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An important characteristic of CC-NUMA multiprocessors is the relative difference in

latency between local and remote memory accesses. For many applications running

on these systems, the amount of time spent stalled on remote memory accesses can

make up a significant fraction of the total execution time. Previous work has shown

that proper placement of pages in memory can reduce much of this time by changing

remote memory accesses to local memory accesses. This work has also shown that such

placement decisions are most effective when they are based on the caching behaviour

of those pages. In this thesis, we present a new method of predicting such caching

behaviour at allocation time, and making appropriate placement decisions based on these

predictions. This method required minimal additions to the memory subsystem of the

University of Toronto Tornado operating system, and no special hardware for monitoring

the memory hierarchy. We also show that this method can result in improvements of

up to 35% in total execution time over traditional placement policies such as first-touch

placement when the data sets of the applications being run exceeds the size of a local

memory node. These results hold for both single application and multiprogrammed

workloads.
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Chapter 1

Introduction

In recent years, there has been a growing acceptance of using multiprocessor systems as

general purpose compute servers. This use of a powerful central compute server shared by

multiple users represents a shift from the distributed networks of workstations that have

dominated offices and labs for over a decade. The network of workstations arrangement

itself supplanted an earlier centralized model of computing which organized inexpen-

sive terminals around powerful mainframe systems. The decline of the mainframe based

arrangement and subsequent adoption of the distributed model was largely driven by sig-

nificant increases in the cost-to-performance ratio of microprocessors, making it possible

to place powerful workstations on the desks of individual users at relatively competi-

tive costs. Such an environment gave users greater control over their own computing

environments, rather than relying on a heavily contended central resource.

The willingness to explore the use of multiprocessor compute servers and a return to

a more centralized model of computing has risen due to a variety of factors. Distributed

networks of personal workstations have large administration costs, requiring considerable

expenditure for such things as maintenance, user support, and configuration. While mul-

tiprocessor servers are not simple to administer and maintain, an administrator of such a

system must deal with only a single hardware system, making system upgrades, software

1
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troubleshooting, and other administrative tasks easier. Additionally, the amalgamation

of computing resources that a central server represents can be more efficient than a net-

work of individual workstations. Reliance on personal workstations often means that

data and resources are duplicated in the system. For example, each workstation in a

distributed environment must have enough memory to run the largest application it can

potentially be foreseen to run, even if its typical workload requires less memory. A cen-

tralized compute server can make do with less memory and other resources than the

aggregate resources of a distributed network because these resources are shared amongst

all users.

Faced with these issues, it can make sense in some environments to move toward

using central compute servers to run large jobs by multiple users. Multiprocessors make

good choices for compute servers because they aggregate a large number of resources

in a tightly coupled system. The tight coupling of the resources allows fine grained

sharing of resources and more flexibility for the operating system in scheduling. However,

multiprocessor architectures introduce new considerations for resource management that

previously did not exist in uniprocessor servers. In the following sections, we describe

one of these considerations that we will be examining in this dissertation: non uniform

memory access and data locality.

1.1 CC-NUMA Shared Memory Multiprocessors

While the evolution of the multiprocessor has spawned a variety of research directions,

the most popular architectures for medium- and large-scale systems often fall into the

class of multiprocessors known as Cache Coherent Non Uniform Memory Access, or CC-

NUMA. CC-NUMA is a subclass of the shared memory type of multiprocessor, describing

any shared memory multiprocessor that: (1) employs a hardware based cache coherence

protocol, and (2) exhibits significant variance in latencies for memory accesses. A cache
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coherence protocol is a mechanism which ensures that all writes to shared cache lines are

seen by processors in the same order. The NUMA characteristic arises because scaling

shared memory systems to larger sizes generally requires that main memory be physically

distributed throughout the system. The consequence of this is that memory latencies vary

depending on the location of a processor in relation to the data it accesses.

The shared memory CC-NUMA multiprocessor has become a popular choice for a

central compute server for several reasons. First and foremost, the shared memory envi-

ronment enables users to execute existing uniprocessor applications without modification.

This is extremely important given the tremendous base of existing uniprocessor code. A

single address space view also provides a familiar environment for programmers used to

a uniprocessor environment. This can facilitate the writing of new uniprocessor or paral-

lel code, or the parallelization of existing uniprocessor code. Finally, the aggregation of

memory, I/O, and processor resources in a tightly coupled environment allows for greater

flexibility than in a network of workstations. For example, an application now has access

to a larger pool of memory than if it ran on a workstation, or an application can be

parallelized to take advantage of the greater processor resources in the multiprocessor

environment.

1.2 The Impact of NUMA Latencies on Memory Al-

location

Since memory stall time can often make up a significant portion of an application’s overall

execution time [59], the way that data is distributed in a CC-NUMA multiprocessor can

have a large effect on the performance of an application. A policy as simple as placing

a page in the local memory of the first processor that accesses it, known as first-touch

placement, has been shown to improve performance by as much as 40% over round-robin
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placement1 in some multi threaded scientific applications [39]. Such a policy is based on

the assumption that the first processor to access a page tends to be the source of the

majority of accesses to that page over the lifetime of an application.

Although first-touch placement can be a simple and effective policy for page place-

ment, more recent work has shown that using cache miss rates to influence page placement

can further significantly improve performance. In particular, Verghese has shown that

the placement of data in memory not local to the processor making the majority of ac-

cesses can have a negative impact on performance if the processor cache miss rate for

that data is high [56]. In such cases, it is preferable for the data to be located in local

memory rather than remote memory, so that the cache miss latency can be minimized.

Since first-touch placement does not explicitly consider cache miss rates, the memory

distribution resulting from the application of this policy can be suboptimal when a process

accesses more pages than are available in the local memory node. Under first-touch

placement, page frames from a memory node are allocated as a result of page faults

from locally running processes until there are no more unallocated frames. Subsequent

local page faults are then satisfied using memory frames from remote memory nodes, if

available. In other words, first-touch placement implicitly allocates local memory frames

to page faults on a first come first served basis. If the total memory demand by the

local processes does not exceed the available local memory, then such a policy has no

negative impact on the performance of these applications. However, if the demand is

greater than the amount of available local memory, the OS must either decide to replace

pages in local memory, or begin satisfying subsequent page faults with remote memory

frames. Previous work has shown that allocating pages in remote memory is preferable to

initiating page replacement on the local memory node [31]. However, if these subsequent

page faults are to pages with high processor cache miss rates, their allocation in remote

1This type of placement allocates each consecutive page to a different memory node in round-robin
order. This is done to evenly distribute allocated pages and avoid hot spotting, a condition where many
accesses over a short period of time are sent to the same node.



Chapter 1. Introduction 5

memory can have a significantly negative effect on performance.

1.3 Results and Contributions

In this dissertation, we propose a new page placement policy for CC-NUMA operating

systems called cache aware placement. Cache aware placement improves on first-touch

placement by explicitly considering cache miss rates when placing pages. These miss

rates are not directly observed in the cache hierarchy, but inferred by observing page

level accesses in the operating system. We begin by examining a variety of scientific

applications running on the University of Toronto NUMAchine multiprocessor [21], as

well as a simulator based on this environment, to determine how these applications are

affected when there is not enough local memory to satisfy their demands, forcing some of

their data to be placed on remote nodes. While some work has been done on improving

data locality in CC-NUMA multiprocessors [40, 55], most of this research has not dealt

with situations where the demand for local memory exceeds the amount available. Under

conditions where there are limited local memory frames and some pages must be placed

in remote memory, we have found that first-touch placement can result in as much as

a 35% increase in execution time compared to a placement policy that minimizes the

number of remote memory accesses.

In our proposed placement policy, we make predictions regarding the processor cache

miss rates to pages by examining the ordering of an application’s page faults. For the

applications in our test suite, we have found that if we divide user allocated memory into

contiguous regions of pages, there exists a strong correlation between sequential fault

patterns in a region and low processor cache miss rates for the pages of that region.

Cache aware placement utilizes this correlation by observing the first N page faults to a

region, where N is a preset threshold much smaller than the size of the region in pages,

and classifying its access pattern as either sequential or non-sequential. If a sequential
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fault order is observed (indicating a low cache miss rate for that region), we satisfy the

remaining page faults to that region with remote memory frames, leaving room in local

memory to allocate those pages of other regions with expected higher cache miss rates.

We show that under this policy, we can significantly improve on first-touch placement

in many applications under both single application and multiprogrammed environments

when there is insufficient local memory to satisfy the locally running processes.

The main contributions outlined in this dissertation are:

1. The design of a method for predicting whether a region of memory will have a low

processor cache miss rate based on its page fault patterns.

2. The design and implementation of a page placement policy for CC-NUMA multi-

processors that incorporates this prediction method.

3. Validation that this placement policy can significantly improve on first-touch place-

ment in an existing CC-NUMA hardware environment.

1.4 Overview of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents background

and work related to our investigations. We briefly examine the main characteristics of the

CC-NUMA class of multiprocessors, as well as describe memory placement optimizations

such as first-touch placement, and page replication and migration. Chapter 3 outlines

the shortcomings of first-touch placement that we are attempting to address with our

research. Chapter 4 describes a novel method of predicting processor cache miss rates

in memory regions, and its incorporation into a new page placement policy, called cache

aware placement. Chapter 5 gives our experimental methodology and compares the

results of cache aware placement against first-touch placement on a variety of benchmark

applications in both single application and multiprogrammed workloads. Finally, we
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present our conclusions and items for future research in Chapter 6.



Chapter 2

Background and Related Work

The recent history of mainstream multiprocessor research and design can be divided into

two paradigms: message passing, and shared memory. We begin this chapter with a brief

discussion of these two design philosophies, with an emphasis on the commercially pop-

ular cache coherent non-uniform memory access, or CC-NUMA, subclass of the shared

memory class. Following this discussion, we summarize previous research in reducing the

impact of non-uniform memory latencies on performance in CC-NUMA multiprocessors.

We conclude this chapter by discussing how our own work relates to ongoing research

in the area of memory management not specifically related to the tolerance of memory

latency.

2.1 Message Passing and Shared Memory Multipro-

cessor Architectures

In recent years, the two most widely used architectures for medium- and large-scale mul-

tiprocessor systems have been the message passing and shared memory architectures.

Message passing systems employ several processing nodes, each of which typically re-

semble a traditional uniprocessor computer, joined together by a dedicated network.

8
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Scalable Network

Proc MemMem MemProcProc

Figure 2.1: Message Passing Multiprocessor architecture.

Communication between nodes is explicit through user coded message sending. Shared

memory multiprocessors can be organized in a variety of different physical configurations.

However, in all shared memory multiprocessors, communication between processing ele-

ments or nodes is implicit by accessing shared memory through memory addressing. In

the following sections, we discuss the distinguishing characteristics of each architecture,

as well as their respective strengths and weaknesses.

2.1.1 Message Passing

The message passing (MP) class of multiprocessor architectures involves several process-

ing nodes connected together by a dedicated high speed network. Each of these processing

nodes typically resembles a complete uniprocessor computer (i.e., a single processor with

associated cache hierarchy, memory, and I/O devices)1[15]. The topology of the intercon-

nect joining these nodes can be one of several forms, such as a mesh, hypercube, or some

form of hierarchical arrangement. Figure 2.1 shows a typical arrangement of processors

and memory in a message passing multiprocessor.

The fundamental characteristic of the MP architecture is the implementation of the

1Strictly speaking, not all nodes need complete I/O capabilities. In most cases, the number of I/O
devices attached to each node will vary, and it is often the case that some nodes are used for I/O
exclusively.
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interface between processing nodes and the network, and the programming paradigm

that this imposes on the user. Multiprocessors employing the MP architecture do not

give the user a global view of memory; rather, each processing node can only directly

access its local memory, and not the memories located at other nodes. Communication

between processing nodes is accomplished by explicit messages sent from one node to

another. This message passing is usually accomplished by the issuing of send and receive

calls by the communicating processes.

At its simplest, a send call specifies a local buffer containing data to be transmitted

and the identifier of the intended recipient process. A matching receive call specifies a

local buffer for transmitted data to be copied into, and possibly the identifier of the ex-

pected sending process. Send and receive calls can also be synchronous or asynchronous.

The former implies that a process will block on a send call until its message is consumed

by a receive call at the recipient process. Similarly, a process will block on a receive call

until it has received a message communicated by a send call by another process. Asyn-

chronous sends and receives are nonblocking. The use of synchronous sends and receives

requires that the programmer be careful to ensure that a process does not block indefi-

nitely waiting for a message to arrive or be received. Asynchronous messages allow for

greater concurrency, but may require additional synchronization to ensure correctness.

2.1.2 Shared Memory

In contrast to message passing architectures, shared memory architectures present a

view of memory to the programmer that is very similar to that seen in a uniprocessor. In

shared memory systems, physical memory is viewed as a single physical global address

space accessible by all processors. Interprocessor communication is not explicit, as in

the message passing paradigm, but implicit through the accessing of shared memory,

e.g., when two processors access data at the same location in the global address space.

Additionally, unlike MP systems, each processor in a shared memory system can access
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MemMem Mem

Proc

Mem

Proc I/O I/O

Bus Interconnect

Figure 2.2: Symmetric Multiprocessor architecture.

any memory module through traditional load and store operations. The specific module

that is accessed by these operations depends solely on the target physical addresses of

these instructions.

Shared memory multiprocessors can be physically organized in several ways. For

small-scale systems of up to 4 processors, the most popular arrangement is the bus-based

symmetric multiprocessor, or SMP (Figure 2.2). SMP systems are organized around a

central memory bus adapted to support multiple processors. Each processor is equidistant

from all memory locations, and experiences the same latency for each memory request

(hence the term symmetric).

Although the SMP architecture is a popular choice for small-scale systems due to its

relatively simple design and ability to provide high speed access to memory, bus band-

width becomes a limiting factor as these systems add more processors [15]. As shared

memory systems move to medium- and large-scale designs, a more scalable network is

needed to allow efficient memory access. Typically, these systems consist of several pro-

cessing nodes made up of one or more processors and associated local memory, connected

together by a scalable network. Shared memory multiprocessors of this type with a single

processor per processing node tend to resemble the MP architecture shown in Figure 2.1;

processing nodes with more than one processor tend to resemble the SMP architecture.

One of the distinguishing characteristics of these larger scale systems is that the latency
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for accessing memory that is located in another processing node is greater than that for

accessing memory in the local processing node, a dichotomy that is often described as

remote and local memory. For this reason, this architecture is often referred to as the

Non Uniform Memory Access, or NUMA, architecture.

Cache Coherence

As in the case of uniprocessors, the presence of a cache hierarchy in a shared memory

multiprocessor helps to alleviate processor stall time due to memory accesses. In almost

all modern computer systems, the latency of a main memory access is two orders of

magnitude greater than the processor cycle time, meaning that processor stalls due to

these accesses can have a significant impact on performance. Since the rate of increase in

processor speeds continues to outstrip the rate of improvement in memory speeds, this

relative difference will only increase, making the efficient use of the cache hierarchy a

paramount concern.

The reliance on cache hierarchies to hide memory latencies is of even greater impor-

tance in the case of shared memory multiprocessors than in uniprocessors due to their

typically higher memory access latencies, as well as their reliance on high frequency syn-

chronization primitives that require low latency to provide good performance. However,

the presence of caches in a shared memory multiprocessor can lead to situations where

processors have inconsistent views of the data in memory [15]. This problem arises be-

cause a processor may write data to a cache block that is not immediately updated in

main memory or reflected to other caches that have a valid copy of that block. Cache

coherence protocols provide a mechanism which ensures that all processors have an iden-

tical view of shared memory. Two common mechanisms for this are invalidation and

updating [50]. In an invalidation protocol, all shared instances of a cache block are inval-

idated prior to allowing a write to proceed to that block. In an update protocol, a write

to a shared block is propagated to all other shared instances of that block. These two
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mechanisms can also be combined into a hybrid protocol, which switches between these

two mechanisms depending on the type of sharing occurring [48].

The implementation of a cache coherence protocol typically involves tracking the

sharing state of all cache blocks in the system, and possibly maintaining a directory that

tracks the location of all blocks. For SMP systems, maintaining this state information is

facilitated by the presence of the shared bus which allows processors to observe all memory

accesses in the system. However, hardware implementations of cache coherence for larger

non-bus-based NUMA systems can be more challenging, and the earliest NUMA systems

either did not include coherent caches or relied on software to enforce cache coherence.

As research in this area has progressed, modern NUMA systems have added hardware

support for cache coherence, leading to their designation as Cache Coherent Non Uniform

Memory Access, or CC-NUMA, multiprocessors.

2.1.3 Message Passing vs. Shared Memory

The message passing paradigm’s explicit use of sends and receives for interprocessor

communication makes all communication overhead observable by the programmer. The

advantage to such an approach is that the programmer has complete control over when

these overheads are incurred, increasing his or her ability to tune an application. However,

a potential drawback to the message passing paradigm is that programmers experienced

with sequential programming for uniprocessors may find the need for explicit commu-

nication of data between processing nodes to be foreign. Additionally, while the most

straightforward way of adding interprocess communication is to send messages as soon

as data is ready to be sent, the relatively high cost of send and receive calls2 makes it im-

portant to minimize the number of these calls. Thus, combining several messages into a

single send is preferable to sending many small messages. This can make the adjustment

2These are generally expensive system calls that can require copying between address spaces, as well
as to and from the hardware network interface.
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to the message passing paradigm even more difficult for the programmer.

Conversely, the main benefit of the shared memory architecture is the familiarity of

the shared memory paradigm. Since this view of memory closely resembles that of a

uniprocessor, programmers familiar with the latter environment tend to have less dif-

ficulty adapting to a shared memory multiprocessor environment. On the other hand,

shared memory multiprocessors introduce their own complications in the transition from

the more common uniprocessor experience. As discussed earlier, the problem of cache co-

herence is a non-trivial complication that can require complex hardware and/or software

to solve [20, 52]. Additionally, since the shared memory paradigm relies on the implicit

communication of data rather than explicit communication as in message passing, pro-

grammers can unknowingly incur communication overheads due to coherence actions on

shared locations. This can be illustrated by the example of a shared counter variable that

is modified by several sharing processors. If these writes are mostly interleaved between

the processors, then each write will cause large numbers of either invalidations or up-

dates to be sent to each instance of the shared counter. Splitting the counter into a local

variable for each processor may not alleviate these overheads if these local counters are

co-located in the same cache block. Since the granularity that coherence actions occur

on is a cache block, updates to each counter still result in invalidations or updates to

each instance of the cache block. This problem is known as the false sharing problem, as

the variables are separate memory locations and are shared only by virtue of being on

the same cache block. In either case, the coherence overhead of sharing in this manner

can have a severe impact on performance that increases exponentially as the number of

sharing processors increases [6].

