlie itcration

space. is characterized b ~ . the set of inequaIities corresponding to loop bound espressioris. The

loop borinci espressions can be n-ritten as inequalities in matris-vector notation. since the boiincf

espressions are linear fu nctions of the iterators:.' These inequalities are represented by tialf spaces

ttiat boiind the iteration space. and are succinctly represented by a botlnd nlatrir . ï l i e set of lower

bound cspressions c m be represented by

wlicrc SL is an r n ~ x 11 Ion-er triangular integer matris. n l ~ is t lie niiniber of espressions boundirig
-

tiic loops froni belots. Jis t.lic ri x 1 iteration vector. and 1 is an rrir x I inteper vector. Siniilarly.

iipper bound cspressions can I>e represented by

u-licre Sr* is an n 2 ~ - x n upper triangular integer matris aiid nt- is tlie number of esprcssions

boiinding the loops froni above. The m = mr. + mL inequalities corrcsponding t o botli tlie iipper

and lo~ver boiinds can be combined to represcnt the polyliedral shape of the iteration space hy:

"The nested loops with a structure as in Figure 2.1 ~lre c d e d tafine loops. when the 'uray references cmtl the toop
bounds c m bc represented in a matrix-vector notation.

tv here

S is called the b o u d niatris. (wtiere n is the loop dinicnsion). ii'hen therc are no niasinium

or minimum functions i n the loop bound espressions. then the number of inequalities. m. is Zn.

Ot heru-ise. m will be greater t han 2n. For esample. if tlie leu-er bound espression for loop index l2 is

crias(I I . 5 - I I). then 12- Ir 2 O and [2+li 1 5 bot h beiong to the set of ineqiialities SL. Sonietinics

it is convenient to rtpresent the loop bounds i i i the l~oniogcneous CO-ordinate systeni by inequalitics
- 4

3.1 > O. wliere S includes tlie rector cas the last column:'

As an esample. consider the loop bounds for Our running esaniple Ioop L in niatris-vcctor

notation. From the upper and lotver loop bound espressions of loop L ive c m identib:

Ttiiis the loop bounds can be represcnted by

Ttie constants on ttic rigiit liand side cari be incorparatcd into tlic boiiiid riiatris by iising the

tioitiogciieous co-ordinate system. For instance. the loop bourids for L can now bc rcprcsentcd as:

The boiind matris reprcserits the four tialf spaces that bound the two dimcnsional itcration spacc.

In ttiis particular case. the half spaces are I I > 0. Il 2 O. 5 - I L > 0. and 5 - I2 1 O.

' In a homogencoiis cwordinate system. the iteration vector (f i I , } ~ is cxtended to be ! I I , In . I) ~ so t h
l ine~u cqiidities and inequaiities in the system need not have non-zero constant terms on the right hand sidc.

2.2 Data Dependence Analysis

Determining the precedence constraints on the esecution of the statements of a prograni is a

fundamental step in parallelizing a program. The dependence relation between two statements

constrains the order in ~vhich the statements may be esecuted. For esarnple. the statenients in

the then clause of an if statement is control dependent on the branching condition. :\ statenient

that uses the value of a variable assigned by an earlier statement is dala dependent on the earlier

staternen t [SI. In t [lis chapter. \ve concern ourselves on[- wit h data dependence.V~c bricfly discuss

the basic concept of data dependence and the coniputational coniplesity of deciding whcther a

dependence esists or not. See Banerjee for a good relerence of early developrnent in the area [Y].

Reccnt developnients can be found in [37. 40. 4.5. 571.

T h ~ r e are four types of data dcpendences: pou*. anti. output. and input dependence. The on/!.

true ciepenrlcnce is the flow dependence. The other dependences are the restilt of reusing the same

location of mernory and are hence called pscudo dependences. They can be elin~inated by renaming

sonie of the \.ariables [i-lj. IVe write SiOS2 to mean flow dependence lrom SI to S2.

The sequetitial semantics of a loop implies t hat a flow dependencc al\vays be positive so tliat the ar-

ray element in question is written to before the dependent itcration rcads i t . A loop t ransforrnation

is idid or l e g d onl!. if the flow dependences r ~ m a i n positive.

Detcrniining the dependences in a loop. hoivever. is a cornputationally ttard probleni. Two
-

referenccs to an nt-diiriensional array -4. .4(f i (T). /,(;)) and . - l (g[(y), g,,(j)) access the sariic - - - 4

a r r q elerncnt iff f i (T) = g i (Y) j,(i) = g, (j) for iterations i and j . For conciseness. we deriote -
tliis set of equaiities by ~ (7) = G (j) . The dependerice problem can then be stated as folloivs: Do

-
there exist iterations if and 7 in the iteration space such that F(?) = C'(y)? I n otlier words. we

need t.o know whether the following integer programming problern has integer solutions:

572 r
'Control dependence is important t o identify fiinctional Ievel parallelism. and to choosc between various candidates

for data distribution. among other things. Since. our discussion is limited to data flow analysis between loop iterations.
control dependence does not concern us niuch.

This problem is SP-cornpiete (;?O]. Sloreover. for restructuring purposes ive need niore inforniation

t han tlie niere esistence of a dependence. We often need to know al1 pairs of iterations t hat are de-

pendent and the precise relationships between tiiem. An esplicit representation of the dependences

between al1 pairs of iterations would be tedious, space consuming and hard to use. Luckily. the

structure of the dependences between al1 pairs of iterations of a nested loop is ver- regiilar because

ive are dealing tvith perfectly nested Ioops. If tliere is a dependence between iterations i and i + k.
then there will also be a dependence betiveeri iterations j and j + k. Therefore. aIl the dependences

c m be conciseIy represented by a small set of dependence distance vectcrs.

Definition 4 (Dependence Distance Vector) For n pair o / r l q ~ e n d e r i t iterntions T = (i l i n) T
- - - 4

and 7 = (j , j ,) T .çcich thnt i 6 j . the c t c tor j - i = (ji - il. j, - is cnlled ~ h t drpendence

d i s t n n c ~ ccctor.

A dcpendence vector. say (c. b) in a 2-dimensional loop. represcnts depcnticnces betwcen al1 pairs

of iterations (i l . i 2) d ; (i l + f i . i2 + 6) . For esarnple. in our running esaniplc. loop L. itcratioii (11. 12)

is involved in 6 dependences: [.-l(I l . 12). .4(11 - 1 . Ii)]. [.- \(Il . 1 2) . - 4 (I l . I2 - L)]. [. - l (I 1 . 12). -4(I 1 -

2. I2 + 1)]. [- - \ (I l + 1. 1 2) . - 4 (1 1 . 1 2)] . [. - \(Il . f 2 + 1). . - \(IL. 12)] and p (I l + 2 . I2 - 1). . - \(Il . 1 2)] . In total.

thcre are $0 dependences i n the iteration space as s l io~-n i n Figure 2.3. .-\II of thcsc dcpcndenccs

can bc rcpresented by 3 dependence distance vectors. namely (1.0). (O . 1) anci (2 . - 1) .

A depcndcnce distance vector is called constanl or unifomz if the elenients in the vector are

constants. For esani pie. (1.2) is a constant dependence% In contrast. (i. O) . is a l inenr d ~ p m d e r i c e .

The dependence distances i n the esamples of this chapter are generally uniform. so for conciscncss.

u.e refer to a iiniform dependence distance vector as sirnpfy a dependence.

.-1 vector of sym bols +. - and O corresponding to whet her the elements of the dcpendence vector

are positive. negative or zero is cailed a direction vector. The dependence direction vectors for our

running esaniple are (+. 0). (0. +) and (+. -).

A dependence (d l cl,) is positive if the first non-zero element dk is positive. and we Say that

the dependence is carried by the hth loop. The dependence i n the loop are represented by the

deper id~ncc mntr ix . il. an n x rn integer niatris. w h ~ r e n is t h e dimension of the nested Ioop and

61n order to improve readability. we will use row vcctors to represent dependence distance vectors. whenever
possible.

Dependence (1.0)

A Dependence (2,- 1)

Figii re 2.3: Dependences in iteration space.

- t* - ae +* -:a- se
A I

rn is the number of dependences. Tliat is. eacti column of D corresponds to a depetidencc Di. Tlie

1
U

matris for loop L is

Dcpendence (0.1)
, t. -+* +*--S. 3@
i A A A A A

, t* -+* a* s e +e

.-\ ciependence niatris is lesicographically positive. ivlien al1 the dependences in t tic mat ris are

t A A A A A

lesicographically positive.

Because t h e problcni of determining tlie esistence of a dependerice is SP-cornplete. one often

cniploys a niore efficient algorithm in practice that solves reîtricted cases or provide approsirnate

solutions. The GC'D test. for esample. fintls the esistence of an integer solution to the depcridence

probleni n-itli only a single subscript i n an iinbouiided iteration spacc [SI. Some algoritlinis fintl

rcal valticd solutions i n bou nded iteration spaccs wit li cleperidence direction information [3T. 571.

1-lotvcver. PugIi recently noted that intcger prograniming soIutions. with esponential worst ccwe

coniplesity Iiave much lo~ver average coniplesity [-1.51. tic niodified t tic Foirrier-.llot:kin variable

eliniination technique [-191 to produce esact solutions i n a reasonable amount of time for niany. but

riot all, problerns.

2.3 Mat liematics of Linear Loop Tkansforuiat ions

In t liis section. wc descri be the basic techniques of applying linear transformations to pcrfectly

riested affine loops, inciuding nicthods to derive the new dependences. references and loop bounds.

2.3.1 Basic Transformation Technique

.A linear transformation of an n-dimensionai perfectly nested affine loop is defined by an n x n rion-

singular integer matris C;, wtiich maps the iteration space of the original loop ont0 a ncn- iteration

space so as to define a new loop nest. -4s a result of this transformation. the original iteration
4

vector Ï is ctianged to a iiew iteration vector Ii = ([il.

aiid each dependence rector Di i n D is changed to a ncw rector DI:

The t ransforniatiori L' is legal i f f each of t Iie LI: is lesicographically positive. The posit ivity of the

t ransforrnetl dependerices is a necessary and sufficient condition for t hc legali ty of t lie t ransform.

.-is an esaniple. consider a linear transformation of loop L. Suppose transformation C ' is applied

to L, wtiere

The dependence triatris D for loop L.

is clianged to s new dependence niatris D':

D' = { (l . O) . (1.1) . (1. -1))

Sote that all of the transformed dependences are lesicographically positive. so l-' is a legal trans-

formation.

linear transformation maps each iteration i n the original iteration space ont0 a new point

in the new iteration space. Hence. a linear transformation only modifies the ordering of when

an iteration is esecuted relative to other iterations: it does not change what is computcd i n an

iteration. Tlius. with a linear transformation l-. both an iteration (i l i,lT of the original

iteration space. and the corresponding iteration [-(il. of t 11, neiv iteration space access

the sanie set of array eiernents. Therefore. a reference rnatris R in the original loop is modifie4

to be rnatris R' = R (- - ' . since RI = R~!'-'L*Ï = RL*- 'K . For esample. the arrav reference

2.3.2 Derivation of New Loop Bounds

The bounds of the original loop are represented by ineqiialities:

si? 6

ivtiicti is a set ineqrialities in terrns of the new iteration vector. This set dcscribes a corives poly-

ticdron. and the çoiight after loop bounds are the set of integral. o f in€ functions ttiat bound the
- -

polytiedrori.' I'tie ncw boiinds rnatris is S' = SI - - ' . The rien- Ioop bounds cari bc obtained cli-

rcctly froni t lie row of Sr. \vlien each row of S' contains a siriglc ilon-zero integer. if tliis is not

the case. but t he original loop bounds arc simple (i.e.. constants or simple functions of iterators).

ttien it is possible to analyticallj. derive symbolic espressions for the new loop bounds i n terrns of

the original loop bounds and the elements of the transformatioi~ rnatris [IO. 281. However. tliese

symbolic expressions tend to be comples wtien the loop lias more than tliree diniensions or has

loop liniits that are not constants.

The most general ivay of deriving the bounds from Sr is to apply a variabk elimination technique
-

'.-in intepl. affine function cran be represented by G - I = c. whcre tZ is an intcger vector. r i s t he iteration vcctor

and c is an integer.

such as Fourier-LIotzkin '17. -491. This variable elimination technique derires the bounds for the new

iterators inside out. t hat is I ï , to I ï l . It first rearranges the inequalities of S' such t tiat lin is alorie

on one side of inequalities. This rearrarlgement results in two sets of inequalities: in one set. I ï ,

is rnore tlian or eqiial to an espression i n iterators I Y 1 I< , - I Le. I\cn 2 n i l r . 1 . . . - . I<n >, nr/fii,l

(\vIiere ni-s are linear expressions i n f i r and ci's are non-zero constants). and in the otlier

set l<, is Iess than or equal io an expression i n iterators l ï l I i n - 1 . i.e. f i , 5 j l / b l I ï , 5

. 3 u / b , L (~rtiere 3 ; - s are Iinear espressions in K I and 15;'s are rion-zero constants). Tlic first

set ofineqiialities defines the lower bound for f i , . naniel? r n ~ r ([n ~ / r . ~] roI /q l) and the secorid

set defines ttie upper boiind for l i n . riamel? min([. j l /b l] [J , / b t L J) .

At t h i s point. I ï , can be eliniinated froni the two sets of inequalities by considering ttie 1 x u

pairs of inequalities from the two sets. .-in ineqiiality lin 2 a,/c; Ironi the first set and an incqirality

I<, 5 .3,/bi froni the secorid set çan be combined icto n ; / n , < li, 5 .j,/b,. n-herc 1 5 i 5 1 and

1 < J < i f . after wliicli lin c n n be dropped to obtain ni/r:, < J,/b, or siniply b,n, < c;.j,. Tliesc

neiv iincqtialities without I i , can then be used to derive t tir boiinds for [in-[as ae did for lin.'

The process is then applied to eliniinate fi ,-?. I c i . i n t hat order. Tlic bot1 nds for lïl \vil1 be

constants.

Iri order to illiistrate the derivation of loop boiinds iising the Fourier-1Iotzkin 1.ariable eliriiiria-
r 1

tioii teçhriiqiie. consider t lie transformation of loop L by t l i e t rarisforrriation mat r i s L- = : J -
The loop bounds for Ioop L are represeiited

The transforniatiori by I - modifies the inequalities to be:

v o t e t hat somc of the new inequalities may be retiundant.

LVe apply the variable elimination method in the following way. Froni the new set of ineqiialities.

it is dear tliat.

f i l - f i2 > O. IC2 3 0. -fi1 + ri2 2 -5 . - f i2 >, -5

which are rearranged to obtain inequalities:

ri2 5 fi1. tï2 2 O. 1ï2 2 [il - 5 . tï2 5 5

Froni ttiese inequalities we obtain the boiinds for I i - to be:

ti2 2 mc..xL.(fïl - 5.0) and 1C2 < rnin(l i l . 5)

[rom ivhicli ive obtain

L i 2 is t tien eliminated froni t hese inequalities to obtain four inequalities involvi~ig onIy K I :

Igrioring the first two rcdundant inequalities. we obtairi constant borinds for f i1:

lil 2 O and Iii 5 10

Figurc 2.4 dcpicts the t>oiiiiding lines for the transformecl iteration space for loop L. The trans-

fornieci loop L is shoivn in Figure 2.5.

.A unirnodular transformation rnatris ensures that the inverse of the transformation matris

is also integer and unirnodular. X unimodular transformation. t herefore. maps [rom t hc original

iteration space to the new iteration space one to one and onto. That is. cvery integer point i n the

original iteration space is mapped orito a unique integer point in the new itcration space and vice

versa. Thcrefore. both the original and the transformed loops have unit stride.

IVhen the transformation mat ris is non-u nirnodular, t hen t tic invcrse t ransforrnation mat ris is

not integer. In such a case. the transformed iteration space does not correspond to the original

Dependence (1.1 1

Figure 2.4: The transformed iteration space of loop L.

Figure 2.5: The transfornied loop L .

iteratiori spacc csactly. sincc sorne integcr points of the rien. iteration space map to non-iritcger

points in t lie original iteration space. Thercfore. it is nccessary to have nori-unit strides iri the

t rarisiornicd loop so t hat it csccutes only t liose iterations wtiicti correspond to itcrations present

i n ttic original loop. The strides for t hc traiisforrned loop can be derived from the t ransformatiuri

niatris itself by simple mat ris operations [-1'71.

2.4 Advantages of Liiiear Loop Transformations

The liriear loop transformation framework systeniatizes the task of a rcstructuring corn piler i n

i) rcpreseriting ncsted loops and their transformations. ii) applying loop transformations. iii) rea-

soning about t, he effects of the transformations. and it.) au tomatically deriving transformations t tiat

achievc desired cffects. In ttiis section, wc briefly tliscuss the first thrce aspects: the nest section

descri bes techniques to derive Iinear loop transformations.

Firstly. the linear loop transformation framework pro.iides a unified view of numerous trans-

formations that liad csistpd prior to the introduction of the liiiear loop transformation frarnework.

Figure 2.6: Esample transformation mat rices for two dimensional loops. incIuding (a) reversal of
outer loop. (b) reversal of inner loop. (c) reversal of both loops. (d) interchange. (e.f) skew bj- p iii

second and first dimensions. and (g) wavefront respectively.

Before the framework was introduced. a restructuring compiler typically searched for ari appropriate

scqucncc of loop transformations sucli as loop interchange. perniiitatiori. skeiv. reversal. wavefront.

and tiling."Vit fi t lie linear transformation framework. a single t ransforniation mat r i s can rep-

rescnt nian? of ttiese loop transformations. For csarnple. the transforniation rnatris for a givcn

pr rnu~at ion is just a permuted identity matris. --1 transforniation matris that reverses the kth

loop level is a n identity rnatris witli Ph r ~ w multiplieci bu - 1. Figirrc 2.6 sliows niatriccs for sortie

irn portan t t ransforniations of tivo dirriensional loops.

\ivit1i t lie Iinear t ransforrtiation franicwork. a single t raiisformation niatris can also represpnt

any conipound application of tliese transforniations. For instance. t lic conipou nt1 trarisformatiori of

two loop t ransforniations TI followed by T2 is siniply equal to t heir protiuct: 1' = T r T I . Prod iicirig a

transforniecl loop \vith a single niatris representing a transformation sequence is niore efficient than

producing t tic t ransfornied loop (as a sequence of individual transforniations. \Vith a single rnatris.

tlic csprcssions i n array refcrences and loop bounds tend to be simpler and t liiis more cfficient to

corn pute. sirtce the transforined loop structure is derived only once for t lie cntire trandorrnation

secl iiencc.

Secondly. ttie linear algebra franicwork cnablcd t h e design of generic techniques to derive thc

loop bou nds. references and dependences of the t ransfornied Loop irrespect ive of t lie actual trarisfor-

[nation being applied. As described in Section '2.5. these derkations generally involve on!:; simple

liriear algebra so they can casily be performed automatically by a compiler.

Firially. t lie linear loop t ransforniation frameivork makes i t easier to cliaracterize aggregate

effects of transformation sequences. so as to reason about the "goodness" of a sequence. This

':lppendix :l provides details on these and severai other loop transformations.

niakes it possible to design heuristic algorithms capable of automatically deriving trarisformations

given specific optimization objectivcj ['?6. 29. 36. 48. 54]. The performance aspects of a nested

loop - such as parallelisrn a t outer (inner) loop level. voiume of cornniunication. the average load.

and load balance - can be characterized in ternis of the elenients of the transformation matris.

dependences. and original loop bounds [Iû]. As an esarnple. consider the transformation of a nested

loop to niasimize inner loop parallelisni by transforming the loop so tliat the riew dependences are

independent of the inner loop levels. A loop lias inncr loop paralleIism whenever the first elenient

of eacii dependence vector is positive (non-zero) [IO. 3 11. Hcnce ive requirc a transformation C-

such that the first elernerit of al1 transformed dependence vectors are positive (non-zero). An-

transformation L- such t hat

where I-* is the vector corresponciirig to the first row of 1.. is a desired transforniation. It can be

shown that sucli a trarisformation rsists for al1 perfectly nestcd loops [IO. 311.

As a. second esaniple, consider tlie synchronization overliead iii a ncstcd loop witli orily iririer

loop parallelisrn. T h number of synchronizations is proportional to ttie number of iterations of the

outermost loop. For any candidate transformation C-. the size of the outer Ioop is charactcrized by

the riifference betweeri ttie niasirnum and the minimum possible values for itcrator r i1:

wliere (7 is tiir i-rctor corresponding to the first row of l - (sirice [il = C-1 . Ï) [Xi]. This es-

pression providcs an objective function tliat can bc useci to evaliiate the gooclncss of candidate

transformations.

.As a final esample. consider loop transformations to parallelize thc outermost loop Icvcl. .-i

loop ncst lias outcr loop parallelisrn if the first element of cach transformecl depcndencc vector is

0. .-i candidate transformation. C * . parallelizes the outermost level if

-
ivliere Crl is the vector corresponding to the first row of IV. That is. a transformation L: parallelizes

the oiiter loop if 17~ is orthogonal to every dependence vector. The goodness of a candidate trans-

formation is also determined by the nurnber of parallel iterations in tlic transformed loop. The

objective is. tfierefore. to select a transformation C' whicti parallelizes the outermost loop level and

m asi niizes:

2.5 Techniques to Derive Linear Loop Transformations

The derivation of a linear transformation that is optimal for a given optimization objective is.

unfortunately. hard i n general. The problem is XP-complete for unrestricted loops and even affine

ioops with non-constant dependence distances [l5]. However. approsimate solutions can be derived

efficiently by iisiiig the desired properties of the transformed loop to guide the searcti for a trans-

formation. For exarnple. transformations to parallelize ou ter loops of a perfect ly nested affine ioop

cari bc derived in polynomial tirne by using the dependence matris to guide the search j2S. 291.

Typically. suc11 algorithms apply a sequence of rnatris row operations to transform the original dc-

pcndence rtiatris into a neiv dependence matris that has only zcros in the first (or first few) row(s).

Eacli matris row operation that is applicd to tlie dependcnce matris is also siniultaneousl~ applieci

to a matris that was originally started out as an ideritity rnatris. Ttie scquence of operatioris on

the identity mat ris results in the transformations mat r i s . .An important property of siicfi niatris

manipulation based tecl~niqiies is ttiat the existence proofs tend to he constructive. That is. the

existence proofs entail algoritlinls ttiat derive the sought after transformation.

The following siibscctions describe how a desircd property of the transforrned loop st rricturc

can be iised to dcrive a linear loop transforniation in four different optimization contests.

2.5.1 Deriving Canonical Loops

.A riestecl loop is said to bc in canoriicnl forni when a niasimum number of its oirtcrrnost Ioop levels

are fiill!. prrniiitable [XI. .A loop nest in canonical Form lias the advantage that its outer loop levcls

can bc pcrmuted or skewd in any ivax to suit the target architecture. For esample. loop levels can

be perniuted to bring parallelism to the oirtermost level and the Ioop nest can be tiled to iniprovc

cache locality.

.-llgoritlirns to derive matrices that transform loop nests into their canonical forrns use tlic

dependerice matris to guide the search. because the structure of the dependence mat ris characterizes

ful l perrnutabiIit~.. For the loop levels i to j of a loop nest to be fiilly permutable. the elements

d, d, of eacii colunin (d l ci,)T of the dependence matris miist ail be positive [9]. The

algorithm bj- L*olf and Lam iricrementally derives a list of outer fiilly permutable loop levels [55] .

Starting with ar! empty list. the algorithm adds a loop level to the list by making tlie loop level

/or r = 0 . n for = -n . n
for j = 0 . n for [C2 = m a r (0 . - I i !) . r n t n (n . n - I C I)

.4(1. j) = - - \ (t - 1 . j - 1) .4(1<! + 1\2. fi2) = .4(Ii l + 1\1 - 1 . fi2 - 1)
end jor - m d for

end /or end for

Figure 2.7: Dependence in ternalization in two dimensional loop.

perniutable iising permute. reverse and/or skew t ransformatioos. The aut hors argiic t hat tlieir

algorit ti m requires rriinimal num ber of t hese transformations ~v tien the t tic loop dimension is less

tlian five [55].

--llgorithni to derive transformations for dependexe intcrncrlizntion. described nest. can be

adapted as an alternative approach to derive transforniations to obtain loops in canonical forni.

2.5.2 Dependence Internalization

Dependerice irrfcrnnlixtion transforms a. loop nest so that a masimuni number of dependerices are

independent of the outer loop levels [X. 281. The. are designed to extract coarse grain parallelisni

iri nested loops. The algorithnis to derive dependence interrialization transformations also ilse

tlic deperidcnce mat ris to guide the searcli: in fact. the transformation niat r i s is const ructed by

systematically nirinipulating the clependcncc rnatrix. The gerieral frame~vork for internalization and

algorit tims to find a good internalization in polynornial tirne are given hy liiiniar et al. [?S. 291.

=\s an csaniple. considcr the loop on the left hand sidc of Figure 2.7. Its (1. 1) dependericc cari

be iriternalizeci to be (O . 1) . so that t

t ransforniatiori niotfifics the original

O rie ii nirriodular n in t ris l ' (of sct.era1

.he lïl loop Ievel is parallel (i x . IiCu no clependcrices). Tliis

loop on the left to becomc tlie loop ori tlie riglit hanci sitlc.

) tliat acliicves ttie abovc intcrnalization of (1. 1) is:

The algorithni to derive n dependence internalization of an n-dimensional nested loop coiisists of

two steps [-SI. I n the first step. the dependence niatris is rc-arranged so that n - 1 selccted depen-

dences form the f i r s~ n - 1 c~l r in ins . '~ Tlie dependences are selected as follows. Eacli dependencc

((1 , d,,)' is treated a s an integer point (di.. . . .cl,,). and a convcx Iiull of tlie chosen integer

points and the origin is coristructed. Tlie dependenccs on a face of the conves-hull containing the

origin are selected as tlie first n - 1 columns. Tliis ensiires legality bccattsc a vcctor ortliogonal to

1°1n ordcr to simplif!+ the presentation hem. we assume that the numbcr of tlependences is greatcr than or cqud
to n - 1.

t hese dependences can be the first row of the transformation matris so that al1 the dependences

have a non-negative dot product with the first r ~ i i - . ~ ~ Thus. the first elernent of each depmdence

is eit her non-nenative or zero.12 r2S].

As an esainple of tlie first step of t tic algorithm. consider dependences (1, 1) . (1. l l T and

(1. l}T i r i a 2-dimensional loop. The conves-huil of integer points (0.0). (1. 1). (2. 1). and (1.2) is a

polygon. ivtiere (1.2)' and (2. l) T eacli lie on a line of the polygori that contains origin. Assuining

ive select (I . 2) * a s the first column of the dependence matris. a perpendicular to (1 . 21T. naniely

(2. - 1)'. ic-ould eventually become the first row of the transformation mat ris. Sote ttiat al1 the

dependences have a non-zero dot product with (1. - 1)'. On the ottier Iiand. selccting (1. I) ' ~ as

the Erst coliimn of the dependence rnatris woiild rnalic the transformation illegal. since (1 . - L) ~

would beconie the first row of the transformation matris. which h c s negative dot prociuct witti

dependence (1.2) '.

In tlie second step. t lie dependence niatris is augrriented ivith the n-dimensional identity niatris.

The algorithni systeniaticall~. applies rnatris row operations to the augmented niatris to :iiake the

elernents of as many rows of the dependence niatris as possible zeros. For instance. nehm al1

clerr~ents in the first row of the dependcnce niatris arc zero. al1 dependences arc internalized to

second lcvel. so t hat t lie outer loop is parallel.

The basic iciea i n the technique jiist described for deriving transformation for dependencc in-

terrialization cari also be cniployed to obtain canonical forms of nested loops. The dcrivatiori of the

t ransforrnation niatris that niakes a ioop full- permutable h c s tivo steps. First. matris row opera-

tions are i i s d to nialie al1 elernents of one rolv of thc dependerice riintris. say the last. positive.1"

This step involves dcpcndcnce intcrnalization followed by row operations to add niultiples of the

rou-s containing the first non-zero elernents of the dependences to the last roiv iintil it h a s onlx pos-

itive elcments. I n the second step. appropriate niultiples of the last row (which has only positive

elenieritsj are added to other rows that still have some negative elemcnts.

2.5.3 Access Normalization

tlccess nornialization [35] is a lincar loop transformation to modify the order i n wliich array el-

ements are accessed so as to iniprove cache and memory access localitv. Access nornializatiori

"Note that the first row of the trmsformation matrix is not dcrived by finding the vector orthogonal to a hull-facc.
The second stcp of the dgorithm automaticdly derives dl rows of the transformation rnatrix. once the dependence
rnatrix is appropriately re-arranged.

"The first elernents will al1 be zero when the rank of the dependence matrix is less than n.
13 This is possible since each dependence hcas a non-zero positive element.

for 1 =O.. \ -* - I
for J = ~ . t + b - 1

for k = UO,.Vz - 1
B (J - l . L) = B (j - 1 , L) + . - l (j + k . 1)

end for
end for

end for

for 11 = p . b - 1 . P
for t7 = (1. u + .VI + -Y2 - 2

for u = O..VI - I
B (u . U V) = B(tr. u:) + :I(rl. w)

t-nd for
end for

end for

Figure 23 : An esample access normalization.

transformations are derived using the array su bscript functions to guide the searcli. Cache locality

is improved. ivhen successive iterations access arra? elenients that are cither tlie samc or spatially

close (Le. in t lie same cache liiie or i n the sarne page). hlernory locality is improved. ivhen morc of

tlie data a processor must acccss is local so t hat fewer remote accesses arc necessary. In order to

improve niernory locality. a target loop lias to be transformed so that niore of the arraj- accesses in

the iterations assigned to a processor are to those portions of the arrays mapped ont0 the processor.

As an esample of iniproving memory locaiity. consider the loop on the left liand side of Fig-

ure 2.8. Suppose that the arrays .-1 and B are distributed ont0 the proccssors by rows. and tIiat

each iteration of the outer loop is esecuted i n parallel. -4 processor executing an outer loop iteration

nceds to access a ncn. row of B in each j iteration and a ncw rox of -4 in every itcration. This

irivariably results in an excessive n u m ber of non-local acccsscs. The n u ni bcr of reniotc accesses cari

bc rcduced substantially by transforniing the Loop so that each outer loop iteration accesses niostly

the local rows of t tic arrays. In order to acliieve t his. the t ransforrned loop siiould be such that the

r o n array subscripts of the references are simple functions of tlie parallel loop itcrator.

Sucli a transformation rnatris can be derived b! first coristructing a rnatris. called the access

niatris. ivliere the rolvs correspond to the su bscript fiirictions of the array references. For instance.

espressions j - i. j + k . and i i n the loop on tlie left hancl side of Figure 2.8 are represented by the

access mat ris-vec tor pair:

The representation is similar to the reference matris in that the rows of the access matris represent

the s u bscript functions in array references. Hoivever, a reference mat r i s represeiits al1 s u hscript

functions of t h e same array reference. where as an access matris lias selected subscript functions

from several array references. potentially to different arrays.

Figure 2.9: Choice of iterator to partition for good load ba!ance.

The transforniation niatris is thcn forrned by selecting the first n rows of the acccss matris

(ir-here n is the Ioop dimension). The access niatris is suitably padded wlien it lias f e w r tliari

rr rows. \ I l e n the first n roivs do not form a legal transformation. thcn a lcgal transformatioii

matris is formed b~ selecting h . e r tlian n r o m from the access niatris and siiitably padding tlic

transformation matrix. For the esample of Figure 2.S. the access matris liappens to be a Icgal

transformation niatris.

The access nornialized loop is shown on the riglit liand sidc of Figure %.S. .As an effect of

access normalization. j - i becarne u and and J + k becarne r. I n the transformed loop. tlicrefore.

al1 accesses to B are local. althougti .4 still has sornc non-local acccsses. Clearly. tlie nuri~ber of

non-local accesses is sensitive to tlie ordcr of rows in the access niatris. A coirimon hciiristic to

rcciuce tlic aniount of commtinication rcqriired is to place in ttie first few rows of ttie access niatris

tlic sulxxript functions i n the array diniension(s) dong i*hich

3.5.4 Balancing Processor Load

One of th2 major overheads associated with mapping parallel

the array is distri biited [3.5].

iterations ont0 a niultiproccssor is

load inibalance. Load irnbalance is grcatly influenced by the choice of the iterator tliat is parallel.

