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Abstra
tSystem Software Utilization of Hardware Performan
e Monitoring InformationReza AzimiDo
tor of PhilosophyGraduate Department of Ele
tri
al and Computer EngineeringUniversity of Toronto2007Over the past several de
ades, mi
ropro
essors have evolved to assist system softwarein implementing new fun
tionality or in improving the performan
e of programs. Therelative abundan
e of available sili
on may further motivate introdu
ing new hardwarefeatures other than those that are dire
tly required for exe
uting 
ode. The main fo
usof this dissertation is on how new hardware support 
an 
olle
t a

urate performan
edata so as to enable system software in making more informed de
isions in improving theperforman
e of programs.First, we explore the problem of using Hardware Performan
e Counters (HPCs) toidentify CPU bottlene
ks a

urately and e�
iently. We address the problem of havinga limited number of available HPCs by developing �ne-grained HPC multiplexing thatprovides a large set of logi
al HPCs. We develop a simple and useful performan
e model,
alled stall breakdown to identify stressed pro
essor 
omponents by fo
using on 
y
leswhere the instru
tion 
ompletion stops. We generate the stall breakdown model by usingHPC multiplexing online with negligible overhead.Se
ondly, we explore di�erent methods of �ne-grained data sampling at the hardwarelevel. Using the 
ontinuous data sampling features of the IBM POWER5 pro
essor, weidentify a new te
hnique to produ
e data samples based on their sour
e, and in a 
asestudy, we demonstrate how to use sour
e-based data samples to a

urately 
hara
terizedata sharing patterns among 
on
urrent threads to e�e
tively support sharing-awares
hedulers. ii



Finally, we propose novel hardware to tra
k memory a

esses at the granularity ofvirtual pages. Our proposed hardware is simple, e�
ient, and generi
. We show how theproposed page a

ess tra
king hardware (PATH) 
an be used to improve performan
e inthree di�erent areas of memory management. In all three 
ases, we show that signi�
antperforman
e improvement 
an be a
hieved with negligible software overhead.
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Chapter 1
Introdu
tion
As operating systems have evolved over the last �fty years, new hardware stru
turesand me
hanisms were periodi
ally introdu
ed to assist the operating system in its tasks.Most of these stru
tures and me
hanisms have one of the following obje
tives.

• To fa
ilitate implementation: The hardware provides me
hanisms that fa
ili-tate the implementation of operating system abstra
tions. Examples in
lude theintrodu
tion of atomi
 instru
tions for implementing syn
hronization primitivesmore easily, the separation of kernel and user prote
tion domain at the hardwarelevel, the automati
 virtual-to-physi
al address translation in the hardware, andmemory-mapped I/O me
hanisms.
• To improve performan
e: The hardware provides me
hanisms that a

eleratethe exe
ution of some of the most 
ommon operations inside the operating system.Examples in
lude the introdu
tion of the Translation Lookaside bu�er (TLB) as a
a
he of page tables to a

elerate the pro
ess of virtual-to-physi
al address transla-tion, the introdu
tion of Dire
t Memory A

ess (DMA) me
hanisms to redu
e theoverhead of transferring large amount of data from and to peripheral devi
es, andautomati
 user-kernel sta
k swit
hing to remove the burden of frequently 
opyingdata ba
k and forth between user and kernel address spa
es so as to redu
e the
ost of 
ontext-swit
hing.
• To provide information: The hardware provides detailed information on the 
ur-1



Chapter 1. Introdu
tion 2rent state of the 
omputer system to assist system software either in implementingnew fun
tionality or in improving performan
e of existing operations. Examplesin
lude a spe
ial register for the 
urrently exe
uting thread to a

ess the thread'sprivate data more e�
iently, a number of bits in the page tables that are automat-i
ally updated to indi
ate whether a page has re
ently been a

essed or modi�ed,and the introdu
tion of hardware performan
e 
ounters (HPCs) to help systemsoftware measure the performan
e of running appli
ations more a

urately.While mu
h prior work exists, and numerous proposals have been made over the years,we believe that a lot more work 
an be done on either introdu
ing new ways of providinghardware support or enhan
ing the existing me
hanisms. The relative abundan
e ofavailable sili
on may further motivate introdu
ing new hardware abstra
tions.The main fo
us of this dissertation is on how new hardware support 
an assist theoperating system in 
olle
ting a