For the most part, recent trends suggest that the shared memory design has overtaken

the message passing architecture in popularity, and the CC-NUMA class of systems has

become especially popular amongst commercial medium- and large-scale designs. Some

of the commercial CC-NUMA systems available today include the SGI Origin 3000 [28],
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Sun Fire 15k [11], Alpha GS320 [18], IBM NUMA Q [38], and the HP Superdome [12]. In

the past, the efficient implementation of cache coherence has been an overriding concern

for researchers working on improving performance in CC-NUMA multiprocessors. A

poorly chosen cache coherence protocol can result in network congestion, high memory

contention, and low cache hit rates, all of which can significantly affect overall system

performance. However, even given an efficient cache coherence protocol, the relative cost

of accessing remote memory versus local memory can also have a profound impact on

application performance. For example, the latency of remote memory reads compared

to local memory reads can range from approximately 3 times greater (SGI Origin 3000

[28], Sun Fire 15k [11]) to 7 to 10 times greater (Alpha GS320 [18], IBM NUMA Q

[38]) in modern CC-NUMA systems. The difference between remote and local write

latencies can be even greater on misses to shared cache lines due to the need for coherence

actions that are typically more costly when the line comes from a remote memory page.

While there have been substantial efforts made in investigating coherence protocols,

the minimization of memory stall time due to remote memory latencies has drawn less

attention, particularly from operating systems researchers. In the following section, we

discuss the issue of remote memory latencies in CC-NUMA multiprocessors, as well as

some of the recent research into reducing or eliminating its impact.

2.2 Dealing with Remote Memory Access Latencies

The relative cost of accessing remote memory in a CC-NUMA multiprocessor compared

to that of accessing local memory can have a significant impact on overall application

performance. For example, early work done on investigating different page placement

strategies on CC-NUMA multiprocessors showed that for some scientific applications,

the choice of a static placement scheme could result in as much as a 40% difference in

overall execution time due to changes in the number of remote memory accesses [39].



Chapter 2. Background and Related Work 16

Intuitively, a reasonably good placement for a page should be in the local memory of

the processor that accesses it most frequently.3 This will mean that all cache misses from

that processor can be satisfied by local, rather than remote, memory accesses. However,

in practice, placing all of the pages accessed by a given processor in its local memory may

not be possible, e.g., there may not be enough local memory to hold all of the memory

pages needed by an application. Even if it is possible to place all these pages in local

memory, process migration may move accessing processes to a different node than the

one that the process originated on, resulting in memory pages that were once local to

that process becoming remote pages. Finally, two or more processors with different local

memories may access the same page during the application’s lifetime.

In the following sections, we outline a number of strategies that were devised to reduce

the number of remote memory accesses. We begin by examining the concept of software-

based page placement, including both static methods where the placement scheme is

fixed for the application’s duration, as well as dynamically adaptive placement schemes

that involve migration and replication of pages during an application’s execution. Follow-

ing this, we examine hardware-based approaches to improving memory locality, ranging

from simple additions to the memory hierarchy such as network caches, to complete

reorganization of the memory architecture, as is the case for the Cache-Only Memory

Architecture [53]. Finally, we briefly examine similarities between page placement and

page replacement.

2.2.1 Memory Placement

One straightforward approach to reducing remote memory accesses and the increased

latencies associated with them is to attempt to place data in a memory node that is

local to the processor or processors that will access it most frequently. To facilitate this,

3This assumes that the system provides no mechanism for dynamic page migration or replication,
which will be discussed in Section 2.2.2.
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some languages, such as High Performance Fortran (HPF) [37], allow arrays to be placed

within the system according to a user defined distribution. In HPF, users can specify

decompositions which are distribution templates upon which the dimensions of an array

can be aligned. These decompositions can be used to distribute the various dimensions

of an arrays amongst the processors of a system in a block or cyclic distribution. For

example, a user could specify that a two-dimensional array be distributed in block fashion

in the first dimension, and cyclically in the second dimension. Block distribution of the

first dimension would split each column of the array into even blocks, with each block

assigned to a different processor. Cyclic distribution of the second dimension would

assign each successive element in a row to a different processor in round-robin fashion.

Relying on programmers to specify the distribution of their data arrays presupposes

that their knowledge of the data access patterns of their code will allow them to de-

termine the best distribution. Although programmers are likely to have more intimate

knowledge of their applications than can be properly extracted by a parallelizing compiler

today, it is often the case that programmers will not sufficiently understand the complex

nuances or consequences of their algorithms as it relates to the specific system that they

are programming. Even under the most optimistic scenario, we would expect that pro-

grammers would need several attempts at tuning their code to achieve good performance

on a particular system with respect to locality decisions. Additionally, this tuned code

would not necessarily run effectively on a differently configured multiprocessor system.

In any case, even given a programmer’s ability to correctly tune their code to make good

decisions on memory placement, there is value to providing automated tools that relieve

them of this burden.

Memory placement decisions can also be made at the operating system level. Pre-

vious work has shown that relatively simple placement policies that choose where each

individual page should be allocated can have a substantial effect on performance [39].

Such policies are known as static placement policies, since pages do not move once they
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are allocated in a specific location until they are paged out. In the past, many multi-

processor systems have used a static placement policy that allocates pages to memory

nodes on a round-robin basis [31, 35, 57]. The round-robin policy has the advantage of

extreme simplicity, and was designed in part to alleviate the problem of memory hot

spotting; spreading pages throughout the system theoretically spreads out the requests

to memory so that no single memory module will receive a disproportionate number of

accesses. However, this policy can have a detrimental effect on performance with respect

to the locality of pages. Since a process will have its pages evenly scattered throughout

the system, it will often be the case that most of the pages it accesses will be held in

memory that is remote to the processor it is running on.

The most popular static placement alternative to the round-robin policy is to base

page placement on the first processor to access a page. This policy is known as first-

touch placement, meaning that the first processor to touch a page allocates it in its local

memory. First-touch placement is the default placement used in commercially-available

multiprocessor operating systems like IRIX [44], and has been used in multiprocessor

ports of Linux [8]. The basis for this policy is the tendency in many parallel scientific

applications for the first processor referencing a page to generate most or all of the sub-

sequent references to that page. A study comparing first-touch placement to round-robin

placement for a set of parallel applications with statically scheduled threads and mem-

ory data sets that did not exceed physical memory size found that first-touch placement

could improve performance over round-robin placement by as much as 40% [39].4

A major drawback to first-touch placement is that in many parallel applications,

a single thread allocates and initializes all data structures for the entire application

before each of the parallel threads starts working on their own portion of the data. In

these applications, first-touch placement can be fooled into allocating all pages to the

4This study also found that in this environment, the addition of dynamic placement techniques
such as migration and replication, which will be discussed in Section 2.2.2, had no positive impact on
performance.
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local memory of the processor running this initialization thread, causing the data to be

remotely located for all threads running on other processors. First-touch placement must

be able to differentiate between this initialization phase and the later computation phases

(this is typically accomplished by user-added directives that signal when the initialization

phase is over [39]), as well as migrate pages from the initializing processor to the other

processors, to effectively distribute data in the system.

2.2.2 Page Migration and Replication

Page placement techniques such as those described in Section 2.2.1 make placement

decisions when pages are first referenced, at which point they are allocated a physical

memory frame in a particular memory module. Because these decisions are made before

the actual reference patterns to these pages are known, these placement techniques can be

thought of as predictive; i.e., the placement decision for a page is based on the predicted

reference behaviour for that page. For example, first-touch placement predicts that the

processor that issues the first reference to a page will be the processor that issues the

majority of references to that page over the application’s lifetime.

In contrast to these predictive techniques, page migration is a reactive technique,

altering the placement of pages in the system in response to observations of the memory

reference traffic. During the execution of an application, a page migration system will

monitor the references made to each page in memory by each processor (typically by

means of hardware monitoring tools). If the migration system determines that a given

page is being frequently accessed by a particular processor, this page can be migrated

to that processor’s local memory with the expectation that subsequent accesses by that

processor will incur local access latencies rather than remote access latencies. Similarly,

pages being frequently accessed by multiple processors can possibly be replicated so that

each sharing processor has a local copy. Some of the challenges involved in implement-

ing a migration scheme of this type include minimizing the overhead of memory access
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monitoring, accurately assessing the net gain of migrating a page, and preventing pages

from being constantly passed back and forth between processors that are write-sharing

those pages.

Much of the early work in the area of page migration was based on software imple-

mentations of shared memory in loosely coupled distributed systems. Software shared

memory systems such as Treadmarks [1] and IVY [36] migrate a page whenever a re-

motely located page or object is referenced, effectively using page migration to enforce

the shared memory abstraction. Later work done on the BBN Butterfly [42] and the IBM

ACE [4, 14, 25, 32] multiprocessors focused on page migration as a potential method for

reducing the impact of remote memory latencies in non-cache coherent NUMA multipro-

cessor systems. Finally, page migration was incorporated into the Stanford DASH and

FLASH multiprocessors[10, 35, 55, 56], extending migration research into the CC-NUMA

domain. The following sections summarize this later research.

Identifying Candidate Pages for Migration

To implement a successful page migration system, it is necessary to have information

regarding the memory accesses generated by each processor for each page in the system.

Ideally, this information would take the form of a priori knowledge of all memory accesses

that occur over the lifetime of an application.5 Given such knowledge, we could determine

the best initial placement of each page, as well as determine if and when each page should

be migrated such that the number of remote accesses made is minimized.6

Unfortunately, obtaining this kind of a priori knowledge is impractical, likely requiring

a preprocessing run with the same input data to gather information. Instead, almost all

page migration research thus far has relied on heuristics to dynamically identify pages

5This assumes that processes do not migrate.
6This relies on the simplifying assumption that load and store cache misses have equal latencies (an

assumption also made by the migration studies referenced in this section). In general, a write miss to
a location on a shared page may cost significantly more than a read miss due to the need for coherence
actions, such as invalidates or updates, to occur.
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that are likely to incur remote memory accesses in the future. These heuristics typically

assume that a page that has been frequently accessed in the recent past will continue to

be frequently accessed in the near future. These pages, called hot pages, are candidates

for migration to the processing node making the majority of these accesses.

Gathering these types of statistics can introduce significant overhead in the absence of

special monitoring hardware, as the operating system would likely have to unmap a page

and service an in core page fault to gather a single data point. These costly operations

would have to be repeated several times to gather the multiple data points required to

reliably identify hot pages. As described below, some experimental systems (and at least

one commercial system, the SGI Origin series [28]), have introduced hardware-based

monitoring to reduce these costs.

A migration system must also consider the overhead of migrating or replicating a

page in comparison to the expected benefits of increased locality. This overhead includes

not only the cost of physically copying a page from one location to the next, but such

costs as the associated kernel overhead required for allocating a new page, changing

page mappings, and flushing TLBs to maintain coherence. Such consideration typically

involves adjusting the threshold of how frequently a page must be accessed before it is

considered a hot page.

Given a page that is being accessed frequently enough to exceed this threshold, the

decision as to whether to migrate or replicate depends on the pattern in which it is being

accessed, and whether there is room at the target node or nodes to accommodate such

action. Access patterns to a page can be broadly classified into three categories: (1) those

that are mainly accessed by a single processor,7 (2) those that are accessed by multiple

processors in a mostly read-only fashion, and (3) those that are accessed by multiple

processors in a mostly read-write fashion. Pages exhibiting the first type of sharing are

7This may include pages with private data owned by a single-threaded process, or pages that receive
a block of accesses from a single processor, then a block of accesses from another processor etc.
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the best candidates for migration.

A page that is accessed by multiple processors in a mostly read-only manner is not a

good candidate for migration unless a majority of the accessing processors share the same

local memory. If this is not the case, then no matter which node the page is migrated

to, a majority of the processors will be accessing it remotely. Continuously migrating

the page between the local memory of each accessing processor is not a viable solution

because the overhead of each migration would outweigh the benefits gained. In this case,

replication of the page is a better solution, as it allows each sharing processor to have its

own local copy.

Read-write pages that are accessed by multiple processors at the same time, and where

the reads and writes are mostly interleaved, are not good candidates for either migration

or replication. Replication is not viable because of the write accesses, which incur the

overhead of eliminating replicated copies to maintain consistency. Migration provides no

benefits for the same reason as in the read-only case: there is no single location to migrate

the page to that will eliminate remote accesses. Hence, remote memory accesses cannot

be easily avoided using migration or replication for pages that are actively read-write

shared.

Migration using Hardware-based Monitoring

Early page migration systems such as those developed for the BBN Butterfly [5, 31] and

the IBM ACE [4, 14, 25, 32] were tied to the page fault mechanism, with the frequency

of in-core page faults to a page being used to determine whether or not a page should be

classified as a hot page. One key difference between these early multiprocessor systems

and the CC-NUMA environments that are prevalent today is that the former systems

either did not employ processor caches or did not provide hardware to maintain cache
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coherence.8 This is an important distinction in CC-NUMA multiprocessors since the

intention of a page migration system is to alleviate the relatively high cost of remote

memory latencies. If a page is heavily accessed, but most or all of these accesses hit in

the local processor cache, then its placement in local or remote memory will have little

impact on performance. 9 For this reason, migration using software-based techniques,

such as counting in-core page faults, to identify hot pages in CC-NUMA systems typically

do not improve performance [55].

Work done on the Stanford DASH and FLASH multiprocessors examined the utility

of page migration and replication based on hardware monitoring in a modern CC-NUMA

multiprocessor [55, 56]. The Stanford approach used hardware monitoring of cache misses

to identify hot pages, initially relying on the counting of all cache misses by all processors

for each page in memory. This full monitoring approach allowed exact identification of

those pages that incurred the most remote memory traffic. The results of their studies

show that the use of migration and replication could result in up to a 30% improvement in

execution time over a static first-touch placement for some multiprogrammed workloads

consisting of both sequential and parallel programs using UNIX priority scheduling. This

improvement was based on up to a 50% savings in memory stall time, i.e., time spent

waiting for loads and stores to return data. Additional experiments showed that full

cache miss information was not necessary to achieve these performance gains. They

found instead that sampling as little as 10% of all cache misses could reduce the hardware

overhead with no appreciable impact on the identification of hot pages.

8In fact, migration on these latter systems was considered a substitute for providing hardware-based
cache coherence [55].

9The exception to this is a write access to a valid shared cache line, which may require coherence
actions. Such write accesses will typically require a message to be sent to the memory node where the
home page is located, as well as possibly other coherence messages sent from that node to other nodes.
As such, the latency of write accesses to valid shared lines can depend on the placement of the backing
memory page.
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Migration using User Level Information

The majority of research into page migration has focused on the implementation of a

migration framework at the operating system level. The advantage to a system level

implementation is that it will have better access to lower level information such as page

fault data. It also allows easy access to hardware monitoring subsystems, if available,

that can inform the page migration policy.

However, making migration decisions at the system level does not include some of the

higher level context for which these decisions are being made. Recently, it has been shown

that making use of user level information can result in performance improvements of over

200% for some workloads [40].10 In particular, they show that a page migration system

can take advantage of iterative control flow structures that are easily identifiable at the

user level to drive migration decisions. By taking page reference count snapshots using

hardware monitoring tools at the ends of loop iterations, a migration system can develop

a memory reference profile for each loop structure in an application by extrapolating

the memory reference behaviour of early iterations to the entire lifetime of each loop.

The decision to migrate or replicate pages can then be made based on this extrapolated

behaviour. Migration decisions informed in this manner become more timely; rather

than wait for a threshold number of references to trigger a migration decision, user

level migration takes advantage of the iterative nature of parallel programs (and their

subsequent predictability with regards to memory reference patterns) to identify hot

pages earlier.

In general, while dynamic migration techniques correctly focus on the volume of cache

misses to inform placement decisions, they do so by relying on hardware monitoring to

gather this information. Our own work also focuses on identifying pages that suffer

10The experimental environment for these studies included extremely frequent process migration,
making it somewhat difficult to compare these large performance gains to the more modest gains reported
by the hardware monitoring migration policy discussed in the previous section.
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high numbers of cache misses, but avoids the need for specialized hardware by using

information that is easily gathered through the operating system.

2.3 Architectural Approaches to Reducing Remote

Memory Latencies

Another way of dealing with the effects of remote memory latencies in CC-NUMA mul-

tiprocessors is to introduce architectural features to improve data locality. Two such

approaches to eliminating remote memory latencies are network caches, and the Cache

Only Memory Architecture.

2.3.1 Network Caches

A network cache11 is a large cache that is shared by the processors of a processing node

[38, 41]. This cache, often implemented with DRAM, is used to cache data that has been

allocated in remote memory and accessed by a local processor. Each processor cache miss

by a local processor whose address indicates a location in a remote memory is first sent

to the network cache. If the requested data is present in the network cache, it is provided

to the secondary cache, alleviating the need for a remote memory request. Otherwise,

the memory request is sent to the proper remote node indicated by the address of the

request. When the data is returned, the network cache stores a copy and passes the

fetched data to the processor.

The benefit of adding network caches is in the reduction of the number of remote

memory accesses being made. This is accomplished by the migration of a processor’s

working set to the local network cache. This effect is most evident when the working

set is too large to fit in the processor’s cache hierarchy. Although there is no general

11Sometimes referred to as a remote cache.
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consensus regarding the usefulness of network caches, there have been some studies that

have reported sizable performance gains in some applications. For example, some studies

have found the addition of network caches produce an average of 20% improvement in

the execution time of the SPLASH-2 benchmarks on some CC-NUMA multiprocessors

[22, 60].

The cost of adding network caches to a CC-NUMA system can be measured in the

extra hardware and complexity they require, as well as an increase in the average latency

to satisfy a remote memory request that is not satisfied by the network cache. The hard-

ware overhead consists of the memory each network cache is composed of, which might

otherwise have been added to the size of each processing node’s local memory. Addi-

tional hardware is also required to integrate the network caches into the cache coherence

protocol of the overall system. The average remote memory latency on a network cache

miss is increased (typically on the order of 10% [22, 60]) due to the added cost of the

failed network cache lookup.

2.3.2 Cache Only Memory Architecture

We have previously stated that one approach to reducing or eliminating the impact of

remote memory latencies in NUMA multiprocessors is to migrate pages from remote

locations to the local memories of the processors that are accessing them. In Section

2.2.2 we explained how this could be done in the operating system, with appropriate

assistance from hardware monitoring systems. In contrast to this, the Cache Only Mem-

ory Architecture (COMA), is a migration and replication system implemented entirely in

hardware.