For esaniplc. consider mapping the iterations of the 3-dimensional iteration spacc of Figure 2.9

onto a multiprocessor. Statical!~ partitioning the loop dong the i (or ttie k) loop dimension

results in load inibalance. sincc an unequal number of iterations are assigned to cacli processor.

Partitioning along the dimension j . on the other liand. acliieves good load balance. To obtaiii a

good loacl balance. it is necessary t hat an iterator 1 bc selected such that i) the bounds of the otlier

iterators are not a function 1 and ii) the bounds of 1 are not a function of other iterators. It is

possible both to dcterrnine whether a loop nest can be transformed to have these two properties

or not. and if so t o derive an appropr ia te loop transformation [-l'LI. It shou!d be noted. Iiowever.

t ha t load balancing could offset o ther optimization objectives s u c h as masirnizing parallelisni o r

minimizing communication. Heuristics esist tfiat are capable of identif';ing t ransformations t ha t

balance the objectives of niasimizing parallelism. niinimizing communication and balancing the

luad for perfectly nested loops with cons tan t loop limits r2G].

Computation Decomposition and Alignment

Framework

Many srnall make a great.
- .John Heyrrood: Prorerbes. part r . chnp. rc.

3.1 Overview of CDA Transformation Framework

Ttie mairi idea beiiind CD.A is to linearly transform loops a t a granularity that is finer than what

the linear loop transformation frameivork allows. A linear Ioop transformatiori rcorganizes compu-

tations in a nesteci loop a t the grariularity of iterations: each iteration in the original iteration space

is mapped onto a iiew point in the new itcrntion space. Hence. a Iinear transformatiori does not

affect wtiat is cornputed iri an iteratiori. but only tvhen it is esecutcd relative to other iterations.

I n con t ra t . CD:{ can rnap just a portion of an iteration to a netv point in the ne\v iteration space.

Figurc 3. i siioivs ho~v rnapping at sucli fine graniiiarity changes the coniposition of t tic itcrations

t tiernsclves.

T lie basic t ransforniat ion technique in CD.4 i) partitions t lie itcration space into possi bly sevcral

i~iteger spaces and ii) linearly transtornis cacli of tliesc intcger spaces by a differcnt trarisforrriation

triatris. and iii) fuses the transformed integer spaces to obtain a riew iteration space. The first two

steps are called Cornputalion D~cornpositiorr and Cloniputation .-tlignnwnl, respectivcly.

.As an esample. consider the original loop on the left tiand çide of Figurc 3.2. Tlie iteration

space of tliis loop can bc partitioned into two integer spaces. The first corresponds to the array

accesses due t o refcrence B(i . j) . and the second corresponds to the assignment to .-l(i. j) iising tlic

result from the first space and the s u bcspression .4(i. j) + B (i + 1. j) . Tlie first space is applied

a simple linear transformation so t tiat the B(i . j) reference bccomcs a B (i + 1. j) reference.' Ttic

second space is applied the identity transformation (and thus remains unchanged). The transformed

integer spaces are then fused toget her to form a new itcration space. T h e composition of tliese new

' ~ h a t is. B (i . j) is acccssed in iteration (i - 1. jj instead of in iteration (i . j).

30

new iterations

(.

Original iteration space New iteration space

Figure 3.1: Ilapping of portions of iterations in CD:l. For rlarity, ttiis figure show how t h e computatioris
of a single original iteration are mapped onto new iterations.

/or t = 1 . n
f o r) = 1 . n

.-l(i. J) = B (i . J) + . - I (I . J) +
B(1 + 1 .)) *

t-rtd for
end for

for r = O . n
for J = l . n

if (1 < n) then t (i + 1 .)) = B (i + 1 . 1)
t f (I > O) t h ~ r z . - \ (t .]) = l (1 . J) +

c l ([. J) + B (r + 1 . j)

end for
end for

Figure 3.2: --ln esample CD.4 transformation.

iterations is differerit frorri the original iterations ivit l i regard to the array clenients accesscd and the

coniputations perfornicd. IIence ttiis transformatiori could not have beeri achic\.d wittiiri the lincar

loop t ransforniation franle~vork. This particular CD.-\ t ransforniat ion in1 proves caclie hit rates ici

the loop for certain array sizes and targct caclie gcornetries (i.e.. cache size. associativity and caclie

line size).

Bccause C'D.4 transforms loops at a relatively finc granularity and rearranges tlie order in which

i~istriictioris arc esecuted. it is. in some ii.ays. similar to iristruction schecIuling tecliniques that arc

conimon i n today's optiniizing compilers. Software pipclining [3O] is siich an instriiction sctieduling

technique that nioves instructioris froni one iteration to an earIier one so as to tiide Intericies and

t~ improvc instruction Ievel parallelism. Howevcr. CD.4 differs from t hese instruction sclieduling

techniques in a numbcr of very fundamental ways. First, CD.\ typicalIy transfornis code at a

coarser granularit! than the instruction scheduling transformations of single instructions. bccause

C'D.4 is a source level transformation. Second. CDJL can map cornputations ont0 an? point in the

new itcration space. ivliereas instriiction scheduling techniques typically niove instructions witliin

a basic block or to the previous esecution(s) of the innerrnost loop. Tliird. the forma1 franieworks

underlying CDA and instruction scheduling techniques are fundanientall~ different. Finally. CD.&\.

and linear loop transformation techniques in general. are used to target higher leïel optimization

objectives than instruction leveI parallelism.

Tlie granularitg at wliicli conipiitations are mapped in CD.\ can var' irorn siibespressions. to

assignrnent staternents. to conditionals. to loop statements. and to entirc iterations. \Vhen ttie

granularity is an iterztion. then the CD.-\ transformation is equivalent to a linear loop t rarisfor-

niation. so CD.-\ subsumes Iinear loop transformations. However. by being able to also transform

loops at a finer granularity. CD.4 provides additional opportunities for optiniization.

The CDA frarnework retains the elegance and advantages of linear transforniations n- hile en-

abling new code optimizations. However. relatively fine-grained restructuring in tlie C'DA franie-

ivork iniplics tliat deriving CD.As is niore comples than deriving linear transforniations. There-

fore. lieuristic algoritfinis are key to efficient derivation of CD.\ transforniations. Also. a C'Dr\

t ransformed ioop typisally has niore overheads t han a linearly transformed loop. so techniques to

niinimize t lie ovcr tiead bccome necessary.

In tliis chapter. ive describe the CD.-\ transformation tedinique in detail. Tlie following ctiaptcr

describes techniques to minimize overheads i n CD.\ transformed loops. Latcr chapters present

licuristic algorithms to dcrive C'D.4 transforniations in specific optimization coritests.

3.2 Representatioii of the Loop Structure

Tllc CDI\ franicwork can transforrn nesteci loops of tlie type ahoivn in Figure 3.3. Each statcnient

L , can bc eitlicr an assignment statenient. a conditional statenient. or a perfectly nested loop. As

ti-ith the perfcctly riestcd loops of Ctiapter 2. the loop bounds are espressed by 1, and i l; . wliich

are integral. naine fiinctions of the enclosing itcrators.' The loops are normalized so tliat tlir step

size is one. The a r r v s i n the loop body are indesed by integral, afFine functions of the ericlosing

itcrators.

N'lien the L , are Ioop statements. then WC assume ttiat they are perfcctly nestecl, and t hat the

dimension of al1 L , is ttie sanie. namely (n - k) for some n 2 k. This allows for transformation of

integer spaces OF the same dimen~ion.~ This program mode1 is quite general. \Vlien tliere is a single

sub-nest L i , thcn the loop is an n-dimensional perfect nest. If n = k . then Li are aH non-loop

2 . ~ n integai . affine function can be represented by t L f . Ï = C. where ti? is ari integer vector. ris the iteration vector
cuid c is an integer.

3- The mode1 of nested loops c m be extended to the c'ise where L, have different dimensions by adding durnmy
loop statements which itcrate once.

-. -
{or l k = l k (1 1 I k - I) . u k (I I I k - ,)

L I : ...
L 2 : ...

end for
...

cnd Jor
e.nd for

Figure i3.3: The program niodel

statements. so that ive have a kk-imensional perfect nest. If P = 0. tlien L , and L, are statements

(loop or otherwise) with no conimon nesting. If k # O and n > k. we have an iniperfectly nested

loop. nhere perfectly nested sub-nestç L, are enclosed by a k-dimensional ptrfect nest.

In grncral. tlie iteration vector I; for loop L , is (1 , Ik . IL,,. 1:). wliere IL,,. I:, are tlic

iterators inside L , . Ttic iteration vector specifies an integer point representing an iteration in the

iteration space rinder consideration. Tlie bounds of I l I k . I t+, IA characterize the iteration

space ivliere eaçh integer point corresponds to an esecution of L,'s body. \Vhen the contest of the -
loop iinder consideration is clear. the iteration vector is denoted simply by 1 = (I l I n) and the

corr~sponditig iteration spacc b ~ . 1. .-Uso. when the use of Iioniogeneous coorclinate systeni is clear.

Ï rlenotes (1 , In. 1). As i n the linear loop t ransforniation franieworli. ati array reference can be

represented by ari r n x (r z + 1) reference matris and the iteration vector.

I n tliis chapter. WC consitler on[' perfectly nested loops. This allows 11s to focus csclrisivel~.

on optiniization opportiiiiities i n transforniirig staternents and subespressions at tlie same nesting

levcl. Section 1.4 tlescri bes specific application of CD.-\ to im perfect loop ncsts.

3.3 Coniputation Decompositioii

C'onipiitation Decomposition is the first step in a CD:\ transformation. The main objective of Coni-

pu tation Decomposition is tc partition the iteration space into possibly several integer spaces. eacli

rcpresenting spacc of coniputations of a granularity that can be smaller than an entire iteration.

Since it is natural to do so. ive first describe Computation Decomposition as a transformation of

t he loop body. \Ve will follow t his description wit h a formalization of Conipu tatiori Dccomposition

<as a partitioning of the iteration space.

The CD.& framework t ransforrns nested loops a t the test ual granularity of loop fmgnzents. where

a loop fragment is a portion of the loop body. such as a s u bespression. a conditional. an assig~iment

or loop staternent. or the entire Ioop body. The objective of Computation Decomposition is to

divide or decornpose the loop body into several chosen loop fragments. so ttiat each statement of

the riew loop body corresporids to a Ioop Fragment. First. it divides the loop body into its iridividual

statenients and t hen rnay additionally decornpose individual staternents into new statenlents of finer

granularity t hat toget tier have the same semantics <as t lie original siatement that w a s deconiposed.

L\'e fi rst focus on ttie decom position of assignnient statenients. An ac-sign men t staternent is

decomposed by rewriting it as a sequence of srnaller statements that accumulate the intermediate

results and produce the sanie final result. Corisider an assignnient statement. SI. i n a loop body

ivith a t l e s t one binary operator op:

n-tiere lrl denotes the left tiaricl side (I h s) referencc. RJm1 arid Rj.? arc ttie sets of refcrcnccs in

su bespressions fj-i (R,.l) and j,-? (respectivel~ The above statcment can bc deconiposed into

the following two statenients to produce t lie same restrIt :

ivticrc t , is a tcniporary variable introduced to accuniulate the intcrniediate rcstilt.

Flic choicc of sribcspressions ttiat are to be elevated to the statits uf statcnierits is a kcy ciecision

i n CD:! optiniizatiori. .As ive n-il1 sce in Iater chapters. the specific optimization ot~jective being

piirsueci infiuences tliis decision. \Vc can repeatedly decorn pose a statenient into possibly man'.

statcii~ents. n'itli ttic result of cach new statement held i n a different tcmporary variable. Ttic

teniporar~. variables are typically organizcd in a r r q s of the dimension and size of the iteration space.

Tliis gives Computation Alignment. which follo~vs Coniptitation Decomposition. more opportririities

for optimizatiori than just using scalar temporary variables. In particular. it ensurcs tIiat there are

no output dependerices on the temporaries to constrain the nurnber of candidate Computation

.-l\lignrnents. (Lt'tiile the introduction of the teniporarics adds overhead. ttiis o~.erhead can be

s u bstantial1y reduced by the optirnizations discussed in Chapter 4.)

Optiniizing conipilers implicitly decornpose a conditional statement i f (condition) then body

irito t\vo statcnients t = condition and i f (t) then body. This decomposition a l lo~-s for scpa-

ration of computations for t h 2 condition and the body. which can be used to improve instruction

for i = 1. n
for j = 1. n

end Tor
end for

(a) The original ioop and the program fragments

for i = 1. n
for j = 1, n

SZ : B(i 4-1) = Aiij-1 i + Bti j)
end for

end for

(b) Loop rfier Computation Decomposition

Figure 3.4: Running esarnple and new loop body after Corn pu tation Deconi posit ion.

scheduling by knowing the branching ahead of tirne. However. in this tlicsis. we focus orily on the

advantages of decomposing the assignment staternents i n the body of the conditional staternents.

A siibncst of the loop body is deconiposed by decomposing the body of the subnest."

As an csaniple of Coniputation Decomposition. considcr the top tialf of Figure 3.4. which shows

a 2-ciiniensional loop. CVc \vil1 use this Ioop as a running esarnple to illustrate the CD.-\ trariçfor-

nintion technique. The bottoni half of the figure shows t lie runriing esam pic aftcr Coni pi1 tation

Dcconi position. I n t Iiis case. Cornpiitation Decomposition first dccorriposcs the loop body into

stateniertts .Yl and 5'-. Statement Si is furtticr split and replacecl by tnro staternents. Si.l and

SlP2. Ttie result of Si.l is çtored in the temporary t (i . j) , ivtiich is then siibsequently usecl bu S 1 . ~

:\ltlioiigh not a rcqiiirement. we have chosen to have the reference rnatris of the teniporary array

be the same as tliat of the Ihs of the original statement SI. Xote that the bounds of t h e loop d o

not change when it is decomposed.

\Ve can now forrnalize Computation Decomposition as a partitioning of the iteration space into

several integer spaces. A compulation of a loop fragment. s, in an iteration of thc loop is defincd

to be the esecution of s i n the iteration. The computation o f s i n iteration (i l in) E Z, of an

n-diniensional loop is denoted by c (i l , in: s) . For esample. the computation of L in iteration

"Ve do not decompose the loop staternent of the subnest itself. say for i=l. u. into multiple loop staternents.
say for i-11, uî and for i=12, US. since the loops typically do not have opportunitics for aligning one portion of
the iteration space to another portion.

(i l i k) of the loop of Figure 3.3 is denoted by c (i l ir,: L I) . 'Vhen s is the entire loop body.

t hen c (i l in: s) denotes a complete iteration. .Uso. for compietcness c (o . .c) denotes the esecution

of S. where s does not have any enclosing loops.

Similar to an iteration space. ive ran rioiv define a n integer spacc of computations for a given

loop fragment. called a computntion space.

Definition 5 (Computation space) The computation space of loop fmgrnent .s in the loop bodg

of an n-dimension«l loop. denoted bg C'S(Z,.s). is an integer space repms~nt ing thc .set of (111

conzptrtntion.~ of s iii iterntiori spnrre 1,

C'onlpiitation spaces are conves polsopes similar to iteration spaces. The coniputation space for

L of Figure 3.3 is CS(&-. L I) , where & is the k-dimensional iteration space. \Vhen L itself is an

(r i - k)-dinieilsional nested loop. and s is a statcment in its loop body then c (i l il;. i; , ,, in: s)

is a corri pii tation and C'S(1. -5) is the corresponding computation spacc, which is n-diniensional.

\\'lien t lie çoritest is clear. t tic coniputation space of s refers to the entire set of con) putations due to

al1 tlie cnclosing itcrators. so that it can be denoted siniply by C'S(s). The objective of C'oniputation

Deconiposition can rion- be defined as a partitioning of the iteration spacc into several conipiitation

spaces.

Definition 6 (Computation Decomposition) .-t computation dccompo.sition of an n-dimensioncd

loop u.ith loop body S i.s thc crerition o l m computntion spaces C'S(Si).CIS(S,). vherc for crery

itcration (i l i,,) E Zn the computation c (i l in. 5') and thê conipirtations

c(il,. . . . in; Si). c (i l in: S,,)

\Vticn rn = 1 i n the above definition. then Sm = S, so the coniputation space is the same as

tlie iteration space. Tlie bounds of each of the cornputation spaces are the sanie as those for t h e

iteration space before a.pplying Cornputation Alignnient.

cab Oripinai iicntion spacc i b) hmpos ing IS inio t c i Decornplring CSSI) inio
IS wilh loop body S CSSI) and CSS2) CS4SI.I and Ca 1.2)

Figure 3.5: Corn pu tation spaces for the running esample.

Figiire 3.5 sliorvs the decomposition of tlie running esarnple i n ternis of the computation spaces.

The iteration spacc is first decomposed into tivo computatiori spaces. one for cach statenient. <as

sliorvn in Figure J..ib: thar is:"

i n a second stcp. t l!c coniputation space of Si is dcconiposed into two fincr coniputation spaces. as

sliown i n Figure 3..5c. JO t hat:

.-\ltlioiigli C'ornputation Decomposition is a siriiplc transformation. it is cffcctire i i i rsposing

opportunities for fine grain restriictiiring of the loop.

3.4 Coniputatioii Aligoment

C'ornputation Alignmcnt is the second step in a CDA transformation. Compiitation -4lignrnent

applies a sepnrate linear transforniation to each of

bounds. dependcnces and array references. and ttic

body may be diffcrent from ttie loop fragments ttiat

tic computation spaces. It modifies the loop

loop fragments that constitute the new ioop

constitute tlie original Ioop body.

Definition 7 (Computation Alignment) .-1 Cornputntion .-lfignnient of an iz - d i m c n s i o n a i n r s t d

hop irith staienzentn SI.. . .. Sm i n thc hop body is the application o f i i n e n r t rnns jormat ions T l Tm

'Herc, wc rearl z azi "equivdent to".

.-\s in the linear loop transformation frarnei*ork. the transforniation niatrices are integer and non-

singular.

Constitution of the new iterations: Intuitively. Computation .Ugnmerit resuIts in a relative

rnovement of the individual cornputations across iterations. As a result. a new iteration rnay corisist

of computations t hat originally belonged to different iterations. ?Vit h (i i in: S;) denoting t hc

computation of statenient S, i n iteration (i l in). a n iteration (il.. . . . in) i n the original iteration

space consisted of cornputations:

(i l i n) E { (i l in: Si). (i l . . . - . in : Sm)}

The corrcspondirig itcration in tlic new iteration space corisists of coniputations:

- 1 1 (il.. . .. i n) G { (i l i , , : S i) (i;". ;::Sm)}

iv tiere

New array references: The nen references wit hiii a given statement are dcrivrtd as in the lincar

loop t ransforniatiori framework: if compii tation space C'S(S) is t rarisforrned by t ransforriiation T.

and r is a refcrcnce in statcment S \vith rcfcrcncc riiatris R. tlicn r lias a neiv rcferencc matris.

R-T- ' , after t tic transformation. The array accesses in the transforrncd loop ma? be fundanientaI1~-

differerit from the accesses in the original loop. since al1 referenccs are not modified iisirig the sanie

t ransforrnation matris.

Consider the Corn putation Alignment of the running csample. Ttic t tiree corn putation spaces

in ttic decomposed h o p can be computationalIy aligned by applying transformations

(a) Decorn osin lS into Computation
S p m a (cQ) - &SD. CS(SI.~)
and CS(1.2)

(b) Ali nmemTransfomiation
of the 8%

Figure 3.6: Illustration of a simple Computation Alignment of the compiitation spaces.

to corn putation spaces CS(Sr-i). C q S (S i -2) and C'S(S2). respectiveIy. Tliesc t ransforrnations are

intended to align most referenccs to .-l(i. J) . The coniputation spaces C'S(Si.i) and C'S(S2) move

relative to C'S(Si..r). since TI .L is the identity matris. C'S(S1.l} moves one stridc i n direction i so

t hat the (i - L. *) references i n Si+1 change to (i. *) references. This is sfiown i n Figure .!.S. Cq5'(S2)

movcs one stride i n direction j so ttiat the B(i . j - 1) reference changes to B (i . j). Figure 3.(j(b)

shows the transfornied corn putation spaces and highlights t hree corn pu tations t tiat are now csecii tcd

in one iteration.

New dependence relations: Thc CD.4 changes t lie depeiidence relations in the Ioop. \l'tien a

dependcrice esists bctween two rcferences \vit h in a statement of t lie clecom posed ioop body. t licri

the Leiv dependencc can bc derived as in the linear Ioop transformation frarrien-ork. bccausc bot li

the read and write references in the statement arc niodified tising the samc transformation rnatris.

The riependence d bctween a write rcference tr8 and a read refcrencc r of statcnietit S is niodified

to be Td assiiniing the computation space CS(S) is transformed with matris T.

T!ie rlpri\.ation of the new dependcnces between staternents. hoivever. Ilas to take into account

the tact that the coniputation spaces may have been applied different lincar transformations. Con-

sidcr staternents S,, and Sr i n the original code. where Sr is Row dependcnt on SI.. Let tr be

thc write rcference in 5',, and r be the corresponding read refercnce. The flow dependence can be

represented as:

rvliicii denotes that an a r r q element read in iteration Ï due to the reference i. to t lie arr- \vas

rvritten in iteration d, . ,Ïdue reference rc to the array. If Tl, is applied to CS(S,,.) and T, is applied

to CS(&). tlien the dependence rehtion is then transformed to:

-
write(u7. TIL,dur 1) + read(r . T,.Ï)

\C'ben the dependences continue to be uniform. then the following dependence will also esist. sincc

the dependence relation is independent of particular values of I:

The dependence can be re~vritten as:

I n general. the CD-4 transformation is Iegal i f f al1 new dependencc relations remairi positive.

This can be casily 1.erificd if the new dependences are uniforni. sucli as ~vlicn the rriatriccs cl,,.,. Tl,.
r 7

and T,. arc of the forrn 1 ' 1 . where I is the identity matris. In t his case. IL.^ can \-erifv t liat

L o l ' 1
the rvrite occiirs earlicr tlian the read by ensuring t liat the I.zst colunin in d:,., is Iesicograptiically

negative. i f the dependcnces are non-affine. such as n-lien the matrices O,,,. T,,, and TT arc of the
r 7

rorrn 1 :* 1. ivlicre l - is an?. intqyr matris. then more sophisticatmi techniques arc neccssary.

siich CU tliose tliat rea'on witli symbolic affine coiistraints il;. 461.

I n our rurining esamplc. the Computation Alignnient ctianges the depcridenc-es frorii:

flou- : { (l . l).(O. 1). (1. -1) . (l .O)}.anti : { (O . 1) . (0 .2)))

to:

f lotr : { (O . 1). (1. O) } , ant i : {(O. l) } . o u t p u t : { (l . O) } }

Tticre are cases. when after a CD:! transformation the only tiolated dependences arc loop

independent ffow dependences bctween staternents. In this case. it is sometimes possible to make

al1 dependences legal by testually interclianging some of the statements i n the loop. Suppose, a

statement Sr is ffow dependent on statement S,., and the new dependence is loop independent.

The transformation applied is ilkgal if staternent Sr appears before staternerit S , , in the test of the

nerv loop body. Hoive\vr. the applied transformation can be made legal by testiially interchanging

t lie statenients so tliat Sr is after Su. in the test of the iiew loop body."n our running esampie.

'Tcxtrid interchange c,uinot make a transformation legal when statements Su, and S, participate in a a cycle of
loop indcpendent ftow dependences.

it is riecessary to change ttie order of the staternents in the loop so that is esecuted after

and S2 to niaintain legality. Before the transformation. Si.l had a loop carried flow dependence

from botli Si.? and S2. These dependences become loop independent after the alignmcnt. thereby

necessitating the recrdering.

3.5 Generating New Loop Bounds

In this sectiori. ive cfiscuss a technique to generatc the bounds of a. C'DA transfornied loop. The

tccliniqtre dcscribed here is a natural estension of the bound generation methods used in the

linear loop transformation frarnework. The bounds of a linearly transfornied loop are typically

ricrived using eit lier analytical techniques or the Fourier-.\Iotzkin variable elimination techriiqiie 1-19].

CU described in Section 2.3.2. These techniques can also be used to derive the bounds of the

trarisfornieci coniputation spaces. Hoivever. the derivation of the new loop bori nds of the CD:\

transformcd loop is niore involved. since al1 transfornied computation spaces togct her dcfiric the

neiv iteration space.

The algorithm n-e describe here projects the transfornied coniputation spaces ont0 an n-dinien-

sional grid. rvhicti beconies t lie new iteration space. .Algorit hm CD=\-boiinds. out lined in Figure 3.7.

directlj. adapts the Fourier-.\[otzkin eliniination technique [:I. - I f . -191 to drrivc ttie bountls of a CD=\

transformcd loop. Step 1 cl~rives the new bourids for eacti of t tic coiriputation spaces by variable

cliniination. \\a tisc .i(S,) to denote the original bound matris for coniputation spacc C'S(S,),).

1 < j < n1. I f statcmcnt 5, is aligned by T,. theii The nciv bound niatris. .3'(S,). caii be coniputcd

from the original bound niatris as:

.3'(S1) = .3(SJ)T,- 1

Tlic Ioop boiintls of the transformed coniputation space are obtairied froni the nelv bourid niatris

tiy applying the Fourier-llotzkin variable elimination tectiniquc as desrribed in Section 2.3.2 for

linearly t ransfornied loops.

Stcp 2 of CD:\-boiinds derives bounds for the new iteration space so that they subsunie the

boiiiids for ail of the computation spaces. The new iteration space ttius incliides a11 the projected

computation spaces. Tliis is achieved bu computing the lower bounds of the transformed iteration

space as the minimum of lower bounds over al1 computations spaces. Similarly. the upper bounds

are obtained by taking the masimum of upper bounds over al1 computation spaces. Tliis step is

similar to the derivation of the union of a set of da1.a access descriptors [Ï].

Algorit hm 1 : CD.4 -bounds():
/* C'ornpufes the bouncis for CD.4 transformed loop "/
input: Original loop bounds Li and I*, . 1 5 i 5 n and C'omprrfation .-llignmcnts. T l T,,
output: LI; and L-'; the neu. l o u ~ r nntl upper b0unri.s for itrrcrtors 1 5 i 5 n

beg in
1 .//Fint1 neic boirnds for each comynt«lion space

for j = 1. nl

3 (S J) i- SJ boilnd mntrix
T, t Transfomation rnalrix for C 'S(SJ)
.3'(SJ) +- .~(s,)T;'
for i = n. 1

cl irr t in~~t~(3 ' (.S~) . I l)
// boilnds jor 1, dile to tmnsform~rl S,
L': c nuu(lou.er 6ounds for I l)
I;" c rninlupper bounds for I;)

end for
end for

2. /,/ i k r i r c .sirbsirnzing bounds for the nctr i l~rc~f ion spacc
for i = 1. 12

L: + niin(L:'. 1 5 j 5 m)
c max((':'. 1 < j < nt)

erid for
end

Figure 3.7: Algoritlini CD:\-botinds to derive new loop boirnds.

As a n illtistration of the algorittmi. consider the boiinds of ttie running csaniple after the CD:\

transforniation. Sir?ce the transformation matrices are simple offsets. it is easy to sec tliat the new

borinds or thc coinputation spaces are:

The siibsuniption provides the following bounds for the net\: itcration space:

for I = 0 . n
for j = O . n

S, : (1 > O. j > O) A (1 . j) = t (l . 1) + B(1. j + 2) + - ~ (Z . J - 1)
5 : (l > O . j < n) B (I . J) = - - l f r , j j + B (~ . j + l)
sI l : (t < n .) > O) t (t + i . j) = . 4 (t . j) + . - l (l . j - I) + B (t - j)

end for
end for

Figure 3.8: CD.A transformed runriing esample loop.

Algoritlim CD.-1-bounds of Figure 3.7 is simple and retains the elegance of the bounds genera-

tion techniques useri \vit h i n the linear loop t rarisformation franieiwrk. Tlie ncw loop bounds are

conservative in tliat the algorithm derives a conves polytope that subsiimcs the union of' projected

coniputation spaces. even tliough tlie tinion itself niay not be conves. This does. lion-evcr. have

txm problems. First. the itcrations of tlie CD.4 transformcd loop are n o t uniforni in ttiat not al1

iteratioris contain al1 of tlie coniputations. For instance. iteration (O. 1) of the trarisfoririccf riirining

csampIe only eseciites statenicnt Si.,. but not SIe2 and S2. Second. the transformed loop niay have

rieiv. previously non-esisting iterations [vit h no corn pu tations to esccu te. For instance, iteration

(0. O) of tlie CD:\ transfornicd running esample does not corresporid to any iteration of the original

loop. and its eseciition is unnecessary. For these rcasons. a niechanisni is needed that cnablcs

the coniputations i n the trarisformed loop to bc esecutcd tliat stiotild be csccuted, biit disables

ttiose that slioiild not. L\-c use for tliis prirpose conditiorial statenicnts cnlted gunrds i n tlic Ioop

body ttiat allow t tic esecution of appropriate cornpiitations and prevent tlic eseciition of tlie otticr

coniputations.

Definition 8 (G u a r d) ,-I gtrcrrd g (S) for n strrtenlcnl 57 is a ~ o n d i t i o n d statemcnt irhosc condition

Tlie giiard for a statenient is jiist a conjunction of conditions on the iterators. Figure 3.S sliows

the guarcis inserted i n tlie toop of t lie run~iing esample. The gtrard for prevents its eseciition in

iteration (O. O) . Similarly. thc guard for S2 prevents its execution in iterations (O . *) and (*. n) . and

the guard for soi prevents its esecution i n iterations f n. *) aricl (*. 0). where * dcnotes al1 integers

i sucli that O < i 5 n ,

Tlie derivation of the loop bounds for the transformed loop of tlie running esample was relatively

siniple bccatise the transformation niatrices were siniple offsets. In order t o illustrate the derivation

of loop boiinds wit h general iriteger transformation matrices. consider the loop of Figure 3.9. The

for r = O . n
for j = 0 . n

SI : . 4 (t . ~) = . - l (1 - 1 . 1 - 1)
S2 : B (i . 1) = .4(r + 1 . j)

end for
end for

Figure 3.9: A n esaniple loop used to illustrate overhead of empty iterations.

bounds of bot li C'S(SI) and CS(&) in the crigitlal loop are:

wliich c m be represented by bound matrices .3(S1) and j(S2):

Suppose C'S(Ji) is applied t lie identity transformation and C'S(S2) is applied t ransforniation Q:

I
-

1 - 1 O

T C ' = O 1 O

O O 1 -
The bourid niatris for CS(Si) does not change. but the new bound matris Jf (S2) bccorncs:

Original iteration
space of the loop - New Cornputaion space for SI

- New Computation space for S2

bounds for the transfoned
iteration space as calculated
by CA-bounds()

Figure 3.10: Deriving neiv loop bounds.

Applying Fourier-hfotzkin variable elimination to Jr (S2) results in the boriricls:

O 5 i 5 'Ln and rncrx(0. i - r r) 5 j 5 min(r1. i)

C'ombining the bounds for the two transforrned coniputation spaces. ive obtain the following bounds

for the t ransformed loop:

O < i 5 'Ln and min(0. mczx(0. i- n)) 5 j 5 rncrs(n. mirr(n. i))

n-tiicti can be siniplified to bc:

Ttiese boiinds su bsunie t lie bounds of the individiiat transformed corn pu tation spaces CrS(S1) and

C'S(S2).

Figrire II. 10 shotvs the original iteration space on t hc left tiand side and the transforrned corn-

putation spaces on the right hand side. The conservative bounds. O < i < 'Ln and O 5 j 5 n. of

the transforrned iteration space. as calculated by CDX-borinds, are shown as a dashed bos. Tlic

trarisformed iteration space consists of four regions marked p l to p-1. [terations in p l have nei-

thcr of the two coniputations: itcrations in p2 have only S2 computations: iterations in p:3 have

botli Si and Sz computations: and finallj- iterations in p4 have only SI computations. Clearly,

statements Si and S2 rnust have guards to ensure correct esecution of the transformed loop. The

giiards for Si and Sz in the transformed Ioop evaluate conditions O < i 5 n r\ O 5 j < n and

for 1 = 0 . : ! + n

for j = m m (0 . t - n) , n

s, : (t < n) - ~ (L J) = A (t - 1 .) - 1)
S 2 : (j > _ t - n . j < m t n (i . n)) B (1 - J . J) = . - i (1 . j)

c-nd for
end for

Figure 3-11: Transformed loop after siniple guard optiniizations.