urate performan
e data so as to enable the operatingsystem in making more informed de
isions. Usually, the state of the system representedby the hardware is detailed, low-level, semanti
ally raw, and therefore, voluminous. Anoption is to o�oad to hardware mu
h of the pro
essing of su
h raw information intohigher-level performan
e models so that the hardware provides the system software withmore 
on
ise and, at the same time, semanti
ally ri
her information. The problem withthis approa
h, besides making the hardware design 
ompli
ated, is that the informationprovided by the hardware will be spe
i�
 to 
ertain algorithms. Moreover, any further
hange to the software algorithms will require 
hanges to the hardware.Another approa
h is to add minimal hardware support to provide generi
 informationand then have a thin layer of software that e�
iently pro
esses hardware-generated infor-mation and produ
es information that 
an be understood using a high-level performan
emodel. The main advantage of this approa
h is that the hardware design will be simpleand the information generated by the hardware remains generi
 so that in 
an be used bya variety of algorithms that may 
hange over time. The key 
hallenge to this approa
h,however, lies in the tradeo� between (i) fun
tionality assigned to hardware to redu
ethe runtime overhead and (ii) fun
tionality assigned to software to make the generatedinformation more generi
 and �exible.



Chapter 1. Introdu
tion 3In this dissertation we explore this later approa
h in three di�erent performan
e-related 
ases: (i) analyzing the CPU performan
e bottlene
ks through Hardware Per-forman
e Counters (HPCs), (ii) analyzing data a

ess patterns through hardware datasampling, and (iii) �ne-grained page a

ess tra
king to improve performan
e of memorymanagement algorithms. In ea
h 
ase, we start with the fun
tionality 
urrently providedby the existing hardware and then build e�
ient middleware to provide higher-level in-formation that is based on a higher-level performan
e model. If the 
urrent hardwaredoes not provide adequate information (even in raw form), we propose new, but minimal,hardware support. The following subse
tions brie�y des
ribe ea
h of these three 
ases inmore detail.1.1 CPU Bottlene
k AnalysisA Hardware Performan
e Monitoring Unit (PMU) is an integral part of most mi
ro-pro
essors today. It usually provides a few HPCs that are able to 
ount, in real time,hardware events that o

ur in the pro
essor. Potentially, the PMU 
an play an importantrole in analyzing performan
e and identifying the root 
auses of performan
e problems.However, the PMU is usually di�
ult to use e�e
tively for a number of reasons. First,there are too few physi
al HPCs 
onsidering that any meaningful performan
e analysisrequires the simultaneous monitoring of many di�erent types of events. Moreover, HPCsprimarily 
ount low-level mi
ro-ar
hite
tural events from whi
h it is di�
ult to extra
thigh-level insight required for identifying 
auses of performan
e problems.We explore two te
hniques that help over
ome these limitations, allowing the use ofHPCs to dynami
ally optimize both the operating system and user appli
ations. First,�ne-grained HPC multiplexing is introdu
ed to make a larger set of logi
al HPCs availablefor analysis. Se
ondly, we introdu
e a performan
e summary model 
alled stall breakdownwhi
h spe
ulatively attributes CPU 
y
les to di�erent hardware 
omponents, and asresult, demonstrates whi
h hardware stru
ture is most stressed. Su
h a model 
an beused to guide automati
 optimization both in operating system kernels or in user-levelsystem software.



Chapter 1. Introdu
tion 41.2 Analyzing Data A

ess Patterns through HardwareData SamplingHardware data sampling is a PMU feature that is provided in some modern mi
ropro
es-sors su
h as Intel's Itanium and IBM POWER pro
essors family [Inta, IBM06℄. It allowsfor statisti
al sampling of data addresses that are used by programs under 
ertain 
ondi-tions su
h as TLB misses or data 
a
he misses. Data sampling is a potentially powerfulme
hanism that 
an be used analyze the data a