COMA multiprocessors [16, 30, 43, 49, 53] have the same basic physical structure

as more traditional MP or CC-NUMA systems, where several processing nodes are con-

nected together by a dedicated high speed network. However, COMA systems differ from

these more traditional multiprocessor architectures in the way that their memories are



Chapter 2. Background and Related Work 27

organized. In a COMA system, each memory module is organized as a cache, called an

attraction memory, consisting of a collection of data blocks (typically smaller than a page)

and associated tags. Cache misses are initially sent to the local attraction memory. If

the address requested matches one of the tags in the attraction memory, then the request

can be satisfied as a local memory transaction. However, if the local attraction memory

does not hold the requested block, then a remote request is required. Once the remote

block is found, it is copied into the local attraction memory in addition to satisfying the

processor’s request.12 In this way, the processor’s working set is migrated to the local

attraction memory, reducing or eliminating the need for further remote requests until the

working set changes.

The organization of memories as caches implies certain consequences that are unique

to COMA systems. One of these consequences is the need for an infrastructure that

organizes block location information in the system so that remote data can be located.

This need arises due to the fact that, unlike non-COMA shared memory multiprocessors,

the address of a request does not specify a home memory location in the system, but

is rather a unique identifier for data in the system. Without some kind of directory

structure, the only way to find a remotely held block would be to query the tags of every

attraction memory in the system.

Early COMA multiprocessors such as the Kendell Square Research KSR-1 [26, 33] or

the Swedish Institute of Computer Science Data Diffusion Machine [24] used a hierar-

chically organized directory to track all blocks in the system. In this type of directory

structure, each processor is connected to the leaf nodes of a directory tree. Each node in

the directory tree holds block information for all nodes in the subtree for which it is the

root. The location of any block can be found by sending a request up the directory tree

until the root of the subtree containing the requested block is reached. At this point,

the request can be sent down the tree until the specific leaf node containing the block is

12Because the attraction memory is a cache, this can result in the ejection of a valid block.
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found.

Some subsequent COMA multiprocessors have typically employed an organization

known as Flat-COMA [29, 49]. In this type of directory structure, each attraction memory

also includes a directory containing location information for blocks in the system. Each

block is assigned a unique home location in one of these directories, whose contents are a

pointer to the attraction memory that holds the block. In this type of architecture, remote

requests first go to the home location in the correct directory, and then are redirected to

the proper attraction memory. Such redirection is not necessary if the attraction memory

that holds the directory listing also holds the requested block.

Another consequence of organizing memories as caches is that there must exist a

mechanism to prevent a block from being lost because it has been overwritten in all the

attraction memories that it is held in. In a typical cache hierarchy, ejecting a block from

a cache does not cause that data to be lost because it is also stored in main memory.

However, in a COMA system, since the attraction memories are themselves caches, there

is no master location that prevents an ejected block from being lost. One solution is to

simply designate one of the copies of each block as the master copy in the system. The

master copy is never allowed to be overwritten should the need arise to eject it from an

attraction memory. Instead, if a master copy is to be ejected, it must be migrated to

another attraction memory.

2.3.3 CC-NUMA with Network Caches vs. COMA

Both network caches and COMA attempt to reduce the number of remote memory ac-

cesses in multiprocessor systems through hardware migration of the working set of a

processor to its local memory hierarchy. Despite this commonality, both are very dis-

parate solutions. Although the network cache approach appears to be more prevalent

in current systems (in fact, to the best of our knowledge, there are no currently active

COMA projects in academia, and no commercially available COMA systems), there have
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been COMA proponents who have claimed that their approach can be superior to the

network cache solution [60].

One of the major advantages of a CC-NUMA multiprocessor using network caches

over the COMA approach is that the former is a simpler design. Additionally, a CC-

NUMA multiprocessor will typically exhibit lower memory latencies than a comparable

COMA system. This is because of the way each type of system resolves certain remote

memory requests. A cache miss to a remote address in a CC-NUMA system that is not

due to coherence effects will be satisfied in two network hops: a request to the home

location of the address, and the reply. The same cache miss in a COMA processor may

take either two or three network hops. The extra hop is required when the master copy

of the block being accessed has been displaced from its home attraction memory, and the

original request must be redirected to the new location of the master copy.

The advantage that a COMA multiprocessor has over an equivalent CC-NUMA mul-

tiprocessor using network caches13 is that the COMA design should have greater success

at reducing the number of remote memory requests for applications whose working set is

larger than the network cache size of the equivalent CC-NUMA system. Since a COMA

system has up to the full size of an attraction memory with which to fit migrated blocks,

it can better accommodate larger working sets than a CC-NUMA system with its rel-

atively smaller network cache. In practice, this advantage is only a factor for shared

pages that are accessed by a single processor at a time (as in traditional page migration

systems, shared pages whose accesses are interleaved among several processors do not

benefit from migration).

The few direct comparisons between the two designs appear to show that the CC-

NUMA with network cache approach outperforms COMA by a small amount (around 5%)

13Two systems are considered equivalent if: (i) they share the same network topology and number of
processing nodes, (ii) processing nodes in each system have the same number and type of processors,
and (iii) the size of each attraction memory in the COMA system is equal to the size of a local memory
node plus the network cache size in the CC-NUMA system.
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[46, 60], while also being a much simpler design. Some COMA proponents have argued

that this slight advantage is due in large part to the choice of benchmarks studied, i.e.,

SPLASH-2, which they claim to be heavily optimized for CC-NUMA systems. To date,

there have been no comprehensive studies that have compared each design with more

general purpose applications.

2.4 Page Replacement

An area of memory management that bears some similarities to the problem of locality

optimizations for page placement in multiprocessors is page replacement. The need for

page replacement mechanisms arises due to the finite amount of physical memory in any

system, and the discrepancy in size between virtual and physical memory. Since physical

memory is typically much smaller than the size of the virtual memory address space,

the memory management subsystem transfers pages from secondary storage to physical

memory as pages are accessed. This type of memory management is often referred to

as demand paging [45]. In demand paging systems, an access to a page that does not

currently reside in physical memory causes that page to be paged in to a physical memory

frame. The page replacement mechanism is invoked when a page must be paged in and

there are no free memory frames available.14

Page replacement algorithms in a demand paging system can be distinguished by

how they choose pages to evict from physical memory. The choice must be made when a

page that does not currently reside in physical memory is accessed, i.e., it must be paged

in, and there are no free memory frames available. The choice of which page to evict

can have a substantial impact on performance, because the cost of faulting in a page

from secondary storage to main memory is orders of magnitude higher than the cost of

accessing a page already in memory. If we evict a page that will be accessed again in the

14Some policies may use other thresholds of memory usage to invoke replacement before all physical
memory is exhausted.
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near future, we will be forced to page it back in, incurring this expensive overhead.

The dichotomy between low and high latency storage makes the page replacement

problem similar to the NUMA locality problem we have discussed above. In both cases,

we wish to maximize the number of cache misses that are satisfied in low latency storage,

while minimizing those accesses that must go to high latency storage. In the case of

memory locality in multiprocessors, the division between low and high latency occurs

between local and remote memory respectively; in page replacement, between physical

memory and secondary storage. Of course, these two situations are not completely analo-

gous. In particular, the cost differential between local and remote memory is much lower

than that of memory and disk. In the former case, it generally costs between 2 and 10

times more to access remote memory as it does local memory; in the latter case, it costs

several orders of magnitude more to access the disk than to access memory. Nevertheless,

there are concepts that have been introduced in the area of page replacement that are

relevant to NUMA locality and page placement.

2.4.1 The Second Chance Algorithm

In theory, one of the simplest and best heuristics for choosing a victim page for replace-

ment is least recently used, or LRU [45]. This heuristic selects the page in memory whose

last access occurred furthest in the past. In practice, LRU is difficult to implement, and

many different heuristics have been proposed to mimic LRU behaviour. One of the most

popular approximations of the LRU replacement algorithm is known as the second chance

algorithm [2]. Conceptually, this algorithm begins by building a list of page descriptors

corresponding to each page in memory. This list is ordered as a queue, with the descrip-

tor for the most recently allocated page located at the end of the list. Each descriptor

includes a reference bit, which is set when the corresponding page is accessed, and can

be implemented in hardware, or simulated by software.

Since the order in which descriptors are stored in the list is the order in which their
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corresponding pages have been allocated, the oldest pages are those at the head of the

list. When it is necessary to choose a victim page for replacement, the algorithm begins

inspecting candidate pages starting with the head of the page descriptor list. If the

candidate page’s reference bit has been set (indicating it has been accessed since the last

time it was inspected), the page is given a second chance: the reference bit is cleared,

the descriptor is moved to the end of the list, and the algorithm moves on to the next

page in the list. Otherwise, the page is selected for replacement. In this way, pages that

have been recently used are allowed to stay in memory, and a page that is accessed with

sufficient frequency will never be victimized.

A variation on this algorithm is to introduce a reference counter composed of multiple

bits for each page descriptor, and a clock that initiates regular sweeps of the descriptor

list. An access to a page sets the leftmost bit in its reference counter, while each sweep of

the list ages the reference counter (e.g., right shifting the bits). If a page is not accessed

in the time between n clock sweeps (where n depends on the type of aging and the size

of the reference counter), the value of the reference counter will be zero. During each

sweep, all descriptors that have a zero counter are placed on the free list, which contains

descriptors of pages that can be used to satisfy page faults.

2.4.2 Adaptive Page Replacement Based on Memory Reference

Behaviour

Although LRU-type heuristics generally show good performance on a wide range of appli-

cations, some applications that exhibit certain memory reference patterns perform very

poorly under LRU-type replacement relative to the optimal offline replacement algorithm.

For example, a commonly occurring memory reference pattern that is not handled well by

LRU-type replacement algorithms is a streaming pattern that repeatedly loops through

a group of N pages in the same order, 0 to N −1, with N greater than M , the number of

physical memory frames. In this streaming pattern, each page will be re-accessed every
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N page accesses. Under LRU-type replacement, since the number of physical memory

frames is less than N , a page will become the least recently used page in memory after

M page accesses. Since M < N , a page will be chosen for eviction under LRU-type

replacement before it is re-accessed.

The unsuitability of LRU-type replacement for streaming access patterns is further

highlighted by the fact that increasing the number of free physical pages M does not

improve performance as long as M < N . For most applications that do not exhibit

streaming access patterns, gradually increasing the number of free physical pages results

in a corresponding gradual reduction in page replacement activity under LRU-type re-

placement [19]. However, for the streaming access pattern that we have described above,

increasing M has no effect on the number of page replacements until M = N , at which

point there is enough physical memory to hold every page until it is re-accessed.

In applications that exhibit streaming access behaviour, using LRU replacement can

result in as many as 5 to 10 times more page faults than the optimal offline algorithm

[19]. One solution to this problem is to adapt the type of page replacement being used

to fit the memory reference patterns being observed. For example, the SEQ replacement

algorithm [19] applies LRU replacement until it detects long patterns of sequentially

addressed page faults, at which point it switches to an approximation of most recently

used (MRU) replacement. The choice of MRU replacement is appropriate for this type

of access pattern since the most recently used page in memory is the one that will

be re-accessed farthest in the future; i.e., the same criteria for choosing a victim in

Belady’s optimal offline algorithm [45]. Under SEQ replacement, many applications that

perform poorly under LRU-type replacement have been shown to achieve near optimal

replacement performance.

Another approach to the problem of streaming access patterns is Early Eviction LRU,

or EELRU [47]. Rather than considering the addresses of page faults to detect streaming

access patterns, EELRU collects information on how many other pages have been touched
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since a page has been last accessed, called recency information. EELRU switches from

LRU-type replacement to an early eviction replacement scheme (choosing the e-th most

recently used page rather than the least recently used page for eviction)15 when it detects

that recently evicted pages are being re-fetched into memory. The advantage to relying on

recency information lies in the fact that some streaming access patterns can be detected

by EELRU that are ignored by the SEQ algorithm, e.g., looping through a dynamically

allocated linked list.

Adaptive page replacement has influenced our work by suggesting that observing the

page fault ordering of an application can provide useful data that can inform resource

management policies. As we will show in Chapter 4, we use a similar distinction between

sequential and non-sequential fault patterns to inform page placement decisions.

2.5 Summary

Of the many classes of multiprocessor architectures, a popular type of architecture is the

CC-NUMA shared memory architecture. One of the prominent characteristics of this

type of multiprocessor architecture is that it exhibits non-uniform memory access times,

which arise due to the physical distribution of memory modules or nodes throughout the

system. This distribution generally leads to a division within the memory hierarchy, with

the memory nodes closest to a processor making up local memory, and the more distant

nodes making up remote memory. The dichotomy between local and remote memory

and the non-uniform access times that arise can make the location of pages in memory

an important consideration for application performance.

There have been a number of projects that have addressed this issue. They include

software solutions, such as page migration, and architectural solutions, such as the Cache

15Early eviction is similar to, though less aggressive than, MRU replacement (both attempt to evict
more recently used pages over less recently used ones). By choosing the e-th most recently used page,
early eviction responds better to phase changes in the working set of an application (which can cause
MRU to carry pages that will never be used again indefinitely).



Chapter 2. Background and Related Work 35

Only Memory Architecture (COMA) and network caches. Most of these approaches

consist of attempts to dynamically relocate heavily referenced memory units (e.g., cache

blocks or memory pages) closer to the referencing processor.

Another area of research that bears similarity to the optimization of memory locality

is the issue of how to implement page replacement. Page replacement algorithms also

deal with the optimization of memory usage between two levels of hierarchy that have

significantly different latencies: main memory and secondary storage. Although the

latency difference between these two levels of the memory hierarchy is much greater than

the typical difference in latency between local and remote memory, page replacement

algorithms employ some concepts that are relevant to the discussion of memory locality

and page placement.



Chapter 3

Page Placement in CC-NUMA

Multiprocessors

In recent years, there has been a significant change in the way that large multiprocessors

with distributed memory subsystems are used. Previously, these multiprocessor sys-

tems were often seen as highly specialized compute platforms running specially written

multithreaded applications. These parallel applications would typically run in isolation,

without having to compete with other applications for the system’s resources. Addition-

ally, these applications often explicitly specified where and how their data structures were

to be placed in memory (such as when using HP-Fortran or Fortran D [37]). In some

cases, simplistic automatic page placement policies were applied, such as round-robin or

first-touch placement [39], and were successful at achieving good performance for highly

parallelizable and well behaved applications whose threads did not use more memory

than was available at each processing node.

More recently, there has been an increasing tendency to use large multiprocessors as

centrally managed, general purpose compute servers with multiple applications running

concurrently. In the extreme, these compute servers run UNIX workloads involving many

independent processes running in parallel, with the vast majority of the applications being

36
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single threaded. These applications do not specify where and how their data should be

distributed, and in fact are unaware that they are running on a system with physically

distributed memory, having been designed and written for uniprocessor systems. This

lack of awareness of the physical distribution of memory can lead to situations where

there is not enough local memory to satisfy all of the processes running on a processing

node. Under such conditions, simplistic memory management policies such as first-touch

placement can lead to poor performance.

In this chapter, we discuss how a traditional static page placement policy like first-

touch placement can result in poor memory locality for multiprogrammed workloads,

leading to poor performance. First-touch placement has been used in the popular

commercially-available IRIX multiprocessor operating system [44], as well as in mul-

tiprocessor ports of uniprocessor operating systems like Linux [8]. As such, it is the

standard against which most page placement techniques are measured. We begin by de-

scribing the limitations of first-touch placement, and demonstrate how its use on a single

threaded application whose data does not fit in local memory can lead to performance

that is up to 30% slower than a best case allocation policy that has a priori knowledge

of all memory accesses. Although workloads consisting of one single threaded applica-

tion are not common in multiprocessor systems, we go on to show how the shortcomings

of first-touch placement for a single application directly translate to the more common

multiprogrammed scenario where several processes running on a node cannot fit entirely

into the local memory of that node.1 Finally, we show that a placement policy that

knows whether a group of pages will be heavily accessed or lightly accessed can use this

information to place pages so that the number of remote memory accesses will be reduced

compared to first-touch placement.

1The case of a multiprogrammed workload where each process is running on a separate node is similar
to the single program workload case.
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3.1 Limitations of First-Touch Placement for Single

threaded Applications

One of the goals of a static page placement policy, such as first-touch placement, is to

locate data in memory so that the majority of accesses to this data are made from a

processor on the same node as the memory module containing the data. First-touch

placement attempts to achieve this goal by relying on the common observation that for

a multithreaded application, the thread that first accesses a memory page is also the

one that tends to access it the most in the future. Based on this observation, first-touch

placement allocates each page in the local memory of the processor running the thread

that first accessed it.

First-touch placement has been found to be effective at improving the performance

of well behaved multithreaded applications where the combined memory needs of the

threads on each processing node do not exceed the amount of memory available at each

node [39]. However, as we will show in this section, first-touch can be a poor choice for

applications or workloads where the combined data of the threads or processes on a given

node do not entirely fit in the local memory of that node. First-touch placement can

perform poorly in these situations because the implicit criteria it uses to decide which

pages are allocated to local memory frames is first come first served: the pages that are

allocated in local memory are those pages that are accessed first during execution. After

local memory has been filled, subsequent page faults are satisfied with remote memory

frames.2 Because of this, the performance of an application can be highly dependent on

the order in which it first accesses and allocates its memory pages.

Figure 3.1 illustrates this dependence on the ordering of page accesses using a hy-

pothetical single threaded application. In this example, the application allocates more

2Typically, the remote node that is the next closest to the accessing processor in terms of network
hops is chosen to provide these frames.
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Region 2 Region 3

Local Memory Remote Memory

Region 1

(b) First-touch placement of Region Pages

Region 2

Region 3

Region 1

Execution Begins

Time

(a) Page Fault Ordering

Figure 3.1: This figure depicts (a) the page fault ordering, and (b) the resulting first-
touch page placement of a hypothetical application. Figure (a) shows the pages of region
1 being paged in first, followed by the pages of region 2, and then the pages of region
3. Figure (b) shows the pages of regions 1 and 2 placed in local memory (by virtue of
having been accessed first). Part of region 3 is placed in local memory until there are no
local frames left, with the remaining pages being placed in remote memory.
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pages than can be held in the local memory node, but there is enough aggregate space in

the entire system to hold these pages. The initial page fault ordering for this application

is given in Figure 3.1(a), where three separate regions of memory are being allocated. We

use the term region to denote a group of contiguous virtual pages where each page in the

region has similar memory access characteristics, i.e., they are all accessed approximately

the same number of times.3 In this application, the initial page fault ordering consists of

the pages of region 1 being accessed first, followed by the pages of region 2, and finally

the pages of region 3. Under first-touch placement, the pages of region 1 and region 2,

being the first pages accessed, are allocated in local memory. When the pages of region

3 are accessed, the first few page faults are allocated in local memory until no more

local memory frames are available, after which the remaining page faults are satisfied by

remote memory frames.