O 5 i 5 212 A rnar(0. i - n) 5 j 5 min(n. i) . respcctively.

Ckrierating the loop bounds this way ic siifficient when the majority of the new iterations contain

al1 the statements. The running esample Ioop was transfornied ~vitti niatrices that have small offsets

so there were only tivo empt? iterations. However. the transfornied iteration space of Figirre 3.10

lias as many as a qiiarter of t h e itcrations tliat contain no computations. It is possible to optirriizc

the boirnds to rnininiize t he numbcr of ernpty Iterations. For instance. modifying the l o w r bound

of j froni rnirr(0. n~cix(O. i - r z)) to mcrx(0. i - n) . steps off ail cnipty iterations in region p l of the

neiv iteration space. This type of optirnization is important because the e\aluation of guards can

add significarit riin-time overliead due to the additionai computation for cliecking t tic incqualities.

i n the nest cliaptcr. we discuss techniques to dcrive CD=\ transformed loops witli mininia1 enipty

iterations. and ive discirss techniques to mininiize the overtiead of guard coniputatioris.

3.6 Applications of CDA

CD:\ transf'orniations can bc used to optimize nested loops in a numbcr of contcsts. For csaniple.

CD.\ cari be irsed to pcrform the foilo~ving optimizatioris:

0 rediiciiig the niimber of cache conflicts.

0 improving the efficiency of parallel SPhID (Single Program hl ultiple Data) progranis.

0 in1 proving irist ruction level parallelism.

0 elimi tiating barricr synchronizations.

0 iriiproving Ioop performance using CD:! as generalized loop distribution transforniation. and

rn iniproving loop performance by transforming certain impcrfect loop nests.

The first two optimizations are covered in C'hapters 5 and 6 respectively. The remaining optiniiza-

tions are covered in Chapter 7.

3.7 Disadvantages of CDA

Additional optirnization opportunities that CD.1 provides arc at an additionaI cost because CD.4

transforrriatioris also have some disadvantages:

0 Good hetiristics are the key to efficient derivation of CD.A transforniations. The relatively

fine-grained restructuring that is possible within the CD.-\ framework irnplies a vastly larger

search space than when deriving a linear loop transformation. In the folloivirig chapters ive

show t hat, with the knowledge of the optimization contest. CD.4 transformations can be

derived efficient ly.

0 CD--1 transformed loops typicall- have more ovwheads tlian linearly transformed loops i n

t hat t hey have ernpty iterations and guard con1 putations and require storagc for tcrnporary

variables. Ln the nest chapter. ive describe mettiocis that su bst antially recii~ce t hese overlieads.

Optimizing CDA Transformed Loops

Any change or reform you make is going to have consequences you don't like.
- CVdall's Fourth Law

Tlie previous ctiapter prcsented the basic C'D.4 transformation technique and the formalisni under-

lying the C'Il.-\ fran~ework. It [vas noted that CD=\ transformations introdtice overlieads t tiat pirrely

lincar transfornialions ivould not. These overhcads include enipty iterations. giiard coriipiitations

and additional storage for teniporary variables.

111 ttiis cliapter. ive focus on t~chniques to iniprovc tlie efficiency of CD=\ transforrneci Ioops by

redricing t tiese overtieads. The techniques ive present can bc quite effective. ive illustrate the effect

of the techniques on tlie overliead generated bu two different the CD:\ transformations on tlie loop

of Figure -1.1. TIIF! transformed iteration space for the first transformation is shown o n the lcft tiand

sitic of Figtirc 4.2. ~vhere one of tlic computation spaccs is applietl an offset alignnient of (k . k) .

wlierc k is a positive ir~teger. The left tiand sidc of Figiirc 4.3 shows ttic trarisforrned itcratiori spactl

for thc second traiisforniatiori. u-hcre one of t h e coniputation spaces is skewed [vit h respect to tfic

ottier. \\'t [vil1 rcfer to the C'D.4 transformeci loops for these two transfornietl iteration spactls as

Lonp 1 and Loop 2 . respectivciy. For the purpose of the esperimcnts the loop size ri n.as set to

1000 and k NXS set to 5 . iinless o t h e r t t k specified. .Uso. the esectrtion tirnc rrieasurernents w r e

takcn on a St-S workstation with hyperSP.4RC CPU.

The overliead of Loop f \vit h the Ioop bounds generated by algorithni CD.-L-6ound.s of Section 3.5

is sliown as first five bars on t lie right hand side of Figure -1.2. This overtiead is niainly due to enipty

itcrations and griard computations: it iricreases sliglitly with an increasing k. due to increasing

nirnibcr of ernpty iterations and guard computations. For k = 5 . this overhead is about 22% of the

csecution time of the original loop. The overhead can be reduccd significantly by optimizing the

CD:\ transformed loup w i t h techniques described in ttiis chapter. The last five bars on tlic right

Iiantl side of Figure 4.2 correspond to the optiniized Loop 1 . ivhere tlie overhead is less than 0.1%

for r = O. n
for J = 0 . n

l-(1.j) = c (0) * l - (t . ~)

R(i. J) = c (O) * R t t . 1)
end for

end lor

Figure 4.1: The loop used to illustrate the effect of techniques to reduce overheads.

i A bounds using
CDA-bouniis

Figure 4.2: Overlieads i n a CD:\ transformed loop. called Loop 1. with offset alignnierit (li. k). In
the bar ctiart above. the bars on the left correspond to the esecution tirnes of Loop 1 wit li overlieads.
~vliereas t tic bars on the right correspond to the esecution times of Loop 1 aftcr reducing overticads
\vit h ttcliniques dcscribeti in t h i s chapter.

of' t lie original loop. The optirnized loop has neit her ernpty itcrations nor giiard conipi~tations.

T tic ovcr ticads can also be redriced significant ly n-tien t lie dignments are more senerai t liari

offsets. The overlicad of Loop 2 wit h t lie bounds generatcci by algorithni C'D.4-t~oirnrls of Section 3.5

is stio\i-ri as the first bar on the right Iiand side of Figure 4.3. Tlie overliead can be niucti Iii=lier

t lian tvticri iising offset alignnients (nearly i S % of t ht. original loop in this case). sincc ticarly oric

qiiartcr of tlie iterations are enipty. However. the overhead is rediiced to about 5% of tlie origirinl

loop wlieri Loop 2 is opt iniized by removing en1 pty i terations and guards. using t lie tccliniqiies

ciescri bctl here.

I n ttiis chapter. ive describe:

r an algorit lirn to tiglitcn the bounds so as to reduce the esecution overliead of crnpty iterations

i n tlie transformed loop:

r mctliods to reduce run-tinie overhead of guard cornputations: and finally

ri, tecfi niques to reduce t lie storage requirernent for tcrnporary variables.

4 bounds with CDA-bounds

Figure -1.3: Overheads in a CDX transformed toop witti a linear alignment. called Loop 2 .

4.1 Removiiig Empty Iterations

The iteration space of a CD:\ transformed loop is the union of the transformed computation spaccs

projected ont0 an integer space (~vhich WC refer to as the union of computation spaces for concise-

ness). However. the bounds of the CD.\ transformed loop. as derived in Section :3..5, nerc chosen

so that the ncw loop scans integer points in a conves polytope which is a siiperset of the union of

coniputation spaces. Therefore. the derived Ioop bounds will not necessarily be tight i n that the

CD.4 transformed loop will contain empty iterations (namely. those outside the union of compu-

tatiori spaces). tvtiicli do not contain the esccution of any of the statements. i n this section. we

s h o ~ - hon- to derive tight loop bounds so that a LD.A trarisforrned loop scans intcger points i n the

srriallest conves polytope containing the union of computation spaces. \I'it li tigtiter loop boiinds.

the overliead of enipty iterations and tlie guard computations they contain is reduccd.

\l'hile deriving tight loop bounds. it is desirable to keep thc CD.+\ transformed loop perfectly

ricsted. because it may be necessary to apply other loop transformations later on. and niost trans-

formations reqiiire that the loop be perfectly nested. In order to obtain a perfectly nested CDA

transfornied loop. the polytope that the loop scans must be conves: only in some cases do non-

conves polytopes correspond to perfect nestings. Some esamples are shown in Figure 4.4. The

conves polytope of Figure -l.-l(a) corresponds to a perfectly nested loop with simple integraI, affine

esprcssions of itcrators in the loop bounds. Some non-corives polytopes, as in Figures 4.-l(b) and (c).

also correspond to perfectly nested loops. where the loop boirnd espressions contain minimum or

masimum operators on integral. affine functions of itcrators. T hese two non-conves polytopes

Iiappen to have the property that for given range of Ii values. tliere esists a continuous range of

11

i2 bounds: mur 11.12.131 i i r mntui.u,)

(a) p e r k t loop nest
(b) pedect loop nest with (cl perfed loop nest with

max and min functions nested max and min functions be a wdwt

Figure 4.4: Shapes of iteration spaces

I r values. which defines tlie loop iterations.' On the other hand. the non-conves polytope shoivn

in Figure 4.-l(d) caiinot bc represented by a perfectly nestcd Ioop. since for certain ranges of TI

values. the range of I2 values is discontinuoiis. rcquiring a separate loop inside the Il loop for

each continuous range.

The technique described in tliis section derives tight loop bounds by const ructing the corives-

11ri11 [-Ml of the union of compiitation spaces. Mgoritlim CD.-I-bo,orrnds-~>~rfcct of Figure 4.5 finds

t his conves-htill.' The algorit h m finds t lie sniallest conves polj-tope t tiat contains the union of the

coniputation spaces. IVlien the union is a conves polytope itself. ttien the derived loop bounds are

exact in that the transformed ioop does not have any cmpty itcrntions.

Step 1 of algorithm CID.-1-borrnds-perfccl finds the estreme points. Et . of each transformcd

coriiputation space. C'Si(S,). The estreme points of a polytope arc integer points on the boundaries

of the polytope so that the conves-hull of tliese points bounds the polytope. For esariiple. ttip four

corners of a rectangrilar area arc its estremc points. since a conves-liull of tlic corners defincs tlie

rectangle.

The cstrenie points of a coniputation space are obtained from its bound matris as follo~vs. Thc

incqualities represented bu the bounci matris of a computation space define half-spaces. and the

iritcrsection of al1 half-spaces defines the integer points i n the computation space. The equations

for the hyperplanes bounding a computation space can therefore be obtained by replacing > aiid 5

operators in the inequalities by the = operator. The estreme points of an n-dimensional coniputa-

tion space are obtained by solving combinations of n hyperplane equations. The soiiitioris for tliesc

combinations of equations are points ivhere the hyperplanes intersect. Out of tliese solutions. thc

'There may be periodical "hales' Ieft by non-unit strides due to non-unimodular transformations.
'The word perfect in the name of the algorithm highlights that the objective of t he algorithm is to gcnerate a

perfectly nested transformed loop.

Algori thm 3 : CD.4-bounds-perjcct
/* Conrpt~tes trgfit boirnds. */
input: bounds lor computation spuccs C'S'(Si). C'S'(Sm)
output: bound m a t n r 3' of the srnailest conwx polytope contatritng the computntlon spaces
bfgt n

1. for r = 1 . rn
E, t extr~rne: potnts of CSt (S ,)

end for
2. H +- C'on t : ~ t J 1 1 ~ 1 1 (~ , = ~ , , , E ,)
.Y. u t arry polnt such that u E CSf(Si) . for some i. 1 5 i 5 m
.{. .] + O

5. jor eoch botindmg hyperplune (h (j) = O) E II
!,T IL) 5 O then

3 c ~ u (h (Ï) 5 0)
t4se

3 t JU (h (Ï) > O)
end ~f

end for
6. .Y t- Fourier,\f of zkin(3)

c-nd

Figure -4.5: Tight t ransformed bounds

ones that are iriteger points within the computation space are chosen as dcsired estrerne points.

E,. Ern.

Stcp 2 of the algorit hm coniputes the conves-IiuIl of the u n i o n of e s t r ~ r n e points. El U . . . U E,, .
hy applying an!. of the tvell known techniques such as the gip-wrapping or the bcnctl&h-bcyorid

nictliods [-!-II. The conres-hiill is defined b ~ . a set. H . of bounding Iiyperplanes of the form h (A = 0.

cadi bcing citlier a lower bound or an tipper bound of the trznsforrned iteration space. \Vhctlier it

is an uppcr boiind or a lower bourid depends on ivhicti sidc of the hypcrpiane an intcger point in

the union of corri pu tation spaces lies.

For this piirpose. Stcp 3 chooses an arbitrary point i~ known to be in the union of computation

spaces. i n Step -1. a set of inequaIities. 3. is initializcd to the empty set. Step 5 adds an incqualitj-

to .3 i n each iteration so tliat a t the end of the iterations. 3 represents the boiinds of the smallest

conves polytope containing the union of the coniputation spaccs. 1Vhether a hyperplane is addcd

as an upper or a Iower bounding hypcrplane is determincd using integer point il: For hypcrplanc

h (f) = O in H. h (Ï) < O is added to ;3 il h (u) < 0: otherwise h (I) $ O is ndded to d. Finally. in

Step 6. Ive apply Fourier-hlotzkin variable elimination to ;3 t o obtain the bound matris ,3'.

Bounds cornputrd by
CDA-boundst 1

Bounds cornputrd by
CDA-bounds-prfrccl)

Figure -1.6: Empty iterations in an iteration space with tight bourids.

A s an esample of applying algorithm CD.4-bounds-perfect . consicfer again the t ransformed com-

prrtation spaccs for Loop 3 on the left hand side of Figure 4.3. The estreme points of the first trans-

formed cornputation space. C'S'(SI). are (0. O) . (n . O) . (O. n) and (n . n) . and the cstreme points for

the second transfornicd coniputation space. C'Sr(S2). arc (0 . O) . (n . O) . ('Ln. n) and (n . n) . Therefore.

Step 2 in the algorithni cornputes the conves-Iiull as dcfined by tlie lines3:

from whicti Step 5 produces t hc following inequalities:

i > O . i < ' L n . ; > O . j s n . j 2 i - r i

.-ifter variable elirnination. these inequalities provide the loop boiincls.

These iricqiiaiities bound the shaded area in the Figure. The loop bounds are esact i n ttiis case.

sincc t tie union is a conves polygon. so it no longer includes ernpty iterations.

In some cases. the bounds derived using algorithm CDA-bountls-perlect are in-esact in that not

al1 empty iterations are removed. Consider the union of the cornputation spaces of Luop 1 depicted

on the left Iiand side of Figure 4.2. ivhere the union is a non-conves polygon. The dotted lines on

tlie left hand side of Figure -1.6 show the loop bounds tliat are derived by algorit hm CD.-1-boiinds

of Section 3.5. The dotted lines a t the center of the figure show the bounds obtained by using
- - - - - - - - - -

3Because we arc operating in a .'-dimensional space, the hyperplanes are actuaity lines.

Figure -1.7: Performance benefits of eliminating enipty iterations.

algorit hrn CD.-I-boilnds-perlecl..'

Figure 4.1 compares the overhead of the unoptimized Loops 1 and 2 . wtiere the bourids are

derived using algorit hm CD.-1-bounds . wit li the overhead of t hc optirnizec! loops. wherc t hc bounds

are derived using algorithm C'Da-1-bound.5-p~rfcct . The reduction in the overhead of Loop f (of

Figure 4.2) is not significant. since it contains o n l ~ a small number of empty iterations. The

application of algorit hm C D . - 1 - b o u n d s - p e r f ~ c t to Loop 2 (of Figure -1.3) reduces t hc overheaci by

about -1.5%. sincc nearIy one quarter of its iterations were empty.

4.2 Reducing t lie Overhead of Guard Computat ions

C;iiards are often neccssary i n CD.-\ transfornied loops both to step off enipt!. iterations and to

prcvcnt inappropriate computcztions from esccuting in the n e w itcrations. Ci.uards niay inciir cori-

siclerable ru n-tirrie O\-crlicad. but it is possible to reriiove t hcni d ii ring compilation t inic i n many

CEPS. \Le describe tliree teclinic~ucs to redlice the riumber of guard computations rcqiiired:

i) .-ilgorithm C'D.4-bounds-pcrJEct describecl in the preïious section mininiizes the ntimber of

enipty iterations and hence removes the guard coniputations in the eliminated empty iter-

ations (althougti it does not eliminate al1 the guard computations). The algorithm can be

applied i n conjunction with and prior to applying techniques (i i) and (i i i) belon..

" :Ilgorit hm CD.4-botrnds-perfect c m be used in contexts other than CD:l trcmsformations. for example when
cornpiiting t he union of Dnta =Icces.v Descriptors [Y] . Data access descriptors are descriptions of sections of ~irrays
acccsscd in a loop or a procediire. The union of da ta acccss descriptors might be coniputed, for instancc. t o determine
whether two procedures acccss the same set of array elements. The da ta access descriptors can be represented by
bound matrices. wtiich dlows dgorithrn CD.4-bounds-perfect to be rised t o compiite the union of da t a descriptors.
.Algorithm CD.-l-bounds-perfecl c m also be usefui in other contexts that require the computation of unions such
as ~ r a y privatization [53. 161. In both of these contexts. the algorithm providcs tighter unions than the cxisting
algorithnis prevdently do.

i i)

i i i)

The second technique incrementally elirninates guard computations frorii the iterations in

those repions of the new iteration space in which a11 statements are to be eseciited. This

technique is useful. for esampte. w h e n rnost iterations must esecute al1 statenients. (This

typically occurs ~ h c n the t ransforniation matrices for the statements are similar.)

In the third technique. the union of the cornputation spaccs is partitioned into h o m o g e n m u . ~

.wgni~nts. where each segment must esecute the same set of statemcnts. The technique then

generates a loop structure that iterates through the segments. where the loop body of t lie

siibnest ccrresponding io eacli segment contains only tliose statements that the segment niust

eseciite. .-Ut hough this technique can eliminate most of the guard computations. it usually

gcnerates coni pies and ini perfect t ransfornicd Ioops. T herefore. t his tech nique ivoiild typicallj-

bc tiscrl a t a final stage to eliminate giiard computations thnt niigtit reniain aftcr any otlier

loop transformations that ni- be applied and after the application of technique (i) .

\\è dcscribe techniques (i i) and (i i i) above in the following two subsections.

4.2.1 Incrernental Removd of Guards

This scctioti describes a technique t tiat increnient ally remol*es giards frorri sclected rcgions of the

union of corn pu tation spaccs. It is targcted primarilx toivards CD:! transforniations. ivliere the

ititersection of the computation spaccs rriakes iip a large portion of the union of ttic coriipiitatiori

s paces .
The technique u-c dcscribc Iiere is son-iewIiat involved. so ive first dcscribe it ivitl i an csample.

rianicly the trarisfornied iteration space on the left of Figure -1.8.VVc refcr to thc CD:\ transfornicci

loop corrcsponding to tliis itcrntion spacc as Loop 3 . Algorithni CD.-l-guclrcf-rem of' Figure -1.10

renioves guards using the following steps:

1. The bounds of the intersection of the coniputation spaces are clcrived. For instance. the

shaded arca in Figure 4.8 is the intersection of the three coniputation spaces. The iterations

i n the intersection entail the esecution of al1 ttiree staternents SI. S2 and S3. Therefore. if ive

partition the riew itcration space t o separate out the intersection. the code generated for the

iterations in the intersection does not require an. guards.6

5 ~ h c CD:! trruisforniations in the figure are such that the computation space of statcment S2 is moved up by k
in the I z direction with respect to the computation space of statement Si, and the computatiori spsce of statement
S3 is rnoved right hy k in the Ir direction with respect to the computation space of statcment Si.

'Thus. algorithm CR.4-gunrrl-rem generates code so that ail iterations of the intersection are in a subnest of their
own.

/ / Code for L1
. . -

! : code f o r L2

f o r I l = k ,
for 12 =

g (SI)
g(S2)
g (S 3)

end f o r
for 12 =

end f o r
f o r 12 =

g(S1)
g(S21
g(S3)

end for
end for

/ / code for L3
. - -

Figure -4.8: Transformed coniputations spaces to illust rate steps in algorit hm CD.-1-guarcl-rem. The
t rarisfornied loop corresponding to the transformed computation spaces is called Looy 9.

2. Tlie iteration space is partitioned dong the first dimension Il so as to delincate the intersection

i n t.liat dimension. In our esample. the CD:\ transfornied iteration space of Figure -43 is

divided into thrce partitions. namely, L i . Lr and L s . based on the fact that ttic Ii borinds

for the intersection are k and n. Partition L i hczs iterations ivith II values between O and

k - 1: partitiori Lr hc?s iterations with Il values betn-cen A. and r r . (t h two Il botinds for the

intersection): and partition Ln has iterations with the Il valiies betwcen n + 1 and n + k.

3. Codc is generated for partition L?. This code consists oT a seqiience of subnests. The first

subricst includes thosc iterations with values tliat do not belong to tlie intersection. t h u s

requiring guarcis. Thc second sxbnest includcc the iterations that belong to the intersection.

This code constitutes rnost of the iterations of the loop that necd to bc esccuted and requirc

no guarcis. The final subnest includes those iterations with /2 vaiues higher ttian those of the

intersection. thiis requiring guards again. The three subncsts for our esample are stiown on

tlic rigt~t liand side of Figure 4.8. Note that the subnest corresponding to the intersection

does not have any giiard coniputations.

-1. The algorit h m is applied recursively to remove giiards from partitions L and L3. The iter-

ations in these partitions contain only a subset of the statements of the original loop body.

Thus. only a subset of the computation spaces participate i n the intersections of these part.i-

tions. For partition L i . it is necessary to consider only the computation spaces for statenients

Algorithm 3 : CS-intersect(L f
input: Loop L w l h loop body g(S1) : Si ; . - . g(SK) : SK
output: Bounds of the intersectlon of the computation spaces
beg in

// 3(S1). J(Sh-) t bounds for t m n s f o m d C'S(Si). C'S(Sh-)
// 3(L) t borrnds of itemtion space partttron

for each Si. 1 5 i < !ï
i/ Fourier- l lo tzk ir t (3(S;) U 3 (L)) lnconststent then

remore Si from L
end i f

end f o r
Remore L i f ut1 staternents am mnioved
for 1 = n. I
,'/ Bocrnds of iterator ti in CS(Sj) are Li < I, < I-:.
LII t r n a x (L t . 15 j 5 l ï)
l - ' , t rnin(C7i. 1 < j < fi)

end f o r
3(C'i) t bound niatnx for the intersectlon

Figure 4.9: hierging Giiards for statements SI.. . . . SI;.

S l and S-. and for partition Lg it is necessary to consider only coniputation spaces for statc-

mcrit S3. Rectirsive application of the algorithm to partition Li. docs not partition it furtlier

along I l . since the intersection of computation spaces for S i and S2 spans tlic entire I l boiinds

of Li. Tlie intersection in L i has I2 bounds of b and n . and guards can be siniilarly rertiovcd

from L I .

Tlie result of applying algorithm CD.-1-gunrd-rem is thus a sequence of loop nests. n-hicli t y p

ically are imperfectly ncsted. The right hand side of Figure -43 shows a templatc of the code

generated for the transformed cornputation spaces on tlie left hand sidc. The teclinique in C'D.4-

gunrrl-rem is similar to the niethod by Knijnenburg and Bik [24]. where a perfectly nested loop

with a single if (condition) then-else-endif staternent in the loop body is rcstructured so as

to eliniinate the need for evaluating the integral. affine condition in the statement.

In order to simplify the description of algorithm CD.4-guard-mm, a loop L and its itcration space

are tised interchangeably. and the notation for its bound matris and that for the set of inequalities it

represents are used interchangeably. Tlie input to the first invocation of algorit hm CD.-1-guard-rem

is the entire iteration space of the C'DA transformed loop: tlie input to later. recursive invocations is

Algorit hm 4 : CD.4-guad-mm(L)
input: Loop L guarded icrth g (S l) : Si : . . . g (S K) : SK
output: Code Ior L utth fewer guards
hrogin

// : 3 (L) t bounds for L
1. J(C'1) +- CS-lntersect(L)
// CS-mterhect returns J(C'1). bounds of intersectton of S I SK
Ly 5 I I 5 t I I hounds rri J(L f
L i 5 I l 5 1'1 t- I l bounds in 3(C ' I)
G o l ~ r a t e thrw portttmns. L I . L3 und Ls

3 (L 1) + 3 (L) u {Ly 5 II 5 L I - 1)
.3(L ?) + j (L) u {LI 5 11 5 & }
J (L 3) t 3 (L) U { r i T 1 5 I l 5 r p)

Remme guards tn L 1 . L I and L3
CD.-l -gua rd- re nt (L 1)
genercite c o d ~ for subnest L3

6. p r ~ n t : for II = LI. U i
i f n > 1 t h ~ n // the loop ts at lcnst 2-dimenslonal

Gt-ri-srrbnrst(J(L ! .3(C'I) . 2)
e n d if

pi-lrit: end for
7. C'D.4-gtrnrd-rem(L3)

onci

Figrire 4.10: Remove guard computations in L.

a portion of tlic itcration space. \Tc assume that tlie bounds of the iteratio~i space wcre generated by

algorit hni C'D.-\-6otund.<-p~rfcct and t hat the bounds of t lie itcration space part itiotis n+cre generated

during t tic prcvious in~.ocations of algorit h m CD.-1-gunrrl-rem.

The first step of algoritlim CD.4-gunrd-rem invokes algorithrn CS-intcrscct. wtiicli primarily

gcneratcs the bound matris . 3 (C ' I) for the intersection of tlic computation spaces. (The C I ' in

j (C.1) stands for Coniputation space Intersection.)

I n algorithni C S - i n t ~ r s e c t of Figure 4.9 . L corresponds to the iteration space under considera-

tion. and 3 (L) denotcs its bounds. Step 1 identifies ttiose statements that are not esecuted in any

iteration of L (a case. that only occurs o n recrirsive iiivocations of CD.4-guard-rem). Such state-

ments are recognized hy checking whether their guards are inconsistent with J (L) . If t h e guards

are indeed iriconsistent with . 3 (L) . tlien the guards rvill not be true i n any iteration of L. Hence.

siich statenients can be renioved from L. For instance, a guard i < n is inconsistent witli 3 (L) .

~vhen 3 (L) contains the inequality i > n. If none of the guards are consistent with 3 (L) . then L

is a partition containing only empty iterations. and can consequentty be removed (Step 2) . Step

3 cornputes tlie bounds for the intersection of the computation spaces of the statenients. Thesc

bounds a re represented in bound matris form in Step 4.

C\.é now continue with the description of algorithm CD-4-gtrnrd-rem. shown i n Figure -1.10.

Steps 2 and 3 estract bounds along I l for iteration space partition L and the intersection C ' I of

the coniputation spaces. respectively. These I I bounds are used in Step 4 to derive the bounds for

partitions L i . L2 and Lg of partition L. Partition LI consists of iterations in L for which I I values

lie betwcen the lower bound of Il in L and the lower bound of I l in C I . Partition L2 lias iterations

iii L for wtiicti I l values lie within the I I bounds of C l . Partition L3 has the reniaining iterations:

ttiat is. those iterations i n L for which the Il value lie between the upper bound of I l in C I and t hc

iipper bound of I I in L. Such a partitioning of the iteration space is always possible. because C l

is contained entirely \vit liin L.' \Ve t hen recursively apply algorit lin, C'D.4-gunrrl-rem to partitions

L i and LZ3, in Steps .S and 1. respectively. This recursive application removes guards by isolating

the intersection of (fcwer) coniputation spaces froni L I and Lg. respectively.

In Step 6. the subnest corresponding to the iterations i n partition L2 is generated. This involvcs

gcnerating a loop statcment that iteratcs from the lower bound of C'I to the upper bound of CI:

and con tains a sequence of su bnests. as generated by algorit hm C e n - s u b n w t .

Algorit tirn (-'en-strbncst . shown in Figure 4.11. generates code for each partition crested by algo-

ritlirn CD,-l-gunrcl-rem. (kn-s i ibne t is recursive. aiid each irivocation produces the loop statements

necessary for ttie nest iterator 1,. The iteration spacc is partitioncd dong tlie r th dimension by

ideritifying three ranges for iterator I r . similar to ttie partitioning of the iteration spact. dong the

first dirrierision i n algorithm CD.-1-gutrrd-rem. Steps 1 and 2 estract the bourids fer iterator Ir in

L and C'i. respectively. In Step 3. ive print a loop staterne~it for iterator Ir that itcrates from the

lo~ver bound of 1, iri L to one less ttiaii the lower bound of Ir in CI. The code for the rernaining

iterators Ir+1 to In of this siibnest (assurning the loop has dinierision n) is generated tising their

bounds in L. since t tiese iterations are not in CI. in Stcp 4. n-e tlien generate a loop statenient for

iterator Ir using the bounds for I, in CI. The code for the remaining iterators is gcneratcd by a

recursive cal1 to algorithm G'en-subnest. Finally. Step .j generates a loop statement for iterator 1,-

tliat itcrates from the upper bound of Ir i n C I plus one to thc iipper bound of 1,. i n L. The code

for the remaining iterators Ir+i to In of this subnest is generated as in Step 3.

' ~ h a t is, for each iterator. the lower bounds of C i arc p a t e r than or equd to the lower boirnds of L and the
uppcr bounds of CI =are lesser thm or cqual to the upper bounds of t.

Algorithm 5 : Gen-subnest(J(L) .$(CI). r)
input: Loop L . rntersectlon CI and nestrng 1et:el r
output: .-1 ssquence of subncst wthout guards for the tntersectton
beg i n

1. L: < Ir < t Ir boirnds ln 4 L)
2. L , 5 Ir 5 I ; t Ir boirnds tn J(CI)
// Thts s u b n ~ s t has gtrards
j . print: for Ir = L:. L, - 1

i f r < n t h e n
Generute rode for rteralors Io In i~szng ertstlng bounds rn L

else r~trrrri
end i f
pnnt: end for

// Only some strbnests hert. have grlards
4. prtnt: for Ir = L,. Ur

i f r < n t f i en
Gen-.subn~st(3(Lj.J(C.1) .r + 1)

cl se rct tr 171

f n d i f
pnrit: end for

//' Thts subriest lias guards
5. prmt: for Ir = Ur + 1. U:

if r < n t h ~ n
Ge rr~rate code for tterators Ir+, to In usrng cns t tng bouncls tn L

else rctrrrn
t-nd i f
yrtrit: end for

6 r ic l

Figure 4.1 1: Ckneration of code for su bnests.

Figure -!. L2 slio~r-s the effcctiveiiess of algorittirn CD.-1-gurinl-rem in renioving guards. 'The dark

bars correspond to CD:\ transforrned code with guards. where algorithm CD;\-6orincf.q-ptrfect \ v a s

appliccl to remove as niany empty iterations as possible. The grey bars correspond to code for

ivliicli algorit hni CD.-1-guord-rem was applied. The figure shoivs tliat additional reinoval of guards

can reduce t h e overhead su bstantially. when the loops are transformed by offset alignments. Ttie

reduction in overhead for Loop 2 was not as large a s for Loops 1 and Y . since the code for Loop

2 continues to have guards in nearly one quarter of the iterations. but the benefits of applying

CD.4 -guord-rem is stiil significant .s

q h e s e iterations correspond to the region boundsd by O < r < n and i + 1 < j < n on the left of Figure -1.3.

Figri re 4.1'2: Performance benefi ts of removing guards by CD.-1-gucrrd-rem.

Figure 4.1:3: Partitionirig II nion into hornogeneous segments.