ess pattern of programs, the result ofwhi
h 
an be used in a number of optimizations. Examples of su
h optimizations in
ludeprefet
hing data both for memory and CPU 
a
he [LCF+03℄, superpage allo
ation andmanagement [CDSW05℄, and NUMA page pla
ement [THb℄.While data sampling has proven to be e�e
tive in several 
ases [LCF+03, BH, THb℄,we believe there are a number of issues with the way 
urrent data sampling s
hemesare implemented in today's pro
essors. First, the set of 
onditions under whi
h datais sampled by hardware is not �exible, limiting how data sampling 
an be used. Forinstan
e, it is not possible to sample data based on the spe
i�
 storage sour
e fromwhi
h the data is fet
hed. Se
ondly, only one sele
tion 
riterion 
an be spe
i�ed at atime and 
ombining multiple sele
tion 
riteria in either 
onjun
tive or disjun
tive formsis not supported. Finally, data sampling is not always pre
ise in that the re
orded datasample might not be an operand of the instru
tion that 
aused the sampling 
onditions tobe ful�lled (e.g., a 
a
he miss). This is mainly due to the high level of Instru
tion-LevelParallelism (ILP) implemented in todays mi
ropro
essors with deep pipelines, supers
alarstru
ture, and out-of-order exe
ution.We explore both hardware and software te
hniques to address the above-mentionedproblems. We show an example where hardware data sampling 
ould be used e�e
-tively to produ
e signatures to dynami
ally identify sharing among threads that run ina multipro
essor. We des
ribe the data sampling features that are desired, and howwe implemented a workaround in an existing mi
ropro
essor to indire
tly obtain theinformation we needed. Finally, we provide spe
i�
 suggestions for new data samplingfeatures.



Chapter 1. Introdu
tion 51.3 Fine-grained Page A

ess Tra
kingTo implement memory management algorithms, operating systems traditionally use a
oarse approximation of memory a

esses, obtained by monitoring page faults or s
anningpage table entries. The problem with this approa
h is that any information on the order inwhi
h pages are a

essed is lost, yet, there are important 
lasses of memory managementte
hniques that require page a

ess order information.Unfortunately, hardware data sampling 
annot be dire
tly used for page-a

ess tra
k-ing. The problem with data sampling (or any other statisti
al sampling te
hnique) isthat it favors only hot pages, for whi
h memory management is quite trivial. However,more sophisti
ated memory management s
hemes require every single page a

ess to beis re
orded whi
h is obviously impra
ti
al due to the very large volume of the informationgenerated.We propose simple, yet powerful, new hardware support for tra
king page a

esseswith substantially higher pre
ision and lower overhead than 
urrent software-based strate-gies 
an provide. We show how the use of this hardware fa
ilitates the implementation ofvarious algorithms that (i) implement more adaptive page repla
ement poli
ies, (ii) allo-
ate memory to VMMs, pro
esses or virtual memory regions so as to improve performan
eor to provide isolation and better pro
ess prioritization, and (iii) e�e
tively prefet
h pagesfrom virtual memory swap spa
e or memory-mapped �les when appli
ations have non-trivial memory a

ess patterns. Our simulation results show that signi�
ant performan
eimprovements 
an be a
hieved, espe
ially when the system is under memory pressure,while the basi
 overhead of providing �ne-grained information to the operating systemremains negligible for most appli
ations.
1.4 Summary of ContributionsThis dissertation makes a number of spe
i�
 
ontributions in how hardware 
an providethe operating system with a

urate and timely information that 
an be used for dynami
performan
e optimization purposes:
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• We demonstrate the e�
ient implementation of �ne-grained HPC multiplexing toallow larger number of logi
al 
ounters with low overhead and reasonable a

ura
y.
• We develop a simple and useful performan
e model, 
alled stall breakdown, toanalyze CPU bottlene
ks. Using fa
ilities in the IBM POWER5 pro
essor, wegenerate stall breakdown information online with negligible overhead.
• We demonstrate how hardware data sampling 
an be used in dete
ting the shar-ing patterns of 
on
urrent threads on a shared memory multipro
essor with highpre
ision and low overhead.
• We propose a novel hardware support for �ne-grained page a

ess tra
king withminimal overhead and high pre
ision. We also show how this hardware support 
anbe used in improving memory management in three di�erent areas: (i) adaptivepage repla
ement poli
ies, (ii) pro
ess memory allo
ation, and (iii) virtual memoryprefet
hing.1.5 Organization of the DissertationIn Chapter 2, we present our work on how to use HPCs to analyze CPU bottlene
ks.In Chapter 3, we demonstrate how we use hardware data sampling to dete
t sharingpatterns among threads in a shared memory multipro
essor. Then, in Chapter 4 a newhardware support for �ne-grained page a