Given an application like the one shown in Figure 3.1, a more efficient use of local

memory would be to allocate those pages that will incur the most accesses in local

memory, while placing those pages with the least number of accesses in remote memory.

However, there is no guarantee that the pages of region 3 that are allocated in remote

memory will incur fewer memory requests than the pages of regions 1 and 2. The pages

of region 3 are placed remotely only by virtue of being accessed last. Since we cannot

assume that the pages that will be accessed the most will be the first ones allocated

for all applications, first-touch placement can sometimes cause a substantial number of

remote memory accesses that could be avoided.

3.1.1 First-Touch Placement vs. A Priori Placement

To quantitatively illustrate the shortcomings of first-touch placement with respect to

single threaded applications, Figure 3.2 shows a comparison of the simulated performance

3We will present a more formal definition of the term region as it relates to our base operating system,
Tornado, as well as a method for identifying regions, in Chapter 4.
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of several benchmark programs executing under first-touch placement versus a placement

policy that minimizes the number of references to remote memory. This comparison

was generated for applications taken from the Spec95fp and Perfect benchmark suites

[3, 13], using a MINT-based simulator [22, 54] configured to reproduce the NUMAchine

multiprocessor environment [23]. NUMAchine is a CC-NUMA multiprocessor with 16

MIPS R4400 processors divided into stations of 4 processors each. Each station has a 96

MB local memory module, and the remote to local memory latency ratio is approximately

4:1. The application suite, simulator environment, and the NUMAchine architecture, are

described in greater detail in Chapter 5 where we present the majority of our other

results. As in the example of the previous section, each application is by itself and

allocates more memory than can be held in the local node, but not more than can be

held in the entire system. Additionally, each application is statically scheduled and no

process migration occurs. To minimize the number of remote memory references, we

assumed the availability of a priori knowledge regarding all future memory accesses4

before any pages were allocated in memory. Given a local memory of size M pages, we

used this knowledge to place the top M most referenced pages in local memory, with the

remaining pages placed in remote memory.

Figure 3.2 shows that a placement policy that minimizes the number of remote mem-

ory accesses can reduce execution time over first-touch placement for 5 of these applica-

tions. This reduction is possible despite the fact that NUMAchine is a CC-NUMA system

with network caches that help reduce remote accesses. In the other 5 applications, no

improvement is seen because the order of page allocations results in the most heavily

accessed pages already being placed in local memory under first-touch placement. Best

case placement is not feasible for a real system, since a priori knowledge of this type

4We make no distinction between read and write accesses here. Although the latency for read and
write misses can differ in CC-NUMA systems due to the possible need for coherence actions in the latter
case, the use of single-threaded applications with no shared pages implies that no coherence actions are
necessary on a write miss.
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Figure 3.2: A comparison of execution times for each application in our benchmark suite.
The gray bar for each application shows the execution time using a best case placement.
This time is normalized to the application’s execution time using first-touch placement
(black bars).

requires a full run of the application with the same input data to generate the reference

data, as well as hardware monitoring capable of tracking every memory reference before

the knowledge can be applied. However, while not realistic, this policy gives an indica-

tion of the possible improvement that can be achieved for these applications running in

isolation using a static placement policy in the NUMAchine environment.
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3.2 Limitations of First-Touch Placement for Multi-

programmed Workloads

Although it is not common for multiprocessor workloads to consist of a single applica-

tion, the shortcomings of first-touch placement outlined above still apply in a multipro-

grammed environment. For example, the previous analysis can also be applied to those

processing nodes in a multiprogrammed environment where only a single process is be-

ing executed i.e., the other processes are executing on different nodes, and none of that

node’s local memory has been allocated to these other processes. Figure 3.3 gives an ex-

ample of a hypothetical multiprogrammed workload where two applications are executed

on two processors from the same processing node, where the data of both applications

do not simultaneously fit in the local memory module. Figure 3.3(a) shows one possible

ordering of the execution of these two applications. To make this example clear, we have

chosen a very simple ordering, where all of the pages in application A are allocated before

all of the pages in application B. As in the single application example shown in Figure

3.1, first-touch placement allocates local memory pages on a first come first served basis,

which results in application A receiving the majority of local pages for its two regions A1

and A2, and application B receiving mostly remote pages for its region B1. However, if

region B1 is accessed more frequently than both A1 and A2, this may not be the most

efficient use of local memory.

One crucial difference between this multiprogrammed case and the single application

case is that each of the individual applications in the multiprogrammed case can fit

into local memory if they are executed on their own. Running a multiprogrammed

workload on a multiprocessor where memory nodes are shared between processors can

result in greater competition for local memory than a single application workload. A

consequence of this, which we demonstrate later, is that applications that are unaffected

by the inefficiencies of first-touch placement in the single program case might still be
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(b) First-touch placement of Region Pages
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(a) Application Execution and Page Fault Ordering
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Figure 3.3: This figure depicts (a) the page fault ordering, and (b) resulting first-touch
page placement of a hypothetical two application workload. Figure (a) shows the regions
from application A being paged in first, followed by a single region from application B.
Figure (b) shows the regions of application A placed in local memory (by virtue of having
been accessed first). Part of region 1 from application B is placed in local memory until
there is no more left, with the remaining pages being placed in remote memory.
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negatively affected in the multiprogrammed case. In either case, a placement system

that prioritizes local memory allocation based on how often regions are accessed may be

more effective in reducing remote memory accesses than first-touch placement.

3.2.1 Reducing Remote Memory Accesses in Single Program

Workloads

We now revisit the hypothetical application described in Section 3.1 to show how a

placement policy that considers how often memory regions are accessed can lead to a

better static page placement than a first-touch policy. Recall that this hypothetical

application allocates three memory regions in succession whose total size is larger than

the size of local memory. Figure 3.4(a) depicts the placement of each region resulting

from the application of first-touch placement.

Although region 3 is mostly allocated in remote memory under first-touch, its place-

ment there may be suboptimal depending on the relative numbers of future accesses to

each region. For example, if the pages of region 3 are more heavily accessed than those of

region 1, then placing region 3 in local memory and region 1 in remote memory will re-

sult in better performance. In the comparison between first-touch and a priori placement

described in Section 3.1.1, we used a priori knowledge of such differences in memory refer-

ence behaviour on a page granularity to achieve a better static placement that minimizes

remote memory accesses. Although gathering such a priori knowledge is impractical, one

way to approximate such a placement policy is to develop a heuristic that predicts the

relative memory access behaviour before pages are allocated. For example, one might

imagine a heuristic that is able to divide regions into two categories: lightly accessed, and

heavily accessed.5 Given such a heuristic, we could devise a placement policy where the

lightly accessed regions are placed in remote memory to make room for heavily accessed

5We will introduce such a heuristic of our own devising in Chapter 4.
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Region 2 Region 3

Local Memory Remote Memory

Region 1Region 2 Region 3

Local Memory Remote Memory

Region 1 Region 2 Region 3

Local Memory Remote Memory

Region 1

(a) First-touch placement

(b) Lightly accessed Region 1 placed remotely

(c) Lightly accessed Region 3 placed remotely

Figure 3.4: In this figure, we show several of the possible outcomes for region placement
of an application with three regions that are paged in consecutively, i.e., all of region 1,
is accessed first, then region 2, then region 3. In (a), we show the region placement given
a first-touch placement. In (b), we show the placement resulting when region 1 is chosen
for remote placement, allowing region 3 to fit entirely in local memory. In (c), region 3
is chosen for remote placement, causing no changes for region 1 and region 2.
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regions in local memory.

Figure 3.4(b) shows the static page placement resulting from such a policy when region

1 is lightly accessed, and regions 2 and 3 are heavily accessed. Even though region 1 is

paged in first, it is placed in remote memory, leaving enough room for region 2 and region

3 to fit in local memory when they are paged in. Compared to the first-touch placement

shown in (a), region 3 is completely held in local memory, with the expectation that this

will improve overall performance by making all accesses to its pages local.

Figure 3.4(c) presents the resulting placement under a different scenario, where region

3 is lightly accessed, and regions 1 and 2 are heavily accessed. In this scenario, regions 1

and 2 are paged into local memory first, and then region 3 is paged entirely into remote

memory. Compared to the first-touch placement shown in (a), region 3 is entirely in

remote memory, rather than partly in local memory and partly in remote memory. In

this case, we can expect no improvement due to this change because we have not reduced

the number of remote memory accesses. In fact, we have slightly increased the number

of remote memory accesses because all of region 3 is now in remote memory, whereas

only some of region 3 was in remote memory under first-touch placement.

Thus, if our heuristic is accurate in its predictions of future memory accesses, we can

expect to improve the performance of applications that resemble the type shown in Figure

3.4(b). However, we would expect no improvement when our proposed policy is applied

to applications resembling the type shown in Figures 3.4(c). In fact, it is possible that

applications of these types may suffer a slight performance loss due to the small increase

in remote memory references. Nevertheless, we will show in the next section that applying

our policy to applications of the type shown in Figures 3.4(c) can increase the amount of

local memory available to other applications in a multiprogrammed environment, helping

to improve their performance.
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3.2.2 Reducing Remote Memory Accesses in Multiprogrammed

Workloads

The allocation of memory under a multiprogrammed workload such as the one shown in

Figure 3.3 is more complicated than that of a single application workload. In this case,

when we begin the execution of an application on a node, we have knowledge of what

resources are being currently used, but we have no knowledge of what resources may be

requested or used in the future over the lifetime of its execution. We also must be careful

when using the memory resources of other nodes, as this may affect the performance

of applications that are running or will run in the future on those nodes. However,

multiprogrammed environments can also provide greater opportunity for performance

optimization over a single program environment, with respect to memory allocation and

placement, due to the increased contention for local resources that such an environment

can create.

In a multiprogrammed environment where two applications are executing on the same

processing node with a local memory of size M frames, being within the first M initial

page faults for either application no longer guarantees a frame in local memory. This is

because some of those M frames may have already been allocated to another application’s

pages when those faults occur. Instead, a page fault must be within the first M ′ initial

page faults of an application to be allocated a local memory frame, where M
′ is the

number of available local memory frames when the application begins allocating pages

(assuming that there is no overlap in allocation periods between both applications), and

where M ′ < M .

Because of the possibility of increased competition for local memory frames in such

an environment, applications that do not exhibit improved performance under single

application workloads can still benefit under a multiprogrammed workload where more

than one application is running on the same node when our proposed placement policy
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is applied. This is because moving some regions to remote memory reduces the pressure

on local memory and effectively increases M ′.

Figure 3.5 illustrates how this might apply to the hypothetical workload introduced

in Section 3.2. Application A has two user memory regions, A1 and A2, while application

B has a single user memory region, B1. Let us consider a scenario where regions A1 and

B1 are heavily accessed, while region A2 is lightly accessed.

Figure 3.5(a) shows how these regions might be placed in local and remote memory

under first-touch placement, assuming that the pages of regions A1 and A2 are paged

into memory first, followed at a later time by the pages of region B1. Because of the

ordering of the page faults, A1 and A2 reside completely in local memory. When B1

is paged into memory, the remaining amount of local memory, M ′, is not large enough

to hold all of the pages of B1, and so most of them are relegated to remote memory.

Since the pages of B1 are heavily accessed, application B will likely suffer from poor

performance due to the large number of remote memory accesses it must make.

Figure 3.5(b) shows how the static page placement would change under our proposed

placement policy. Because A2 is lightly accessed, it is allocated in remote memory, even

though it is paged in before the B1. Thus, when B1 is paged in, the available local

memory M ′ is large enough to accommodate all of its pages. This results in fewer remote

memory accesses for B compared to the first-touch placement shown in Figure 3.5(a).

Note that if application B was run in isolation, its static page placement under first-touch

placement would be identical to that of the new placement policy; under either policy,

the heavily accessed pages of B1 would be placed in local memory (since B1 < M). In

the multiprogrammed case, the increase in competition for local memory frames that

forces B1 into remote memory provides the opportunity for improvement over first-touch

placement.

Note that while basing placement on the identification of lightly accessed and heavily

accessed regions in this manner can significantly reduce remote memory accesses over
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(a) First-touch placement
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Figure 3.5: In this figure, we show how the placement of regions in a multiprogrammed
environment can be altered by our placement policy. In this scenario, applications A and
B allocate three regions, A1, A2, and B1, which are paged in in that order. In (a), we
show the region placement given first-touch placement. In (b), we show the placement
resulting when Region A2 is chosen for remote placement, allowing Region B1 to fit
entirely in local memory.
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first-touch placement, there is a tradeoff in that it can sometimes also increase remote

memory accesses. For example, if B1 is also identified as being lightly accessed, then

it will also be placed in remote memory, and some local memory that could hold pages

from either A2 or B1 will go unused. In this case, the number of remote memory accesses

will be even greater than in first-touch (which places A2 in local memory). However, if

the number of accesses to A2 and B1 is small enough, then their placement in remote

memory should have a minor impact on performance.

The example in Figure 3.5 illustrates the notion that in a multiprogrammed environ-

ment, our proposed placement policy may adjust the page placement of an application

so that other applications may benefit, even if that application does not benefit directly

from the new page placement. In the above example, application A does not benefit from

the placement of region A2 in remote memory, because the placement of its heavily ac-

cessed region A1 is not affected. In fact, as we noted previously, we increase the number

of remote memory accesses incurred by application A by placing A2 in remote memory.

However, application B derives significant benefit from the remote placement of A2, and

if the number of accesses to A2 is sufficiently low, the impact on A should be minor. It

should also be noted that although we say that we increase the number of remote memory

accesses for A by moving A2 out of local memory, this increase is compared to a best case

scenario for A under first-touch placement, where A is allowed to page all of its memory

into the local node. The average first-touch placement for A may be significantly worse,

depending on the characteristics of the environment. For example, it may be the case

that A often begins execution on a node where there is not enough free memory for all

of its pages.
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3.3 Summary

For a thread or process that uses more memory than is available in the local processing

node, first-touch placement leads to first come first served allocation of local memory

frames to its page faults. This can lead to poor performance if the pages that are accessed

the most are faulted in last, causing them to be placed in remote memory. For workloads

that include several applications, the demands on local memory can be even greater than

single application workloads, making it even more likely that a memory node will not be

able to satisfy all local allocation requests. Given these considerations, it appears that

some type of prioritization of local memory allocation that considers how often memory

regions are accessed, rather than simply first come first served as in first-touch placement,

may decrease the number of remote memory accesses, leading to lower average memory

access latencies and improved performance for an application. The success of such a

policy relies on the development of an accurate method for predicting how often different

parts of memory will be accessed.



Chapter 4

Cache Aware Page Placement

In the previous chapter, we discussed how the commonly used first-touch placement

policy can lead to suboptimal performance when applied to workloads of single threaded

applications. We also showed that remote memory accesses could be reduced by basing

placement decisions on how often different regions in memory are accessed. In this

chapter, we describe a new placement policy called cache aware placement that uses this

concept to improve application performance.

4.1 Objectives, Constraints, and Assumptions

Our primary goal in developing a new page placement policy is to improve application

performance on CC-NUMA multiprocessor systems by making more efficient use of the

memory at each node than first-touch placement does. As we discussed in Chapter 3, a

weakness of first-touch placement is that it implicitly allocates local memory frames on

a first come first served basis, making it possible for heavily accessed pages to be placed

in remote memory simply by virtue of being allocated last. A more efficient use of local

memory would be to give priority to placing highly accessed pages in the local memory

of the accessing processor, while giving lower priority to placing infrequently accessed

pages in local memory.

53
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A secondary goal for the design and implementation of this new policy is to avoid

reliance on specialized hardware or computationally complex algorithms. Some advanced

dynamic placement techniques, such as page migration, already address the shortcomings

of first-touch placement by prioritizing the allocation of local memory frames, using

the processor cache miss rate for references to a page to decide which pages should be

migrated to local memory. However, page migration systems typically require special

monitoring tools to gather this cache miss information. Our goal is to avoid additional

hardware tools by using information that is easily gathered through existing operating

systems mechanisms. Furthermore, we would like to minimize the need for programmer

intervention to supplement this information.

Along with these goals, we have made several simplifying assumptions to aid in the

design and evaluation of our work. While some of these assumptions may not be war-

ranted in a real multiprocessor system, they have been generally been made to aid in our

initial understanding of the issues involved in the locality problem, with the hope that

future work can build on this understanding by including some of the complexities that

we have omitted.

Although previous work on dynamic placement techniques has relied to varying de-

grees on the use of process migration by the scheduler to create opportunities for opti-

mization [40, 55], we have developed our policy for an environment where little or no

process migration occurs. Such an assumption is likely to be valid for environments

similar to the one we are targeting (i.e., a multiprogrammed environment with many in-

dependent single threaded processes). In these systems, scheduling is often implemented

using a method known as two-level scheduling [51]. The top level of a two-level scheduler

assigns processes to the run queue of a specific processor (typically the one with the

lowest load) at process creation time. The bottom level is specific to each processor, and

determines which process from the local run queue should be scheduled. This method

of scheduling keeps a process on the same processor for its entire lifetime, allowing it to
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develop an affinity for that processor (e.g., a process may find some of its cache blocks

still loaded in the cache when it is rescheduled on the same processor). For this rea-

son, two-level scheduling is considered a type of scheduling more generally referred to

as affinity scheduling. Two-level scheduling also has the advantage of avoiding a highly

contended global run queue, while still distributing load relatively evenly throughout the

system.

Additionally, we have constrained our application domain to single threaded array-

based scientific applications. While multi-threaded applications and applications with

pointer-based data structures may also prove to be of interest, we have decided to initially

focus on single threaded scientific applications as they have characteristics that facilitate

their study, (e.g., no need for complex pointer analysis, and no shared data between

threads).

Finally, we have assumed that the total amount of memory in our target system is

large enough to satisfy the memory requirements of all applications being run at any

given time. In other words, we do not explicitly consider the interaction of our policy

with the page replacement system in our experiments.

4.2 Region-Based Cache Aware Page Placement

In accordance with the goals we have previously identified, the algorithm we have devel-

oped for determining page placement prioritizes the allocation of local memory frames

based on predicted cache behaviour. This prioritization can be summed up as follows: re-

gions that are predicted to have a high processor cache miss rate are preferentially placed

in local memory over regions that are predicted to have a low processor cache miss rate.