4.2.2 Partitioning the Iteration Space into Homogeneous Segments

Tlic tecli~iiquc for incrernental eliniination of griards can be flirtlier rcfined so tliat the transforrned

itcration space is partitioned into Iion-iogeneous segnzertfs . where all iterations in a segment esecute

esactli- ttic sanie set (altliough riot neccssarily al1 of tlie statenients). The code gencrated i~orilil

t licn iterate separately t h rough each of t hesc segments. arib the si1 bneçt gencrated for each scgnient

would contain only tliose statements in the segment tliat need to be esecrited: n o guards tvould be

neccssary. [Ve refer to this tcchniqiie as Honlogeneous-par-titioning. The idea beliind f i r n o g c n ~ o u s -

/~ur t i l i on i r i g is iitilized i n several esisting algorithms [12. 22. 23. 24. 27. 51. 521.

In t liis section. ive only illustrate the basic approach i n Hontogcneous-part itioning by esample

t hroiigh tlie iteration space of Figure 4-13 . 'The iteration space is partitioned into cigtit tiornogeneoi~s

~lven scgments. and loop diniensions Ii and Iz are partitioned so as to dernarcate ttiese segments.""

t hese segnicn ts. Homogeneoirs-pnrtitioning generates a sequerice of four riested loops. one for eacti

':!ctudlu. chc union has only fiw hornogeneous scgments, but the? are easier to work with when treared as eight
scgments.

Figure 4.1-L: Performance benefits of scanning in homogeneous segments.

defined Il range. Each of these nests conçists of a sequence of inner I.? loops. one for each segment

defined i n that particular Il range. The individual bound espressions are chosen so as to delineate

the segment. For the Il range [L . n/'L). t hree segments must be delineated. .-kcordingly. the IL asis

is further split into ranges [I . Il]. (I l . 'LIi] and (2fi . n]. Similarly. the I2 ranges can be Foiind to

delincate remaining segments i n other Il ranges.

\Ié use Loops 1 . 1 and S to compare the effectiveness of CD.-1-gunrd-mrn and Homogen~ous-

prtitinning. In Figure 4.1-L darker bars correspond to the application of CD.4-guard-rem and

Iigtiter bars correspond to tlie application of Homogen~ous-partitioning. Algorit hni CD.-1-girard-

rem removed a significant numbcr of guards in Loops 1 and 3. Hencc. applying CD.-l-gilnrd-rcrn

ma? siiffice n-hen tlie intersection has a large number of itcrations relative to the total niirnber

of iterations. [\'lien ttiis is not the case, as in Loup 2 then Homogcneou.s-pcrrtitionirzg is capable

of rcnioving a large proportion of the overhead. tiowever. the performance differenccs between

CD.-l-gunrci-rern and Homogeneous-pnrtitioning will be furt her reduced wlien we apply tec tiniques

ciiscussed i n the nest subsection to optimize the evaluation of the guards.

4.2.3 Optinizing the Evaluation of Guards

The run-time overhead of evaluating guards that nlay rernain after liaving applied the guard climi-

nation techniques described earlier can be further reduced by optimizing tlie clauses in the guards:

Some of the guards ma? be redundant. in wtiich case they can be renioved. Clause c, is

rediindant in guard ci . . . c , . . . A ck, when ci A . . . A 5 . . . A ck A C is false. where C'

is the conjunction of clauses corresponding to the bounds of the enclosing iterators. For

iristarice. in Figure 4.8. some of the clauses i n the guards of the code generated for the range

k 5 I l 5 n and @ 5 I I < k - 1 are redundant. Statement SI of the loop body tias the guard

(O 5 I I) A (I I 5 n) A (O 5 1 2) A (12 5 n) . ive can verify that the clauses (O 5 I l) and

(I l 5 n) are redundant. since the enclosing II iterator lias a range of k 5 I I 5 11. Siniilarly.

(O < 1 2) and (h 5 n) are redundant. Hence. we can conclude t hat statement S I (and siniiiarly

S-) does not need guards in the s u bnest considered.

rn The guards for some statements may be inconsistent among t hemselves or witti the bounds of

the enclosing iterators, which implies t hat t hese statements are never esecuted. The overilead

of guard coniputation for such statements can be eliminated by removing the staternents

altoget her . IVhen none of the guards in a su bnest are consistent among t hemselves or wit h t hc

bounds of the enclosing iterators. then the subnest only iterates through empty iterations. so

the entire subnest. can be removed. For instance. i n the subnest of Figure 4.S witti k 5 I l 5 n

and O < 12 5 X: - 1 statenient 5:> is rrever esecrited. This is becarise the claiise k 5 (2 in the

guard for statement S2 is inconsistent with the bounds of tlie enclosing I2 itcrator.

a Giiards can be further optimized if the clauses i n the guards are al1 in canonical form. wtiere

the conditions ori Ir only involve espressions in the enclosing iterators I I to This allows

t lie conditions on iterator Ir to be evaluateci and stored CU boolean values before tlic bcginriing

of t lie Ir iterations. Tlie statement guards can t Iien be retluced to a conjiinction of previously

conipiited boolean values. In general. it is beneficial to move t h evaliiatiori of t hc guards. to

the oir terniost loop levcl possible.

4.3 Optimizat ion of Space Overhead for Ternporaries

The teniporari- variables introduced during Computation Deconiposition rn- incrcase the ntimber

of references to memory and may add to space requiremcnts and the cache footprint. .-\ nuniber of

optimizations can reduce some of these overheads.

0 Ternp~raries needed in a loop may be replaceri by dead variables. which are not used in t h e

later Row of the program.

0 C\'liile decomposing a statement. it is possible to eliminate the need for temporary variables al-

toget her by using the Ihs array elernents to store tlie intermediate results. Such a replacement

is legal if the dependence relations remain legal. Even though a Coniputation Decomposi-

tion does not rnodify dependences, eliminating the temporary variable t his way can modify

dependences. For esaniple. it is Iegal to replace t(i. j) by a(i. j) in the folloxving decornposition.

Hoivever. such a replacement woiild be ilkgal i n the following decornposition. becaiise a(i . j)

ivould be modified before it is used in the second statement so the teniporary variable needs

to be retaincd.

Hence. storage requirements can be rediiced in t tiis rvay for only sorne deconipositions. -\Iore-

over. it must be noted that the dependences introduccd by replacing the teniporary variable

can constrain later opport unities for Corn piitation .-Uignrnent. It is t herefore bcttcr to replace

the refcrences to the temporary by references to the Ihs aiter the CD:\ t ransformatioii.

0 Ternporary variables that ivere been introduced can be reused i n subsequent loops. This is

possible sincc the tcmporaries are intended to store only the results inside a loop. and tliesc

resiilts arc riot needed outside t tie loop.

Tcniporary arra'es arc typically initially chosen to have the samc dimension arid size as the

iterntior~ space. sincc t tie su bespressions t hat generatc values for t tic ternporaries potcntially

have a riew value i r i each iteration. The dimension and sizc of the temporary arrays can

be reduccd follon-ing the CD;\ transformation. it is onl!: necessary to have as man'. storagc

locations CU ttiere are iterations between \vheii tlie temporary is defined and ivhen it is used.

For simple offset alignnients. the size of the temporary arrays can be just a fraction of t hc

size of t lie iteration space. For esample. consider the decomposition of a statement S i n (z

tu-O diniensionai loop into statenients SI and Sa. The results of SI are stored in a teniporary

array t . LVhen statcment Si is aligned to statenient S;! along the outcr Ioop level by an offset

c. thcn t nced only be of size c x n. assuming n iterations in the inner loop.

Application of CDA to Reduce Number of Cache

Conflict s

Arms on armour clashing bray'd
Horrible discord. and the madding wheels
Of brazen chariots rag'd: dire was the noise
Of conflict.

- John .\lilfon. Parndise Los!

5.1 Reducing the Number of Cache Conflict Misses

In t his cliapter. we show the application of C'D.4 CO reduce t tic number of conflict misses i n the caclie.

C'ache conflict misses occur when different memory references m a p to the samc location in the cache.

C'onflict misses can d ras t i ca l l~ reduce the caclie hit ratio and thus significzntly increase esecution

times. Tlierefore. reducing the number of cache confiict misses for improved cache iitilization is an

important optimization objective.

Traditional techniques uscd to reduce the nurnber of cache conflicts modify the Iayoiit of arrays

in memory. . - L m y pudding is one stich t.eclinique. wtiich modifies the array layout by nianipulatirig

ttic array sizcs [S. G] . C'ache pnrtitioning is a more recent technique. !\.hich modifics t hc array

layout by iritroducing a suitable number of diiinrny locations between the arrays [XI]. Bacon et

al. clescribe an algorithm to derive a silitable array padding to remove cache conflicts in irinerrnost

loop iterations [.il. The cache partitioning algorithm. on the other hand. considers cache conflicts

arising i n al1 levols of loop nesting so as to remove cache conficts bet~veen rcusable portions of

arrays. 1-Iowever. modifications to the array [ayout are global changes. The objective of this

chapter is to show how CD.4 can be used as an aIternative technique when global changes to the

array layou t are undesirablc.

In order to determine the location of array elements in the meniory and cache. we need to be

able to represent the number of e l e ~ e n t s in an array betwecn the first element and a chosen element -
of the arrqv. For this purpose. we use an integer vector. C- = (c i v ,) ~ . called the mapping

rwtor such t hat L'; is the size of the m-dimensional array dong array dimension i + 1. and cm is -
1. Ttien. the array element accessed using reference rnatris r in iteration 1 is r r - array elements

av-ay from the first element of the array. AS an instance. the mapping vector for a trvudiniensional

n x rz array is CI = (n . 1lT and reference . - l(i . j) in itcration (10.5) accesses an elenient wliicli is

10n + 5 eIernents away frorn elernent .4(I . 1).
4

.A conflict in a direct-mapped cache is depicted in Figurc .S.l(a). A n array access i n iteration I

with reference rnatris R I maps to mernory location .\IL = CPi + Ri Ï- r. where CFi is a constant and

is the mapping vector. A second array access in iteration 7 with refcrence iiiatris R2 niaps t o
-. -

niemory location J I 2 = C:! + R-l \-.' .-1 cache conflict occurs for tliese two accesses il the cache

geornctry is such that both .\II aiid JI2 map to the same cache line.

The cache conflict stiown can be eliminated by sriitabiy rnodifying the riiirnber of elenients

hetweeri .\Il anci .\12. so that the accessed data elements rnap to different caclie lines (Figure ri. 1 (b)).

AIodifying kr changes the array sizes. and is referred to as intra-array padding: tliis is achieved by

clianging the declaration of the arrays to becorne larger along one or more dimensions. LIodif'-ing

ttie C','s changes the placement of the arrays i n rnernory and is referred to as inter-array padding:

tltis is achieved by inserting durnrny variables between the array declarations.

Ttie main idea bcliind using C'DA to reduce the niimber of cache conflicts is to spread t h c

çonflicting accesses of an iteration into different iterations. \\'hile modification to array layout

itioves conflicting array accesses apart in S ~ C I C E . CD:! nioves conflicting array accesscs apart i n

tinic. In t tic csamplc ive are considering. t h e tirne (i n niiriibcr of iterations) bctwen the access

to .\II and acccss to cari bc changed by aligning the statemcnt containing R2 relative to tlic

statcment contairiing RI. In othcr words. the statcments coritainirig RI and K2 can be aligned so

that R i and the aligned R2. R;. do not access .\Il and JI2 iri the sarne iteration: i n iteration r. R i

11-oulcl continue to access -\II. whereas Ri would access a new location -\-. In Figrire 5.1 (c). R2 is

clianged to Ri so tliat the new mernory location .\I; = + R>. i I' and .\Il niap to different cache

Ii ncs.

The folIowing sections show how a CD-4 transformation can be efficiently derived tliat reduces

the nuniber of cache conflicts. [t uses an algorithm that is sirnilar to the one used to find appropriate

arr- paddings [ri]. In the nest two sections. we describe a representation of caclic conflicts and a n

algorithm that uses this representation to derive a CD.4 transformation. In the last section of this

chapter. we compare the application of CD.A and the application of array padding to reduce the

' \33hout loss of generalization ive can assume here that arrays have the samc sizc.

Cacne Cache

Mernory Memary Memary

accesses cl Cunliia mrnovai ~y
CDA transformation

Figure .S. 1: Reduc i~g cache conflicts ~vith modification to array Iayotit and CD:\.

niim ber of cache conflicts. In Ctiapter S. we providc esperimental results cornparing the effectivcness

of ttiese two techniques on esaniple nested loops.

5.2 Representation of Cache Coiiflicts

'The dctection and reprcsentation of caclie conflicts is. in general, comples. \lé represent ttic cachc

conflicts i n a loop [vit h a ronflict grclph C; = (1.-. E) . wtierc I - is the set of array rcfcrcnccs i n tlic

loop aiid (I L . L') E E when accesses to i l and L' result i n a cache conflict for a given (i.e.. first)

iterntioti and for a gi~-en cactie gcotnetry. Althoiigh ttie conflict graph is a simple reprcsentation.

i t siiffices to characterize ttie cache bcliavior ~vitti respect to cache conflicts. This reprcsentation is

iiseful based on two niain observations which padding algorithms ha\-o also esploited. First. cachc

conflicts are rnost espensive when they occur duc to acccsses in the sanie iteration: ttiese should

tticreiore be the main target of elimination. Second, iterations tend to be iiniiorrn in tliat tliey al!

have siniilar betiavior witti respect to coriflict misses. Ttierefore. it suffices to represent the caclie

conflicts of just one iteration. such as the first. The uniformity ensures ttiat the transformations

bascd on analyzing these conflicts \vil1 typically be effective across al1 iterations. Figure 5.2 shows

ttie confiict graph for a loop body containing the following statenient:

Figure 5.2: Conflict graph for statement S.

(assuming the d a t a and cache sizes are such that the shown conflicts occur).

For this discussion. tve assume that the cache is direct-mapped. This reduces the complexity of

the decomposition problem and also makes the sotution resilient to the order of references. patterns

of variable reuse and dependence constraints on alignments. The derived CD:I is still effective

for other cache geometries. since accesses thzt do not usually conflict in a direct-mapped cache

also do not conflict in caches of higher associativity. 14oreover. the algorithm can be cxpantlcd to

account for other cache geometries in a straightfort\-ard manner by modifying the steps to dcrive

computation decompositions.

.-I CD=\ transformation of a loop modifies its conflict graph. C'ompu tation Decomposition can

be v iewd as a partitioning of the conflict graph. and Computation Alignment adds or rernovcs

edges i n the graph as tlie references in partitions are aligned. The goal is to derive a CD-4 wliich

minitnizcs the number of edges in the conflict graph.

5.3 Derivation of a Suit able CDA Transformation

.-\ VD.-i transformation to reduce cache conflicts may be derived in a number of ways. Bottom-up

and top-down represent tn-o estreme approaches. In a bottom-up approach, statements might be

decomposed do\vn to t hc granularity of individual references before they are aligned. LVhile this

approach maximizes the search space for alignment. it also leads to an estreme number of alignment

possibilities with correspondingly high search complexit,y: the transformed loop body invariably has

rrlore statements than necessary. In a topdown approach. the decomposition would be determined

by a heuristic before applying Computation Alignment. but because a heuristic is being used. this

approach may not espose all optimization opportunities.

In this section. we consider a "hybrid" approach: a heuristic is used t o determine an initial

decomposition as in the topdown approach. but statements may be further decomposed ivhile

searcliing for alignments in order to increase the size of the search space when necessary. In this

approach. the overhead of decomposing additional staternents is incurred only when it is necessary

t o espiore additional opportunities to redvce the nurnber of conflicts.'

5.3.1 Initial Computation Decomposition

The number of ways a statement can be decomposed is esponential in the number of array refer-

ences. Algorithm -41 of Figure 5.3 heuristically derives an initial decomposition of a statement.

using a greedy approach. It partitions the conflict graph into independent sets. ~vhere a set contains

references that only conflict with references in other sets. The nurnber of indcpc~icient sets is kept as

srnall as possible so that the complesity of the subseqiient alignrnent and t lie number of temporary

variables nceded is reduced. The algorithm does not attempt to partition the conflict graph into

t lie rnininiurri number of independent sets. because the problem of îinding t lie nchromntic nunibcr

or the minimum niimber of independent se ts of a graph is NP-cornpletc [XI].

Each iteration j of Step 2 estracts a ninxirnal independerit set I; from the remaining rertices of

the conflict graph. Step 3 chooses the first vertes of this set as the one witti the smallest degree (i.e..

having the fewest conflicts) from the remaining vertices of the conflict grapli. Step 1 constructs the

subset. C-. of al1 vertices ivhich do not have a comnion edge with any 1-ertes i r i I ;. The menibcrs of

I' are al1 candidate verticcs tlizt ma- be added to I;. The vertes in C- witii the srnallest degree is

chosen and aclded t o I ;: a t the same time it is removed froni the conflict graph. IVhen I - is ernptjv.

tlien tliere are rio niore vcrtices to br added to I ;. Iértices witti smallest degree arc clioscn froni

(' (arid addcd t o \ ;) because t h i s increascs the chances t hat inore vertices can be added to \ ; in

subsequcnt steps. since thcre are a Iarger nuniber of rerticcs left outside I ; which do riot have a n

edge witli the vertes with sniallest degree.

.Algorit hm .-I 1 partitions the conflict graph of Figure 5.2 as sho~vn in Figure 5.4. The decom-

posed loop body corresponding to this partitioning is:

The references ir i each of the statements are confiict free. and hence the conflicting references of

the original statement were distributed into the two statements.

2iVc continue to assunie that the array referenccs are affine functions of the iterators. Thus. the subscript functions
rnay be coupled, although they tend to be simple when cache confiicts occur uniformly in dl iterations. The subscripts
in some array dirncnsions rnay be independent of the iterators. The array and loop dimensions may be diflerent.

Algorithm : .4 1
input: Statenient 57
output: Initial Computation Decornposition
bey in

G t (I,: E) . such t h a t
I' 5 references in S. a n d
(r r . c) f E i f f rr and c conflict i n cache

] = O
lorîp

j t j + l
I) t { c) where c E I' h a s srnallest degrec
repent

I - t {IL! 1 Vu E I ; . (u . u ') 4 E)
r. t rcference with srnaIlest degree in 1'
ri t ü { r)
I- t r - - { r)

l t r ~ t i i c . = O

~ n d loop
end

Figure 5.3: Algorit h n i .-Il derive initial Conipu tation Decornpositioii.

Sote tliat tlie confiict graph does not haïe vertices corresponding to temporary array references.

This is because temporary variables are eithcr rc-indexeci or chosen to have suitablc size so ttiat they

do not introduce new set of conflicts. Tlius. Computation Decornposition itsclf does not i n troduce

additional coiistraints on Corn pu tation Alignment.

5.3.2 Deriving t h e Computation Alignment

Alter the initial deconiposition. \ve searcti for the Cornputation Alignnient that minimizes the

numbcr of conflicts. \\.é consider oiily integer offset vectors for alignrnent. This has two advantages:

i) Tlic soarch for offset vectors is significantly sirnpler than a searcli for d l alignments. Con-

sidering al1 possible alignments would be inefficicnt. since potentiallx al1 (n + 1)-diniensional

non-singular integer matrices would have to be esarnined for eacli of the staternents in the

loop body. In contrast. the search for offset vectors involves the search for only TL integer

values for tlie eiements of the vector.

Figure 5.4: Initial decompositions of confiict graph for statcment S.

Alignment by offset vectors can be as effective as general non-singular integer mat rices in

reducing conflicts. This is because the objective of a transformation is to modify tlie distance

(in tinie) between conflicting accesses. It is not necessary that this distance be a general

Iinear function of iterators.

i i) Align ment by integer offset vectors produces more efficient t ransformed code t han alignment

by general non-singular integer matrices: the Ioop bound expressions and the a r r q refcrences

tend to be simpier. and guard elimination techniques can be more effective ivith tlie majority

of t Iie iterations csecii ting ail statements.

In order to slio~v tiow integer offset alignnients can be founcl. consider again the initial decom-

position of statcment 3':

To rcdiice the number of cache conflicts. the array accesses in SI can be moved in tirne dong the

i iterator relative t o array accesses i n S2. Assuming a row-major storage order. our first atternpt

should be to align cornputations (i + 1. ,:Si) to (i. j ; S 2) , which changes reference B (i . j) in Si

a 0 B(i + 1. j) and reference B(i - 1. j) to B (i . j). IVith this alignment. the statements continue

to Iiave conflicts. nameIl between B(i + 1, j) and . 4 (i + 1. j) and between B(i , j) and .-t(i. j) . so

further alignment is necessa-. Continuing i n this fashion, al1 conflicts can be eliminated i n this

case by shifting t h e SI computations furtlier. aIigning (i + 3 . j: SI j to (i. j: Sa). Tliis transformation

produces the new loop body:

Note that the subscript functions in the references to the temporary t may have to be changed

suitably so as to not introduce any conflicts. A n alternative is to choose a non-conflicting size for

t .

Statenients SI and S2 can also be aligned dong the the j iterator to eliminate the corifiicts. I n

this case. hoivever. it tiirns out that the value of the offset has to be the num ber of array elements

in a cache line.

This technique to find a suitable Computation Alignment for reducing the number of cache

conflicts is sirnilar to the technique used by padding algorithms. In order to climinate the conflict

in statement S . padding algorithm woiild typically add a dummy row betwen -4 and B. but this

will just cause conflicts between .-l(i+ 1, J) and B(i . J) and between .-l(i. j) and B (i - 1.1). sincc

B(i . j) and B (i - 1. j) are noiv mapped to locations previorrsly occupied by B(i + 1. j) and B(i . j).

respectively. Adding two more durnmy rows between .-t and B removes al1 conflicts.

Algorithm -42 of Figure 5.5 uses this technique to searcli for suitable offset alignments for each

statement so <as ta rniriimizc the number of cache confficts. An esIiaustivc searcli for alignnieiiis

is not practical for larger loop dimensions and loop bodies. since thcre are csponentially nianu

possible offset alignrnents. For esample. ~vitli !< statcnients in the deconiposcd loop body and C

integer offsets for eacli of the n dimensions of legal offset wctors. n-e \voiild nccd to csaniine c'""
alignments. Sloreovcr. C' can be very large in practice. Hencc. algorithm -42 uses tecliniqucs similar

to those of array padding algoritlinis to heiiristically align statemcnts in a more eficient ivaj.. -Hie

staterncnts are aligned i n sorne sequence. and once a statcrncnt h a s been aligned. it is rio longer

clianged. This is similar to hon- padding algorithms work: the padding betiveen two arrays is not

changed oncc set. and especially not due to paddings between ot lier arrays t liat are set Iater. This

is a greedy approach which is polynonial. but i t niay not produce an optimal solution in that it

niay not bc able to climinate al1 conflicts. Our algorithni refines decornpositions a t the point where

it is deterrnined that it is not possible to eliminate all conflicts with this heuristic and the original

decom posi tion.

In algorithni .42, each iteration of the outer while-loop of Step 1 dcrives a n integer offset

t'ector n for a statement Si of the loop body. The order in which statemcnts are considered is

not important,. since the transformations are relative and decorn positions are iteratively refined.

Initially. al1 elements of vector a are zero. implying no alignment. Step 2 creates a list of candidate

i npu t : Decomposed loop body wi th statements Si . . . 5~
output: Integer offset alignment for each statement

1. whiie there is a statement Si to align
nT c [al.. . . . a , . 11. with aj = O. V j

+ 1 i a] / / T, is an alignrnent transforniation for S,
SaUr + C1

2 . Construct a l i s t of candidate iterators that appear ici the array refcrences of 5, .
3 . O d e r the iterators in the list.
-1. f o r each il in the l i s t
-3. zrhile conflicts osist due to Si referenccs iising ij
tj. u-hile T, is legal and conflicts esist due to SI rcferences using i,

n, t a j - 1
end u-hile
ri + [I 1 a]
if Ti is illegal l h e n
/ / attenipt ofi'sets in opposite direction

aj + O
u-tlil~ T, is iegal and conflicts esist duc to S, references using i j

U J t '1, + 1
~ n d whilrc

end i f
T, +- [I j C I]

i f T, is illegal fherr
aj +- O
r, + [I l .]
R t set of refercnces in Si whosc deptndcnccs are violated
if R contains al! references in Si then

h r ~ a k out of innerniost n-hile-loop

d ~ c o n ~ p o s r Si so that S,,,,, contains ali references in R
e n d if

~ n d if
end w h i l e
if ail conflicts 1v.r.t. Si references are elirninated t h c n

break out of for-loop
end if

end for
end ushile

Figure 5 .5 : .-ilgorit li rn .-L2 to derive aiignments t hat reduce cache conflicts.

itcrators for alignment. The list contains only those iterators used in the array references of the

current statement Si. 1.t.e need to consider only t hese iterators. since the da ta elements accessed in

a loop are invariant ncross iterators absent in the array subscript f u n ~ t i o n s . ~ From t his list. ive also

esclude tliose iterators that are useful in eliminating cache c~nf l ic t s .~ An iterator i is not useful iri

eliminating confiicts if for every reference r in statement Si. array elements r i a n d r'Ï rnap to the
4

same cache line. wlien r' is obtained by replacing every occurrence of i i n r by i + 1 and 1 is an

iteration (such as the first).j

Step 3 orders the iterators in the list heuristically. taking into account such factors as parallelism.

variable reuse and the sizes of the temporary arrays. For esample. ordering the list from innermost

iterator to outerrnost iterator tends to preserve outer loop parallelism. since the dependences that

alignnient ni- introduce will then tend to be a t the inrier loop levels. This ordering also reduces

thc sizes of the ternporary arrays. When the target architecture is a uniprocessor. ordering frorri

oritermost iterator to innermost tends to iniprove data reuse. This is because aligninent alorig the

oiitcr iterators nioves the conflicting accesses fartlier apart in time than if the alignment u-ere dong

the inner iterators. Siich an ordering increases the probability tliat a n array reference involved

in the conRict is not moved to an adjacent iteration where it confiicts with previously accessed

data elements tliat may be rcused. \Vhen both data reuse and parallelism art' important. as oti

shared riiemoru systenis. tlien a combination of the above two orders should bc applied. Aligning

ttie non-parallel iterators preserves parallelism: and arnong the non-parailel iterators. aligning the

oiiteriiiost iterator first irnprovcs data reuse. It shoiiid be noted. Iiowever. ttiat the order of itcrators

i r i tlie 1i.d cloes not affect the abiIity to remove cache conflicts.

For eacli iterator i, ir i the lis!. tlie loop of Step 5 considers al1 legal offsets to deterniiiie whether

the': remove conflicts. The search stops wtien there arc no conflicts due to Si references or wlien

dependences preveiit fiirther alignment. Both negative and positive offsets are considered. The

positive offsets niove ttie computations of Si earlier in time wi th respect to dimension i,. whilc

the negative offsets niove the computations of Si later in time with respect to dimension i,. Step

O: iteratively tries larger and larger negative offsets along iterator i j , until there are either no

inore confiicts due to the Si references using ij or the alignment beconies illegal. The offset is

"or inst,mce, in a loop with i. j and k iterators and a refcrence . 4 (i , k) , only dignments d o n g i and k have an
effect. Clearly. cache conflict between array references that use onIy constants. such a s --If L, 1) and B(1, 1) cannot be
climinatcd as the sarne elements are acccssed in al1 iterations, and array padding wouid have to be iised in tliis c~ase.

'LVe need to eliminate these, CO prcvent infinite iterations in the algorithm.
5 L ~ h e n itcrntor i indexes into the last dimension of the array referenced by r. then r' is obtziined by replacing

cvery occurrence of i in r by i + 1. wherc 1 is the number of array clements in a cache line.

generally decremented by 1 a t a tinle, but as an optimization. the offset could be decremented by

the size of the cache line n-tien the iterator indexes into the last dimension of a n arrau. \t'ben the

transformation Tt being considered is illegal. then larger and larger positive offsets are tried in Step

7 . Gerierally. the offsets required in Steps 6 and 7 are typically srnail. just as paddins typicall~

requires only a srna11 constant nuniber of rows/elements. so tiiat only few iterations of tliese steps

s hou ld be necessary.

There are two cases to considcr in Step S when Steps 6 and C cannot find a legai aiignrnent

Ti. \C'hm dependences are violated for al1 references i n S,. then ive revert back to a zero offset

by breaking out of the \vt.-ile Ioop (to try offsets along other iterators in the lis!). The second

case to consider is when Tt violates dependences for only .sonle references i n Si. but is legal for

the reniaining references. i n tliis case. we refine the decomposition t o isolate t hose references t hat

cause Tt to be illegal into a ne\vly created statement S,,,. Staternent S,,, is aiigned separately

i n a later iteration. and the search for an appropriate alignment for the now smalIer statement S,

corititiues. (It ma! be necessary to continue. because the illegal T, riiay have stopped iterations of

Steps ti or 7 before al1 the conflicts were eliminated).

As an esatnple of refining a decornposition. consider the alignmerit of statenient S which was

decornposed earIier into the follo~ving staternents SI and S2:

:\ligiiing conipritatioris (i f 1. ;:Si) to (i . j : Si) changes refercnce B(i . j) to D(i + I . j) and rcferericc

B(i - 1. j) to B(i. J) . Suppose this violates dependences between Si and anotlier statement in the

loop body. 5ay duc to reference B (i - 1. j) . Step 8 t hen decomposes Si. so that the new statcmcnt

Sa,, contains B(i - 1. j) .

At this point, t here are still conflicts between references .4(i. j) and B (i . j) and references .4(i - 1. j)

and B(i - 1.1). Therefore. the nest iteration of Step .5 aligns Si so as to change reference B(i . j) i n

staternent Si to reference B (i + 2. j) . effectively eliminating the conflict between .4(i. j) and B(i . j) .

Statement S,,,, is then later aligned i n a subsequent iteration of Step 1. atong the j iterator. One

such alignment along the j iterator will change reference B(i - 1. J) to reference B(i - 1. j + 1) .

wtiere 1 is the size of the cache line.6

The initial decomposition in Algorithm .4 1 ensures that there are no conflicts tetween references

wittiin any single statement of the decomposed loop body. This allows each statement to be applied

as large an offset alignment as required to remove the conflicts. On the otlier Iiand. if the original

loop has dependences. then .-I î and .-l? ma? only reduce tlie number of confticts. but not reniove

t hem all. The impact of dependences on the algorithms can be sumniarized as follows:

i) CD.-\ transformations derived for loops ivith dependences will generally have morc deccrmp*

sitions than the transformations derived for loops without dependences. This is because any

ciecornposit ions will be furt her refined tv heri a candidate alignment violates a dependence.

ii) Deperidences with larger elemerits in the distance vectors allmv larger offset alignrncnts. This

is becairse larger elements inipiy that the dependent iterations arc farther apart in tinie. so

t Iiat there are a larger number of iterations into ivfiicti array accesses can be moved.

iii) \C'hile aligriirig decom posed statements. flow dependences are stricter const raints t h a n anti-

dependences. Cl'it h an anti-dependence. the read access can be moved to any itcration before

the iteration in wliicli corresponding n-rite access occurs. n-iiereas with a flow dependencc.

tlie carlicst a read access to an array eiemerit can be is in t h e iteration i n which tlie elcment
-

is written.'

i r .) :\ flow cicpendcnce i n t lie i n ncrniost dimerision. sucti <as bctu-ecri referericcs .-l (i. j) and

.-t(i. j - 1) in a 2-dimcnsional loop nith j as its inner iterator. is a vcry strict constraint.

This is because the only alignment possible (ot her t han the identity t ransforniatiori) modifies

.-l(i. j - 1) to .-l(i. j) . On the ottier hand. a dependence between .S(i. j) and .-t (i - 1. J) I ~ î s

sevcral legal alignnients dong the j iterator (aiid only one along the i iterator).

5.4 Coinparison of CDA with Padding

LIodification of t lie array iayout using padding is relativelÿ easy to iniplenicnt and can be ver-

effective. Howevcr, it does have a number of drawbacks, and CD-4 chil be used as a n alternative

G?!ot~ that if dependences due to ail references in Si were violated. then Step -I wodd align SI along the J

dimension.
'WÏth a fiow dependence, the read access in a decomposed statement cannot be moved later in timc. sincc doing

so would violate the flow dependence on the temporary ~~a-iables.

--
î 1

technique when t hese drawbacks prevail. Some of the drawbacks of modifying t hc array layout are:

It changes the da ta declarations. so it h a s a global effect: an effective padding for one loop

can introduce interferences in another loop.