ess tra
king is presented, along with threeuse 
ases that 
an e�e
tively utilize the new hardware support in improving memorymanagement. We 
on
lude the dissertation by Chapter 5, whi
h provides a summary ofour work and presents dire
tions for the future work. Chapters 2, 3, and 4 all havethe same following stru
ture. First, an overview of the problem and its existing solutionsis presented. Then, we present our te
hniques to address the problem, followed by thedes
ription of our experimental framework and results. Then, a summary of relatedwork is presented. Finally, ea
h 
hapter ends with 
on
luding remarks 
ontaining our
on
lusions and spe
i�
 dire
tions for future work.



Chapter 2
CPU Bottlene
k Analysis
2.1 Introdu
tionHardware Performan
e Counters (HPCs) are an integral part of modern mi
ropro
es-sor Performan
e Monitoring Units (PMUs). They 
an be used to monitor and ana-lyze performan
e in real time. HPCs allow the 
ounting of detailed mi
ro-ar
hite
turalevents in the pro
essor [Inta, Spr02, IBMb, IBM06, AMD02℄, enabling new ways tomonitor and analyze performan
e of running software. There has been 
onsiderablework that has used HPCs to explore the behavior of appli
ations and identify per-forman
e bottlene
ks resulting from ex
essively stressed mi
ro-ar
hite
ture 
omponents[AV02, DCD03, SHC+04, CMDAN06, BH, ANP03℄. However, there are a number of
hallenges that make HPCs di�
ult to be widely used in identifying CPU bottlene
ks.In this se
tion, we �rst provide a des
ription of some 
hara
teristi
s of HPCs in today'spro
essors that make them 
hallenging to use e�e
tively for online bottlene
k analysis,and then, provide an overview of our te
hniques to deal with some of these problems.2.1.1 Challenges of Using HPCSome of the major 
hallenges in using HPCs in today's mi
ropro
essors in
lude the limitednumber of available HPCs, their 
omplex interfa
e, and the potentially high overhead oftheir use. 7
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k Analysis 8Pro
essor IBM POWER4 IBM POWER5 Intel Pentium 4 Intel AMD Athlon# of and PPC970 (per H/W thread) and Xeon Itanium II and OpteronHPCs 8 6 9 pairs 4 4Table 2.1: The number of HPCs available in today's major mi
ropro
essors.Small Number of HPCsPMUs typi
ally have a small number of HPCs available. Table 2.1 shows the numberof available HPCs in some of the more popular pro
essors. Most pro
essors provide upto 8 HPCs. Intel Pentium 4 is an ex
eption with 9 pairs of HPCs. However, due toprogramming 
onstraints imposed by the hardware implementation, not all of its HPCs
an be programmed simultaneously. This is not spe
i�
 to Intel Pentium 4, as we haveobserved many, rather restri
tive 
ases of su
h 
onstraints in the IBM PowerPC pro
essorsas well.The limited number of HPCs implies that only a limited number of hardware events
an be 
ounted simultaneously at any given time. This is a serious limitation 
onsideringthat dete
ting performan
e bottlene
ks in 
omplex supers
alar, and potentially out-of-order, mi
ropro
essors often requires detailed and extensive performan
e knowledge ofseveral pro
essor 
omponents. For instan
e, in order to measure the L1 data 
a
he missrate on IBM POWER4, one has to use 4 HPCs simultaneously (L1 Loads, L1 Stores, L1Load Misses, and L1 Store Misses). One way to get around this limitation is to exe
uteseveral runs of an appli
ation, ea
h time with a di�erent set of hardware events being
ounted. Su
h an o�ine approa
h 
an be time-
onsuming (espe
ially for long runningappli
ations), and is 
ompletely inappropriate for online analysis. Moreover, mergingthe tra
es generated from several appli
ation runs is not straightforward, be
ause thereare asyn
hronous events (e.g. interrupts and I/O events) in ea
h run that may 
ausesigni�
ant timing drifts.Complex Interfa
eThe events that 
an be monitored by HPCs are typi
ally low-level and spe
i�
 to a mi
ro-ar
hite
ture implementation. As a result, they are hard to interpret 
orre
tly without
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k Analysis 9detailed knowledge of the mi
ro-ar
hite
ture implementation. In fa
t, in the pro
essorswe have studied, most high-level performan
e metri
s of interest su
h as Cy
les PerInstru
tion (CPI), 
a
he miss ratio, and memory bus 
ontention, 
an only be measuredby 
arefully 
ombining the o