The basis for this prioritization stems from the observation that memory accesses only

occur on processor cache misses, and so processor cache miss rates should provide a good

approximation for which pages will incur the most memory accesses. Because we use
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predicted cache behaviour to determine page placement, we call our policy cache aware

placement.

It is important to note that although we use the term cache aware placement to

describe our policy, we do not directly measure cache miss rates. As we described earlier,

one of our goals was to implement this policy using information that is easily gathered

within existing operating systems mechanisms, avoiding the need for special hardware

monitoring. The term cache aware placement refers to placement based on the inferred

cache behaviour of regions of memory based on the observed page level access patterns

within the operating system.

One of the cornerstones of such a placement policy is the construction of an accurate

method of predicting the caching behaviour of pages. We believe that a suitable basis

for such predictions is the order in which pages are faulted into memory, which gives

an approximate indication of how these pages will be accessed during the application’s

lifetime. Since cache miss rates are often determined by memory access patterns, we

hypothesize that the order in which pages are accessed can be correlated with either

high or low cache hit rates over the lifetime of the application. Such a correlation is

demonstrated in Section 4.3, where we show that a sequential page fault order for a set

of virtual address pages is correlated with low cache miss rates for these pages.

Basing cache predictions on page fault ordering implies that the granularity for these

predictions is larger than a single page. Making page-by-page predictions based on page

fault data is problematic because the first access to a page immediately triggers its al-

location and placement, yielding only a single data point with which to infer the cache

behaviour of that page. Instead, cache aware placement makes cache behaviour predic-

tions for groups of non-overlapping, contiguous sequences of virtual memory pages called

regions. By making a region the basic unit for cache behaviour prediction, several data

points can be collected before a prediction for the entire region is made. This is accom-

plished by treating the first n page faults to a region as a data gathering phase, where n
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is some predetermined threshold much smaller than the total size of the region. Although

these first n pages must be allocated and placed without the benefit of cache prediction

information, their ordering forms the basis for predicting the caching behaviour of the

remaining pages in the region.

The basic framework for our algorithm to determine page placement can be summa-

rized as follows. User memory is divided into groups of contiguous virtual pages called

regions. The first n page faults to each region are recorded, where n is a preset threshold

whose determination will be discussed later. If the ordering of these page faults matches

an ordering that is correlated with high processor cache hit rates, all future page allo-

cations for that region are provisionally marked for allocation in remote memory, with

the choice of remote node for each future page allocation depending on the measured

memory usage at each node.1 Otherwise, all future page allocations for that region are

marked for allocation in local memory.

Since the accuracy of cache behaviour prediction is of paramount importance in the

success of such an algorithm, we discuss our method of prediction in the following section.

Following this, we present our full algorithm in greater detail, and discuss some of the

issues and alternatives we considered in its design.

4.3 Predicting Cache Behaviour for User Memory

Regions

One of the main contributions of this dissertation is the development of a novel method of

predicting future cache behaviour for regions of pages. This prediction method involves

a heuristic that correlates the ordering of page faults in a region with that region’s future

caching behaviour. The basis for this heuristic is the hypothesis that the page fault

ordering for a region is determined by the memory access patterns of that region. Since

1We will propose several different definitions of memory usage in Section 4.5.3.
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memory access patterns also largely determine cache miss rates, it may be possible to

correlate certain page fault orderings with the caching behaviour of a region.

In Chapter 3 we described how a dichotomy of heavily accessed and lightly accessed

regions could be used to in a placement policy that reduces remote memory accesses.

Since regions with high cache miss rates are more likely to be heavily accessed than regions

with low cache miss rates, it follows that the ability to distinguish between regions with

high cache miss rates and low cache miss rates could also be used to inform placement

decisions. To that end, we considered what type of cache miss rates would be observed

for commonly used memory access patterns, and what page fault ordering would arise

from these patterns.

For example, in many scientific applications, large data arrays are often sequentially

accessed inside inner loop iterations. These access patterns exhibit high spatial locality2

and can result in a low cache miss rate for systems with large cache line sizes that can

hold several array elements. In such cases, a single cache miss to an element located in

a previously unloaded cache block is immediately followed by several cache hits to the

remaining elements in that block.3 Similarly, it is often the case that inner loops will

repeatedly iterate over a section of an array, before moving on to iterate over an adjacent

section of the array (and so on, until the entire array has been accessed). Such an access

pattern would likely exhibit both spatial and temporal locality, also resulting in a low

cache miss rate. In both cases, the page fault ordering for the pages of these arrays will

be sequential in the virtual address space. Conversely, some large data arrays in scientific

applications are accessed in an essentially random pattern. Such patterns tend to exhibit

poor spatial locality and higher cache miss rates since consecutive accesses are often to

different cache blocks. In these cases, successive page faults to these arrays will have no

2Spatial locality refers to the tendency for an address to be accessed when nearby addresses have also
been recently accessed.

3For a typical 128-byte L2 cache line size and 4-byte array element size, this would give a 4/128 =
3.125% cache miss rate.
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relationship to each other.

Such examples led us to formulate a heuristic for predicting future cache behaviour

based on the differentiation of regions with sequential page faults from those regions

with non-sequential faults. We define a sequential order as faulted within a window of

Y total page faults, where X and Y are preset thresholds.4 This definition allows us to

capture sequential fault orderings that may be partially interleaved with another accesses

to a region. We hypothesize that pages exhibiting sequential fault patterns are most

often associated with memory access patterns that result in higher cache locality, and

correspondingly lower cache miss rates, than those memory access patterns most often

associated with non-sequential patterns. We note that there exist memory access patterns

that will result in a sequential page fault ordering, but low cache locality and a high cache

miss rate. For example, in the worst case, accessing one array element per successive

cache line with no reuse of these lines will result in a 100% miss rate, yet still appear

as a sequential fault pattern. Similarly, a loop that sequentially accesses the elements of

an array located on a page, then skips a page, then sequentially accesses the elements

on the next page etc. will have a relatively low miss rate, but will be observed to have

a non-sequential fault ordering. Nevertheless, while such misidentifications are possible,

it is our hypothesis that such access patterns occur relatively infrequently compared to

access patterns that conform to our hypothesized correlation.

Table 4.1 shows the results of an experiment designed to test our hypothesized correla-

tion between sequential page fault orderings and low cache miss rates in user data pages.

This table compares the L2 cache miss rates of sequentially faulted regions and non-

sequentially faulted regions (using the definition of a sequential order described above).

Once again, these applications were drawn mostly from the SPEC95fp application suite,5

4The applications in our test suite have proven to be relatively insensitive to the exact values of these
thresholds. For our experiments, we used values for X and Y of 5 and 10 respectively.

5In this experiment, each user array is designated as a separate region. This decision is discussed in
greater detail in Sections 4.4 and 4.5.2.
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Application Sequential Non-sequential

applu 2.0 0.4

apsi – 9.7

buk 3.1 62.5

hydro2d 1.9 2.1

mgrid 0.6 –

mxm 3.1 *

swim 1.1 –

tomcatv 2.1 11.7

turb3d 2.6 4.6

wave 0.4 –

Table 4.1: Processor cache miss rates for sequential and non-sequential user data regions

(dashes indicate that no region of that type exists for that application). These rates are

the average rates for all regions in each category for each application.

and the experimental environment was a MINT-based simulator configured to reproduce

the NUMAchine multiprocessor. Although we describe the SPEC95fp benchmark suite,

as well as the simulator and the NUMAchine environment, in greater detail in Chapter 5

(where we present the main results of our experimental evaluation of cache aware place-

ment), we note that the L2 cache in this system is a 1-megabyte unified instruction/data

cache with a 128-byte line size. Furthermore, 8 of the 10 applications use 8-byte double

array elements (buk and mxm uses 4-byte integer elements).

The miss rates given in Table 4.1 are the average rates for all memory references to all

sequentially and non-sequentially faulted regions in each application. This data provides

strong evidence for a correlation between sequentially faulted regions and low miss rates,

as the average miss rate for the sequentially faulted regions in each application is equal

to or less than 3.1%. With respect to the miss rates of individual regions in this category,
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only three regions (out of 41) had miss rates greater than the maximum average rate of

3.1%. Additionally, a majority of the applications exhibit average miss rates for their

non-sequentially faulted regions that are much higher than the maximum aggregate rate

for the sequential regions. The two exceptions are applu and hydro, with average rates

of 0.4% and 2.1% respectively. In the case of applu, this appears to be due to an initial

non-sequential access phase (with a 6.1% miss rate) that changes to a different access

pattern with a much lower miss rate.

Mxm, a matrix multiply program, is a special case whose non-sequential region’s

cache miss rate is dependent on the size of the matrices being multiplied, and roughly

proportional to the ratio between the number of matrix rows and the number of cache

lines in the processor data cache. This dependence arises due to the increasing probability

of conflict misses when traversing a matrix column as the size of the column (i.e., the

number of rows) increases. The exact miss rate is not listed because a limitation in

the way our simulator performs virtual-to-physical memory translation prevents it from

producing accurate numbers; depending on the matrix size, the method of virtual-to-

physical translation will result in either a 100% miss rate for matrices with a number of

rows evenly divisible by the number of lines in the processor cache, or a 0% miss rate for

all other matrices. We have no reason to believe that this limitation significantly affects

the other applications in our test suite (and the simulator has been extensively tested for

correctness by others [22]).

4.4 Algorithm Details and Issues

Given this heuristic of equating sequential page fault accesses with low cache miss rates,

and non-sequential page fault accesses with high cache miss rates, we devised an algorithm

that bases page placement decisions on these predictions called cache aware placement.

This algorithm operates on regions of pages that are automatically generated at the
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start of execution for each application when the main data arrays are declared,6 with

each array designated as a separate region. For simplicity, the page placement of all

other user data, code pages, and system-allocated memory were not controlled by our

placement algorithm, but were allocated using standard first-touch placement.

The rationale for choosing to make each array a separate region comes from a desire

for the pages of a given region to be relatively uniform with respect to to the way in which

they are accessed, and in their subsequent caching behaviour. Uniform access behaviour

over the pages of a region allows us to infer the access patterns for a whole region based

on the patterns of a few pages, and allows us to treat an entire region as a single unit for

placement decisions. Basing regions on arrays is an attempt to infer this uniformity by

making use of user level contextual information.

The flowchart shown in Figure 4.1 describes what occurs when a page fault is en-

countered. The cache aware algorithm can be divided into two main sections: sequence

detection and page placement.

4.4.1 Sequence Detection

Upon creation, each region is initially designated as a local region, indicating that its

page faults should be satisfied, if possible, by a local memory frame. When a page fault

occurs, the page fault handler identifies the region that the page maps to, and examines

the region to determine if it is still designated as a local region. If so, the page fault

handler records the virtual address of the faulting page and compares it against a list

of previously recorded page fault sequences. If the currently faulting page is adjacent to

the end of previous sequence, the page is considered an extension to it. If this sequence

exceeds a predefined sequence size threshold, the access pattern for the region is deemed

to be sequential, and the region is redesignated as a remote region. In the case where the

6Recall that we have chosen to design our placement algorithm to target scientific applications, which
typically employ large arrays that are statically declared at the beginning of the program.
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sequence?
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Is there a remote
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Allocate page on remote

Figure 4.1: A flowchart outlining the algorithm for page placement.

faulting page does not extend a previous sequence, the page is recorded as the possible

start to a new sequence. In either case, a fault counter is incremented to record the total

number of faults. If the region is not designated as remote before this counter reaches a

set threshold, the region is permanently set to be local, in which case further page faults

to the region bypass the sequence detector.
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4.4.2 Page Placement

After the sequence detection phase of the algorithm is complete, the algorithm chooses a

memory node on which to allocate the faulting page. Although each region has a local or

remote designation, the placement phase must also consider the memory usage at each

node before making a placement decision. The memory usage at a node consists of all

pages on that node belonging to the working set of a currently running process in the

system, where the working set of a process is the set of pages accessed by that process

during a given time interval. As memory usage on a node increases, the allocation of a

local frame to a remote process has an increasing impact on the performance of locally

running processes due to the reduction in local memory availability. Because of this, it is

important to ensure that memory usage is considered when choosing a node to allocate

a page.

Since one of our initial assumptions was that we would not consider the effects of

page replacement, a suitable approximation of memory usage is the amount of memory

allocated at each node. Although it is generally not true that all allocated pages belong

to the working set of a process, an allocated page remains unavailable until freed by the

owning process if there is no page replacement. This means that the number of currently

allocated pages at a node is an exact measure of the number of unavailable pages.

Given this measure of usage, when allocating a page belonging to a remote region, our

algorithm initially targets the remote node with the most unallocated frames. However,

this selection may be overridden if the usage at the selected node is greater than a

predefined threshold. If this threshold is exceeded, and the usage at the local node is

below the threshold usage, the local node becomes the target node. This prevents the

memory at a remote node from being completely consumed when the usage on the local

node is still relatively low. However, if the local node also exceeds the usage threshold,

the node with the lowest usage (local or remote) is selected. For pages belonging to local

regions, the algorithm selects the local node unless no local frames remain. If there are
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no available local frames, the remote node with the lowest usage is selected.

4.4.3 Limiting Remote Page Placement

When placing pages belonging to remote regions, one final consideration we have in-

cluded is the number of pages that have already been placed in remote memory for a

given application. With the algorithm as currently defined, it is possible for an applica-

tion to have a majority of its pages placed in remote memory if most or all of its regions

are designated as remote regions. Although remote regions have been so designated be-

cause they will have a limited impact on performance (due to their predicted low cache

miss rate), placing most or all of these regions in remote memory may still amount to

a significant number of remote accesses compared to a first-touch placement. With this

in mind, we set a remote allocation threshold that specifies the fraction of an applica-

tion’s memory that may be placed remotely. This requires that we know the memory

requirements of each application in advance, as is the case for the majority of scientific

applications. Although such knowledge might seem to imply that we can ensure that no

pages be placed in remote memory if there is local memory available, we would also need

to know the allocation requirements of other applications on the same node to make this

guarantee. When the number of remote allocations exceeds this threshold, all regions in

an application are redesignated as local regions.

4.5 Discussion

In developing cache aware placement, many design decisions, such as which data to base

cache predictions on, the choice of granularity for cache predictions and placement deci-

sions, and how to measure memory usage, required choosing from a number of possible

alternatives. In the following sections, we outline some of the alternatives we considered

and discuss the reasoning behind the choices we made.
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4.5.1 Predicting Cache Behaviour

The core of our placement algorithm is the use of page fault ordering to predict cache

behaviour for a region. As we discussed previously, the rationale for using page fault

ordering is that it approximately describes the initial access pattern to a region, which

we hypothesized would correlate well with cache behaviour. As we showed in Section 4.3,

despite the relatively coarse granularity of the access patterns detected, we discovered a

correlation between sequential and non-sequential fault patterns and low and high cache

miss rates for the regions in our test applications. Additionally, using page fault ordering

to predict cache behaviour is consistent with our goals of avoiding specialized hardware,

complex computations, or programmer input. Page fault information is easy to extract

using existing operating system constructs, requiring the addition of small amounts of

data gathering code in the page fault mechanism. These additions produced no noticeable

overhead in our implementation.

An alternative to using page fault ordering to infer access patterns to a region is to

observe a finer granularity of access to each region. Choosing a finer granularity would

allow our algorithm to make finer distinctions between different access patterns. For

example, observing accesses at a cache line granularity would let us distinguish between

a pattern that sequentially reads every cache line in a region from a pattern that strides

through the region, i.e., regularly reads every x’th line. Both of these patterns would

result in sequential page faults, but the former cache line pattern is more likely to arise

from an access pattern that has a higher cache hit rate (e.g., the former cache line pattern

can arise from the commonly seen access pattern that sequentially touches every element

on every cache line, while the latter one cannot). However, choosing a finer granularity

would require the use of specialized hardware to monitor cache line accesses, or possibly

extensive modifications to the memory subsystem with associated high overheads to

capture this information, tradeoffs we were unwilling to explore given the success of our

prediction scheme using page fault information.
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A second alternative is to measure the actual cache hit rates for the first few pages

accessed in a region. This would give us the benefit of using the actual cache hit rates

for these first few pages to predict the future cache hit rates for all the pages in the

region, rather than having to infer these cache hit rates from the page fault ordering

as we have done. However, choosing this option would also have required the use of

monitoring hardware to observe cache hits and misses, once again violating our goal of

avoiding specialized hardware.

4.5.2 Granularity of Cache Predictions and Placement Deci-

sions

As we discussed in Section 4.3, making predictions on a page granularity based on page

fault data is problematic because the first access to a page immediately triggers its allo-

cation and placement. Instead, our algorithm makes predictions and placement decisions

on groups of contiguous pages called regions to allow the gathering of multiple data

points.

Having decided on regions consisting of multiple pages, there is still the issue of how

large these regions should be. As described in Section 4.4, we chose to designate each

array in a target application as a separate region in an attempt to keep the access patterns

and caching behaviour over a region relatively uniform. Choosing to make placement

decisions at a larger granularity (e.g., multiple array regions) would likely result in less

uniformity of these characteristics since we would have less reason to expect the pages

of multiple arbitrary arrays to exhibit similar access patterns or caching behaviour than

the pages of a single array.

The other alternative is to make placement decisions on a smaller granularity than

a single array. Although we show later in Section 5.3 that the majority of arrays in

the applications we studied have uniform caching behaviour, a small number of applica-

tions have arrays that contain groups of pages with distinctly different memory access



Chapter 4. Cache Aware Page Placement 68

behaviour. In such cases, it might be more appropriate to divide an array into several

regions corresponding to these distinct groups. It might be possible to identify these

groups by their page fault ordering as well. For example, one could imagine that allocat-

ing a local or a remote frame for the next page fault to a region could depend on whether

the previous X page faults to that region were sequential or non-sequential.

Failing that, dividing an array into several regions would likely increase the com-

plexity of region creation, since these subgroups of pages with differing memory access

characteristics would be difficult to identify a priori. One might imagine a compiler

prepass that would attempt to analyze the access patterns to each array and determine

which sections might be placed in different regions, or having the user specify regions

based on their knowledge of the access patterns to their arrays. However, such solutions

do not adhere to our goal of low complexity and minimization of user responsibilities.

4.5.3 Selecting a Target Memory Node based on Memory Usage

Although our algorithm bases its placement recommendations on the predicted cache

behaviour of each region, these recommendations are considered in the context of the

memory usage at each node in the system. As we have stated previously, we use memory

usage to denote the set of all pages on a node that belong to the working set of a currently

running process in the system, where the working set of a process is the set of pages used

by that process during a given time interval. Given a decision to allocate the pages of

a region on a remote node, we would like to choose a node or set of nodes where there

exist a sufficient number of currently unused pages to meet our needs.