There are situations where modifying the array Iayout is illegal sucti as whcn the program

accesses an array in a shape different than the one declared. For instance. n2 elements rnay

be accessed in the sarne program bot h as an n x n %dimensional array and as a n' elernerlt

liriear array ivit h anot her namc. T hese situations are difficult to identify [vit hout intcgrated

support for inter-procedural analysis.

Array paclding cannot be adapted to suit a range of data sizes. sincc it shifts the data size

for ivhich interferences occur by just manipulating array sizes. Therefore. it is not possible

to ensure conflict-free cache behaviûr for a range of data sizes.

CD:\ cari be emplo~ed in place of and in conjunction with the previously esisting techniques. In

t his regard. C'DA lias soiiie advantages:

I t makes orily local changes. so unlike padding. it does not introduce additional global coti-

straints.

Çince it does not change the data declarations. progranis relying o n t he original layout of

arrays \\-il1 work correctly.

To support data sizcs that are iinkno\vn a t compile time, it is possible to gcnerate multiple

CD:i-transformed loops and then dynamicatly choose an appropriate one a t run-time when

the data sizes are kno~vn. Such an option is not possible tvith padding.

T tie application of CD.4 to reduce the number of cache conflicts also has some disadvantages:

CD=\ transformations rnay not be able to eliminate al1 the cache conflicts in the loop in the

presencc of dependences.

CD:\ transformation rnay not eliminate cache conflicts that occur in the outer iterations of

the loop.

CD.4 transfornied Ioops require additional storage space for the temporaries and in fact

incrcase cache footprint. The transformed loop also incurs overhead due to refercnces to

temporary array ekmen t s (whicti are designed to be cache hits). However. t tiese overheads

can bc optimized as described in Section 4.3.

CD?\ trarisformed loops can be much larger than the original loop and hence they can take

longer to conipile.

Overall. our esperiments of Chapter S show tliat loops with cache conflicts removed through

array padding tend to r u n somewhat h t e r t h a n code with cache conflicts removed ttirorigti CD.-\

transformations because of the overheads CD.4 introduces. Sonet lieless. CD--1 is effective i n signif-

icantly improving the run-time of loops with cache conflicts. as it is iiseful for those cases tvhere

array padding cannot be iisefully employed.

Application of CDA to Remove Ownership Tests from

SPMD Codes

I pass by that way in the gloaming with Mary;
' 1 wonder,' I Say. 'who the owner of those is'.
'Oh. no one you know.' she answers m e airy . ..

- Robert Frost. .-l skrng for Roses

In a parallel programnihg ent-ironment. such as for HPF [183. data and computations arc

niapped onto tlie proccssors i n t ~vo steps. First. eitfier the user or an autoniatic tool aligris and

maps the arrays orito the processors. Then. t lie computations are mapped ont0 t hc processors

dcpencling on how the data was mapped. The compiler generates a single SPSID (Single Program

~lii l t iple Data) program t liat is to be cscciited by d l processors. This prograni ims a c o n l / ~ ~ ~ t ~ l t i o n

ruk to dynarnically dcterniinc at run-time $*hich computations to esecutc on ivhicli processors.

given the data the>- own. One computation rule. ivhich is useci alniost escliisivtly. is t lie oirner-

ronlpilt~s riile. \\.'ith tliis rule. a statement is esecutetl on tlie proccssor ttiat owns the Ihs data

clenierit of ttic statenierit. For ttiis purpose. an intrinsic function is needrd for eacti procpssor to

csecutc t lie tests for on-nership i n ordcr to dccide ivliet ticr a statenient i n an iteration sliould bc

esccutcd or not [lS. 'LI]. Tlius. the efficiencj. of SPIID code deperids i n part on:

(i) tlic number of non-local accesses eacli proccssor nius t pcrforni. and

(i i) thc overhcad of t lie chosen coniputation rule: i n particular. Iiow often otvrierstiip tests niust

be esecu ted.

By choosing a computation rule ottier than owner-cornputes it niay be possible to improve

the efficiency of SPLID code significantly by reducing the number of non-local accesses. For this

piirpose. we first define -4cxible coniputation rules i n ttiis chapter. called P-contpt~tes rides. P-

computcs rules are more general than the owner-computes rule in that they consider the location

of al1 the data needed for a coniputation instead of just the Ihs. For simplicity. ive also refer to the

intrinsic functions used in iniplernenting flesible coniputation rule as ounership lesls. We tlien show

how the efficiency of SPMD code can be further improved by reducing

tests using C'DA transformations.

I t is possible to improve the esciency of SPXID code in a separate an(

the number of ownership

1 later phase by additional

optimizations such as inserting collective communications. The efficiencj. of SPIID code can also

be improved by applying subspace analysis developed recently by Knobe C2.57. I n this contest. CD.&

can be viewed as a transformation capable of reducing the natural subspac~ of the loop body.

I n the first section. we introduce P-cornputes rules. whicti can be used to map computations

ont0 processors so as to minirnize cornmutiication. In Section 6.2. we describe tiow ownership

tests can be rernoved by using data alignment and CD.4 transformations. in Sections 6.3 and 6.4

ive describe an aIgorithm to derive CD.4 transformations that remove ownership tests i n SPAID

progranis which use P-cornputes rules. In Chapter S. ive provide esperimenta1 resuIts to show the

effectiveness of applying CD-A to reniove ownership tests.

6.1 P-cornputes : Flexible Computation Rules

Coniputation rules. such as t hc owner-corn putes rule. can be called fird compirlation e des in t hat:

(i) the- do no& consider the locations of all the data elenients accessed in the cornputations of a

statenien t.

(i i) the rtilcs are applied at the granularity of entire staterncnts. and

(i i i) al1 the statcnients i n a prograni are (typically) mapped using the same riile.

Fised computation rules do not result i n optimal mapping of coniputations because the fised coni-

putation riiles do not corisider the locations of al1 the data elements accessed in t h c cornputatiori.

For csample. witli the owner-cornputes rule. the computations of a statement are esecuted by the

o\vner of the array element on the Ihs of the statement. even though fe~*er non-local accesses may

be required if esecuted bz the owner of an array element being accessed on the rlis of the statement.

The appeal of fised coniputation rules is that they are simple. and not that they are communication

optinial.

Flesible computation rules. on the other hand. are more generaI than fised compu tation rules

si nce:

fi) they can consider the locations of al1 the data elements accessed in the computations i n

question.

(i i) they can rnap individuai subespressions ont0 processors and not just entire statements.

Flesible computation rules provide more opportunities for optimizing conimunication. because a

computation cati be rnapped ont0 the processor which owns most of the data elements needed to

execu te the corri pu tation. T herefore. flesi ble corn pu tat ion rules are significan tly more powerful

t han fised computation rules.

I n this section. ive introduce flexible cornputation rules called P-computes rules.' These rules

are specified by :<, operators. which are inserted into the code either by the programmer or by a

restructuring compiler. An expression wit h the .:3 operator. ,:3p (e x p r) . specifies t hat tlic espression

c x p r is to be esecuted on processor p. In general. p and çxpr arc functions of the enclosing loop

iterators. and expr may also contain other :$ operators.

In 8, (e r p r) . function p is typically cliosen so as to rninimize communication ivhcn esecuting

expr in the current iteration. If expr is an entire statement. then the result of rhs is to be sent

froni the processor it is esecuted on. namely p. to the owner of the Ihs who performs the and

hssignment. I f t rpr is a sub-espression. then the result of esecuting : z , (~ x p r) is sent froni the

processor designated by p to the processor designated by the enclosing :<) operator.

The specification of p in :$, (expr) can be either direct, where the idcntity of a processor is

tlircctly specified as a fu~iction of the iterators, or indirect. where the processor is indircctly specified

i n ternis of the location of array elenients. Direct specification is powcrful. but non-intuitive.

Indirect specification niakes the fiesible rules a nattiral estension to the oivrier-comprites riile. It

&O ctiables reasoning about the riiapping of computations relative to the array elenients uscd to

specify mapping. For instance. if the array elements used to specify the riile are CO-located. then

ive can reasoii t hat t lie cornputations will be esecuted on the same proccssor a5 well.

Indirect specification is achieved t hrough an intrinsic. o w n e r (c) . whicti ret urns the processor

that oiv~is data element e. This intrinsic is similar t o iown(e) . whicli is used by t lie owner-cornputes

rule and evaliiates to true on the processor ttiat owns da ta elenient c and FaIse o n al1 others. In

fact, i o w n (~) is equivalent to the conditiorial (myid = o w n e r (e)) .

The :2 operator is very generaI and can be used to express a varicty of cornputation rules.

' P is for Processor.

The first esample implements a rule eqiiivalent to the owner-computes riile. The second esample

specifies the processors directly a a function of the loop iterator. v-hereas the mapping is indirect

in the Icxt esarnple.

The techniques presented in this chapter assume that the oivners of computations are specificd

iiidirectly. For brevity. ive sornetinies use to mean 1)) .

The derivation of t lie optinial coniputation rule is cornputationally hard (alt hough it is possible

to dcrive optinial coniputation rules automatically for restricted classes of espressions and machine

topologies [13]). .A programmer usually lias much better insight into tlie application. so slie is most

suitable for specifying the rules. It is possible to derive optimal corn pu txtion rules au tomaticallj*

for restricted classes of espressions and niachine topologies [13].

The choice of which flesible computation rule to ilse is often a trade-off between tlie opportiini-

ties for conimunication optimization and the sirn plicity ivit h whicti SPAID code can be irnpl~rnented.

For esaniple. generating efficient SPSID code with flesilde computation rules is more cornples than

with fised computation riiles: the reniovai of ownership tests becornes niore clialleriging. sincc eacli

sri b-espressiori may be niapped differently. In the sectiori tiiat f o l l o ~ ~ s we show tiow CD.\ can be

iiseti to red uce t lie irit rinsics associated wit h P-computes rules. TIic techniques are clcar!- also

applicable i n tlie contest of a fised cornputation rule siicli as owner-coriiputcs.

6.2 Removing Ownership Tests in P-cornputes rules

I r i this scctioii. we show how oivnership tests i r i P-cornpritcs rulcs can be rcnioveti. first by iising

data alignnient and thcn CD.A transf~rrnations. To show how the ovcrhcad rassociated witli

oivnerstiip tests can affect t h cfficiency of SP'clD code. consider the loop on tlic left hand siclc of

Figure 6.1. The coniputations arc to be mapped onto P processors niimbcred frorri O to P - 1.

h s u n i c tliat the arrays are aligned so that .-t(i. j) and B(i . j) are CO-located. and tliat the arrays

are distributcd so t liat roivs i of .-t and B are mapped ont0 processor i dic 6 . and 6 = r;]. Eacli

of the P processors contain b consecutire rows of .-l and B.2 The indirect P-corriputes rule iii this

case happens to be equivaient to the owner-coniputcs rule. Each processor esecutes cvcry iteration.

ancl a processor esecutes SI or S2 only whcn it owns the Ilis array elements.

This SPAID code is inefficient (even if it minimize communication). since a niajority of the

'Thc boundary processors O and P - L may contain fewr rows. For simplicity. we will asurne here that P dividcs
n evenly.

align B (j , i) to .-l(i. j)
for r = 1.n . . - for 1 = p * b . (p + 1) * b - 1

for j = 1 . n for i = p * b . (p + l) * b - 2 for J = 1 .n

s : * , , (. j = - - -) for ; = 1 . n SI : . 4 (t . j) = . - .
Sn : V O , , C ~ ~ B (J , I)) (B(J , 1) = - - .) SI : . - I (i .1) = . . . Si : B(2, j) = - - .

end for S2 : B (j . 1) = ... end for
end for end for end for

end /or

Figure 6.1: SPhID codes for an esarnple loop.

iterations esccuted by the processors do not need to esecute either the SI or S2 coniputations. In

particular. processor p has computations to esecute iii only 2bn - h' of the n2 iterations3 in the

otlier iterations it esecutes oiily oivnership tests. Out of the 2bn - b' iterations. only b' iterations

have hoth Si and S2 cornputations. Some bn - 6' iterations have only Si cornputations and the

rcmaining bn - 6' iterations have only S2 computations.

This SP3fD code can be optirnized a t compile-time to minimize overtiead at run-time. Our

objective is to rnodify t lie code so tliat:

(i } al1 cornputations of an iteration are to be performed by the same processor. and

(i i) a processor csarnities only those iterations wtiere it is guaranteed to firid work.

In the idtal case. wtien thesc objectives have bcen achieved. t h e n a processor will esecutc only

ttiose iterations that have been allotted to it. without requiring an- ownerstiip tests a t ail. These

objectives can often be achieved through appropriate data transformations or code transformations.

Consider first removing ownerstiip tests througti data alignment. Thc arrays mferenced i ~ i the

Ilis of the statcrnents c m be aligned (or re-aligned) so that the same processor owns al1 I tis elemcnts

of an iteration. The loop bounds can t h e n be rnodified so that each processor scans only the subset

of the iteration space that contains the Ihs data elements local to the processor.

The SPSlD code on the left tiand side of Figure G.1 can be optirnized to the code in the nziddle

of the figure using proper data afignrnents. In this case. arrays .-1 and B werc re-aligned so that

B(j l i) and .4(i, j) became CO-located for every i and j in the array bounds. Using the function

that maps the rows of the arrays ont0 processor. the lower and upper loop bounds are derived so

as to scan only the iterations that access local elements of the lhs arrays. In this case. the loiver

and upper bounds for processor p are p * b and (p + 1) 1: 6 - 1. respectively.

3~rocessor p has cornputations CO execute only in iterations (i . *) , where i dit1 b = p. and in iterations (J . *),
where 3 dic b = p.

It should be pointed out. however. that data alignment cannot remove ow-tersfiip tests when

multiple Ihs references i n an iteration are to the same array. --Uso. data alignment lias the drawback

tliat it is a global transformation: it can interfere with and constrain data alignmeiit for optiniizing

cornmunications. \C'hile it is possible to re-align data a t run-time. it is espensive to do so. sincc it

involves data movement.

CD--1 transformations can be used as an alternative to and in addition to data alignnient. since

there is a duality in aligning computation spaces and aligning arrays. Computation spaces can

be aligned ivittiout changing esisting data alignments. and so it is not necessary that al1 ltis data

elements i n the new iterations are o~vned by the sanie processor. The loop ori the right hand side of

Figure 6.1 is a result of a Computation Alignment. In tliis case. tlic computation spacc for S2 vas

transposed with respect to the computation space for Sr so that .-t(i. j) and B(i . j) are accessed i n

t hc sarrie iteratiori. ,\.loreovcr. the loop bourids were modified so t hat each processor scans oniy its

local iteratiori space.

The niain advantage of using a CD.-\ transforniation is that it is possible to align coniputation

spaces of tivo statemeiits. even xhen they refêrence the same array on the Ihs. something that

carinot be achieved through data alignment. Hoivever. it sliould be pointed out. tliat it is riot

always possible to firid a legal CDA transformation capable of renioving ownership tests. Hericc.

CD.-{ must. be \,ieuxd <as a complerncntar>- transformation that can he iised iri conjtirictioti ~vitti

data alignnient.

The gerieral strategy to reniove ownership tcsts is to rriodify the SPAID code so tfiat. i n the

idcal case. eacti processor esecutcs al1 computations in al1 of the iterations it esecutcs. Towards

ttiis goal. n-e transform loops in two steps:

iii

(i i j

Pncking iterations - Ive use CD:\ transformations to mininiize tlic number of processors tliat

need to esecute cornputations of an iteration. This allons u s 10 coalesce the ownersliip tcsts

of an itcration into fewer tests: they can bc coaiesced into one test in the ideal case wticn al[

computations of an iteration are to be esecuted by the same processor.

Scannirzg local iteration space - ive use a technique similar to the guard eliniination technique

described in Section 4.2 that allows each processor to esecute its local iteration space. In

niany c~zses. one can eliminate the need to esecute owncrship tests entirely by appropriately

modifying the loop bounds as was donc for the loop i n Figure 6.1.

6.3 Derivation of CDA Transformation to Pack Iterations

I n this section. ive describe a n algorithrn capable of deriving a CD.4 transformation that packs

iterations i n such a way that the corriputations of an iteration belong to as few processors as

dependences permit. LCé assume that the P-cornputes operators are specified in the target loop.

The CDk1 transformation is derived in three stages:

(i) The tarpet Ioop is decomposed such that earti sub-espression ericlosed by a P-coniputes

operator becornes a separate new staternent.

(ii) The statements of the deconiposed loop bodv are coniputationally aligned so that the state-

nients are niapped ont0 a single processor if possible: wlien dependences prevent siich an

alignment. then the statements are mapped ont0 as few processors as possible.

(iii) Finally. teniporary arrays. if they csist. are data aligned to the otlier arrays on t he 111s so

tliat the computation rules for the statenients with teniporary ltis can be specified i n ternis

of the temporary arrays.

The tlirce stages are described in the following subsections. ive continue to assume that the

references are affine functions of the iteration vector Ï a n d are rcpresent,d by referencc niatriccs. In

order to sini pli& oiir notations. the fiinction j i r i an array referencc .-\(/(Ï)) is also used to denote

the rcference matris. Data alignments also have a niatris representation: the data alignment

t rnnsforr~iation of a n array. represented by non-sirigular integer mat r i s (1,. chana,es eacti refercncc

niatris r of t lie array into rcfcrencc niatris d,r.

6.3.1 Derivation of Computation Decornposition

Algorit hm B i in Figure 6.2 deconiposes a statement S i n the loop body such that after the de-

cornposition each ::: operator applies to a separate statement. -4lgorithni BI is applied to each

statenient of ttie loop body. with the staternents being selected i n an arbitrary order.

I n algorithm B i . variable i is a counter for the number of statements generated as a result of

decomposing 5'. In each iteration of Step 2, we choosc an innerniost 3 operator-esprcssion of S

and niake it a new statement witli a new ternporary array element as its I h s (Steps 3-5) . I r i Step

6. the rhs of staternent S is niodified so that the sub-expression chosen in Step 3 is replaced bu

the corresponding reference îo the temporary. In Step 7 . statement S is replaced by statement Si,

n-herc ttie rhs has been rnodified by thc dccompositions of Step 2.

Algorithm: BI
input: . i n arbitrary staternent S : 2 - (Ihs = r h s) of the loop body.

owner (c l (f(1)))
output: Decompose S at :z operators.
begin
1. i.1
2. u:hile rhs of S l i a a P-cornputes operator
3 . Choose an innermost q ~ l - (e x p r) in S

o w n e r (~ (g (1)))
4. L i C new temporary array

i c i + [
e n d while -

r . generate S, : :3 - (f h s = rhs)
ouqncr (A (j! 1)))

end

Figure 6.2: =ilgorithm BI to decompose statements.

As an esarnple. consider the :;, operetors in the loop on the top hall of Figure 6.3. Algorit hm

BI decomposcs the only statement of the loop into two statements so that cach new staternent lias

a single :< operator. A teniporary array t is used to store the interniediate resiilts. The decornposed

loop is stiown i n t tie bottom Iialf of the fi, =II re.

6.3.2 Derivation of Computation Alignment

Algorithm B2 of Figure 6.4 searches for computation alignnients for each of the statements gerier-

ated by algorithm B I . PVe assume t hat the result of applying algorithm B1 to the original loop

is a new loop body with li staternents. The objective is to pack itcrations in such a way tliat the

computations of an itcration belong to as few processors as dependences permit. The search space

of al1 legal cornputatioii alignrnents is large. so it is not possible to exhaustively search tliis space

iri reasonable time. L'nfortunately. however, it is also not sufficient to lirnit the search to offset

alignment vectors in this case. as was done when reduciiig cache contlicts. This is because the

statements may have reference matrices that would require non-singular transformations to trans-

form the statemen ts. In algorit,hm BZ. we restrict the number of candidate alignments bu focusing

the search to alignmeiits that make the array rcferences in the operator-espressions similar.

Algorithm B2 first atternpts to map al1 statements ont0 a single processor (Steps 1-5). and

for l = L ' . n

for j = 2 . n
51.1 : :2 .4(g-1, j j [~ (I . J) = *4(1 - 1 .1) + B (t - 1 - J) + C(1 - l a]) +

. - t (r - 1 . 1 - l) + B (l - 1 . 1 - l) + C (t - 1 . 1 - f)]
1 . : :2A!iJ) [- - ! (I . J) = t (1 . J) f . A (< . J - 1) + B(1 . j - 1) + C(1.1 - 1)]

end for
end for

Figure 6.3: Computation Decomposition of a toop with :: opcrators.

then. if necessaru. atternpts to map the staternertts ont0 as few processors as dependences allow

(Steps 6-12).

Step 2 constructs I ï sets of possible candidate alignmerits for the I< statements in the loop

body. The first set aligns eacli statement to S.,. the second set aligns each statement to S2. and so

on." The set of transformation matrices that align each statcment to statemcnt S, is denoted by

ni. Thc set of al1 a,. 1 < i 5 I ï . is denoted bu Agir. Each transformation matris is derived siniilar

to the way the trarisforniatiori mat r i s is derived for elernent-wise d a t a aligrirnent. Consider t lie tivo

statenicn ts:

nhere -4; and .4, are different arrays. The objective is to modify the statements so tliat the

intrinsic owner function in botli statements evaluates to the same processor. .ln eiement-wise

d a t a alignrnent achieves this by making the reference ma.tris for -4, the samc as that for -4;. The

d a t a transformation rnatris t , = f,jyl applied to array -4, modifies tlie reference .4,(j, (7)) to be

-4, (1, f, (f i) whicli is the sarne as .-Il (f , (I)) . so both lhs da ta elements are CO-located.

Computation Alignment can achieve the same objective in an anaiogous fashion. First assume - +

t liat t hcre is no pre-esisting da ta alignment between arrays :l; and .ilj. tliat is .Ai (r (I)) and .Aj (r (l))

are CO-located, for some reference mat r is

compiitationally aligned to staternent Si

'Onlv some of these aiignments may be legal.

lnstead of aligning tlie arrays. statement Sj c m be

transforming Sj using rnatris T, = which

Algori t hm : BL'
input: Ii staternents 3 - (5;). for i = l..I<

owner (.4,(f,(I)j)
output: .-Uignment transformation T, for each 5';-

beg in
1. if statements are mapped onto a single processor f h e n rcturn / / Sincc. tticre is no need for alignrnent.

/ / Search for legal alignments with a single proccssor
2 . for i = 1. I<

ni + O

for j = 1. l<
// add to CI, transformation to align S, to Si
ni c ai u {T, } . where T, = I; ' d j 1,. assurning .-lj is data aligried to -4, by c l j .

end for
e n d for
A,,,i + { n iah') U { I 1)

/ / first iandidatc alignmcnt is ttie identity alignment
3. n t { l 1)
4. for i = 1 . I<

i j ct, E Aarr is legal and lias lowcr communication than ct then
û t ct ;

end i f
end for

5 . if n f { [. . . . , I l t h f n return / / round alegal alignment

/ / Ttie only legal alignment with one processor is the identity or lcgal alignments
// have tiigher communication t han the identity alignrnent.
// Thercfore. searcli for legal alignments with fewest possible processors
. s t {.5, 1 15;s 1;)
7. 11-hile 5 is not en-ipty

for j = 1 . r n
y, t (5, 1 i 5 i 5 I ï and Si rnapped onto processor j}

crzd for
8. G ' t (y i 1 L l i l r n)
9. g + Iargest set ir. G
10. -5-5- (I
I l . order statenients in 5' (which are not in g) in incrcasing s i x of sets of G tlicy arc in.
12. for al1 statements S, of 3' in the order

T, t transformation to align Si to a statenient i n g
if T, is lcgal tlien

/ / T, is the sclectcd transformation for Si
LI + s u {S i)
s +- s - {Si)

end if
end for

e n d whi le
end

Figure 6.4: Algorithm B2 to derive Computation Alignment.

ensures tiiat owner (.qi(/,(0)) and ou7ner (.i,(f;(Ï))) both refer LO the same processor. when f;

is the new reference matrix alter applying T,. The transformation niatris TJ is derived by solving

f, T]-' = f, for TJ- First. both sides of the equation by are pre-multiplieci j'y'. and tlien. botli sides

of the eqiiation are inverted. .A pre-esisting data alignment between arrays -4, and -4,. say d,. can

be accounted for by cornputationally aligning SJ to S, by transformation matris f , - ' d J f,.

Ciiven the computation alignrnents in Aar/. ive search for those that are legal in Steps 3-5. and

choose the one ~\.ith lower communication overtiead. -4s our initial point of comparison. ive choose

the identity transformation. where the staternents are not transformed at al1 (Step 3) . In Step 4.

ive iterate t hrough the sets of alignment i n .Aarr and select alignments û wtiicb results i n a legally

t ransformed loop wit h lower communication overhead.

If none of the alignments in clali are legal. then Steps 6- L2 derivc alignments that map the

statements ont0 (more ttian one. but) as few processors as dependences permit. I n Step 6 . S is

initialized to be set of al1 I< statenients in the loop body. In each iteration of Step 7 . ive remove

froni S the statenients that can he legally mapped ont0 the same processor. The statements i n S

are organized into sets g;. where statements in a set g, are al1 mapped onto the same processor i: Ci

of Step 8 is the set of these sets g,. In Stcps O and 10. ive select the largest set g in G and reniove

ttic statements of g from S. The objective of Steps 11 and 12 is to add to g as many statements

from reniaining staternents i n S as possible. In Step I l . we order ttie statements in S according to

the size of the set g, they are in. starting with the statenients in the smallest sets. In Step 12. LW

attcnipt to align the statements i n S to the statenients i n g in the order spccified. A statenicnt ',

tliat can be Iegally aligned to the statements in g is aligned. added to g . and removed frorii the set

S. The rationale behind the ordering in Step 11 is that the probability is Iiigher that ail statenients

of a smaller set can be aligned to g . resulting i n a mal ier number of sets i n C.

As an esaniple of applying algorithm B1. ttie loop on ttie top of Figure 6.5 is transformed into

t hc loop a t the bottorn. The only candidate alignments are aligning S 1.1 to 5' 1.2 or aligning S 1.2

to S I . 1. Both alignnients are equivalent in that they are inverses of each other. The transforrned

Ioop shown has 5'1.1 aligned to S1.2. Kote that. both SL.1 and 51.2 are riow mapped ont0 the

aame processor i n every iteration. Yote that the guards can be removed from the transformed loop

with the techniques discussed in Section 4.2.

for 1 = 2 . n
f o r J = 2 . n

5 1 - 1 : ~ . 4 ~ , - 1 . J) [t (1 . j) = - 4 (1 - l . ~) + B (~ - 1 . j) + C (~ - l . 1) +
: \ (L - 1 - 1 - l) + B (z - f , j - 1) t c(1- 1 .) - 1)]

1 . : '7 ; .4<z .J) [. 4 (~ J) = t (i . j) +- .4(i . J - 1) -+ B (1 . j - 1) + C (L J - 1)]
end for

end for

for r = 1 . n
for 1 = 2. n

S . : (> 1) : ;A(i . i) [4 1 . 1) = t (t . 1) + A(1. J - 1) + B (1 . J - 1) + C(r. J - 1)]
5 ' 1 . 1 : (1 < n) [t (~ + 1 . j) = . - l (x . j) + B (1 . j) + C (L . J) +

A(i.j-1) + B(i.j- i)+C(i.j- 1)]
end for-

end for

Figure 6.5: Com pu tation Align ment of a loop wit h :: operators.

6.3.3 Data Alignment of Temporary Arrays

Algorithm 33 of Figure 6.6 is applied after algorithni B2 in order to propcrly data align the

tcniporary arrays t hat m a l have bcen introduced by algorit hm B I . Br1 data aligns eacti temporary

array to the arr- iiscd in the :: operator for the respective statement. If T, is the alignment

transformation that algorit h m B2 applied to statement 5,. t , (T ~ - ' (I)) is the Ihs of the transformecl

Si. and :: is the operator that maps transformed Si ont0 a processor. then algorithm
--! I(fg~I- ' i f i)

B:1 data digns t , to array .-I, by transformation matris j;. As a resiilt of t,liis alignrnent. t , (T , - ~ (I l)
Immnies i,(li7',-' (Ï)). Becausc the reference to .4, i n the :!: operator and to the t , on thc 111s are

iiow the sarne. t h e .4, refercncc i n the :) operator can be replaced by 1,. In the esaniplc loop of

Figure b;..j. t is aligned to .-I such that t (i + 1. j) becomes t(i. j) and t(i. j) beconies t (i - 1. j) .

6.3.4 Summary of Stages to Pack Iterations

The three stages in packing iterations can be summarizcd as follo~is:

(i) Algorithm BI decomposes the statements so that each statenient of tlic decomposed loop

body has a single 1::) operator for the entire statement.

(i i) .Algorithm B2 aligns the statements of the decomposed loop body so that tliey are mapped

oiito as fen. processors as possible.

(i i i) Finally. algorithm B3 data aligns temporary arrays on the Ihs of the decomposed statements

to the arrays used in the respective .s operators.

AIgori t hm : 8.3
input : .-llignment ûr; = { T L Th-).
output: Data alignment for temporary arrays introduced in Stage 1.
begin

for each statement j;- : :2 (S;.) with lhs ti
. - t s ! j , i F , ~ - L j

data atign t , to - 4 i by f i

end for

Figure 6.6: --Ilgorithm 83 t o d a t a align temporary arrays.

As a result of applying ttiese stages. an- loop with (possibly multiple) :2 opcrators a t the subcs-

pression granularit- is converted to an equivalent loop for wliich the faniiliar o~vner-coniputes rulc

is to be applietl.

6.4 Scanniiig Local Iteration Space

In this section, i*e show how to derive new loop bouncis so that tlie processors csecute oniy tIieir

local itcration spacc. \ L é adapt the giiard elimination techniques ciesrribed in Section 4.2 for this

purpose. The techniques descri bed here cari be vicwcd as a generalization of esisting techniques

ttiat peel iterations off ttie local iteration space in order to isolate the iterations n-here ail statcmcnts

are riiappcd ont0 the samc processor [SI].

The local cornputation space of a statement for a given processor is a subset of the total

çornputatiori space for the statenient. The estent of the local coniputation space for each processor

is dcterniined by the oivnership test for the staternerit: ttie coniputations a re csecutcd only iri thosc!
-

iterations wtiere the ownership test for the statement evaluates to truc." The Iocal itcration space

of the loop body is the union of the local computation spaces of al1 the statcnients of the loop body

projected ont0 a grid that has the same dimension as the loop.

\Vc distinguish between t hree types of loop bodies - a loop body with a single statenient. a

Ioop body ivith niultiple statements whicli are a11 rnapped onto the same processor. and finally. a

loop body with multiple statements which may be mapped onto more than one processor.

First. consider the derivation of the loop bounds for the local iteration space of a loop body

witli only one statement. Obviously. the local computation space of the statement is also tlie local

':lt this stage, after having applied B I . BC and BS. there exists a singlc rs opcrator in every staternent.

iteration space of the loop body. When the cornputation rule for the staternent is spccified indirectly

using an array -4. t hen the bounds of the local iteration space are obtained by analyzirig the local

data space of -4. the set of elernents of -4 rnapped locally ont0 the processor."~e first represent

the local data space of the array with a set of inequalities. and use this set and guard elirninatiori

techniques to derive a set of inequalities representing the local iteration space.

ï'o see how to repcesent the data space of an array as a set of inequalities. coiisider a 2-

dimensional array distributed by rows. If & = (i l . in)' is tlie vector that indexes elements of the

array. then tlie inequalities 1 5 i l 5 u and 1 < i2 5 n represcnt a block of rows. where 1 and

u provide bounds for the block of data on a processor.Ï For the loop on tlie estrenie right of

Figure 6.1 on page 83. 1 and u for bot h arrays .-1 and B xere p * Ir and (p + 1) * b - 1. respectively.

The inequalities for the local data space for -4 can be represented by matrix-vector notations. say

&& 2 8. sirnilar to the specification of an iteration spaces.

For a statement S : *? . . . the local iteration space can be derived from -4's data space.
-> .4(f (f i)

> 8. by replacing !; by f Ï to become jdjÏ > O. since thc refer~nce matris / provides indescs

to array elernents. NON-. inequalities .& f Ï> O are sirnilar to a guard for the statement. Therefore.

the new loop bounds can be obtained by applying the guard dimination techniques of Section -1 2.

ivtiere tlie statement lias guard of jd f > O and original loop bounds are specilied bx. say JÏ 2 8-
Son- consider the case where a loop body contains niultiple statenients mapped orito the sanie

processor. T!ie method outlined abovc for a single statement loop body is also applicable i n t h

case. since the local iteration space of any of tlie statements i n the loop body is also the local

iteration space of the loop body.