urren
e frequen
y of several hardware events. At best,this makes HPCs hard to use by average appli
ation developers, but even for seasonedsystems programmers, it is 
hallenging to translate the frequen
y of parti
ular hardware-level events to their a
tual impa
t on end performan
e due to the 
omplexity of today'smi
ro�ar
hite
tures.High OverheadBe
ause PMU resour
es are shared among all system pro
esses, they 
an only be pro-grammed in supervisor mode. Thus, whenever a user pro
ess needs to 
hange the set ofevents being 
aptured, it must 
all into the operating system. These expensive kernelboundary 
rossings 
an happen frequently when a wide range of hardware events needto be 
aptured for a single run of the appli
ation.2.1.2 Our Approa
hWe have developed two te
hniques to address some of the problems mentioned above.First, to over
ome the limitation in the number of HPCs, we multiplex the existingHPCs in a �ne-grained way. This te
hnique allows us to provide a mu
h larger set oflogi
al HPCs to the user, making it is possible to 
ount the o

urren
es of many mi
ro-ar
hite
tural events during a single appli
ation run. The �ne multiplexing granularityenables us to 
apture even short-lived �u
tuations in the o

urren
e rate of hardwareevents. In Se
tion 2.7 we present our statisti
al analysis to show that our multiplexingapproa
h provides su�
ient a

ura
y for performan
e tuning and optimization purposes.Se
ond, we use our multiplexing approa
h to 
on
urrently interpret the impa
t of dif-ferent hardware events on the appli
ations' end-performan
e. We present a model 
alledStatisti
al Stall Breakdown(SSB) whi
h is based on the traditional CPI breakdown modelthat provides insightful and timely information on whi
h mi
ro-ar
hite
ture 
omponents
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k Analysis 10are most stressed. SSB 
ategorizes the sour
es of stalls in the mi
ropro
essor pipeline,and quanti�es how mu
h ea
h hardware 
omponent (e.g., the 
a
hes, the bran
h predi
-tor, and individual fun
tional units) 
ontributes to overall stall in a way that is simpleand easy to understand for the user. SSB information is 
olle
ted as the program runsand 
an be used, for example, by a dynami
 optimizer to apply e�e
tive optimizations.We also show that the run-time overhead of 
olle
ting the SSB information is small.2.1.3 Organization of the ChapterIn the next se
tion, we provide more detailed ba
kground on basi
 HPC me
hanismsin today's mi
ropro
essors. Then we present an overview the design of our HPC-basedperforman
e monitoring fa
ility and the features it provides. We follow this se
tion,by des
ribing the details of �ne-grained HPC multiplexing. Next, we present how thestatisti
al stall breakdown model is de�ned and generated on a real mi
ropro
essor.Then, we provide more details about our implementation and the platform we used forour experiments. Next, we present the result of our experiments. We then dis
uss therelated work, and �nally, we present our 
on
lusions and dire
tions for future work.2.2 Current HPC CapabilitiesIn most of today's mi
ropro
essors, HPCs are implemented as a small set of registers thatea
h 
an be programmed to 
ount the number of o

urren
es of a parti
ular hardwareevent. There are several HPC 
ontrol registers that de�ne (i) whi
h hardware events ea
hHPC should 
ount, and (ii) how the events are to be 
ounted.2.2.1 Event TypesThe basi
 types of events that HPCs 
an 
ount in
lude CPU 
y
les, instru
tion 
omple-tions, storage hierar
hy a

esses (hits and misses), TLB misses, bran
h mispredi
tions,and bus snooping a
tivities. Some pro
essors may also provide 
ounts of more detailedevent types that are related to the spe
i�
 implementation of the mi
ro-ar
hite
ture, su
h
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k Analysis 11as prefet
h bu�er a