Since have assumed the absence of page replacement in our system, the number of

allocated pages is an exact measure of the unavailable pages on a node. However, our

algorithm uses the measured usage at a node at the moment a placement decision must

be made. An alternative option is to measure the usage over a set time interval to gain

an indication of the historical memory usage at the node. However, a measure of this
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kind is likely to be very highly workload dependent, and we would need to investigate

real workloads being run on typical CC-NUMA systems to see whether such a scheme

would be beneficial.

Alternatively, if we were to allow page replacement, measuring allocated pages might

constantly overstate the usage on each node, as some programs could give up allocated

pages not in their working set and still suffer very little performance degradation. In such

an environment, one of the following alternatives for measuring memory usage might be

considered.

Free List Size

One approach to measuring memory usage in the presence of page replacement is to

use the length of the free list7 at each node. Since the free list contains pages that

are available for fulfilling future allocation requests, the mean length of the free list

over a given time interval might be a good estimate of the availability of memory pages

for allocation. However, this presumes that the working set of the applications we are

running can be accurately determined by an LRU-type algorithm. While studies have

shown that LRU-type algorithms tend to produce the best results on average, we have

previously discussed how LRU and its derivatives do not give an accurate reflection of

the current working set for some applications.

Another complication involved with using the length of the free list as a memory usage

indicator is that the application of the replacement algorithms such as the second chance

algorithm may not be uniform throughout the system. More specifically, the free list

length can be influenced by the speed of the clock algorithm sweeping through the pages

on a node. Given differing second chance clock speeds on different nodes might lead to

7Recall that a clock-based algorithm (see Section 2.4.1) identifies the working set of an application by
approximating an LRU ordering on pages and placing those pages that have not been accessed within a
certain number of sweeps of the algorithm on the free list (a list of pages that are available for satisfying
future allocation requests). This leaves only those pages that have been accessed in the recent past in
memory, with the assumption that such pages are the most likely ones to be accessed in the near future.
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variability in the interpretation of what lengths constitute high and low memory usage. In

the Tornado operating system, under which we have conducted our experiments, there is

the further complication that there can be several lists of free memory on each node, each

possibly operating on its own clock speed. Coordinating these clocks becomes important

so that if we are to use the lengths of these free lists to measure the total usage at a

node.

Statistical Approximation of Memory in Use

One way to avoid the complication of differing clock speeds is to uncouple the measure-

ment of memory usage from the page replacement mechanisms being used and perform

separate measurements on the amount of memory in use. Borrowing concepts from the

second chance approach, we can randomly select a small set of memory pages in each

node to be unmapped from the TLB at the beginning of a set clock period. During the

clock period, we can make note of any of these unmapped pages that are referenced.8

At the end of each clock period, the fraction of these unmapped pages that have been

referenced during that period can be counted, and this fraction used to approximate

the entire fraction of memory at the node currently in use. Such an approach has been

proposed in recent work on virtual machine systems that share common resource pools,

where the authors have looked at precise memory usage accounting to allow for efficient

memory sharing amongst virtual machines [58].

4.6 Open Issues

In addition to the specific algorithmic issues we have addressed in Section 4.5, there are

also some more general concerns relating to how a static page placement policy such

8Since the page mappings are not cached in the TLB, a memory reference traps to the operating
system which must reload the entry, at which time a reference bit in the page table entry for the page
can be set.
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as our proposed policy can interact with other parts of the operating system. In the

following sections, we discuss how scheduling concerns, dynamic placement policies, and

page replacement relate to static page placement.

4.6.1 Scheduling

The way processes are scheduled can have a significant impact on the availability of mem-

ory at each node. For example, consider a situation where two nodes of a multiprocessor

system have unused processors. One of the nodes is completely unused, i.e., all of its

processors are free, and the other has some unused processors and some processors in

use. If the scheduler considers only processor availability when making its scheduling

decisions, then scheduling the new process on an unused processor on either node would

be acceptable. However, it is clear that scheduling the process on the partially used node

will increase the competition for local memory on that node.

The algorithms used for scheduling multiprogrammed workloads in a multiproces-

sor environment are often simple extensions of techniques developed for uniprocessor

operating systems. In particular, the overriding concern of most uniprocessor and mul-

tiprocessor schedulers is the efficient utilization of the CPU [51]. For a uniprocessor

scheduler, this concern can be distilled down to the decision of when and for how long a

process should be scheduled to run. For multiprocessors, the scheduler must decide not

only when and for how long a process will be scheduled, but also on which processor it

will be scheduled. In answering these questions, a scheduler attempts to manage the use

of a resource, i.e., CPU cycles, such that a particular goal is achieved, e.g., maximize

throughput, enforce relative priorities between processes, etc.

For the most part, existing schedulers tend to ignore the availability of memory re-

sources, and attempt to achieve their goals while considering only CPU cycles as the

resource that affects efficiency and performance. Early on, it was recognized that cache

context is a very important factor in performance, giving rise to scheduling policies that
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tend to keep processes on the same processor once they have been assigned there, e.g.,

affinity scheduling [51]. Previous studies on NUMA systems have also shown that lo-

cating the threads of a parallel application close together can improve performance by

minimizing the costs of accessing shared memory pages [7]. However, it is typically im-

portant that two competing processes not be assigned to the same processor. Hence,

process placement is typically done by the application, and is static. Despite this, taking

memory into consideration can still be important for performance.

Cache aware placement addresses the problem of memory locality strictly from a

memory management view of things. However, integrating memory management and

scheduling decision making could also be effective. For example, one could incorporate

the scheduler by making it aware of memory pressure in the system, and having it use

this information to guide its decisions. Such a solution could become very complex, as

the scheduler must now deal with balancing the usage of an additional resource, i.e.,

memory.

4.6.2 Program Phase Changes and Process Migration

By choosing a static page placement at allocation time, we may leave ourselves vulnerable

to phase changes in the memory usage patterns of our applications. For applications that

undergo phase changes in their memory access behaviour, we may choose a static page

placement that makes sense for the initial memory reference patterns of an application,

but becomes inappropriate when these memory reference patterns change during the

application’s execution. Similarly, a static page placement can be undermined if the

scheduler chooses to migrate a process away from the processing node that it originated

on.

While our solution is a static one, phase changes and process migration can be ad-

dressed using existing dynamic solutions to the memory locality problem that we dis-

cussed earlier, such as page migration. For example, one could imagine a page placement
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solution, such as our own, working in conjunction with a page migration policy. The

static page placement made at allocation time could achieve a good placement from the

outset of the application execution, and the migration system could help this placement

adapt to future changes in memory usage.

4.6.3 Page Replacement

One final issue to consider is the interaction between our proposed cache aware place-

ment policy and the page replacement policy, as the choice of a victim page for page

replacement could have an impact on the effectiveness of our policy by perturbing the

static page placement. For example, evicting a page that we have predicted will be

poorly cached and that has been placed in local memory could be harmful if that page

is later faulted back into remote memory (e.g., because there are no available frames in

local memory). While the minimization of page fault activity is the primary concern of

the page replacement policy, it might be fruitful to consider placement concerns when

the replacement policy has a choice between two or more equally likely victims. This

can be further complicated by multi level approaches to page replacement such as the

popular two-level approach consisting of a global replacement policy to choose a victim

process, and a local policy specific to the victim process that chooses one of its pages for

reclamation[9]. In such a case, it might be necessary to incorporate placement informa-

tion at both levels of the replacement scheme while ensuring that such changes do not

have a negative effect on the amount of page fault activity.

The choice of a usage-based memory pressure heuristic can also be affected by the

type of page replacement scheme in use. If we choose to allocate a page on a node that

has a high number of allocated pages and low usage, we implicitly assume that a page

from that node will be reclaimed to make room for our new allocation. This means

that our notion of memory usage should be compatible with the replacement policy. For

example, it may or may not be appropriate to choose a memory pressure heuristic based



Chapter 4. Cache Aware Page Placement 74

on the free list size if the global replacement policy is based on the relative page fault

rates of processes. Biasing our local replacement policy to choose a remote memory page

over a local one as we suggested above could also have a negative effect by making it less

likely that a victim page is chosen from the node we are allocating on.

Finally, a further avenue of research might be to investigate whether the differences

in performance attributable to a change in placement policy are noticeable in an envi-

ronment where there is significant page replacement activity. Since the latency to disk

is several orders of magnitude greater than the difference in latency between local and

remote memory in most multiprocessors, it may be valuable to determine the level of

page fault activity that makes placement concerns insignificant.

4.7 Summary

The main shortcoming of first-touch placement for single threaded applications is that it

allocates local memory frames to page faults on a first come first served basis, rather than

to those pages that will be most highly accessed. To address this shortcoming, we propose

a new policy called cache aware placement that differentiates regions of pages based on

their predicted cache behaviour. These predictions are based on differentiating between

sequential and non-sequential page fault orderings in the virtual address space. We have

found that regions of memory that exhibit sequential page faults correlate well with low

cache miss rates, while regions that exhibit non-sequential faults often have higher cache

miss rates than sequentially faulted regions in the same application. By prioritizing the

placement of non-sequential regions in local memory, cache aware placement attempts

to reduce the number of remote memory accesses made by an application compared to

first-touch placement.



Chapter 5

Experimental Methodology and

Results

In this chapter we present the experimental evaluation of our allocation policy in both

simulated and hardware multiprocessor environments. These experiments show that

the application of cache aware placement can result in a noticeable improvement in the

performance of several programs in our test application suite compared to first-touch

placement by reducing the number of remote memory accesses made.

5.1 Experimental Environment

The experimental results presented in this chapter were produced under two different

environments. The first of these environments consisted of the University of Toronto NU-

MAchine multiprocessor[21, 23] running the Tornado operating system[17]. The second

environment consisted of an internally modified MINT-based simulator[22, 54] configured

to simulate the NUMAchine hardware. We describe these environments in detail below.

75
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Figure 5.1: A NUMAchine station. Each station consists of four processors, a local

memory, an I/O card, and network interface card (NIC) connected by a station bus. The

NIC connects to the local ring.

5.1.1 The NUMAchine Multiprocessor

NUMAchine is a hierarchical, shared memory CC-NUMA multiprocessor constructed en-

tirely with commodity components and custom designed boards utilizing programmable

logic devices. The NUMAchine architecture is based on stations of up to four MIPS

processors. The configuration of each station is similar to an SMP multiprocessor and

is shown in Figure 5.1. All processors on a station are connected by a shared bus to

the same local memory, I/O card, and network interface card. The network topology is

a hierarchical ring design with several stations connected together by a single unidirec-

tional local ring at the lowest level of the hierarchy. Several of these local rings may be

connected together by another unidirectional global ring to form a larger system. Figure

5.2 shows the basic architecture for the NUMAchine system.

The specific configuration used for our experiments includes 16 MIPS R4400 proces-
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Global Ring

Stations

Inter-Ring Interface

Local Rings

Figure 5.2: The NUMAchine multiprocessor architecture. The network topology is a

two-level ring hierarchy. Although only two stations are shown per local ring, as many

as eight stations can be accommodated on a local ring.

sors running at 150 MHz divided into nodes or stations of four processors. Each processor

features separate 16k L1 instruction and data caches with 32 byte line sizes, and a 1Mb

unified L2 cache with a 128 byte line size. Each station shares 96 megabytes of local mem-

ory and an 8 megabyte network cache. The four station system is connected together

using a single local ring. The use of only a single local ring with no global ring was due

largely to unresolvable technical difficulties with the global ring implementation.1

Adding a global ring would imply that remote stations could differentiated into those

that reside on the same local ring, and those that reside on another local ring. These

1The global ring implementation had a tendency to produce random bit errors.



Chapter 5. Experimental Methodology and Results 78

level of hierarchy 150-MHz PCLKs 50-MHz SCLKs

L1 cache 1 n/a

L2 cache 6 n/a

Local memory 135 45

Local network cache 165 55

Other L2 cache (on station) 255 85

Rem. mem. 594 198

Table 5.1: The measured access latencies to different parts of the memory hierarchy in

NUMAchine. The latencies in the first column are measured in processor clock cycles,

while the second column lists them in system clock cycles. These measurements were

taken on an unloaded system.

latter stations would require more latency to access, since accessing them would involve

traversing the global ring. In such an environment, we could envision changing our

algorithm that take advantage of this knowledge. In particular, it might be appropriate

to order nodes based on the latency to access them when attempting to allocate local

or remote regions. For example, under our current policy, if a region is non-sequentially

faulted, it is placed in local memory if there are local frames available, or remote memory

if there are no local frames. With a global ring, we might order remote nodes in terms

of their latency, so that if there are no local frames, such a region will be preferentially

placed in the remote node with the smallest access latency. Similarly, we might place

sequential regions in the nodes that are the furthest away, to save room in closer remote

nodes for non-sequential regions that cannot be placed in local memory.

Table 5.1 summarizes the measured read latencies to different parts of the memory

hierarchy on an unloaded system.2 The first column refers to the number of processor

2Since will not use shared memory between processes in our experiments, the write latencies we
experience will be the same as these read latencies.
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clock cycles for each type of reference. The second column gives the number of system

clock cycles for each reference type (the ring network and various controllers in the system

run on a 50 MHz clock).

5.1.2 The Tornado Operating System

The Tornado operating system running on NUMAchine is an object oriented operating

system designed specifically for shared memory multiprocessors. Tornado was initially

designed with the goal of developing novel structuring techniques to deal with the issue of

scalability in shared memory systems. Tornado was also designed to be flexible, providing

infrastructure that allows different policies and solutions to various problems to be made

available to user applications.

Implementing Cache Aware Placement in Tornado

Figure 5.3 depicts a simplified view of the object model supporting memory operations

for a program in Tornado. Each application in Tornado is associated with an address

space, which defines its protection domain and contains non-overlapping, contiguous

sequences of virtual memory pages, called regions, that it can access. Since Tornado uses

a memory mapped file interface [34], which abstracts all accesses to a file into virtual

address space references, each region is mapped directly to a continuous portion of a file

that may reside on secondary store (for user allocated memory, this is a swap file). The

key objects depicted in this figure include the Program object, Region object, File Cache

Manager, and Cached Object Representative:

Program: A program is the root object for memory management for an application.

All TLB misses are initially issued to the program object, which forwards them to the

appropriate region object.

Region: We have previously used the term region to denote a contiguous portion of

the virtual address space. In Tornado, a region is more specifically defined as a program
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Figure 5.3: Tornado memory subsystem infrastructure.

addressable portion of the address space with corresponding protection attributes (read

only, read/write). The region object resolves page faults by communicating with the file

cache manager.

File Cache Manager (FCM): The FCM is responsible for managing the file cache of a

specific file. This includes the allocation and placement of frames to satisfy page faults.

Each FCM is associated with a single cached object representative, which handles read

and write requests generated by the FCM.

Cached Object Representative (COR): The COR is the file system representative in

the kernel, with each open file having an associated COR. The COR is file system specific;

there are several types of CORs that handle reads and writes from and to different types

of file systems.

Our implementation of cache aware placement involved changes to the page fault

handling portions of the region object and FCM. The sequence detection phase of the
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algorithm was incorporated in the page fault handling path through the region object.

The FCM was modified to handle allocation to a memory module specified by the cache

aware code in the region object.

In a UNIX-based system, implementation of cache aware placement would require

replicating some of the above infrastructure. In particular, we would require a data

structure to store region information for the arrays allocated by each UNIX process, as

well as library code to create these regions. The page fault handler would also need to be

modified to match page faults with regions in this data structure, as well as to implement

the sequence detection handled by the region object in Tornado.

Defining Algorithm Thresholds

In Section 4.4, we described a number of predefined thresholds to be used in our cache

aware placement implementation. In the sequence detection portion of the placement

algorithm, these thresholds include the sequence size threshold (the number of pages

in a sequence necessary to declare that a region is being accessed sequentially), and

the fault threshold (the number of total page faults allowed before a region is declared

as non-sequential). The minimum number of page faults to determine a sequential or

non-sequential series is two. Having experimented with several different values for each

threshold, we found that the identification of sequential and non-sequential regions was

relatively insensitive to a wide range of values. For the experimental results reported in

this chapter, we set the sequence size threshold to five, and the fault threshold to ten.

The other threshold discussed in Section 4.4 relates to the number of pages that can be

placed in remote memory before no more remote placements are allowed. We arbitrarily

chose to begin with a 50% limit on the percentage of pages that an application can place

in remote memory. Since this 50% threshold appeared to strike a good balance between

local and remote allocations, we did not vary it further for our experiments.
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5.1.3 The NUMAchine Simulator

The second environment under which experiments were run consisted of an internally

modified MINT-based simulator configured to reproduce the same operating parameters

of the NUMAchine hardware. Although the NUMAchine hardware and Tornado oper-

ating system are fully functional, we required the simulator to probe more deeply into

the behaviour of our applications and to obtain data that the monitoring systems in our

hardware could not provide. For example, we were able to record the hit and miss data

at all levels of the memory hierarchy in the simulator environment, as well as break down

this data on a per page basis.

The NUMAchine simulator is an execution driven simulator, meaning that it takes

binary code as input and executes it using an interpreter and virtual model of the pro-

cessor. The simulator can be divided into a front end and back end. The front end is

the MINT half of the simulator and is responsible for creating virtual processors, as well

as executing most of the instruction stream. The back end is called when the front end

encounters a load, store, or synchronization operation. When one of these instructions

is encountered, the virtual processor that is executing the instruction is blocked, and

the back end is called upon to calculate the appropriate delay for a response to occur

by simulating the request passing through the various structures in the NUMAchine ar-

chitecture, e.g., caches, bus, network, etc. In particular, the network structures have

been modeled in detail to accurately reflect congestion and occupancy in the network.

When the appropriate delay has been calculated, the virtual processor is scheduled to be

unblocked at the proper simulation time with the proper result from the request.

Finally, while the simulator actually executes the binary calls, MINT does not sim-

ulate kernel calls, but executes these calls natively on the host machine or mimics the

behaviour internally. Similarly, OS-related behaviour such as memory management is not

simulated; the functionality is reproduced outside the simulation environment. Thus, no

OS overhead is included in the simulation results.
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Experimental results examining the correctness of this simulator, as well as comparing

how closely simulated results correspond to results obtained on the NUMAchine hardware

have been presented elsewhere[22]. In the work cited, simulator correctness was validated

using synthetic benchmarks measuring easily calculated results, e.g., the number of cache

hits and misses of a well described read pattern, as well as comparing the results of

benchmark programs run on the simulator and on NUMAchine. These latter experiments

were also used to compare performance results between the two platforms. They found

that while the simulator tended to under report execution times by a factor of 2 to 3,

the relative relationship of execution times as the number of processors were changed

correlated very closely, i.e., the speedup curves for each platform were very similar. The

difference in absolute reported times may be a function of the use of parallel applications;

in our experiments on single threaded applications, the absolute difference in execution

times was much smaller, with times differing by approximately 10%.