Finally, consider a loop bodr. with niiiltiple statemerits. [vhich are not al1 mappcd ont0 the

sarne processor. t n this case. the loop bounds should be modified so tliat the processor iterates

t hrougli the union of local iteration spaces for the statemcnts. The bounds of the IocaI iteration

space for each statement are obtained by analyzing tlie local data spaces as ive did for a loop body

!vit11 a single statement. The inequalities describing the local iteration space of a statement serves

as its guards. Tlie guard elirnination techniques can then be used to isolate iterations where al1

statements are niapped ont0 the sarne processor.

=is an esaniple of deriving new loop bounds for a local iteration space. consider tlie nested

loop on the top of Figure 6.7. wiiich is the core of the CD.\ transforrned loop at the bottom of

'The arrays are typicaily rnapped onro processors using some basic distribution strategy çuch as distribution by
rows, columns. blocks etc.

'~yc l ica l mapping functions are ch<lracterized by non-unit strides.

for I = 2 . n - 1
for j = 2 . 0

s l . ? : [: I (i . j) = t (t - l , j) + - q (1 . j - l) + B (t . j - l) + C ! i . j - l)]
S . : :,,,,,,, [t (i . j) = .-I(i. j) ; B (i . j) + C(i . j) + .4(1. J - 1) + B(1. J - 1) + C (t . j - 1)]

end for
end for

Figure 6.7: lfodification of loop bounds to scan local iteration space.

Figure 6.5 alter eliminating guards. Let the arrays accessed in the loop bc distribiited dong bot11

array dimensioris such that a processor's data space is 1; < i l 5 u t and 1, < i2 < if?. wlierc the

1's and u's are functions of array size and a number identifying a processor. In th is case. the

irieqiiatiticis for the local data space also serve as the inequalities for the locai iteration space. sincc

the rcference matrices for both .Ali. j) anci t(i. j) are the identity matris. TIiese inequalities are

used to giiard the statcments of the loop as shown in the center of the figurc. Eliminating these

guards as described in Section -1.2 leads to the new loop bourids tliat scan t h e local iteration space

as shown at the bottom of the figure.'

'The local data space may not always ciefine the bounds for al1 the iterntorç. This happens in cases where the
array refercnce used CO derive the data space is a function of only some of the iterators. and in cases where the loop
has a dimension different from the array dimension. In these cases. instead of taking the bounds for the iterator from
the bounds of the locaf data space. they are taken front the bounds of the Ioop iteration space.

-
CHAPTER r

Other Applications of CDA

III can he rule the great that cannot reach the small.
- Edrniind ,i'penser: Book tf. Canto t l . 9. ./.Y

In tliis chapter we describe five additional applications of CD.k to:

1. improve instruction levcl parallelisrn.

2. Elirninate syciironizations,

3. Generalizc loop distribution.

4. Trarisform impcrtèct h o p nests. and

5 . Irtiprovc global optiniizations.

\ire prirnarily iise csarnples to iilustrate ttiese applications of CD:I.

7.1 Iniproviiig Iiistruct ion Level Parallelisin

.\Iost processor architectures support instruction level parallelism. say in the form of instruction

pipelines and niultiple functional units. :\ compiler targeting tliese processors applies techniques

tliat reorder instructions so ttiat this parallelism can be better csploited i n order to iniprove pro-

ccssor efficiency. Ttiese techniques often attempt to group unrelated instructions (i.e. those having

no dependences betwteri t hem) so t hat t heir esecution can be overlapped. Software pipelining is

one such compiler technique: it interleaves instructions from adjacent loop iterations (301. CD.4

can also be used to interleave conipiitations from multiple iterations. and can tlius be viewd as a

generalization of the software pipelining principle. In the case of CD.\. the objective is to niodify

the constitution of iterations to have as few dependences as possible. tlius alIowing instruction

for j = ? . n
for 1 = 2 . n

: .4(1,]) = .4(1 - 1 . j) 4- B(1 - 1 . j) + c(i - 1 , j) + -4(t. j - 114-
B(i,,- l}+C(i.j- 1)+.4(1- 1.1- Z)+B(t- 1 . 1 - l) + c (l - 1 .1 - 2)

end for
end for

end for

Figure 7.1: Application of CDA transformation to improve instruction level parallelism.

scheduler more freedom to scheduie instructions. Ttius, CD.4 can be used as a high order trans-

formation to strengthen esisting instruction schedtiling techniques. Nevertheless. CDA differs froni

instruction scheduling techniques in a number of fundamental w-ays:

(i) CD:! is a higher order transformation than instruction scheduling - because CD.4 is a source

level transformation the granularity of the computations being considered i n the CD.-\ franie-

ivork is usually larger than the granularity of single instructions considered by ttie instruction

scheduling techriiqu~s.

(i i) CD:\ can niove iiistructions across iterations in any loop dimension. u-hereas instruction

schedulers move instructions within a basic block or across adjacent itcrations of t h e innermost

loop.

(i i i) CD:\ tends to be iised to target higher level optimization objectives than instruction level

parallelism.

(i ~ !) CD.A int roduces overheads t hat arise frorn modification to the loop structure. iricluding the

need for guard computations and storage requirements for ttie temporary variables. In con-

trast, instruction scheduling techniques have much lower overhead. For esample. the over-

lieads of software pipelining are limited to the loop overhead i n prolog and epilog loops.

-4s an illustration of applying CDA to improve instruction Ievel parallelism. corisider the loop

at the top of Figure 7.1. The left to right esecution semantics in Fortran resuIts in a linear chain

of deperident arit hmetic operations for statement S. T hat is, the instruction sequence generated

for the rhs of statement S is such that each instruction in the sequence is dependent on the result

of tlie previous instruction in the sequence. Instructions in sucti linear chains cannot be easily

re-ordered. since the dependences prevent the rnovement of instructions for intcrleaved esecution.

If. in addition, the instructions require multiple cycles to cornplclte then the pipeline cannot be

kept full . For this reason. instruction schedulers attempt to fil1 the pipeline ivith othcr instructions

that do use the result. C'nfortunately. i n the case of tlie loop considered. dependerices prevent the

iriterleaving of an- of t lie addition operations. Similarly. on a processor \vit h multiple functional

units. the esecution chain only aliows the empIoyment of only one unit at a time.

An appropriate CD:\ transformation can tielp in this case. For esample. t h e equivalent CD:\

transformed loop at the bottom of Figure 7.1 leaves open much more opporturiity for instruction

scheduling. Ttie additions are now arranged i n t ~vo linear chains. one for each of staternents Sr and

S2. Ttie additions in the tivo chains originally belonged to two different iteratioris. namely j and j +

1- .-\lt hough there are dependences between additions i n a chain. t here are no dependerices between

the two chains. Tlierebre. the esecution of instructions in the t ~ v o chains can be interleaved. while

preserving tlic left to right Fortran esecution semantics of the original loop.'

7.2 Eliminat ing S ynchronizat ions

Dependences in a loop cari limit the availability of coarse-grain parallelisni. Wlien tlic rank of the

cfcpendence matris is not less t f ian the loop dimensiori. t lien the loop nest docs not lia\-e an)- parallcl

oiiter loops (altl~oiiçh al1 the inrier loops can be niade parallel) [20]. rnfortiinately. the perforniance

or paralle[inncr loops is not scalable. sincc the dependcnces in the outer loops manifest ttieniselvcs

'as barrier synctironizations. CD.-1 transformations can be rised to niodify tlie dependence niatris

of sonie loops. so ttiat the rank becomes less ttian the loop dimension: this cffectively climinates

t hc need for synchronization and t hus introduce t lie availability of coarse-grain parallelism.

In this section. NT show liow to derive CD'\ transformations t h a t eliminate synchronization by

rnodifying loop carried dependences between statements into loop independcnt dependences. The

technique is general i n tliat it can be used to rnodify a b o p carried dependence d betwecn two

statenien ts Su, and Sr into any desired dependence 2. alt hough in this case ive would rnodify 2 to

be fi. Let :\,, and .A, be t,he reference matrices of the write reference ic to an array in statement S ,

'such opportunitics to interleave operations arc d s o essential to pack the instructions of vcry large instruction
word (VL1iV) machines with useful computations.

and a read reference r to the array in statement Sr. respective1y.' IVe c m derive a matris /. ivhictt

transforms the computations of Sr so that the dependence betwen u* and the modified reference

r' becornes 2. as follows. Let -4, and f -' be:

Transforniing the computations of Sr by matris f modifies the . reference niatris .-Ir to becorne
-

4 . If the dependence betiveen statenients Su, and Sr in the original loop \vas d. tlien reference

matrices . - I , , Ï and A, Ï+ -4,J botli access the sarne array elernent iri the original loop. \Ve woiild

like .-lu, T and .-1,. Ï+ .-\,d' to access the sanie srray elernent aftcr the t ranslorrnation: i.e.

By substituting for .-1,,. .4, and f-' in tliis equation. ive obtain:

:Ifter espariding the matris-vcctor muItiplication on the rigtit tiand sidc ive havc:

whiclt can be espanded i~ito:

For tliis equation to be truc For all iterations T. it is necessary (or T to be qua1 to (-TtI , , . and for

I;<to be equal to TC TC^ - &. By substituting T = i n this latter equation. ive obtain:

2The matrices are suitably padded when the 'array and loop dimensions are not the same.

for a = 1.n
for 1 = 1 . n

SI : . - ! (t . J) = .4(1. j - 1)
S2 : B(i - 1 . j) = : l (t - 1 . j)

end for
end for

fora11 r = 0 . n
for j = 1 . n

(1 > 0) : - 4 (l .]) = . q (l . J - 1)
(1 < n) S2 : B (i . j) = . 4 (1 . j j

end for
end for

Figure 7.2: CD.4 transformation to eliminate barrier synchronization.

n-hich 1L.e can solve for t by pre-multiplying both sides of the equation by I*:':

Therefore. matris f is defined such that:

ivhich modifies dependence J between staternents Ç,, and Sr to be 8. 1,. particular. ivtien the

desired dependence d' is 0. tlien the transformation j is defined such t hat:

I n order to iIlristrate such an application of CD..\ to esposc outer loop parallelisni. considcr

t he loop on the left hand sidc of Figure 7.2. This loop does not Iiâvc an? outcr loop parallclism

because of the (1.0) arid (0. L) dependences. Ttiat is. iterations (i. j) rniist wait until iterations

(i - 1. j) and (i. j - 1) have conipleted. Because the loop has only inner loop paralIelism. barrier

synclironization between outer loop iterations is necessary. The (1.0) dependence can be eliniinated

by linearly transforming the S2 computation space relative to the Si computation space. defining

traiisforniation matrix / such that T is the idefitity matris and 1 is (1 . O)'. The transformed loop

is shown on the right tiand side of Figure 7.2. The transformation mudilies the .4(i - 1. j) reference

in Sr to .-l(i. j), so that the transformed loop now only has a (O. 1) dependence. Thus the new loop

nest lias an outer loop that is fully paraltciizable.

The techniqüe ive just described is a generalization of loop alignment [2]. While loop alignment

considers only offset alignments between staternents. CD.4 transformations can be any non-singular

intcger matrices. lloreover. our generalization can align subespressions. statements or subnests in

for r = 1 . n
S I : 4 1) = 1
S z : C (L) = A (i - 1) + D (I - 1)
S3 : D (i) = C (i)

e n d for

for r = 1 . n
s1 : 4 4 = 1

end for
for r = 1 . n

S2 : C (i) = -4(r - 1) + D (t - 1)
s, : D (1) = C (r)

end for

Figure 7.3: A n esample loop distri bu tion.

the loop body3 Tiius. CD.-\ can be viewed as unifying loop alignment and its generalization into a

linear algebraic frarnework.

7.3 Generalizing Loop Distribution

Loop distribution divides a loop body into groups of statements and creates a separate nested

loop for each group [je . 681. In this section. we show how CD.-\ incliides loop distribution aiid its

generalization into the linear algebraic frarnework.

As an esaniple of loop distribution. consider the loop on the left hand side of Figure 7.3.

This ioop is distributed to create two loops. the first with statement Si and the second Ioop witli

stateinents S2 and S3.

Loop distribution can be effective in improving parallelism. since ttie new loop nests contain

only a subset of the dependences in the original loop:l Hoivever. loop distribution is restricted i n

that a loop distribiition is legal only if it kecps the statements participating i n a dependence cycle

i n the same loop nest. For instance. statements S2 and S3 of loop o n the left hand side of Figure 7 .3

participate i n a dependence cycle. so they must belong in the same loop. Hence. some nested loops

siicti as the loop sliown in Figure 7.4 cannot be distributed. since al1 of ttie statemerits in the loop

body participate i n a dependence cycle.

Tlic CD.A framework generalizes loop distribution in tliree ways:

First. any loop distribution can be represented by a CDA transformation that decomposes

ttie loop body and applies appropriate offset alignment along the outerrnost loop dimension.

'\C'ben the dependcnces are between references of the same statenient, then the rank of the dependence matnx
c~mnot bt! chmged. because the effect of eliniinating one dependence is offset by the eflect of adding a new depen-
dence on references CO the ternpor~uy array. In this case. a CDA transformation c m only rnodify the structure of
clependences.

'Loop distribution is also uscfuI in improving cache utilization and reducing register pressure by distributing array
accesses in the loop body into different loop nests.

for I = l . n

Sl : D (i) = . 4 (i - l) + . - t (i + l) + . - t (l i - 2)

S2 : . 3 (i) = B(1) + C(c)
end for

Figure 7.4: .A toop that cannot be distributed.

for i = 1 . n
S[: A (1) = 1
S2 : C (t) = . 4 (~ - 1) + D(t - 1) 1
S3 : D (I) = C (i)

for 1 = 1 . n
SI : 4 i) = r

enci for
for 1 = n + 1 . 2 * n

S2 : C (i - n) = : t (z - n - 1) + D (c - r i - 1)
s3 : D (i - n) = C (i - n)

end for

Figurc Loop distribution =as a CD.-\ transforniation.

to cacfi group of stateriicnts (to be distribtrted) so that the coniputation space for cach groiip

does not overlap ~t.itti the coniputation space for any otlier groiip. The first groiip is aIigned

hy an offset of O. ivliereas the i th group is aligned by a n offset of n i - I I . ivliere I I is tlie ofsize

of the outernlost loop. For instance. the loop distribution of Figure 7.3 can bc cflected by

the C'Dr\ transforniation tliat aligns staternents S2 and S3 by a n offset of 12. The transformed

loop witti and withoiit guards is shown in the center and right Iiand side of Figurc 7.5. Yotc.

hoivever, t hat tlie loops resulting from loop distribution and the loops resulting froni t hc CDA

transformation differ in subscript functions.

Second. wit h CD:\, loop distribution can be perforrned at the granularity of su bespressions.

and not just entire statements. Compiitation decomposition can store the results of subes-

pressions i n teniporaries to isolate dependence cycles. Thus. appropriate computation de-

composition can be considered as a form of node splitting. which introduces temporaries t o

for i = l . n
$1 1 : [(i l = .4(i + f) + - 4 (i + 2)
5'1 2 : D (i) = .A(z - 1) + t (i)
s2 : A (1) = B (1) + C (1)

end for

for 1 = 1 . J t n

5, 1 : (1 < t < n) t (t) = . d (i + 1) + - 4 (t + 2)
S, , : (2 * n + f 5 t < . ? * n i D (~) = . + l (~ - l) + t (t)

1
$: (n + 1 5 t < ? * n) 4 1) = B (t) + C (1)

end for

for t = 1.n
.5'[1 : ! (l) = . 4 (t + 1) + . 4 (1 i 2)

end for
for I = n f l , ;) * n

S2 : .-t(1) = B (t) + C (t)
end for
for I = ? * T I + l . . Y * n

SI 2 : D (t) = .A([- 1) + t (i)
end for

-
Figure l .6: An esample of breaking dependence cycles to enable loop distribution.

break dependence cycles [58] . For esaniple. staternent Si i n the loop of Figure 7.4 c m de-

composed into statements Si.l and S1-2 as s h o w on the Ieft hand side of Figure 7.6. The

deconiposed loop does not have a dependence cycle. so it can noIv be distributed. The ce:.ter

of Figure 7.6 s h o w how the statements can be aligned to effect one possible loop distribution.

T lie net cffect of this transformation is improvecl parallelism: t tic original loop cotild not be

parallelized. ivhereas al1 three loops shown on the right hand side of Figure 7.6 can be.

r Tliird. CD.-\ makes partial loop distributions possible. .A loop distribution separates «Il

instances of a staterncnt from the instances of ariotlier statenierit in the Inop body. .A partial

loop distribution separates only s o m instances of a staternent or subespression lrom the

instances of other statements or s u bespressions in the loop body. .A partial loop distri bution

would be beneficial i n a situation where a dependence cycle prevents loop distribution (and

wliere node splitting does not help break the dependence cycle).

As an example. consider the loop on the left hand side of Figure 7.7 ivhich lias a dependence

cycle betivcen statements Si and Sz. The dependence cycle cannot be isolated with compu-

tation decornposition. since the dependences i n the cycle are florv dependences."oivwever. S2

"bat is. ail staternents of the decornposed loop will be in the dependence cycle.

L : /or r = k + 1 . n
for j = 1 . n

S! : B (i , j) = .4(1 - 1 , ;)
s2 : A (1 . j) = B(1 - k . j)

end for
end for

L : for 1 = l . n
for j = l . :!* n

A', : (k + 1 5 1 5 n) B (t . j) = .4(1 - 1 . I)
S2 : (1 5 j 5 n - k) .4!r + k . 1) = B (1 . 1)

end for
end for

L I : for t = 1 . k
for j = 1. ri

SI : : l(t + k . 1) = B (1 . j)
,nd for

end for
Ln : for t = k + 1 . ~ 1 - k

for j = 1 . n
3'- : B (i . j) = .4(r - f .))
.511 : . - ! (1 + k . J) = B (1 . j)

end for
~ n d for

L 3 : for r = n - k + 1 . r ~
for j = 1 . n

s ' ~ : B(1 . j) = : \ (t - 1 .))
enci for

end for

Figure 7.7: CD--\ transformation for partial loop distribution.

can bc aligncd by an offset of -k to obtain the transformed loop s1ion.n in tlie çcnter of the

figure. The CD:! transfornied toop after elirninating the giiards is stiown on t tic riglit tiarid

sidc of Figure 7.7. The transformation effccted a partial loop distribution wIier~ only k coni-

putations (out of n) of the statements Ji and S2 are separated froni each o t l i ~ r . ~ \Vlien tlie

dependent iterations are far apart (i.e. k is large). then partial loop distribution can separate

a substantial number of statement instances.

As another csample. consider the loop on the left harid side of Figure 7.8 which cannot be

distributed due to a dependence cycle that cannot be brokcn. CDX can align S2 by an offset

dong the J dimension in this case so that the statements are diçtributed only with respect to

j and k dimensions. The CDA transformed loops with and without guards are shown at the

center and right of Figure 7.8.

'The dependcnce cycle prewnts the distributions of the computations of the statements in the remaining itcrations.

jor 1 = 1 , n for 1 = 1.n
jrl : 4 1 . O) = C l o r j = 1 . n
for J = 1 . n (J = 1) S : 4 1 . O) = C

Sn : - (j) = (I . J - 1 + D - S2 : 4 t . j) = 41.; - 1) + D
end !or end for

end for end for

Figure 7.9: Converting a simple imperfectly nested loop into a perfectly nested loop.

jor i = O . n
for j = 0 . n

S I : A (C * j) = A (+ L J) + Tl
end /or
for j = O . n
S2: . - l (z , ~) = - - l (l . ~ + l) + T ~

end lor
end for

/or 1 = O , ? n + l

for = m a s (0 . 1 - n - 1) . m r n (n . 1)

SI : (1 < Zn. rnaz(0.t - n) 5 J 5 m m (r , n))
. 4 (~ . t - j) = .4(j - 1 . t - j)+ T I

a S 2 : (C 3 l . m a r (O . ~ - n - I) < J ~ mtn(1-
- - l (~ . t - ~ - 1) = : i (l . r - J) + T2

end for
end for

Figure 7.10: CD..\ transformation of an iniperfectly nested loop.

.-Ilthough transformation of unconstrained imperfectly nested loops is still an open issue. ive show

i n t his section how sorne imperfectly nested loops can be successfully transforrned using linear loop

and CD--\ transformations.

Simple cases of imperfect nests occur. for esample. in order to ~ e r f o r m boundary com pu tations

or initializations. The cause of irnperfectness is often a single assignment statement iiiterspersed

bctweeri the h o p staternents of an otherwise perfectly nested Ioop. i n tliis case. tlie impcrfect ncst

can bc transiornieci into a perfect nest by moving the single assignnient statcrneiit into tlir loop

and using giiards [l . 561. An esample of this is sliown i n Figure 7.9. =Ifter this transforniation. tlie

ncsted loop cari be applied a iinear loop transformation.

.-inotlier freqiientl~ occuring imperkctly nested loop structure. tvticre the loop bodx of a pcr-

fcctly ncsted loop consists of a sequence of perfect subnests is of particular interest to u s liere.

Thc left Iiand side of Figure 1.10 shows sucti an imperfect loop nest. Such nested loops cnn be

linearly transformed only in a tiierarchical fashion - each of the perfect subnests can be liiicarly

transforrned. and tlie loop nest containing t,he sequence of su bnests can be linearly transformed."

However. the entire loop nest cannot be transforrned by a linear transformation.

\VitIl C'D.4. it is possible to transform this type of imperfect loop nest. For an esampie. the

inipcrfect nest o n the left hand side of Figure 7.10 can be CD-A transforrned to the loop nest on

the right. CD.4 treats all cornputations of SI (in the i and j loops) as one computation space.

'ln particulm. the loop on the left liand side of Figure 7.10 can be linearly trmsformcd as two 1-dimcnsional loops
with 1 ,as their iterator. and as a 1-dimesional loop v:ith i as its iterator.

L I : for t = 1 . n
for j = 1 . n

. 4 (1 . 1) = . - l ia.) - 1) + C
end for

end for

L I : for r = l , n
for j = 1 . n

. 4 (t . J) = . - i (l . J - 1) +
end for

end /or

L2 : for 1 = 1 . n * L i : for 1 = 0 . n
for j = 1 . n for j = 1 . n

S I : - - l (l . j) = - 4 (t . j - 1) + D S1 : (1 > O) .-1(l.)) = - - 1 (t . j - f) + D
s2 : B (I . J) = -4(1 - I , J - 1) + E Se : (1 < n) B(r + 1 . j) = - 4 (r . j - l) + E

end for erid for
end for end for

Figure 7.11: Effect of CD.-\ on global optiniization.

tvhile al1 computations of S2 in i and j Ioops are treated a s the second cornputation space. The

transformation first aiigns the computation space of S2 by an offset of - 1 along the j dimension:

and tlwn sketvs both computatiori spaces so that the dependences are iriternalized to the inrier

loop. I n the transfornied loop. the flow dependencc from SI to S? is IOOP independent. and the
. .

flow dependence from S2 to Si is carried only b? the ; iterations. Tlierefore. the iterations of the

outer loop arc independent. so that the outer loop can be esecuted in parallel. Transformations of

tliis type can expose additional optimization opportunities that linear loop transformations alorie

cnn n ~ t . ~

7.5 Usilig CDA t o Improve Global Optiinization

CD.-\ can also be used For iniproving g l 0 6 d opiinzizntion [4. 19. 3-11. since certain CD:\ transfornia-

tions are duals of certain data transformations. For csampIe. in Chapters 5 and fi. ive dcscribed hoiv

CD:\ transforniations can be used to actiieve the same effect as array padding and data alignnierit.

The advantage of using CD.-\ instead of making global changes to data is that CD.\ or il^. changes the

local loop structure and thus reduces the number of constraints on a global optimization algorithm.

CD:\ can also be uscd to modify a loop structure to suit the data partitioning iniposed by

adjacent loops. For csarnplc. consider loop L i on the ieft hancl side of Figure 7.1 1 alone. \l'lien

array -4 is distributed ont0 processors by rows. ttien this Ioop does not require any commiinications.

since tlic (parallel) outer loop can tlicn be mapped ont0 processors so that each processor accesses

the rom of .4 locally. Hoivever. if ive consider both loops L I and L2 together, then a row-ivisc

':\ lincar h o p transformation cannot be applied to internalize the depcndence and expose pudlelisrn i r i the outer
loop, because the loop is imperfectly nested. Linearly trmsforming the t loop or the J loops donc cannot not expose
pwdlelisrn either. sincc the dependcnces are across j subnests.

mayping of -4 results in communication in L 2 : This is because Iinear Ioop transformations of L2

can only expose parallelisni in the inner loop. and cornmunications are necessary. It is possible.

hoivever. to eliminate coniniunication by CD.4 transforming L2 to suit the da ta partitions of .4.

chosen according to L I . Communication arises in L2 because of the (1. 1) dependence between

staternents Si and S?. This dependence can be modified to be a (O. 1) dependence by aligning

S2 to SI. The alignment stiifts the S2 computations relative to the SI computations along the i

iterator of the L2 loop. The transformed loop L i is shown on the riglit liand side of the figure.

wtiich has a parallel outer loop and does not require communication with a row-wise distribution

of -4.

7.6 Summary

This chapter has shown t hat there are many uses for the C'DA transformation franiework that

go beyonci ivhat esisting techniqiles achieve. In particular. we slio~-cd how some of the esisting

loop transformation techniques and their generalizations can be unifieci into the linear algebraic

franiework of CD.-1. Howcver. CD.\ needs to be studied further with respect to:

the heuristics to derive CD.4 transformations for the optimizations nientioned i n the chapter.

the estent to which CD.4 can be effective. and

intcgration of CD.A with techniques for wtiicii C'Dr1 is a dual.

Application of CDA to Example Nested Loops

When the way cornes to an end. then change - having changed, you pass through.
- I Chtng

In this chapter. IVE illustrate ttie application of CD.&[transformations o n some esaniple nested

loops. In particular. ive describe Iioiv the algorit hms described in Chapters .5 and G arc applied to

rierive suitable CD.-\ transformations. wtiich reduce the number of cache conflicts and the nuniber

of ownership tests. respectively. \Lé use the CD.\ transformed loops to demonstrate tliat local

transforniations such as CD:\ can be useful in reducing the number of cache conflicts and remoi~ing

orvnership tests wlien it is undesirable to apply global transformations such as array padding and

data alignnient.

For ttie purpose of ilIustration in ttiis chapter. we chose five loops from the Riceps. Arco and

SPEC benciimarks [32. 41. 501. and. in particular. loops that corne from applications rtnzg. m g .

rpcn ta . su-ni. and irnnal. Thcse loops are appropriatc to usc as esani ples. because linear loop

t ransforrriat ions alone cannot im prove t heir performance and t hey t hiis demonst rate t tic usefulness

of CD.4. The loops froni rtmg and nzg have a single statement in t lieir loop body. so su bespression-

based transformation is essential. The loop in rpentn can be transformed botli at statement and

si] bespression granularity.. The loops i n swm and wnnal can be transformed at statement granu-

larity.

In order to illustrate ho~v the effectiveness of CD.4 transformations (at loop leveI) relates to the

performance of the entirc applications. we also transformed al1 computation intensive loops i n mg

and rpenta.

LYe cornpared the esecution tirnes of the original and the CD.\ transformed versions of the

loops by running esperiments on SUN SPjiRC 10 and RS/6000 workstations. as ivell as on the

KSR 1 multiprocessor. This allows u s to show the effect of different cache geometries on the relative

performance of the original and the CD.4 transfornied versions of the loops. The SP-ARC 10

workstation has a L'LSKB direct-mapped cache: each node of the IiSRl muitiprocessor fias a 2.56KB

2-way set associative cache: and the RS/6000 ~vorkstation has a 32KB 4-u-ay set associative cachc.

In addition. w e siniulated the original and the CD.4 transformed loops using the KCache simulator

from IBSL ttiat simulates a RS/6000 with varying cache sizes and geometries [-13].'

Alost of the rcsults we show are for single. individual loop nests. Howcver. it shoultl be noted

that the benefits of local transformations such as C'DA may be higher than corresponding global

transformations when applied to sequences of nested loops. because. global transformations must

consider simultaneously a much larger number of canstraints arising froni al1 the loop nests. .\Iorc

01-er. these constraints may sometimes prevent the appiication of global transformations. OveraI1.

we bclieve it is gcnerally necessary to integrate CD:! transformations wit h other local and global

transformatiori techniques for overall better performance.2 \Ve believe t h e kep idea should be to

use local transforniations so that the total number of constraints that a later global transformatiori

niust consider is reduced.

8.1 Reducing the Number of Cache Coiiflicts

\\.é use r t n y . m g and cpentri: loops to illustrate the potential performance benefits and potcritial

pitfalls of applying CD'! to retliice the number of cache conflicts. relative to the application of

a n a ? pariding. Tlie amount of padding necessary for thesc loops \vas dctcrmined iising the IBL[

S L conipilcr. It stioiild be noted that CD--\ is not capable of rcnioving conflicts t tiat array padding

c m not. 1-fcncc. CD.-\ transfornied code can (zt best perform as tvell as array paddecl code. In

practicc. C'Dr\ transforrned code performs tvorse than array paddecl rode because of tlic cstra

overtieads tliat CDA introduces. Thiis. the application of C'DA for reducing the niinibcr of cache

conflicts is priniarily of interest in tliose situations. described i n Section 5.4, n-tiere it is undesirable

to modify global array layout using array padding.3 Sonetheless. using rtmg and mg loops. ive

slio\v tliat using CD.1 can be effective in reducing the nurnber of cache confl icts. Ynfortunatcly.

tiowevcr. the application of CD'\ can also result i n poor performance. due to the introduction of

niany ncw refcrenccs. This i s stiown u s i n g the rpenta Ioop.
-- -

' ~ h e largest direct-niapped cache that c m be simuiated on the SCache simulator is 64KB. Thereforc. the data
sizes for the loops were selected to be relatively small so as to obtain simulation results for a range of cachc geornetrics.

'For instcmce. global optimizations to reduce space requirements and cache footprint of the temporary variables
int roduced hclp irnprove the efficacy of CDA transformations.

J ~ o n i e example situations are 1) when the arrays are accessed in pre-compiled libraries and modules. i i) when the
arrays ,are acccssed with differcnt shapes in diflerent parts of the program. and i i i) when programmer specifies that
it is unsafe to apply padding.

Figure 8.1: Conflicting references in the original rtmg loop.

8.1.1 Rtmg Loop

The rtmg loop from the Arco Seismic benchmarks suite is a tnm-dimensional loop \vit li a single

statement in the loop body [-!II:

for i = 3, n-2
f o r k = 3, n-2

pl(i,k) = p2(i,k) - pl(i,k) + p2(1+l,k) + p2(i-1,k) + p2(i,k+i) +
p2(i,k-1)- p2(i+Z1k) + p2(i-2,k) + p2(ilk+2) + p2(i,k-2);

end for
end f o r

Scstcd loops suçh as this are iised to irnplernent finite difference operators while migrating seismic

sections L ~ ~] . References p l (i . *) and p'L(i. t) confiict in a direct-mapped cache for certain array

sizes. as shown in Figure S. 1. Fipure S.% shows tlie number of caclic misses wlien the loop witli

array sizes of G4sG-1 is r u n on a machine with a. direct-mapped or 2-way set associative cache of

size L6KB and 3'LKB. Xote that that the loop lias substantially fewer cache misses in 2-tvay set

associative caches.

il'e &scribe tiere tiow algorit hms -4 1 and -42 of Chapter .5 can be used to derive a CD-A transfor-

riiation wliich reduces the number of cache conflicts. Algorithm Al first decomposes tlie single s t a t c

riient i n the loop body into two new statements so that conflicts occur between statements. Step 3

of :Ugorithrn A t on page 70 chooses one of the four references, namely p2(i + 1. li). p2(i - 1 . k).

p2(i + 2. k). and p2(i - 2. k) , as the first first member of set of partition -4fter 8 iterations of

Step 4. no Further vertices can be added to I;i. At this stage. 1.: contains al1 the p2 references.