esses, instru
tions that pass a given stage of the system pipeline,�ushing of instru
tions upon 
ertain 
onditions, and fullness of di�erent queues insidethe pro
essor.The hardware often provides limited 
apabilities on how the events at the hardwarelevel 
an be 
ombined or aggregated. Aggregation is usually in the form of summing upthe events that o

ur on multiple instan
es of a 
omponent type (e.g., fun
tional units,or load/store 
hannels). The 
ontrol registers 
an be used to de�ne spe
i�
 
onditionsunder whi
h an event is to be 
ounted or not to be 
ounted. For example, HPC 
anbe programmed to either 
ount while an interrupt servi
e routine (ISR) is running ornot. However, su
h 
onditions are usually primitive and �xed, i.e., it is not possible tologi
ally 
ombine several hardware supported 
onditions to de�ne a new, more elaboratehardware event type.2.2.2 Counting MethodsThe value of HPCs 
an be re
orded through either instrumentation or sampling. Next,we des
ribe a brief ba
kground on these two methods.InstrumentationTo use instrumentation, the sour
e 
ode is augmented, or the binary is pat
hed, with
ode that 
on�gures the 
ontrol registers and reads the HPCs at parti
ular points inthe program. The main advantage of instrumentation is that it is possible to gatherinformation between two spe
i�
 points in the dynami
 exe
ution path of a program.However, using instrumentation also has its drawba
ks. First, modifying sour
e or binary
ode 
an be time 
onsuming and 
umbersome. Se
ond, it introdu
es perturbations mainlyin two forms (i) the in
rease in the program 
ode size and subsequently in the size ofinstrumented programs instru
tion 
a
he footprints, and (ii) the overhead of exe
utingextra 
ode in the 
ommon path. This type of overhead is more pronoun
ed in dynami
instrumentation systems [BH00, CSL04, TM94℄ where trampoline 
ode, whi
h usuallyin
ludes several bran
h instru
tions, must be installed at ea
h instrumentation site in
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k Analysis 12order to keep the program 
ode layout un
hanged. Su
h trampolines have negativeimpa
t on the spatial lo
ality of program instru
tions that dire
tly a�e
ts instru
tion
a
he performan
e.SamplingWith sampling, the values of the HPCs are periodi
ally 
olle
ted either after a spe
i�edtime period (i.e., time-based sampling) or after 
ounting a spe
i�ed number of a spe
i�
hardware event (i.e., event-based sampling). In order to do time-based sampling any timerfa
ility 
an be used. For event-based sampling, the PMU 
an be programmed to generatean over�ow ex
eption after rea
hing a 
ertain threshold on the 
ount of a spe
i�
 hard-ware event. To generate over�ow ex
eptions, the 
ontrol registers must be programmedproperly, and the HPCs must be loaded with an initial value that 
orresponds to theover�ow threshold.Unlike instrumentation, sampling does not require modi�
ation of the sour
e or binaryof the programs but only requires an appropriate ex
eption handler. Hen
e, samplingtypi
ally in
urs lower overhead be
ause no 
ode is exe
uted in the 
ommon path, andalso be
ause it doe not in
rease the 
ode size and hen
e does not in
rease the program in-stru
tion 
a
he footprint. The over�ow ex
eption handler, however, has a dire
t overheaddue to its exe
ution, and some indire
t overhead due to polluting both the instru
tionand data 
a
hes. The overall sampling overhead, therefore, depends on the samplingfrequen
y.An alternative to redu
e the sampling overhead is to use polling in 
ombination withsampling. With this approa
h is that the operating system reads and re
ords the valueof the HPC registers at 
ertain events that invoke the operating system (e.g., 
ontextswit
hings, page-faults, system 
alls, and other hardware interrupts). The basi
 idea isto piggyba
k the pro
ess of re
ording HPC values on already expensive operating systeminvo
ations that o

ur anyway as a result of system a
tivities, and therefore, to avoidin
urring extra ex
eptions (either timer-based or event-based) to re
ord HPCs. If theoperating system is not invoked as frequently as the desired rate for re
ording HPCs,ex
eptions 
an be raised.
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k Analysis 13The key advantage of the polling-based approa
h is that it redu
es both the pertur-bation and the runtime overhead of sampling the HPC values. However, this approa
hintrodu
es several 
hallenges. First, it is di�
ult to expli
itly 
ontrol the sampling ratesin
e operating system invo
ations may o