For all of the following experimental results, we will clearly distinguish between those

produced under the simulated environment, and those produced from experiments using

the actual hardware.

5.2 Application Test Suite

For our test application suite, we have chosen ten applications from a variety of sources.

Buk is an implementation of a bucketsort algorithm taken from the NAS Perfect Bench-

mark suite[3]. Mxm is a personal implementation of matrix multiply. Both applications

use 4 byte integers as their main data type. The remaining applications (applu, apsi,

hydro2d, mgrid, swim, tomcatv, turb3d, and wave) were taken from the SpecFP95 bench-

mark suite[13]. These applications all used 8 byte doubles as their main data type. Table

5.2 gives a description of each application, along with the number of regions and the total

amount of user memory allocated for both our single application workload and multipro-
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Application Regions Memory (single/multi) Description

applu 7 240MB/103MB PDE solver

apsi 1 63MB/63MB solver for mesoscale and synoptic potential temps

buk 3 134MB/134MB bucketsort

hydro2d 6 172MB/172MB solver for hydrodynamical Navier-Stokes equations

mgrid 3 216MB/55MB multigrid solver for 3D potential fields

mxm 3 192MB/108MB matrix multiply

swim 11 225MB/88MB weather predictor

tomcatv 7 126MB/126MB mesh generation with Thomson solver

turb3d 12 195MB/130MB Navier-Stokes solver using pseudospectral method

wave 1 107MB/107MB particle simulator

Table 5.2: A summary of the applications in our benchmark suite. For each application,

the number of regions above 1-megabyte is given, as well as the amount of memory

allocated in both our single program and multiprogrammed experiments.

grammed workload experiments. The input data size for each application in the single

application experiments was chosen such that the memory allocated was larger than the

size of local memory (96MB).3 Some of these sizes were scaled down in the multipro-

grammed case so that total memory allocated did not exceed the total memory in the

system.

3The lone exception for this was apsi, whose smaller size was chosen to keep execution times reason-
able.
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5.3 Distribution of Memory References in User Re-

gions

The first experiment we present examines the cache hit rates and memory reference

patterns for the pages in each of the regions in the applications of our test suite. One of

the underlying assumptions we have made in designing our page placement policy is that

the number of memory accesses for each page in a given region would be relatively uniform

over the entire region. This assumption is implicit in our choice to make placement

decisions for entire regions, rather than for individual pages, as well as our choice to base

these placement decisions on the pattern of the first page faults occurring in each region.

If this assumption is not true, then making a single placement decision for an entire region

could be a poor choice. For example, if each page in a region is accessed a small number

of times, then placing that region in remote memory should not affect performance.

However, if some pages in a region are lightly accessed, and others are heavily accessed,

then making a single decision to place that region in local memory or remote memory

may not make as much sense as making decisions at a smaller granularity, i.e., placing

part of the region in local memory, and part in remote memory. In this experiment, we

examine the validity of this assumption by plotting the distribution of memory reference

counts and cache hit rates over all the pages in each region in our applications and show

that in the vast majority of cases, these characteristics do not vary greatly over the pages

of each region.

For this and all subsequent experiments, we chose to limit the scope of our placement

policy to user data regions. User arrays that were larger than 1-megabyte were treated

as separate regions. These arrays were identified by manually examining the source code,

and adding a library call to a region creation routine for each array declaration.4 The

4One could imagination a straightforward compiler preprocessing source-to-source transformation
pass that would automate this process.
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minimum 1-megabyte size for an array to be considered a region was chosen to correspond

to the size of the L2 cache on the MIPS R4400 processors. By only considering arrays

larger than this size, our policy only involves itself with regions that do not fit entirely in

the processor cache hierarchy and are thus, more likely to be poorly cached. As described

in Chapter 4, all other user data, code pages, and system regions were allocated under a

first-touch placement policy.

The experimental environment we used for these tests was the NUMAchine simula-

tor running each application in isolation. Figure 5.4 shows an example of the data we

collected on the memory reference counts5 for each application. Specifically, the figure

shows three graphs representing the data for each of the three regions in buk. These

graphs were created by first recording the number of L2 cache misses going to memory

for each page in each region. For each region, a median value was calculated from these

per page memory reference counts, which was then used to normalize the counts for each

page so that the x-axis range on each histogram would be the same.

For example, consider a hypothetical region with five pages. In the simulator, we

record that there were a total of 60 memory references to addresses within this region.

We also record that the number of memory references for the five individual pages are

16, 10, 8, 8, and 18. The median value for the memory references per page is 10, which

we use to normalize the counts for all the pages in the region. This means that page 1

has 160% of the median number of memory references, page 2 has 100%, and pages 3, 4,

and 5 have 80%, 80%, and 180% respectively.

Once these normalized values were calculated, the per page memory reference dis-

tributions for each region were plotted as histograms. Figures 5.4 and 5.5 show the

histograms for the user regions in buk and mgrid, whose distributions are representative

of the majority of regions found in our benchmark suite. Each histogram was created

using a bin size of 1% of the median memory reference count for the region, with the

5A memory reference is generated by an L2 cache miss.
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application region (array name) within 1% within 5% within 10%

buk key 37% 93% 99%

rank 100% 100% 100%

keyden 100% 100% 100%

mgrid u 32% 59% 83%

v 92% 93% 94%

r 49% 77% 83%

Table 5.3: The distribution of per page memory reference counts over all pages for each

region in buk and mgrid. The columns show the percentage of pages in the region that

are within 1%, 5%, and 10% of the median count for each region.

y-axis giving the percentage of pages in the region falling into each bin. From these

histograms, we can see that most pages in each region are accessed the same number of

times.

The same memory reference data for buk and mgrid is summarized in Table 5.3. The

first column in this table gives the user array name corresponding to each region. The

second column in this table gives the percentage of pages for each region that are within

plus or minus 1% of the memory reference counts for the median page in each category.

Similarly, the third and fourth columns give the percentage of pages for each region that

are within plus or minus 5% and 10%, respectively. From this table we can see that

in three regions, over 90% of the pages have memory reference counts within 1% of the

region median. In all regions in these two applications, over 80% of the pages have counts

within 10% of the median.

Another way to examine the variability of access behaviour to a region is to look at

the per page L2 cache miss rate. Figures 5.6 and 5.7 show histograms of the per page

L2 cache miss rates for the regions in buk and mgrid. These histograms were created in

a similar fashion to those in Figure 5.4. However, rather than use the per page memory
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Figure 5.4: The distribution of per page memory references over all the pages in each

region in buk. The x-axis for each histogram is divided into bins whose size is 1% of the

median memory reference count for each region.
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Figure 5.5: The distribution of memory references per page over all the pages in each

region in mgrid. The x-axis for each histogram is divided into bins whose size is 1% of

the median memory reference count for each region.
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reference count, these histograms use the L2 cache miss rate to place pages into bins. We

also left the cache miss rates for each page unmodified rather than normalizing them to

the median value since cache miss rates are already normalized to the same 0% to 100%

range. In each histogram, the y-axis shows the percentage of pages that have the same

L2 cache miss rate indicated by the x-axis. As is evident from these graphs, the per page

miss rate data also shows very little variance across each region in buk and mgrid,

From these results, we conclude that the pages in these regions do not have much

variance with respect to memory reference counts, which, in turn, implies that the impact

on performance of placement in a local or remote memory node does not vary from page to

page in a given region. For the purposes of the cache aware placement policy described in

Chapter 4, these clustered distributions lend support to the idea that making placement

decisions based on a region granularity, rather than differentiating between pages in a

region, is reasonable.

The complete data for the remaining applications in our test suite, including graphs

showing distributions of both per page memory references and L2 cache miss rates, can

be found in Appendices A and B. The data in these graphs follow similar distributions

to the results shown above, with the exception of two applications, which we examine in

the following section.

Memory and Cache Behaviour for Apsi and Wave

Although the majority of applications in our benchmark suite have low variance distribu-

tions of their per page memory reference and cache miss data similar to buk and mgrid,

there are two applications that do not follow this pattern. Figures 5.8 and 5.9 show the

per page memory reference count distribution and per page cache miss distribution for

apsi and wave, each of which contains a single user region. For both of these applications,

the histograms show several spikes at distinct memory reference counts and cache miss

rates, possibly indicating distinct subsets of pages in each region with their own differing
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Figure 5.6: The histogram distribution of per page L2 miss rates for each region in buk.
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Figure 5.7: The histogram distribution of per page L2 miss rates for each region in mgrid.
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memory reference behaviour. Regions 3 and 5 from hydro2d (see Appendices A and B)

also show some variance as well, though not as severe as in these two cases.

Examining the source code for these applications shows that although each appli-

cation declares a single large array with which we have associated a single region, this

array is divided into several distinct sections that are each accessed in a different man-

ner. It is likely this division that has caused the disjoint clusters of pages found in the

histograms. The cause of this phenomenon is our method of region creation, which was

based on identifying regions through array declarations. Despite this non-uniform access

behaviour, treating these arrays as single regions appears to have caused no significant

problems for our later experiments. However, this might not be true in all cases where

non-uniform behaviour is observed. For example, the region in wave is identified as se-

quentially faulted and placed in remote memory. This does not pose a problem because

although the cache miss rates to this region vary from page to page, the range over which

these rates vary is still at or below 3%. If a significant portion of those pages had a

very high cache miss rate, then placing the entire region in remote memory could have a

detrimental effect on performance compared to a policy that allowed some of the region

to be placed in remote memory, and some of the region to be placed in local memory.

5.4 Single Application Workloads

In this section we present the results of experiments that compare the performance of

applications under cache aware placement against their performance under first-touch

placement in single application workloads. As we explained in Chapter 3, although single

application workloads are not commonly found in multiprocessor server environments,

examining the effects that page placement has on performance in these workloads allows

us to better understand the effects of placement in more complicated multiprogrammed

workloads. Additionally, the simplicity of the single application environment allows us
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Figure 5.8: The histogram distribution of per page memory counts (left) and L2 miss

rates (right) for the single region in apsi.
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Figure 5.9: The histogram distribution of per page memory counts (left) and L2 miss

rates (right) for the single region in wave.
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Figure 5.10: Execution times for each application running under first-touch placement

(black) and cache aware placement (grey), where each application was run in isolation un-

der each policy on the NUMAchine hardware. Times for each application are normalized

to the execution time under first-touch placement.

to more easily verify the effects of our placement policy.

In this set of experiments, we ran each of the applications in our test suite individually

on the NUMAchine hardware. Each application was executed under both first-touch

placement, and cache aware placement, using identical input data sets for each of these

trials.

The results of our experiments are shown in Figure 5.10. For each application, we

show two bars representing normalized execution time for the application. The left bar

shows the average execution time for each application under the first-touch policy. The
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Figure 5.11: The breakdown of memory references by location using cache aware place-

ment. Local memory references are shown by the black portion of each bar, while remote

memory references are shown by the gray portion.

right bar shows the average execution time for each application under our new cache aware

placement policy. Both bars are normalized to the original performance under first-touch

placement, i.e., the left bars are all equal to 100. As we can see, this policy results in

significantly improved performance for buk, hydro2d, and mxm, with improvements in

execution time of up to 27%. The remaining applications (applu, apsi, mgrid, swim,

tomcatv, turb3d, and wave show no appreciable difference in execution time.

To gain an understanding as to why some applications showed improved execution

times while others showed no change or increases in execution time, we used the NU-

MAchine simulator to gather further information with regard to the utilization of the
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memory hierarchy. Figure 5.11 shows the breakdown for each application of the total

data memory references (i.e., all data references that missed in the L2 processor cache)

divided between those going to local memory, and those going to remote memory. This

information is provided for execution under both first-touch and cache aware placement.

To aid in our examination of these results, we refer to the hypothetical example shown

in Figure 3.4 of Section 3.2.1. Recall that Figure 3.4(a) shows the first-touch placement

for a hypothetical application with 3 regions accessed in the following order: region 1,

region 2, region 3. Figure 3.4(b) shows the cache aware placement for the application if

region 1 has good cache behaviour, and region 3 has poor cache behaviour, with region 1

being placed in remote memory to allow region 3 to fit in local memory. This results in

a decrease in remote memory accesses over first-touch placement if region 3 is accessed

more often than region 1. Figure 3.4(c) shows the cache aware placement if region 3 is

predicted to have a low cache miss rate, with region 3 being placed in remote memory. In

this case, no performance improvement is expected because region 3 was mostly already

in remote memory under first-touch placement. In fact, there is a slight increase in

remote memory accesses under cache aware placement because part of region 3 was in

local memory under first-touch placement, whereas it is entirely in remote memory under

cache aware placement.

From the results in Figure 5.11 and our observation of which regions were categorized

as having good or bad cache behaviour in each application, we can divide our application

test suite into three groups. The first group consists of buk, hydro2d, and mxm, all of

which experience an increase in the percentage of memory accesses going to local memory

under cache aware placement. Both buk and mxm had approximately 50% of their mem-

ory references going to local memory under first-touch placement. This number increases

to over 95% in both cases under cache aware placement, with a corresponding significant

improvement in execution time. Similarly, hydro2d experiences an increase from 29% to

71% of memory references going to local memory, resulting in a modest improvement
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in performance. These applications correspond to the hypothetical application shown in

Figure 3.4(b) of Section 3.2.1.

The remaining applications show very minor changes in the percentage of memory

references going to local memory when cache aware placement is used. These applications

can also be divided into two groups. The first of these groups includes apsi, tomcatv,

and turb3d, and consists of those applications whose ordering of regions is similar to

the hypothetical application described in Figure 3.4(c). As described in Section 3.2.1,

these types of applications have some regions that are identified as having good cache

behaviour and some with poor cache behaviour. However, those regions that have good

cache behaviour are the first ones accessed by their respective applications, and as such,

are already allocated in local memory under first-touch placement. Apsi is a special

case of this type of application as it allocates a single region that is identified as having

poor cache behaviour and is placed locally by both first-touch placement and cache

aware placement. For tomcatv and turb3d, those regions identified as having good cache

behaviour and placed remotely under cache aware placement were also placed in remote

memory under first-touch placement by virtue of being initially accessed last, i.e., they

correspond to region 3 in Figure 3.4(c). Thus, the page placements under first-touch

placement and cache aware placement are identical, as are the numbers of references that

go to local memory and remote memory, and the execution time under both policies.

The remaining applications (applu, mgrid, swim, and wave) show slight-to-moderate

decreases in the percentage of memory references going to local memory under cache

aware placement. These applications are distinguished from the other applications in

our test suite by the fact that almost all of their regions are marked for remote allocation

by cache aware placement (of the four, only applu does not have all of its regions marked

as having good cache behaviour, with 6 out of 7 possible regions being marked so). In all

cases, the policy imposed limit of 50% on the amount of memory placed on a remote node

is triggered. As stated previously in Section 3.2.1, applications of this type can experience
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an increase in remote memory references under our placement policy, depending mainly

on how many additional pages are placed in remote memory compared to first-touch

placement. For example, in the case of wave, the input data size was such that almost

all of the user allocated memory could fit in local memory under first-touch placement.

Since only half of this memory was placed in local memory under cache aware placement,

approximately half of the memory accesses become remote. Conversely, almost half of

the data for mgrid was already in remote memory under first-touch placement, making

the difference in local memory accesses between first-touch and cache aware placement

very slight.

Although the second and third groups of applications showed a lack of improvement

under cache aware placement, we show in the next section that applications of the sec-

ond group can show improvement in the more common multiprogrammed environment.

Applications of the third group have the least potential for improvement in a multipro-

grammed environment, but can still benefit other applications by offloading some of their

memory needs to remote memory nodes, alleviating the pressure on the local memory

node.

5.5 Multiprogrammed Workloads

Having examined the performance and behaviour of cache aware placement in a single

application environment, we now turn our attention to multiprogrammed workloads more

commonly found on medium- and large-scale multiprocessor systems. As we described in

the example shown in Figure 3.3, our cache aware placement policy can improve perfor-

mance in a multiprogrammed environment where applications come into direct compe-

tition for local memory resources by virtue of being scheduled onto the same processing

node.

Generally, existing schedulers for these types of environments are concerned with the
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efficient utilization of CPU resources, with little more than rudimentary consideration for

memory locality[51]. Given a hierarchical NUMA-type multiprocessor such as NUMA-

chine where two or more processors share the same local memory, failure to consider such

complications as the availability of local memory can result in processes being placed in

direct competition with each other for local memory resources. For example, a scheduler

whose primary concern is to efficiently utilize CPU resources might not differentiate be-

tween a free processor on a node where all the other processors are also free, and a free

processor on a node where some or all of the other processors are busy. In the latter case,

scheduling a new process there will possibly create greater contention for the local mem-

ory resources at that node. With this in mind, this section presents experimental results

showing how our placement policy can help in environments where there are multiple

applications competing for the same local memory.

To illustrate the effectiveness of our placement policy in a multiprogrammed environ-

ment, we devised an experiment using all ten of the applications from our test suite. For

each trial run in our experiment, we created two ordered lists composed of between 5 and

10 of these applications. The size of both lists was the same for each trial and was ran-

domly generated, as was the ordering of each list, and applications were not constrained

from appearing multiple times on either list. One list of applications was executed on

a single processor as follows: the processor executed the first application on the list,

recorded its execution time, then executed the next application, and so on until the list

was done. The other list was executed on a second processor on the same station and in

the same fashion. Execution times were kept only for those applications that were run

while both processors were busy, i.e., if one processor finished its list before the other

processor, the remaining applications on the second list were not executed (since the

workload was no longer multiprogrammed). The beginning of the execution of each list

was also slightly staggered to simulate one processor starting with more local memory

than the other. Each set of lists was executed under first-touch placement, and then
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under cache aware placement, and enough random lists were generated so that between

5 and 10 execution times for each application under each policy were recorded.

Figure 5.12 shows the recorded execution times for the applications following several

runs of this experiment. Each application in the graph has a total of six bars associated

with it. These six bars are divided into two groups of three, the left group being associated

with execution under our cache aware placement policy, and the right group associated

with execution under first-touch placement. In each of these groups of three, the leftmost

bar indicates the fastest execution time for all instances of the application in question

during the experimental runs. The middle bar shows the average execution time of all

instances. Finally, the rightmost bar indicates the slowest execution time out of all runs

of the application. All of these bars represent normalized execution time with respect to

the average execution time of each application under first-touch placement (the middle

bar of the right side group in for each application).