This will create a new statement with a ternporary t as the Ihs and a11 references in Ij\ on the rhs.

The second statenient thus contains the pi reference and a reference to temporary t . With this

decomposed loop as input. Step 6 of algorithm -42 on page 73 first applies an offset of - 1 chang-

ing the p 2 (i . +) references to p 2 (i + 1. *). Hoivever. this also changes tlie p2(i - 1. + j rcfercnces to

C.hc mlaa In M x M loop

Figure 8.2: The number of cache misses i n the original and the CD.-\ transformed rtmg loops with
array sizes of 64~6-C.

p 2 (i . t) which con fiict with the p l (i. *) references. Hence. algorithm -42 tries higher offsets and al1

the conflicts are eliniinated when the offset is -3. Thus. the required offset alignment is obtained

in 3 iterations of Step 6 of .-W. The innermost iterator k was not included in the list of iterators

in order to iniprove the data reuse along cache lines. The size of the teniporary array is chosen so

tliat its references do not conflict with p l and p2.

The structure of the transforrned loop becomes:

for i = -1, 2
f o r k = 3, n-2

t(i+3,k) = p2(i+3,k) + p2(i+3,k+l) + p2(i+3,k-1) + p2(i+3,k+2) +
p2(i+3,k-2)+ pS(i+4,k) + p2(1+2,k) - p2(i+5,k) + p2(i+l,k);

end f o r
end for

for i = 3, n-5
for k = 3, n-2

t(i+3,k) = p2(i+3,k) + pZ(i+3,k+l) + p2(i+3,k-1) + pS(i+3,k+S) +
p2(i+3,k-2)+ p2(i+4,k) + pS(i+2,k) - p2(i+S,k) + pZ(i+l,k);

pi(i,k) = t(i,k) - pi(i,k) ;
end for

end f o r

f o r i = n-4, n-2
f o r k = 3, n-2

pl(i,k) = t (i , k) - pl(i,k) ;
end f o r

end for

P ~ ~ ~ (K I D o ~ of rtmg Imp on SPARC 10

4ooo-

256 512 1024

V l l w of n for nm ~ i y s

Figure 5.3: Esecution tirne of rtmg loop on a SPXRC 10 workstation.

800 -
m

8a0 - ' \.
' \

t 7 m -
E

'.
'Em - g: - /Q, - - COA onginal trans~omicd 1
g 300 - 1

W zoo -
100 -

O -
508 MQ 510 1 512 513 514

Value of n for nxn a m

Figure S.-!: E:iecution tirne of rtmg loop on a SPARC 10 \vorkstation for varving d a t a sizes.

TIic inner iterations of the transformed loop are conflict free as a result of the CD.4 transformation.

Figure 8.2 slio~vs t lie reduction in t lie nurn ber of cache misses for 16 t iB and 32KB caches. Figure 8.:3

shows that C'D.1 transformation reduces the esccution tirne t o about 33.5% of the original loop on a

SP:i RC 10 system wit h LZSKB direct-mapped cache.

A n eqiiivalent array padded version of the loop has an execution time that is about 30% of

the original esecution tirne. This is better than that of the CDJ, transfornicd loop. because the

CD-4 transformed loop has overhead by adding references t o the temporary array. T h e CD-4

transformed loop required about 50% more memory than the original loop due to the introduction

of the temporary array.

One of the problems with array padding is that it requires prior knowledge of the array sizes.

Often, array sizes are not kriown in advance. as for esample is the case wit h l i brary routines. In t his

case. it is not possible to benefit from an- padding. Unaltered library routines can perform poorly.

if the parameter data results in escessive cache conflicts. This is illustrated in Figure 8.4 tha t shows

the esecution tirne of rtnig loop (in its original form) for varying array sizes. There is a peak wliere

the arrays a re 5 12x5 12. due to cache conflicts. In contrast to array padding. it is possible t o reduce

the nurnber of cache conflicts even if the target array sizes are not known a t compile time. by using

the following s t rategy. A version of CDA transformed code can be produced. with the assurnption

of a given array size. and include it together with a version containing the original code. \Vliich

version to run can then be selected a t run-time based on the size of the array. In the esample

if the input parameter Ilas these sizes and the original code is selected in al1 ot her cases. The t hick

line shows the esecution time of rtmg loop using this strategy and it is apparent ttiat the peak

exccution time could be eliminated. Yote that the esecution time a t the remaining two peaks a t

.J 1lx.j 11 and .51:Is5 13 array sizes can be reduced by other CD.4 transformed versions of the loop.

.llg iç a n application in tlie XAS benchmarks suite [LI] (and noiv also included in SPECIp9.i [SOI).

iv hlch w;is designed to deinonst rate capabilities of simple multigrid solvers.". T hree-dimensional

loops such as the one belotv5 forni the core of tlie computations. This loop applies an approsiniate

inverse as a smootlier [IL].

for i = 1, 1-2
for j = 1, 5-2

f o r k = 1, N-2
U(i,j,k) = U(i,j,k) +

c (O) * (R(i,j ,k) +
c(i)*(R(i-l,j ,k) + R(i+l,j ,k) + R(i, j-1,k) +

R(i,j+i,k) + R(i,j,k-1) + R(i,j,k+l)) +
c (2) * (R(i-1, j-1,k) + R(i+l, j-1,k) + R(i-1, j+i,k) + R(i+l, j+l,k) +

R(i, j-1,k-1) + R(i, j+l,k-1) + R(i, j-l,k+l) + R(i, j+l,k+l) +
R(i-I,j,k-1) + R(i-l,j,k+l) + R(i+l,j,k-1) + R(i+l,j,k+l)) +

c (3) * (R(i-1, j-1,k-1) + R(i+l, j-1,k-1) + R(i-1, j+l ,k-1) + R(i+i, j+l,k-1) +
R(i-1, j-l,k+l) + R(i+l, j-l,k+l) + R(i-1, j+l,k+i) + R(i+i, j+l,k+l)) ;

end for
end f o r

end f o r

'This is a simplified rnultigrid sotver in two important respects: i) it solves only a constant coefficient equation,
cuid that only on a uniforni cubicai grid. t i) it solves only a single equation. representing a scalar field rather than a
vcctor field [l l]

'This loap forms the subroutine calied p ~ i n v .

Figure K.5: Cache misses in the original and the CD.4 transfornied m g loop.

Figure 8.6: Conflict graph for the original mg loop.

I n a given itcration of the i loop. four "planes" of data. naniely R (i - L. *. *) . R(i. *. *). R(i + 1. *. *).

and C*(i. *. *). contend for the cache. Figure S.6 slio~vs the conf icting references ~vlien the cache

size is equal to the nuniber of clements in a single plane of data.

.-1 CD.-\ tliat reduces the niimber of ttiese coriflicts is derired as follows. .-Ugorithni A l de-

composes the (only) statement into four statements such ttiat none of the references i n the sanie

statement conff ict with each otlier. The four statements correspond to the four independent sets i n

the conflict graph of Figure 8.6. Deriration of the firsr three independent sets requires iterations

of Step 4 of algorithm -41 on page i O for each set. The fourth set is formed with the rernaining

two references. The first statement Si lias references to the i c h plane of R (i.e. R(i. t . t)) : a second

statement S2 has references to the (i - L)'~ plane of R (i.e. R ((i - 1. *. r)) : a third statement S3 has

references to the (i + I) ' ~ plane of R: and the fourth statement S.[lias the rcference ('(i. j. k) and

references to three temporary variables introduced to store the results of the other three statemeiits.

Algorithm ri2 then aligns the statements as foliows. The iterators are ordered from innermost

(k) to outermost (i) iteraton - this alloivs the dimension of the temporary variables to later be

reduced from three to two - but the innermost iterator is removed from the candidate iterators in

W,j,*)
R(i-1 ,j+S;) R(i-1 ,j+6,*) R(i-1 ,j+7,*)

tl(O,j+3,k)
R(i, j+2,*) R(i,j+3,') R(i,j+4,*)

t1 (O, j+W
R(i+1 ,j+8,*) R(i+l ,j+9,') R(i+l ,j+l O,')

tl(0, ji9, k)

Figure H.1: Conflict graph for the CD-A transformed mg loop.

order to improve the data reuse along cache lines. Thus. increasing offsets along the J dimension

are atternpted first for statement SI. A n offset of - 1 does not suffice, since references R(i. j. *)

would become references R(i . J + 1. *) which conflict with references R(i k 1. J + 1. * j in stateincnts

.Y2 and S3. Siniilarly an offset of - 2 does not sufice since references R(i . j - 1. +) would beconie

references R(i . j + 1. *) ivtiich conilict wi th references R(i 1. j + 1. r) i n statemerits S2 and S3.

The search stops when WC arrive at an offset of -:3. which elirninates al1 conflicts due to statement

S1. The derivation of this offset alignment requires 3 iterations of Step 6 of algorithni -42 of

page 73. Statements S2 and S3 are aligned in a similar way so that the- have offsets of -6 aiid -9.

respectively. dong the j dimension. Clearly. the derivation of these offset alignrnents requires 6 and

9 itcrations of Step G of algorithrn .-i2. Statement S., is aligned with t tie identity trarisforniation.

Figure S.7 shows the conflict graph for the transformed loop: ttierc arc no more conflicts i n irinermost

iterations.

The t ransformed loop is sliown below. This loop is guarded: alt hough a guard-free version of

the code \vas iised for the esperiments. it is riot stioivn Iiere. Since al1 alibnrnents wcre along the J

dimension. having only ttirce planes of a r r q elernents as ternporaries. naniely f l (0. *. *). t'L(0. *. *)

and t 3 (0 . *. *) is sufficient. The space overhead for the ternporaries is only about 0..5'/C of the

rriernory required for the original loop.

for i = 1, 1-2
f o r j = -8, 5-2

for k = 1, N-2
if (j > -3 && j < 5-41

/* Statement S1 */
tl(0, j+3,k) =

c(O)*(R(i,j+3,k) +
c (l) * (R(i,j+S,k) + R(i,j++,k) +

R(i, j+3,k-1) + R(i, j+3,k+l)) +
c (2) * (R(i, j+2,k-1) + R(i, j+4,k-1) +

R(i, j+2,k+I) + R(i, j+4,k+l)) ;
if (j > -6 %& j < 5-71

/* Statement S2 */
t2(0,j+6,k) =

c(l)*(R(i-i,j+6,k)) +
c (2) * (R(i-l,j+5,k) + R(i-1, j+?,k) +

R(i-1, j+ô,k-1) + R(i-1, j+6,k+l)) +
c(3)*(R(i-1, j+S,k-1) + R(i-1, j+?,k-1) +

R(i-l,j+S,k+l) + R(i-l,j+7,k+l) 1;
if (j < J-IO)

/* Statement S3 */
t3(0,j+9,k) =

c(i)*(R(i+l,j+g,k)) +
c(2)*(R(i+l,j+8,k) + R(i+l,j+l~,k) +

R(i+l, j+9,k-1) + R(i+l, j+S,k+l)) +
c(3)*(R(i+l,j+8,k-1) + R(i+l,j+lO,k-1) +

R(i+i,j+B,k+l) + R(i+l,j+lO,k+l) 1;
if (j > O % & j < J-1)

/* Statement S 4 */
U(i,j,k) = U(i,j,k) + tl(O,j,k)+ t2(0,j,k)+ t3(O, j,kh

end for
end f o r

end for

Figure S..S shows the number of cache misses obtaiiied i n a siniulation of the Ioop ~vith arrays

C- and R having size li-ls64s6-l for cache sizes 32KB. 6-I KB and 12SIiB. n-itti a 128 byte cache

Iine and (usociativit_v varying froni 1 to 4. The figure shoivs t hat the CD:t transformed loop has

substantially fewer cache niisses ir i most cases. Howcver. for large caches (12SIiB i n tliis case) a ~ i d

4-way set associative caches. the CD.& transformed loop has more misses t han the original loop.

The CD.-\ transformed loop lias 'lO!% more references in total tlian the original loop."Sloreover.

the original loop does not have conflicts i n J-ivay set associative caches. since the loop has oniy

four planes of arrays conflicting for the cache. \t'tien the cache size is large. say 12lqIiB. then al1

four planes of the arrays fit i n the cache i n t his esample.

Figure 8.8 compares the number of additional array eIements required for a CD.4 transforrncd

m g loop with tha t required for an array padded mg loop. In general, the CDA transformed loop

6 ~ i g u r e S.5 does not show the total numbcr of references.

32 û4 128 256
N m b r of ekmcntr in a dimension

Figure 8.8: Sumber of additional array elements in the CD-% transforrned and the arr- padded
mg Ioops.

requires s u bstantially fewer additional array elements when the array dimensions are high.

Figure 8.9 shows the improvement in esccution time of the mg loop witli 2 5 6 ~ 2 . 5 6 ~ 2 5 6 arrays on

a SP.%RC 10 workstation and a cingle U R 1 processor. The C'DA transformed loop ran faster than

the original loop bu a factor of 5-6 on both platforms. although slower than but within 20%-25% of

the array padded version of the Ioop. The difference between CDA and array padded code is that

tlie CD-\ code stifl has cache conflicts in tlie iterations of the outer iterator i and increased nurnber

of references due to the ternporary variables that were introduced. For esample. conflicts betn-een

iterations in the outer loop esist because the array elements i n the R(i + 1. *. *) plane accessed in

iterations (i . c . *) are no longer in the cache wheri accessed i n iterations (i + 1. *. *) . having bccn

displaceci by R(i , t . t) in (i. *. *) iterations.

ICé transforrned the three dimerisional loops i n both psinu and resid su broutines. tt-hich account

for 90% of the çomputation in the benchmark. The transformed application ran 2.5 times &ter

than the original version on a SP.ARC 10 workstation when the subroutines had cubical grid sizes

that create cache coriflicts.' It is interesting to note that a padding algorithm will choose not to

pad the arrays considering the entire application. since the su broutines access the arrays in a shape

diffcrent from the declared shape in conimon blocks.

SPARC IO KSRl

P W o m

Figure 8.9: Esccution time of mg loop wit h 25Gs2.56s2.56 arrays on a SP-ARC 10 workstation and
a single KSRL processor.

8.1.3 l p ~ n t n Loop

Vpenta is part of S:\S.AÏ in the SPECfp92 benchmark suite [JO]. Tlie programs in S;\S'\7 w r e

clesigned to represent typical numerical applications in engineering. \,-pen ta is desigricd to simu l-

taneoiisly invert 3-dimensional pentadiagcnals [JO]. Vpenta consists of two similar 2-diniensional

loops. one of which is sliown belotv:"

for j = O, n
for k = 2, n-2

RLD2 = .Ol*A(k,j);
RLD1 = .Ol*(B(k, j) - FtLDS*X(k, j-2)) ;
RLD = C(k,j) - (RLD2*Y(k,j-2) + RLDl*X(k,j-1));
RLDI = .000000001*1.O/RLD;
F(O,k, j) = (F(0.k. j) - RLD2*F(O,k, j-2) - RLDl*F(O,k, j-i))*RLDI;
F(1,k.j) = (F(1,k.j) - RLD2*F(l,k, j-2) - RLDI*F(l,k,j-l))*RLDI;
F(2,k.j) = (F(2,k.j) - RLD2*F(2,k,j-2) - RLDl*F(2,k,j-l))*RLDf;
X(k,j) = (D(k,j) - RLDl*Y(k,j-l))*RLDI;
Y(k,j) = E(k,;)*RLDI;

end for
end for

Cache iocality can be improved in this loop by perforniing a loop interchange (which can be

done with a simple linear ioop transformation), as al1 elements of the cache lines woiild then be

accessed i n consecutive iterations. However. for certain cache geometries. the cache performance

can continue to be unsatisfactory due to cache conficts. Figure 8.10 shows the number of cache

' Due to rclatively high rncmory requircment of the application. we rem it only with 128xl28x128 sizcd m a y s .

'The 3-dimensional array F is of size 3 ~ 1 2 8 x 1 2 8 nnd the other arrays arc of size 128x128.

misses that occur when the loop is executed with arrays of size 6-4s6-4 on a niachine with 3'2KB.

64KB and 128IiB caches and associativity varying from 1 to 4. From the figure. it is clear that

increasing associativity and the size of the cache have only a moderate effect on the number OC

cache misses if the loop is not transformed. Here. we show how C'CD can be applied to reduce the

number of conflicts in the interchanged loop.

This is an esample where array padded version performs much better t han the CD:[transformed

version. since CD..\ transformation introduces a large num ber of temporary arrays. T lie space

overhead of the transformed loop is nearly 60% of the rnernory required for the original loop.

For the esperiment we did not decompose the statements. because algorithm -41 wouid be over

optimistic and decompose the first. second. third. eighth. and the ninth statement. causing each

new statement to have a singIe array reference on the right hand side.

The First four statements have scalars on the Ihs: these are espanded into 2-dimensional arrays

so as to enable alignnient. As before. dimension j \vas not included i n the list of iterators to consider

for alignment so as masimize cache line reuse. Therefore. al1 alignrnents are along dimension k.

.-ilso. \ve consider. the statements for alignrnent in the order they appear in test.

The referençe to -4 in the first statement does not conflict with otiier references ivlien the

statement is applied an offset of -1. It is not legal to apply either a positive or a negative offset

to the second. third and the fourth statements. due to dependences on variables RL D2. R L D l

and RLD. It is also not legal to apply a ncgativc offset alignment to the fifth statement (due to

ciependences on R L D2, RL D I and R L DI). .A positive offset of 1 removes conflicts due to F (0 , k . *).

making theni F(O. k - 1. t) . Statenients sis tlirough nine are sirnilar to the staternent five in that

they cannot be applied negative offset alignment. Hence. they are applied increasing offsets of 2

ttirough ri. The resulting CD.4 transformed loop is shown below. .A guard-free version of this case

is used in the esperirnents.

for k = 1, n+3
for j = O, n

if(k < n-2)
RLD2(k+l, j) = .Ol*~(k+l,j);

if (k > 1 %& k < n-1)
RLDl(k, j) = .Ol*(B(k,j) - RLDZ(~, j)*~(k,j-2));

if (k > 1 %& k < n-1)
j) = C(k, j) - (RLD~(~, j)*Y(k, j -2) + ml(k,j)*X(k,j-l));

if (k > 1 && k < n-1)
RLDI(~,~) = .000000001*1.0/RLD(k,j);

if (k > 2 && k < n)
F(0.k-1,j) = (F(0,k-1.j) - ~~~2(k-l,j)*~(0,k-l,j-2) -

~i(k-l,j)*F(O,k-I,j-l))*RLDI(k-1.J);
if (k > 3 &% k < n+l)
F(1,k-2, j) = (F(1.k-2,j) - ~~~2(k-2,j)*~(l,k-2,j-2) -

RLD~(~-2, j)q~(l,k-2, j-l))*RLDI(k-2.J);
if (k > 4 8% k < n+2)
F(2,k-3, j) = (F(2,k-3,j) - ~ ~ ~ 2 (k - 3 , j)*~(2,k-3,j-2) -

RLDI(~-3, j)*~(2,k-3, j-l))*RLDI(k-3, j);
if (k > 5 %& k < n+3)
X(k-4,j) = (D(k-4,j)-FUJ)l(k-4,j)*~(k-4,j-l))*~~1(k-4,j);

if (k > 6 && k < n+4)
Y(k-5,j) = E(k-S,j)*RLDI(k-5.j);

end f o r
end for

Thc nuniber of cache misses in the CD.\ transformed loop is shon-n i n Figure 8.10. For al1 cache

geornetries. the transformcd loop lias substantiaily feiver cache misses than the original loop. Thc

eseciition tinies of the original. the CD.-\ transformed. and an array paclded (also loop interclianged)

code are shown in Figure 8.1 1 for t h e SP.é\RC 10. [\SR 1 and RS/6000 platfornls. Thc improvenient

ici eseciition tinies obtaineci by CD.4 transformation is not as high as might be espected when

considering the rediiced niimber of cache misses. The reason for t his is that scalar expansion nenrly

doil bles t lie niini ber of total refercnces. LIoreover. the CD=\ t ransformed code requires s u bstantially

niore memory than the corresponding array-padded code: Figure 8.12 compares the nirniber of array

clernents ttiat are added for the CD.&\ code to the number of elements added to tlie array padded

code. T tic CD.\ t ransformed loop xould require s u bstantially fewcr additional array elemen ts if

t hc loop were atigned aIong the j iterator (instead of the k iterator). but the esecution t ime would

t h c n be even higher because of the poor reuse of the cache lines.

FinaIl'.. we transformed the two-dimensiotial loops that together account for over 90% of the

esecution t ime of cpenta. The transformed version of the eritire v e n t a program ran 1.5 tinies faster

than tlie original program. In cornparison. the array ~ a d d e d version rail about 2.7 t imes faster than

Figure X.10: Cache misses i n the original and the CD..\ transforrned cpenta loop.

P c h m u i n iiI I X r J X v p a U lmp

Figure S. 11: Esccution time of rpcrita loop on Sr.-IRC 10 tvorkstation. a processor of tlie KSRl
and RS/G000 ivorkstation.

the original loop.

8.2 Removing Ownership Tests

\Ve use unnnl and ruqn2 loops to illustrate the potential perforniance benefits of applying CDh to

remove the ownership tests. The performance improvernents are comparable t o tlie performance

improvements due to guard el i rninat i~n.~

l n -

Figure 8.12: Sumber of additional array elements required for the CD:\ t ransformed and the array
padded cpentu loops.

Iiiinal is a wave equatioii solver tha t is part of the Riceps benchniark suite [32]. Tlie t l i r ee

dimensional loop from the benchmark shown below has two statements in its loop body.

for i = H+l, O, -1
f o r j = M+i, O, -1

f o r k = 0,l

EL(2*i,2*j ,k)=(EL(2*i+l,2*j ,k)+EL(Z*i-l,2*j ,k))/2
S2: if (j > 1-1 && j < u)

EL(2*J ,2*i-l,k)=(EL(2*j ,2ti,k)+EL(2*j ,2*=-2,k))/2
end f o r

end f o r
end f o r

This code performs poorly n-hen blocks of array planes E L (i . *. t) a r e mapped ont0 the processors

arid the statements are mapped onto the processors using the owner-corn putes rule: The array is

accessed i n such a way tha t each processor owns the Ihs of both statcnients i n only a small number

of iterations. Thiis. each processor must csecut.e every iteration of t h e loop t o determine whether it

owns one of the I h s array elements. [t is not possible to apply d a t a alignment in this case. bccause

the I h s references are to the same array.

In applying CD.\, it is not necessary t o decompose the s ta tements since the statements a re

mapped in t heir entirety. Algorit hm B2 identifies two alignment transformations for each state-

ment: First the identity transformation and a transformation tha t interchanges the i and j i terators

' ~ h e application of CD.\ can potcntially improve the later communication optimizations. Thcse improvemcnts
result frorn increased opportunities for vectorizing communications.

Pcrformaiwr d w a d Imp o i tk KSRI

1 2 4 6 1 6 2 4
No. of pmcruon for 1000r(b00 wiPI kmp

Figure 8.13: Esecution time of uanal loop on KSRl.

to align the Ihs of the statements. Both alignment transformations are legal.

The LD.4 transformed loop where statement SI is applied the identity transformation and

statement S? is applied a n interchamge of the i and j iterators is shown below:

1 = max(p*b, 0); u = min((p+l)*b-1, M+1);
for i = u, 1, -1

for j = M+l, O , -1
for k = 0,l

S1: EL(Z*i,2*j,k)=(EL(2*i+i,2*j,k)+~~(~*i-l,2*j,k))/2
52: EL(2*i,2*j-l,k)=(EL(2*i,2*j ,k)+EL(2*i,2*~-2,k) 112

end f o r
end f o r

end for

In th is SPlID code. there n o need for ownership tests. and each processor esccutes jiist a srnaller

siibset of the entire iteration space. Figure 8.13 compares the esecution time of the CD?I trans-

forrned loop tvith the esecution times of the uwnnl loop with ownership tests. The CD:\ transforrned

loop improved the esecution tirne by between 10% and 60% over with the number of processor

varying From I to 2-1. Since the KSR1 h a a shared address space. the proccssor owning the lhs of

statemcnt SI i ~ i an iteration can be forced to esecute statement S2 a s well, even though it is not the

owncr. For conipleteness. we show the esecution time of this case by the bars Iabeled :Von-oiuner

in Figure 8.13. For this esperirnent, the bounds of the i iterator were changed so as to scan the

local iteration space for SI. Hence. this version of the loop does not use any tests in the loop bodu.

The CDX transforrned Ioop improved the esecution time by about 10-2.5% over the this version

of the loop. This loop performs worse than the CD4 transforrned loop since it has poorer cache

locality while accessing array elernents for statement S2.

8.2.2 Srrm Loop

Sum is the shalloiv water program of the SPEC benchmark suite tiesigried for weathcr predic-

tion [50]. It consists of subroutines ccilcl and cnlc2 whicii contain sirnilar nested loops that need

data alignments in order to eliminate ownership tests if we assume owner-cornputes rule. Here, we

use the loop in the calcl subroutinc to show how CD.\ transformation can also remove ownership

tests.

This loop. here called. the swrn loop. has 4 statemcnts. [vit h Ihs references cu (i + 1 . j) . cr(i. j + 1) .

z (i + 1. j + 1) and h (i . j) . Assume the SPMD code with the arraFs niapped ont0 processors bu

blocks of rows of size b. In the swm loop shown below. espressions 1 and u for processor p represent

the rows of the l h s arrays mapped ont0 the processor.

1 = rnax(p*b, 1); u = min((p+l)*b-1, n-1);
for i = 1-1, u

for j = 1, n-1
if (i < u) cu(i+l,j) = 0.5*(p(i+l, j)+p(i.j))* u(i+Lj);

if (i > 1-1) cv(i, j+l) = 0.5*(p(i, j+l)+~(i, j)) * v(i, j+l);
if (i < u) z(i+i, j+l) = fsdx*(v(i+l,j+l) - v(i,j+L)) - fsdy*(u(i+l,j+l) -

u(i+l, j))/p(i, j) + p (i + l , j)+p(i+l, j+i)+p(i, j+l);
if (i > 1-11 h(i,j) = p(i,j) + 0.25*(u(i+l,j)*u(i+l,j)+ u(i,j)*u(i,j) +

v(i,j+i)*v(i,j+l) + v(i,j)+v(i,j));
end for

end for

The o\vncrship tests for each statenient appear as conditionals using the value of the i itcrator. Due

to the (i + 1. *) references to cu and z on the lhs of the first and third statenient. processors rnirst

csecute iterations i. ~vhere 1 - 1 5 i 5 t r : Staternents 1 and 3 get esecuted i n iterations I - 1 5 i < ir

and statements 2 and 4 get esecuted i n iterations 1 - 1 < i 5 i r .

This SPhID code incurs tn-O overheads: first the esecu tion of tests i n every iteration. and second

the esecution of one i iteration more than necessary. The ownerstiip tests can bc elirniriated by

data alignments which CO-locate cu(i + 1. *). cu(i . +). z (i + 1. *), and h (i . t) .

I n applying CD-& transformation as an alternative to data alignment, it is not necessary to

apply algorithm BI to decompose the staternents. since each statement of the loop is mapped i n

its entirety. .ilgorithm BI identifies four candidate alignment transformations for each statcment:

the identit .~ transformation and t hree t ransforrnations each aligning the statement to one of t lie

other three statements.1° These alignments attempt to align the statements such tliat al1 the lhs

"There are only two unique alignment transformations for each staternent.

references are either of the form (i . *) or o l the form (i+ 1. t). In this case. al1 candidate alignments

are legal.

The CD-\ transformed code where the statements are aligned such that the Ih s references are

CU(;. j), ci..(i. j + 1). t (i , j + 1). and h (i . j) . and where the guards have been removed is shown

below :

if (p == 1)
for j = 1, n-1

cv(l,j+i) = 0.5*(p(i,j+i)+p(l,j))* v(l,j+l);
h(l,j) = p(1,j) + O.SS*(u(2, j)*u(2,j)+ u(i,j)*u(i,j) +

v(l,j+l)*v(l,j+l) + v(i,j)+v(l,j));
end for

end if

// begin core

1 = max(p*b, 2) ; u = rnin((p+i)*b-1, n-1);
for i = 1, u

for j = 1, n-1
cu(i,j> = O.S*(p(i, j)+p(i-l,j))* u(i, j);
cv(i,j+l) = 0.5*(p(i,j+l)+p(i,j))* v(i,j+l);
i , 1 = fsdx*(v(i,j+l) - v(i-1, j+l)) - fsdy*(u(i, j+i) - u(i, j))/

p(i-1, j > + p(i, j)+p(i, j+l)+p(i-1, j+1);
h(i,j) = p(i,j) + 0.25*(u(i+i,j)*u(i+î,j)+ u(i,j)*u(i,j) +

v(i,j+i)*v(i,j+l) + v(i,j)+v(i,j));
end for

end for

// end core

if (p == P)
for j = 1, n-1

cu(n,j) = O.S*(p(n,j)+p(n-i,j))* u(c,j);
z(n, j+l) = fsdx*(v(n,j+l) - v(n-1, j+-1)) - fsdy*(u(n, j+l) - u(n, j))/

p(n-1, j) + p(n, j)+p(n, j+i)+p(n-1, j+l) ;
end for

end if

I n t h i s SPkID code. there is no need for ownership tests inside the loop bodies. since each statement

of t hc loop now accesses the rows of the arrays mapped ont0 the sarne processor. The bounds of

the i iterator i n the core of the transformed loop wcre modified to be 1 and u so that the loop

scans the local iteration space of the processors. Note t hat the loop nests outside the core of the

transformed loop will still need one test each.

Figure 8.1-1 compares the esecutiori tirne of the CDX transformed loop with the esecution times

of the swm loop with ownership tests and with the execution of the array aligned swm loop. The

Figure 8.14: Esecution timc of swm loop on IiSRl.

three versions of the loop were esecuted on the IiSRI multiprocessor using the NLSI=\C'ROS macro

package to execute the i loop in parallel [33]. The CD;\ transformed loop improves the escciition

tinie by 2540% over the case n-ith ownership tests for 1 to 24 processors. The CD,+\ transformed

loop performed slightly (1-5%) better tlian the data aligned loop. This irnprovernent is mainly due

to distribiiting the corn pu tations of the statements into t hree subnests.

Concluding Remarks

Woods are lovely. dark and deep
I have promises to keep
And miles to go before I sleep
And miles to go before I sleep

- Robert Frost

9.1 Summary

The main focus of this dissertation has been the design of the CD.-\ transformation framework

that estends the linear loop transformation framework by a significant step. LVhile. the linear loop

transformation franie~vor k has already been very effective in esposing parallelisrn and im proving

niemory and cache locatity. our goal was to estend and enhance the capabilities of the linear loop

transformation franiework. Ir1 particular. this dissertation makes the following contribtitions.

Granularity of loop transformations

First. ive Iiave sho~i-n tliat transformations of nested Ioops at staternent and subcsprcssion prariir-

iarity tias potential witti respect to performance. The linear loop transformation frarnework cannot

transform at this granularity. since it can only transforrn at the granularity of e ~ t i r e iterations.

A facility to transform loops at statement and su bespression granularity esterids the linear loop

transformation frarnework. because it allows the composition of the iterations to be changed as well

as the esecution order of the re-cornposed iterations.

CDA transformation framework

\$le have described the CD-4 transformation frarnework. ~vhich lias two components: Cornputation

Decomposition and Corn pu tation Alignment. Computation Deconiposition partitions the iteratiori

space into possi bly several corn pu tation spaces. each representing the computations of a statement

or a su bespression. Computation Alignment t hen applies a separate liiiear transformation t o each

of the computation spaces. The transformed computation spaces are fused together to define the

new iterations. In the CD.4 framework. linear loop transforniations are just a special case. where

each cornputation space is transformed the same rvaj-.l

L-nfortunately. the price of additional flesibility in CD.4 transformation comes a t ttie cost of

additional esecution and space overheads in the transformed Ioops. The overheads arise in the

form of empty iterations. guard computations and space for temporary variables. U'e described

techniques t tiat improve the efficiency of CD-4 transformed loops by reducing t hese overheads.

Simple transformations of the cornputation spaces. such as small offset alignments. tend to introduce

loiver overheads than transformations which are defined by general non-singular integer matrices.