As these results show, our new placement policy fared well in this multiprogrammed

experiment. The six applications from the first two groups we identified in the previous

section on single application workloads (apsi, buk, hydro2d, mxm, tomcatv, and turb3d)

showed a decrease in average execution time ranging from 11% to 36%. Those applica-

tions belonging to the third group (applu mgrid, swim, wave) experienced more modest

improvements (approximately 5%) or showed no noticeable change.

To ensure the statistical significance of these results, Table 5.4 shows the raw mean

execution times for each application (in seconds) under each policy with an associated

95% confidence interval on the difference between those two means. These confidence

intervals were computed using the t-test [27]. According to this test, the two mean

execution times are statistically different with 95% confidence if the confidence interval

for the difference between these two means does not include zero. Using this test, there is a

statistically significant difference between first-touch and cache aware placement for six of

the applications. These include five of the applications that we reported improvements on
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Application FT mean CAP mean difference 95% CI statistically different

applu 733 727 6 ±72 no

apsi 1040 918 122 ±19 yes

buk 832 534 298 ±84 yes

hydro2d 789 646 143 ±183 no

mgrid 1226 1158 68 ±82 no

mxm 666 542 124 ±36 yes

swim 259 239 20 ±18 yes

tomcatv 522 465 57 ±24 yes

turb3d 448 396 52 ±17 yes

wave 2147 2166 -19 ±28 no

Table 5.4: This table shows the 95% confidence interval for the difference in mean execu-

tion time between first-touch placement and cache aware placement for each application.

The first two columns show the mean execution time under each policy in seconds. The

third column shows the difference in these means. The fourth column shows the 95%

confidence interval for the difference in the two means (calculated using the t-test). The

means are statistically different with a 95the confidence interval does not include zero.

above (apsi, buk, mxm, tomcatv, and turb3d). A sixth application, swim, also passes this

test, although by a slim margin. However, although the mean execution time for hydro2d

under cache aware placement is 18% less than execution under first-touch placement, the

high variance in the recorded first-touch placement times prevents us from declaring that

the two means are statistically different with 95% confidence.

Although we were unable to run multiprogrammed workloads with our simulator, we

can use some of the insights gained from the simulated results of our single application

experiment in Section 5.4 to better understand our results. In that experiment, the second

group of applications consisting of apsi, tomcatv and turb3d, showed no improvement
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under cache aware placement because their poorly cached regions are initially accessed

before their well cached regions (such as in the hypothetical example in Figure 3.4(c)),

meaning that these poorly cached regions get placed in local memory under first-touch

placement.

However, in our multiprogrammed experiment, all three applications experienced per-

formance improvements. As we discussed in Section 3.2.2, this opportunity for improve-

ment arises from the greater competition for local memory present in a multiprogrammed

environment. For example, as we discussed in the previous section, apsi has a single user

region that is poorly cached and placed in local memory under cache aware placement. In

a single application environment, first-touch placement can also place this region in local

memory because there is no other competition for that memory. In a multiprogrammed

environment, a situation such as is shown in Figure 3.5 can occur, with apsi taking the

role of application B in the figure. As is shown in part (b) of that figure, cache aware

placement can free some of the local memory so that the single apsi region can be placed

in local memory, where as under first-touch placement, this might not be the case.

In addition to the improvement in performance under cache aware placement, we also

observe that there appears to be less variance in the performance of each application

under cache aware placement. In almost all runs using first-touch placement, a processor

whose first running application was allocated a majority of the local memory pages

tended to hold onto that local memory for the duration of execution of its entire list of

applications. The only way for processes running on the other processor to gain access to

this local memory was to begin execution at the same time that the process running on

the other processor was ending. At this point, the ending process would free up its local

memory pages, allowing the newly starting process to allocate them. Since this happened

infrequently, the most common scenario was that an application would perform very well

if it were started on the processor that initially lay claim to the most local memory, but

would do extremely poorly if it were started on the other processor since most of its
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memory would be allocated on a remote node.

In the cache aware case, this extreme variance in the amount of local memory available

to a newly started process did not occur. Since most applications would offload some of

their pages to remote memory and not dominate the majority of local memory frames,

a newly starting process would typically find that there was always some local memory

available for its use. This resulted in the more even sharing of memory between the

two processors under cache aware placement, and less variance in the performance of

applications under this policy.

5.5.1 Statistical Approximation of Memory in Use

As described in Section 4.5.3, our placement policy needs to have an idea of the memory

usage at each node in the system when deciding which node to allocate the pages of a

region to. Although we used the number of allocated pages to measure usage at each

node in our experiments, such an approach was only possible due to the absence of page

replacement in the system. In this section, we present the results of an experiment that

show the effectiveness of using a statistics-based approach for describing memory usage

in an environment that includes page replacement. This method, described in Section

4.5.3, approximates the memory usage by unmapping a set number of random memory

pages in a node at set intervals, and extrapolating the fraction of these pages that are

remapped during that interval to approximate the fraction of total memory pages at the

node that are in use.

In this experiment, we wrote a benchmark program that reads and writes user con-

figurable amounts of memory. This working set of memory in use was varied over the

execution of the program to see how accurately the statistical approximation of usage

could track the actual usage. The graph in Figure 5.13 shows the results of a run of

this test program. The solid line represents the actual working set as a fraction of to-

tal memory allocated. The dotted line shows the approximation made by the sampling
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method. The sampling method unmapped a total of 1% of the allocated pages during

each sampling period of 100 ms. As we can see, the approximation of memory in use

tracks very closely to the actually memory in use, and follows changes to the working

set very rapidly. These results indicate that a statistical-based approach to describing

memory usage could be viable in a system employing page replacement.

5.5.2 Summary

Cache aware placement assumes that memory access behaviour to regions is relatively

uniform to justify making cache predictions and placement decisions on a region granu-

larity. We have shown that such uniformity exists in the vast majority of regions in our

application suite. We have also demonstrated that cache aware placement is effective in

reducing remote memory accesses, and thus, application execution times in both single

and multiprogrammed workloads. In the latter case, even some applications that do not

experience improvement when run in isolation can benefit from cache aware placement.

In the multiprogrammed case, applications in our workloads experience improvements of

up to 35%.
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Figure 5.13: Approximating the memory in use by statistical sampling. The solid line

represents the actual memory in use, while the dashed line is the approximation made

by the sampling method.
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Conclusions

The goal of this dissertation has been to describe the design of a new page placement

policy for CC-NUMA multiprocessors called cache aware placement. It has also been our

goal to analyze and compare the performance of well known benchmark applications un-

der cache aware placement against performance under first-touch placement, the existing

standard for these types of systems.

The need for a new placement policy has arisen due to the recent trend toward

using CC-NUMA multiprocessors as centrally managed, general purpose compute servers,

rather than in their traditional role as highly specialized compute platforms running

specially written multithreaded applications. Existing memory management policies like

first-touch placement were developed to improve the performance of these specialized

applications when run in isolation, with the memory needs of each thread not exceeding

the amount of local memory available. Such an environment is not commonly found

when these systems are used as general purpose compute servers.

The shortcoming of first-touch placement in situations where an application must

allocate some pages in remote memory (due to insufficient free frames at the local node)

is that local memory frames are allocated to page faults on a first come first served ba-

sis. We have argued that this ordering can sometimes result in highly accessed pages

108
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being placed in remote memory resulting in a larger percentage of time spent waiting for

memory accesses to complete and slower execution times. This effect can be seen in our

comparison of first-touch placement against a placement policy that uses a priori knowl-

edge of memory accesses to minimize the number of remote accesses by an application.

For some applications, we showed that the difference in execution time between using

first-touch placement and a best case placement can be as much as 30%.

Cache aware placement is a new placement policy that makes more efficient use of

local memory than first-touch placement by prioritizing the allocation of local memory

frames to regions of pages that are predicted to have high cache miss rates. Additionally,

to reduce pressure on local memory, cache aware placement places those pages that are

predicted to have low cache miss rates in remote memory. The effectiveness of this

policy relies on an accurate method of predicting the future cache behaviour of regions of

memory. Our prediction method divides user allocated memory into contiguous virtual

address segments called regions. The access patterns and cache behaviour for each region

are inferred from their initial page fault ordering, and we have presented results that

demonstrate a correlation between low cache miss rates and sequential page faults.

The use of cache aware placement with our suite of benchmark applications has led

to substantial performance improvements for both single program and multiprogrammed

workloads. In the single application case, we have experienced execution time reduc-

tions of between 6% and 27% for three of the ten applications in our test suite, with the

remaining seven applications showing no significant change in performance. For multi-

programmed workloads, we found that cache aware placement improved the performance

of some of the applications that exhibited no benefit in a single application environment,

due to the higher demand for local memory in this environment. Under multiprogrammed

conditions, our experiments showed that cache aware placement can achieve reductions

in execution time ranging from 11% to 36% for six of the ten applications in our test

suite.
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6.1 Future Work

Two types of applications that we did not examine in this dissertation are multithreaded

applications and pointer-based integer applications, both of which have characteristics

that affect the application of cache aware placement. Multithreaded applications add the

complication of shared memory between threads. Faced with shared pages by multiple

threads on different processors, any static placement policy such as first-touch or cache

aware placement will encounter the same limitation: there no longer exists a single ”local”

node where a page can be placed to eliminate remote accesses. Such a limitation can be

addressed by use of a dynamic policy like page migration to move pages between sharers,

which we have previously suggested could compliment a static placement policy such as

ours.

However, a drawback to using migration to deal with multithreaded applications is

that it negates one of our goals for cache aware placement: that no specialized hardware

or compiler support is used. One possible avenue of research along these lines might be to

examine whether the need for hardware monitoring of cache misses in a migration system

could be obviated by our cache prediction mechanism. As discussed in Chapter 2, some

migration systems rely on hardware monitoring of cache misses to trigger migration, since

older schemes, such as triggering migration on TLB misses, do not reliably identify hot

pages. One possible approach to eliminating the need for hardware monitoring might be

to trigger a migration decision upon a TLB miss, and allow only those pages that are

predicted to have poor cache behaviour to be migrated.

Unlike the scientific applications we have examined, most integer applications rely

on pointer-based data structures rather than arrays, making the identification of regions

more difficult. This may make some form of compiler analysis or user supplied hints

necessary (in fact, compiler analysis may only become tractable with user supplied infor-

mation given how difficult compiler analysis of pointer-based applications can be). The

dynamic nature of memory allocation in these applications may also require a reevalua-
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tion of the definition of a region, since the pages of a dynamically allocated data structure

are not likely to form a contiguous segment of the virtual address space. This has im-

plications for how we correlate low and high miss rate regions with page fault ordering,

calling into question whether a dichotomy of sequential and non-sequential page fault

orderings makes sense for pointer-based data structures.

Another avenue of experimentation might be to incorporate cache aware placement

into an environment that also utilizes a dynamic placement policy like page migration.

In particular, it would be interesting to examine how often the page migration system is

called upon to migrate ”incorrectly” placed pages, or conversely, how many migrations are

eliminated by ”correctly” placing pages at allocation time using cache aware placement.

Such an experiment might be especially interesting for environments where processes or

threads allocate more memory than is available at a processing node, as most migration

systems do not allow migration to a node that has no available frames (i.e., there is

no mechanism to migrate pages ”away” to make room in local memory). Cache aware

placement could compliment page migration in these situations by only placing the most

heavily accessed pages in local memory, leaving room in the local node for the page

migration system to decide which, if any, of the remotely placed pages need to be migrated

there.

Finally, a more involved avenue of research might examine how to incorporate memory

management concerns into the scheduler. For example, it may be beneficial to discourage

the scheduler from running a process on a node with very low available memory. Man-

aging the allocation of both memory and cpu resources in the scheduler could require

great complexity. However, such a unified approach may ultimately be an effective way

of dealing with locality issues.



Appendix A

User Region Memory Reference

Distributions

The following graphs show the per page memory reference data for the user regions in

all test applications referred to in Section 5.3.

112
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Figure A.1: Distribution of per page memory reference counts over all pages for applu

regions 1-4. Regions 2, 3, and 4 are sequential.
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Figure A.2: Distribution of per page memory reference counts over all pages for applu

regions 5-7. Regions 5, 6, and 7 are sequential.
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Figure A.3: Distribution of per page memory reference counts over all pages for apsi

region 1. Region 1 is non-sequential.



Appendix A. User Region Memory Reference Distributions 116

|
0

|
20

|
40

|
60

|
80

|
100

|
120

|
140

|
160

|
180

|
200

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

 Memory Reference Histogram for buk region 1

 Normalized Per Page Memory References

 P
er

ce
n

ta
g

e 
o

f 
A

p
p

lic
at

io
n

 M
em

o
ry

 P
ag

es

|
0

|
20

|
40

|
60

|
80

|
100

|
120

|
140

|
160

|
180

|
200

|0.0

|10.0

|20.0

|30.0
|40.0

|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

 Memory Reference Histogram for buk region 2

 Normalized Per Page Memory References

 P
er

ce
n

ta
g

e 
o

f 
A

p
p

lic
at

io
n

 M
em

o
ry

 P
ag

es

|
0

|
20

|
40

|
60

|
80

|
100

|
120

|
140

|
160

|
180

|
200

|0.0

|10.0

|20.0

|30.0

|40.0

|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

 Memory Reference Histogram for buk region 3

 Normalized Per Page Memory References

 P
er

ce
n

ta
g

e 
o

f 
A

p
p

lic
at

io
n

 M
em

o
ry

 P
ag

es

Figure A.4: Distribution of per page memory reference counts over all pages for buk

regions 1-3. Regions 2 and 3 are sequential.
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Figure A.5: Distribution of per page memory reference counts over all pages for hydro2d

regions 1-4. Regions 1, 2, and 4 are sequential.



Appendix A. User Region Memory Reference Distributions 118

|
0

|
20

|
40

|
60

|
80

|
100

|
120

|
140

|
160

|
180

|
200

|0.0

|10.0

|20.0

|30.0

|40.0
|50.0

|60.0

|70.0

|80.0

|90.0

|100.0

 Memory Reference Histogram for hydro2d region 5

 Normalized Per Page Memory References

 P
er

ce
n

ta
g

e 
o

f 
A

p
p

lic
at

io
n

 M
em

o
ry

 P
ag

es

Figure A.6: Distribution of per page memory reference counts over all pages for hydro2d

regions 5. Region 5 is non-sequential.
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Figure A.7: Distribution of per page memory reference counts over all pages for mgrid

regions 1-3. Regions 1, 2, and 3 are sequential.
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Figure A.8: Distribution of per page memory reference counts over all pages for mxm

region 1. Region 1 is sequential. Regions 2 and 3 not shown (see explanation of simulator

limitation in Section 4.3.
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Figure A.9: Distribution of per page memory reference counts over all pages for swim

regions 1-4. Regions 1, 2, 3, and 4 are sequential.
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Figure A.10: Distribution of per page memory reference counts over all pages for swim

regions 5-8. Regions 5, 6, 7, and 8 are sequential.
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Figure A.11: Distribution of per page memory reference counts over all pages for swim

regions 9-12. Regions 9, 10, 11, and 12 are sequential.
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Figure A.12: Distribution of per page memory reference counts over all pages for swim

regions 13-14. Regions 13 and 14 are sequential.
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Figure A.13: Distribution of per page memory reference counts over all pages for tomcatv

regions 1-4. Regions 1 and 4 are sequential.
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Figure A.14: Distribution of per page memory reference counts over all pages for tomcatv

regions 5-7. Regions 5, 6, and 7 are sequential.
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Figure A.15: Distribution of per page memory reference counts over all pages for turb3d

regions 1-4. No sequential regions.
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Figure A.16: Distribution of per page memory reference counts over all pages for turb3d

regions 5-8. Regions 7 and 8 are sequential.
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Figure A.17: Distribution of per page memory reference counts over all pages for turb3d

regions 9-12. Regions 9, 10, 11, and 12 are sequential.
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Figure A.18: Distribution of per page memory reference counts over all pages for wave

region 1. Region 1 is sequential.



Appendix B

User Region Cache Miss Rate

Distributions

The following graphs show the per page L2 cache miss rate data for the user regions in

all test applications referred to in Section 5.3.
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Figure B.1: Distribution of per page L2 miss rate over all pages for applu regions 1-4.

Regions 2, 3, and 4 are sequential.
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Figure B.2: Distribution of per page L2 miss rate over all pages for applu regions 5-7.

Regions 5, 6, and 7 are sequential.
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Figure B.3: Distribution of per page L2 miss rate over all pages for apsi region 1. Region

1 is non-sequential.
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Figure B.4: Distribution of per page L2 miss rate over all pages for buk regions 1-3.

Regions 2 and 3 are sequential.
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Figure B.5: Distribution of per page L2 miss rate over all pages for hydro2d regions 1-4.

Regions 1, 2, and 4 are sequential.
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Figure B.6: Distribution of per page L2 miss rate over all pages for hydro2d regions 5.

Region 5 is non-sequential.
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Figure B.7: Distribution of per page L2 miss rate over all pages for mgrid regions 1-3.

Regions 1, 2, and 3 are sequential.
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Figure B.8: Distribution of per page L2 miss rate over all pages for mxm region 1. Region

1 is sequential. Regions 2 and 3 not shown (see explanation of simulator limitation in

Section 4.3.
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Figure B.9: Distribution of per page L2 miss rate over all pages for swim regions 1-4.

Regions 1, 2, 3, and 4 are sequential.
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Figure B.10: Distribution of per page L2 miss rate over all pages for swim regions 5-8.

Regions 5, 6, 7, and 8 are sequential.
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Figure B.11: Distribution of per page L2 miss rate over all pages for swim regions 9-12.

Regions 9, 10, 11, and 12 are sequential.
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Figure B.12: Distribution of per page L2 miss rate over all pages for swim regions 13-14.

Regions 13 and 14 are sequential.
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Figure B.13: Distribution of per page L2 miss rate over all pages for tomcatv regions 1-4.

Regions 1 and 4 are sequential.
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Figure B.14: Distribution of per page L2 miss rate over all pages for tomcatv regions 5-7.

Regions 5, 6, and 7 are sequential.
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Figure B.15: Distribution of per page L2 miss rate over all pages for turb3d regions 1-4.

No sequential regions.
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Figure B.16: Distribution of per page L2 miss rate over all pages for turb3d regions 5-8.

Regions 7 and 8 are sequential.
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Figure B.17: Distribution of per page L2 miss rate over all pages for turb3d regions 9-12.

Regions 9, 10, 11, and 12 are sequential.
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Figure B.18: Distribution of per page L2 miss rate over all pages for wave region 1.

Region 1 is sequential.
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