Opportunities for CDA transformations

CVc have identified several types of optimizations that can benefit froni CD.&. These optimizations

are eit her new transformations or generalizations of esisting transformations. For esarnple. the

CD.\ transformations for reducing the number of cache conflicts and the CD-\ transforniations for

removing ownership tests are new in that they achieve by code transformations ivhat lias tradi-

tionally been achieved by da ta transformations: hence local transformations can now acfiieve what

t raditionally ivas acfiieved \vit h global transformations. Similarly. the CD.&\ transformations for

irnproving instruction level parallelism are new in that they modify thc composition of iterations

through relatively liign orrler transformations. .-\s an esarnple of how CD.-\ generalizes csisting

t ransforniations. t lie CD-\ framework unifies loop distribution and loop align~nent transformations

irito a single liriear algcbraic formalism. The CD.4 framework generalizes loop distributions in

that it cari effect partial loop distributions. and it generalizes loop alignments in that it alleu-s the

alignnient of statements by non-singular integer matrices.

Automatic derivation of transformations

The key to the success of a transformation franiework is ttie availability of techniques to automati-

cally derive transformations appropriate for a given loop. The relatively finegrained rest riicturing

tliat is possible within the CD.4 franiework implies m t l y larger search spaces for deriving transfor-

niatioris t han t hose t hat esist when deriving a linear loop transformation. It is. t herefore. necessary

to use Ileuristics t o derive CDA transformations efficiently. as an exhaustive search would be com-

' Hence. Computation Decornposition is a redundant step for a linear transformation.

putationally intractable. These heiiristics rnust rnake use of the knowledge about the optimization

contest in order to be effective.

In deriving these heuristics. we attempt. wtienever possible. to build on techniques that already

esist in ot her frameworks. For esample. a CD.4 transformation to reduce cache confiicts attempts to

move conflicting references in an iteration away from each other and into adjacent iterations. That

is. conflicting rnemory referenccs are moved away frorn earh other in time. which is analogous to the

way array padding algorit hms move array elements that are the target of confiicting accesses a w q

froni each other in space. Sirnilarly. a CD.A transformation to remove ownership tests attempts

to mot'e coniputations that are mapped ont0 the same processor together from different iterations

into the same iteration. !Ve derive appropriate transformation matrices Tor this piirpose similar to

the way data alignment modifies two array references te be similar.

Experimental demonstration

Lastly. we have illustrated how CD-A transformations can be derived for esample nested loops iising

techniques discusseci in t his dissertaticin. The esperiments demonst rate t hat local t ransforrnations

siich as CD:\ c m be useful in reducing the number of cache conflicts and removing ownership tests.

wheii it is iindesirable to apply global transformations such as array padding and data alignrnent.

The esperimental r~sul ts also dernonstrate that it is necessary to apply CD-\ carefully. since the

overlieads introdticecl by C'DA. a t times. also reduce performance siibstantially. Irr our esperiments.

ive have focused on t hose loops t hat require statement and su bespression level restructuring. b c

cause Iinear Ioop transformations alone cannot help improve perforniance in these cases.

9.2 Fiiture Work

In esploring CD:\. ive have just scratched the surface. hlucfi ~vork is still ncccssary to understand

the fi111 potential of this franiework. The work described in this dissertation can be clirectly estended

in a nurnber of directions.

Techniques for deriving CDA transformations

The tech niques we described for deriving CDA transformations demonstrate t hat simple heuristics

may often s u ffice. even if CD.\ transformations are corn ples relative to linear Ioop transformations.

However. these heuristics cari be improved further and estended. For esarnple, the algorithm to

derive CD-A transformations for reducing cache conflicts can be estended to i) reduce contîicts froni

outer loop iterations {as well as innerrnost iterations). ii) align statements in an order deterrnined

by dependences. iii) re-consider alignrnents for statements dependent on a statement 5' when the

candidate alignmeiit for S is iltegal. and ic) test for conflicts bu syrnbolic pattern niatching. The

algorithm to derive CD-4 transformations for rernoving ownerstiip tests can he e s t ~ n d e d to consider

only those candidate alignnients which preserve the rank of the dependence rnatris (and lience

parallelism) .
For the purpose of applying CD.-\ to improve instruction level parallelism. it is necessary to

fi rici heu ristics to recognize iteration corn positions t hat have improved parallelism. lloreover. ive

believe t hat partial distributions are a very useful generalization of loop distribution: furt her study

is required to identif?; situations where partial distributions improvc performance and to be able to

automatically derive appropriate CD.b for this purpose.

Duality of transformations

\Ck showed that certain CD:\ transformations can be viewed as duals of certain data transforma-

tions. in particular array paclding and data alignment. The data transforniatioris and the corre-

sponding C'D=\s each have t heir own advantages and disadvantages. \i7e believe t hat an integrated

approach is better tliari usi~ig an csclusive-or approach. Further investigation is required to find

strategies for this iritegrated approach. It is also possible to CD:\ transform loops so that iterations

access data at caclie line and page boundarics ~vhen the arrays are not esplicitly aligned to thesc

bou ndaries.

Unified approach to optimizations

The esectition tirne of a nested loop can be improved by applyirig loop transformations that improve

features of the Ioop sucii as cache access bchavior. parallelism. instruction level parallelisrn. and

load balance. However. a Ioop transformation may improve one feature of the loop. but may at ttie

sarne time. worsen other features of the loop. Traditionally. such conipatibility issues are resolved

by identifying features that most affect the loop performance and applving the loop transformations

in a fised order. For esample. when caclie conflicts cause serious performance degradatioii. then a

transformation that reduces ttie number of caclie conflicts rnay still significantly improve elcccution

time, even though the loop may continue to have ownership tests. It is intercsting to mode1 nested

loops and niachinc architectures so that the impact of a transformation could be accurately deter-

mined directly in terms of espected execution timc of loops. It may seem that such an approach

makes i t difficult to ensure reasonable compilation tirnes. However. rccent trends in analysis and

optirnization techniques indicate that such ari approach may have acceptable average time comples-

ity [45]. The algorithm recently proposed by Lim and Lam to derive the optimal transformation

t hat masimizes parallelisrn and minimizes the degree of synchronization can be viewed as indicative

of techniques that wilI be designed in the future capabie of deriving transformations optimal for

given target architectures [38].

CDA as a generalized transformation framework

Clearly. a transformation frarnework is only as good as the accompanying algorithms that can

derive appropriate and effective transformations. hluch further work is necessary in improving

the algorit hms described here and designing new algorithms for the ot her applications mentioiied.

Moreover. atthough we found that simple heuristics that ivere natural for the optimization in

question were often quite effective. it is stili necessary to test these heuristics on a tvider variety of

ncsted loops to fully understand their usefulness and robustness.

The most appropriate way to do this is to integrate the CDA frarnework into an esisting compiler

frarnework so that ttie ideas presented in this dissertation can be tested on the huge scientific and

engineering code b,ue t hat already esists. The prospects for doing t his have improved over t lie

last year or two with newer analysis and code generation techniques. However. the techniques

used in the CD:\ fran~ework are much niore involved than the tecliniques used in the linear loop

transformation frarnework. a n d the CD.4 transfornied loops tend to bc more cornples and larger in

size. Hence. it might be useful to identify a subset of the CD.\ frarnework that can bc integrated

with current compiler iniplernentations with less effort.

9.3 Epilogue

It should be noted that it took the compiler community over five years and a huge amount effort

to fully realize the potential and develop efficient techniques for the linear loop transformation

framework to the point where they could be integrated into todav's compilers. CD.4 ivill require a

much larger effort if its potential is to be ftilly esploited. L i é believe that it is important to invest

in tliis effort. because much more agressive compiler techniques for restructuring programs will

becorne necessary in order to deal with ttie compiesities that will be introduced with future advances

in computing technology and architectures. Techniques siich as CD:\. as well as o ther non-linear

code and d a t a transformations. ivill play a prominent role in the set of aggressive transformation

techniques tha t will become necessary to improve performance on future systems.

A Catalog of Loop Transformations

l i é classify the transformations into preliminary, primary. and s~condary transformatior;~. Prclim-

inary transformations are the first to apply. and the purpose is to improve the da ta and control

depeiidence analysis. Primary transformations achieve ttie intended restructuring of ttie program.

Some of the objectives could be to enhance parallelism. load balance and/or locality. Secondary

transformations irnprove the performance of the programs further by fine tuning.

Tiie loop trarisformations can change the dependence structure. Th~refore. it is necessary to

ensure that a transformed loop preserves the scquential semantics. that is. produccs the sanie results

as the original loop. -4 transformation is said to be legal if al1 t lie dependences in t lie t ransfornied

loop are positive.

A. 1 Preliminary Transformations

These transformations arc intended to improve further analysis.'

Induction variable elimination

Siniplifies the su bscript analysis in dependence tests.

j = n

for i = O, n

A (i) = B (j - 1)

B (j) = C(i)

j = j-1

end for

for i =O, n

A (i) = B(n-i-1)

B(n-i) = C (i)

end for

':!lthough most of the prciirninary transformations were introduced in the context of vectorization. we leave out
vectorization techniques here.

Normalization

. l h y transformations assunie that the lower bound of a loop indes starts with zero and lias a

stride of one. ' Yormalization makes a loop nest to conforrn to this assumption.

f o r i = 2 , n , 2 f o r i = 0, n/2-1

for j = O , n for j = 0, n

A () = A - j) ====> A(2i+2,j) = A (S i , j)

end f o r end for

end f o r end f o r

Forward substitution

Simplifies dependence analysis by s u bstituting constants for the expressions in a r r q refercnces.

x = n + i

for i = O, n

A (i) = B (i)

~ (i) = A(x)

end f o r

f o r i =O, n

A!i) = B (i)

C(i) = A(n+l)

end f o r

False dependence elimination

Anti and output dependences are false as the- arise just because of sliaring the samc storage

location. Iciea is to eliminate ttiese and work orily witti the floiv (true) dependence.

Loop distribution or Fission

In order to enable vectorization, or provide sirnpler loops for analysis, it distributes statcnieiits i n

a loop into multiple sirnilar loops.

for i = O, n f o r i = O, n

*:\s we sce later. :-!ianging the stride itself is treated ,is another t,ransformation called scaling.

A(i) = x A(i) = x

C(i) = ~ (i - l) + D (i - 1) === > end f o r

D(i) = C(i) for i = O , n

end for C(i) = A(i-l)+D(i-1)

D(i) = C (i)

end f o r

Node splitting

Dependence cycles in a loop. prevent loop distributioii and vectorization. It is possible to break the

cycles by introduction of teniporary variables to keep copies of data. Sode sp!itting is essentially

an introduction of temporary variable followed by loop d i~ t r ibu t ion .~

f o r i=l ,n for i = l , n

A(i) = B(i) + C(i) A(i> = B (i) + C (i)

D (i) = A(i-1) + A(i+ l) ===> Temp(i) = A(i+ l)

end for D(i) = A(i-1) + Temp(i)

end f o r

The original Ioop contains a flolv dep~ncience (1) and an anti-dependence (- 1) leading to a cycle.

and preventing the loop distribution. Introduction of temporary variabIe Tcmp to keep a copy of

.-1 enables 11s to distribute the loop (and subseqiiently vectorize) as below.

f o r i = 0 , n

A(i) = B(i) + C(i)

Ternp(i) = A(i+l)

end for

for i = 0 , n

D(i) = A(i-1) + Temp(i)

end f o r

Loop fusion

The opposite of distribution (or fission). Fusing adjacent loops increases the grain size and decrease

the overhead of a do-al1 loop. This can also improve cache performance by increasing reuse of

3Some consider only the introduction of temporaries as node splitting.

elerneri ts accessed in fused ioops.

A.2 Primary Transformations

One may have t o apply a sequence of these transformations.

Strip rnining

Strip mi~i ing transforms a 1-d loop into a 2-d I O O ~ . ~ A dependence (c) becomes (O. c) and (1. c -

S - 1) . whcre S is t .11~ s tr ip size (and assuming S 2 c) . l t is a l w a ~ s legal to d o str ip niiriing. (That

is. strip mining does iiot rcsult i n negative dependences in the transformeci Ioop.) The bounds are

rectangular and cas- to cornpute. Strip mining is done mostly to esploit the vector register size.

f o r i = O, n

A(i) = A (i - 1)

end f o r

f o r ii = O, n , 64

f o r i = i i , mîn(ii+63, n)

A (i) = A(i-1)

end f o r

end for

Loop interchange

Interchanges nested loops." A drpendence (a . b) becomes (b. a) . and t l i u s i r i t~rchangc is riot valid

if any dependencc (t r .6) has a negative 6. Loop interchange can eriha~icc inner loop parallelization.

vcctorizatioti. oiitcr loop parallelization. adjustment of a r r q access stride. and match loop paral-

lelisni to da ta distributions. Loop boiind computation can be non-trivial i f t he iteration space is

non-rectangirlar.

f o r i = O , n for j = O , n

f o r j = O, n for i = O, n

A , j) = A , - 1) ==== > A (i , j) = A (~ , J - 1)

end f o r end f o r

end f o r end f o r

for i = ml, ni f o r j = m 2 , ni

4We see later in the docurnerit that strip mining is a trivial case of tiling.
'In a doubly nested Ioop this corresponds to trnnsposing the iteration space.

f o r j = m2, i

A i ,) = A (i , j -) ====>

end f o r

end f o r

f o r i = max(m1, j) , nl

A(i?j) = A(i, j-1)

end f o r

end f o r

Loop permutation

Generalization of a loop interchange. Gives a loop that has indices that are a permutation of

the original Ioop indices. =l dependence (a. b. c) with permutation (: : ,) becomes (c . a. b) .

.A permutation is valid if al1 the perrnuted dependences are positivè. The above permutation is

valid if the dependences are { (1. 1.0). (1. - 1. 1)). not if a dependence (1.0. - 1) also esists. Loop

bounds are again non-trivial to corn pute for noir-rectangular iteration spaces. .A permutation can

be realized as a sequence of interchanges. but finding legal sequences of interchanges is a difficult

task.

f o r i = O , n

f o r j = 0 , n

f o r k = O , n

A(i,j ,k) = A(i-l,j+i, k-1) ===>

end f o r

end f o r

end f o r

for k = O, n

f o r i = O , n

f o r j = O , n

A(i, j , k) = A(i-1, j+l ,k-1)

end f o r

end f o r

end f o r

Loop Reversa1

Rcversing a loop may be necessary to enable loop interchanges. By reversal of a loop with loiver

bound L and upper bound C I . it is made to iterate from - C a 7 to - L with the sanie stride. A

dependence (a. 6) becomes (a . - 6) . Xote that. whenever t here are deymdcnces carried by t hc

outermost loop. it is illegal to reverse it. For esample. a dependence (1.2) becomes (-1.2) after

intercha.nging the outer loop. which is illegal as the new dependence is negative.

f o r i = O , n for i = O, n

f o r j = 0 , n f o r j = -n, O

A , j = A i - , 1 ====> A (i , - j) = A(i-1,-j+1)

end f o r

end f o r

end f o r

end for

Loop skewing

:\ dependence (d 1. d2) becomes (dl. f d 1 + d2) where f is the skew factor. -4 valid skew can al~vays

be found for a given loop.

With a skew f a c t o r of +1.

f o r i = O , n

f o r j = O , n

A ,) = (1 ,) ==== >

end f o r

end f o r

f o r i = O , n

f o r j = i , i+n

A (i , j - i) = A (i - 1 , J-i)

end for

end f o r

Wavefront

Tlie idea is to find a faniily of hyperplanes i n tlie iteraticiii space dong whicli t h e itcrations cari

be eseciited i n parallel. The loop is transforrned in such a way that the hxperplanes are esecuted

sequentially. and al1 iterations on a hyperplane are csecuted in parallel (i-e. inner loop paralleliza-

tion). .-\ ~vavefront transformation results i n dependences carried by the oiiter most Ioop. -4 valid

wavefront. can always be found.

Loop skewing is jiist a simple instance of wavefrorit transformation.

Unimodular and Linear loop transform~tions

.-1 unified transformation that subsumes permutation. reversal. and sketving. It is characterized by

a unimodular matris: the new loop bounds and new dependences are computed from t his matris.

:\ 2d loop interchange has the transformation matrix (: a) . These techniques are discussed

i n Cliapter 2. Please refer to loop interchange for an esample. '

Internalizat ion

A unimodular transforrnatio~ specialized to exploit outer

Ioops. The technique is discussed iri Chapter 2. The basic

loop parallelism and locality for general

idea is to transforrn a loop in such way

that masimuni nuniber of dependences are not carried by the outer loop. and the size of the outer

loop is masimum. The technique can be applied to increase dynamic locality as well.

Access Normalization

It is sirnilar to unimodiilar loop transformations in that a matris trarisforniation is used. However.

t h i s rnatris is derived from array access patterns. and need not be unimodular. The niatris is made

invcrtible if neerled. The objective is to simplify the arrai subscript espressions so as to match the

simple da ta distributions and hence does not consider any ot her loop optirnizations.

for i= p, NI-1, P for u= p , b-1, P

f o r j= i, i+b-1 f o r v= u, u+Nl+N2-2

f o r k= O , N2-1 read A(*,v)

B (i , j-i)= B (i , j-i)+ A(i, j+k) for w= O, Ni-1

end f o r B(u,u>= B(v,u)+ A(w,v)

end f o r end f o r

end f o r end for

end f o r

Xote that addition of t hc line read A (* ,v) is a secondnr-y transformation.

Scaling

It is tlic converse of normalization in tliat it changes the loop stridc from one to niany. Tlie

t ransformatiori is cliaracterized by an invcrtible intcger mat r i s (gcnerally not unimodiilar). Sincc

rnost of the transformations operate or1 normalized loops. scaling is not generally employed. Scaling

can provide niore nat ural looking su bscripts and bounds.

f o r i = 0, n/2 f o r i = O , n, 2

f o r j = O , n f o r j = O , n

A(2i,j) =A(2i-2,j) === > A(i,j) = A(i-2,j)

end f o r end f o r

end f o r end f o r

Rotation

[terations in some dimensions can be shifted with respect to other dimensions so that ttie com-

munication patterns become uniform. The transformed loop esecutes the iterations in a toroidal

fashion. Althougli it does not change the shape of the iteration space. dependences are changed.

and the transformation is not always legal.

f o r i = O, n

f o r j = O , n

A (i , j)=

end f o r

end f o r

f o r i = O , n

f o r j = O , 11

A(i,(j-i) mod (n+l)) =

end for

end f o r

The elements of A cornputeci \vil1 be in the order (0.0). (O. 1). (O. n). (1. n) . (1.0). (I . ri -

1). (2 . n - 1). (2. n) (2. n - 2) instead of the iisual lesicographic order in ttie original loop.

Combing

This is equivalent to interchanging the loops of a strip mined loop. It is not alivays legal.

for i = O, n

A(i) = ~ (i - 1) --- --- >

end f o r

for i = 0, 63

f o r ii = i, n, 64

A(i) = A(i-1)

end f o r

end f o r

Tiling

Tiling is also called blocking. It st rips different loop levels to decrease the effective sizes of the inner

loops so as to increase reuse. It can be vieived as increasing the grain size from an iteration to a

collection of iterations (tile). where the outer loops stcp through the tiles and the inner loops step

t Iirougli the iterations in a tile. It is valid only if the loop levels to be tiled are fully permutable.

f o r î = O , n

f o r j = O , n

f o r ii = O , n, Si

f o r jj = O , n, Sj

for i = ii, min (ii+Si-1,n)

end for

end for

for j = j j , min (jj+Sj-1,n)

. . .
end for

end for

end for

end for

A.3 Secondary Transformations

These a r e intended as improvements over transforrned programs.

O lnt roducing communication primitives and changiiig them to more efficient primitives (like

block t ransfers) .

O Prefetching.

0 Register binding. a n d

O Ternporaries for index computat ion.

References

[I I W. Abu-Sufah. Improving t h e performance of virtual rnernory cornputers. Phd thesis. I-niv. of

11Iinois a t C'rbana-Cliam paign. 1973.

[2] Ranciy .Allen. David Cailahan. and Ken Kennedy. Automatic decomposition of scicntific pro-

grams for parallel esecution. In Conference Record O[the 1 f th .-innird .-lC.11 Symposium on

Principi~s of Progmmming Languages. pages 63-76. hlunich. \l'est Germany. January l0Sï.

[3] C'. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Procecdingr of the 3rd .-\C'dl

SIGPL.-1 .V Symposium on Principles and Practic~ of Pardiel Progrnrnming. volume 26. pages

:39-.50. \Villiarnsburg. \ ' - m l . April 190 1.

[-Il J. Anderson and 11. Lani. Global optirnizations for parallelisrn and locality on scalable parallet

niachines. In Proc~~di i igs of the .-1 C'.\/ S I G f La-! ,y '93 C ' o n f e r ~ n c ~ or1 Prograrnming hngncrgc

Design und lmplcntentntion. voltirne 28. .lune 1993.

[5] D. Bacon. .J. Cliow. D. J u . t i . 1Iuthukurnar. and 1;. Sarkar. -4 compiler franlework for rcstrirc-

turing d a t a declarations t o enhance cache and tlb effectiveness. In Proce~dings of C.4SC'O.V

94. Toronto. Canada . November 199-1.

[Ci] D. Bacon. S. Graham. and 0. Sharp. Compiler transformations for Iiigti-performance cornput

ing. COntputing Surreys. 26(4):34.5-420. 1994.

[Y] *. Balasundararn and Iien Kennedy. -4 technique for summarizing d a t a access and its use in

parallelism en hancing transformations. In Proccedings of the .-iC.\I SIGPL-1 .V '89 Con f~rence

on Progmmming Languap Design and Implem~ntntion. volume 24. pages 4 1-53, Port land.

OR. June 1989.

[P] Utpal Banerjee. Dependence =Inalysi.s for Supercomputing. liluiver Academic Piiblisliers. 1988.

[9] Utpal Banerjee. -1 theory of loop permutations. In Proceedings oJ Second F\'ork.shop on Pro-

gromming Languag es and Compilers for Pamlfel Computing. August 1989.

[IO] Yt pal Banerjee. C'nimodular transformations of double loops. In Proceedings of Third Ilork-

shop on Programming Languages and Compilers jor Parailel Computing. Irvine. Cc!. August

1990.

[L I] E. Barszcz and P. Frederickson. Sas multigrid benchniark. Teclinical report. .\'.-\S.A. ;\nies

Research Center.

[12] 2. Cliarnski. Bepond convesity: Scanning 'non-conves polyhed ra'. In Wh Hawaii International

Con ference on Systern Sciences. volume I I : Software Technologp. pages 73-82. IEEE. danuary

199.5.

[lR] S. Chatterjee. J.R. Gilbert. R. Sclireiber. and S. Teng. Optimal evaliiation of array espresioiis

on rnassively parallel machines. -4C.U Transactions o n Prograrnming Lnnguages and Systcms.

17~123-1-56. 199.5.

[14] Ron Cytron and Jeanne Ferrante. bi'hat's in a name*? In Proceedings of the 1987 Inttmational

C'on{ercnce on Paralle1 Proc~ssing. pages L9-'Li. 19231.

[15] M.L. Dowling. Optimum code parallelization using unimodular transformations. Pnmii~l COm-

pnting. 16: 1.5.5-17 1. 1990.

[l Ï] P. Feaiitrier. Dataflow analysis of array and scalar references. International .loiinin1 of Parnllel

Progrnmming. 20. 199 1.

[LX] I-IPF Forum. H p f High performance fortran language specification. Technical report. HPF

Forurn. 1993.

[19] D. Gannon. W. Jalby. and K. Gallivan. Strategies for cache and local rnemory management

by global prograni transformation. .Journal of Pnmllel and Distributed Computing, .5:.58ï-616.

1988.

['LOI 1.I.R. Garey and D.S. Johnson. Cornputers and Intmctabifi~y. .-I guide to the theory of :VP-

Completeness. CV.H. Freeman and Co.. 1919.

[2 11 S. Hiranandani. K. Kennedy. C. Koelbel. C. Iiremer. and C. Tseng. An overview of the fortran

d programming system. Technical Report CRPC-TR9 1121. Dept of cornputer Science. Rice

University. 1991.

[22] LV. Iielly and \.V. Pugh. A framework for unifying reordering transforniations. Teclinical Report

C3II.ACS-TR-92-123. Yniversity of Ilaryland. 1992.

[23] CV. Kelly. i\'. Pugh. and E. Rosser. Code generation for multiple mappings. Teclinical Report

C ' l I [.AC'S-TR-9447. rniversity of LIaryland. 1994.

[--Il P. .LI. \.V. Iinijnenburg and -4. .J. C. Bik. On reducing overheads in loops. Technical Report

05-01. Department of Coniputer Science. Leiden Vniversitl. The Setherlands. Ilarch 1995.

[25] K. B. linobc. The s u bspace model: Shape-based compilation for parallel programs. Phd t hesis.

1IIT. January 1901.

[26] D. Kulkarni. 1i.C;. liumar. A. Basu. and -4. Paulraj. Loop partitioriirig for distributed rnernory

multiprocessors as unimodular transformations. I n P r o c d i n g . ~ of the 1,991 .-1C.V Int~rnntiortal

C o n j c r ~ n c ~ on Strpercompiiting. Cologne. Germany, June 1991.

[X] D. Iiulkarni and I l . Stumrn. Coniputational alignrnent: -4 new. unificd program transformation

for local and global optiniization. Technical Report CSRI-292. Coniputer Systems Research

Institute. University of Toronto. January 199-1.

['Ls] 1i.C;. liurnar. D. liulkarni. arid -4. Basu. C;eneralized uniniodular loop transforniations for

distributed nieniory rnultiprocessors. In Proce~dings of the Irrt~rnational C o n f ~ r c n c ~ on Pnrnlkl

Proccw i ry . Chicago. 1 1 1. J u ly 109 1 .

1201 1i.C;. iiiirnar. D. iiulkarni. and A. Basu. Deriving good transformations for mapping nested

loops on hierarcliical parallel machines i n poly nomial tirne. In Proce~cfings of the 1992 A C'.U

fnternationnl Confemnce on Supercomputing. tt'ashington. Juiy 1992.

[30] hl. S. Lam. Software pipelining: an effective scheduling technique for \'LI W machines. I n

Proceeciings of the .-I CA1 SICPL.4 !V '88 Con ference on Programmirtg Lnnguage DE sign and

Implem~ntat ion. voIume 23. pages 318-328. AtIanta. G.4. Jiine 19%.

[3 11 L. Lamport. The parallel esecution of do loops. Cornmunicntioris of the .-ICM. lT(2). 197-1.

[32] C.M. Li. Program wanal 1. ftp ftp.cs.rice.edu. Rice University. 1992.

[33] Hui Li and Kenneth C. Sevcik. SU.\.Ir\CROS: D a t a Parallei Prograrnming or1 Nï\I-- \ l lul t i -

processors. In Proc~edings of Fourth Symposium on ErpeM'~nces with Distributd and .Ilulti-

processor Systerns (SEDiC/S' IV), pages 247-263. September 1903.

[NI .I. Li and SI. Chen. The d a t a alignment phase in conipiling programs for distributed memory

machines. Journal O/ parall~l and distributcd compirting. 13:2 1:3-22 1. 199 1.

[:35] IV. Li and K. Pingali. -4 singular loop transformation framework based on non-singuiar ma-

trices. In Proce~dings of the Fifth I,l+orkshop on Programminy Langunges and Cornpifers for

Parallel Cbmputing. August 1992.

[36] \te. Li and I i . Pingali. A singular loop transformation Iramen-ork based on nor: -singular ma-

trice. International Journal of Pnrallel Programming. '22(2). 199-4.

[37] 2. Li. P. Yew. and C. Zhu. An efficient d a t a dependence analysis for parallelizing compilcrs.

IEEE Trnris. Pnrullel Distributu4 Sgsknls. 1 (1) :2G-:J-L. 1990.

[:Hl A.W. Lin1 and 1I.S. Lam. .\lasirnizing parallelism and tninimizing synctironization witli affine

t ransfarms. 1 n Proctdings of the 24th .-I nnua1.-1 Ca\(Symposium on Principks of Prograrnnting

Languclg~s. January 1991.

[49] 3. LIanjikian and T. AbdeIrahman. ;\rray d a t a layout for t lie reduction of cache conflicts.

Ir1 Procedings of the 8th International Conference on Pnrdlrl and Distributcd C'omputing

Syslems. 199.5.

[-!O] D.E. l l a j ~ d a n . .J.L. Hennessy. and I1.S. Lam. Efficient and exact d a t a dependence analysis.

sIGPL.4.V .\-otims. 26(G):l-14. 1991.

[-4 11 C. LIosher and S. Hassanzadeh. Arco seismic benchmarks. Tech nical report. ARC0 EkPT.

[-l'LI S1.F.P O'Boyle and G.:\. Hedayat. Data alignrnent: Transformations to reduce conimunica-

tion on distributed memory architectures. In Proc~edings of the Scalable High Perfomancc

C'orny uting Conference. IEE Press, LlriHiams burg. 1992.

[-13) D. Olshefslii. ScacheGO 1 and scachers6k user's guide. Technicai report. IBM T..J Watson Re-

search Center. ft p:software.watson.ibm.com.

[-II] F. P. Prepara ta and 11.1. Shamos. Computational Geometry an [nt rod uction. Springer-verlag.

198.5.

[45] W. Pugh. A practical algorithm For exact array dependence analysis. Comrnunicntions of the

.4C.\I. :3.5(8): 102-1 14, 1992.

[46] W. Pugh and D. LVonnacott. .An esact method for analysis of value-based array data depen-

dences. Technical Report CS-TR-3196. University of Maryland. L993.

[-!TI .I. Ramanujam. Non-singular transformations of nested loops. [n Superconiputing 92. pages

2 14-223. 1992.

[-Ml V. Sarkar and R. Thekkatli. :\ general Framework for iteration-reordering loop transformations

(techriical summary). In Proceedings of the .4CM SIGPL.d!V 'SX'onference on Prograntnting

Language Design and Implemeniniion. volume 27. pages 17.5- 187. San Francisco. C=\. .J une

1992.

[-ICI] A. Schrijver. Theory of linenr and inleger progrnmniing. Wiley. 1986.

[50] SPEC. Spec benclimarlis. Technical report. Standard Performance Evaliiation Corp.

[.il] J . Torres and E. Ayguade. Partitioning the statement per iteration space using non-singular

matrices. l n Procedings of 199.7 International Con ference on Strpercomputing, Tokyo. .Jnprrrl.

Jirly 19.93.. 1993.

[52] . J . Torres. E. Ayguade. -1. Labarta. and SI. Valero. Align and distribute-based linear loop

t ransforniations. In Procedings of Sirth I torkshop on Program ming Langunges and C'onipile r.5

Jor Paralkl Cornputing. 1993.

[53] P. Tu and D. Padua. Automatic array privatization. In Proceedings of Sixth Il*oi~kshop ori

Prugmrnnting Langunges and Compi1er.s for Parallei Compuling. 199:3.

 ri.^] 51. !Volf and 11. Lani. A loop transformation theory and an algorithm to masi mize parallelism.

IEE'E Trans. Parailel Distrihuted Systems! 'L(-t):-L.S%-47 1. 199 1.

[55] M.E. Wolf and 1I.S. Lam. A n algorithmic approach to compound loop transformation. Ln

Proceedings of Third Wbrkshop on Programming Languages and Compikrs for Parnliel C'om-

puting. [rvine. C.4. August 1990.

[56] hlichael LVolfe. Optirnizing supercornpilers /or supercomputers. The MIT Press. 1990.

[57] hlichael LVolfe and Cliau-\Ven Tseng. The power test for data dependence. IEEE Tmns. Pnr-

allel Distributed Systems. 3(-5):.59 1-601. 1992.

[.%] H. Zima and B. Chapman. Supercorripilers for parallel and vector corn pu ters. AC11 Press. 'iew

York. NY. 1991.

IMAGt LVALUATION
TEST TARGET (QA-3)

APPLIED IMAGE. lnc - 1653 East Main Street - -. , ,, Rochester. NY 14609 USA -- -- - - Phone: il WM2-û3OO -- - fax: 7 1 61288-5989

O 1993. Applied Image. lm.. AI1 Rghts Resemd