ur with an irregular pattern whi
h dire
tlydepends on the a
tivities of running programs. Se
ondly, with the 
urrent ar
hite
tureof the PMUs, some useful information about the 
urrent state of exe
ution is providedby the PMU, only at the time where an HPCs over�ow ex
eption o

urs. By re
ordingHPCs at arbitrary spots with respe
t to the fun
tion of PMU, su
h information 
annotbe 
aptured. Finally, the modi�
ations required to the operating system kernel in thisapproa
h is relatively intrusive as potentially many invo
ation points in the kernel mustbe modi�ed to in
lude 
alls to re
ord HPCs.Sampling and instrumentation methods 
an be used in a 
omplementary fashion.In attempting to lo
ate performan
e bottlene
ks, it is typi
ally too 
ostly to start withinstrumentation be
ause the lo
ation of the problem is not known. Sampling 
an be usedto e�
iently identify program hot spots or stressed hardware 
omponents. Then, if the
olle
ted information is not su�
iently pre
ise, instrumentation 
an be used on spe
i�
targets (e.g. the dete
ted hot spots) to gather further detailed data at the instru
tionlevel.
2.2.3 Counting ModesHPCs 
an be programmed to 
ount events only when the pro
essor is exe
uting in usermode, in kernel mode, or in either of the two modes. With 
ooperation from the operatingsystem, it is possible to further extend this and virtualize the HPCs by pro
ess or threadso that ea
h pro
ess or thread is presented with their own set of dedi
ated HPCs. Toimplement this, the operating system must save and restore the value of the HPCs aspart of the 
ontext swit
h.
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k Analysis 142.3 Our Performan
e Monitoring Fa
ilityWe have designed and implemented a performan
e monitoring fa
ility that 
an be usedboth for sampling and instrumentation. Figure 2.1 shows the blo
k diagram of our fa
ility.At the appli
ation level, users are provided with a programming interfa
e through a user-level library. Thus, an appli
ation 
an be instrumented by inserting library 
alls manuallyor by using dynami
 instrumentation tools. Calls from user appli
ations are re
eived bythe operating system 
omponent whi
h 
onsists of a sampling module and a programminginterfa
e module.The sampling module implements HPC multiplexing, PC and data sampling, and thestall breakdown model whi
h we will dis
uss in detail later. The programming interfa
emodule allows for 
on�guring the sampling engine, or for programming the hardwarePMU dire
tly. In the latter 
ase, it re
eives the spe
i�
ation of a set of hardware eventsto be 
ounted and automati
ally 
on�gures the hardware PMU. The values of the HPCs
an be read dire
tly by the user program, or logged in a per-pro
ess tra
e bu�er by thesampling engine.The key to a
hieving a

eptable overhead is to minimize the frequen
y of 
rossing theuser-kernel prote
tion boundary. In our implementation, the sampling module is fullyimplemented in the operating system kernel. As a result, ex
ept for infrequent 
ontroloperations (su
h as initialization or reset), there will be no 
ontext-swit
hes between theuser 
ode and the performan
e monitoring module lo
ated in the kernel spa
e.The sampling engine 
an obtain HPC values either periodi
ally or after a designatednumber of a hardware event o

urren
es. In both 
ases, we use PMU over�ow ex
ep-tions. For periodi
 sampling we use one of the HPCs as the CPU 
y
le 
ounter, allowingsampling intervals a

urate down to a CPU 
y
le.The frequen
y of sampling is a 
riti
al parameter. Sampling too infrequently mayresult in ina

ura
ies be
ause 
hanges in system behavior might be missed. On theother hand, too �ne-grained sampling may result in unne
essarily high overhead. Ourexperien
e shows we 
an a�ord to take samples every 200,000 
y
les (100 mi
rose
ondson a 2GHz CPU) with approximately 2% runtime overhead. This rate is our default
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Figure 2.1: The blo
k diagram of our HPC-based performan
e monitoring fa
ility.sampling frequen
y, although it 
an be overridden by the user.In order to be able to isolate measurements of individual appli
ations and the oper-ating system, the sampling engine maintains a set of HPC 
ontexts. HPC 
ontexts areswit
hed whenever the operating system swit
hes pro
esses. For this, the operating sys-tem must notify the sampling engine of all pro
ess 
reations and exits, as well as 
ontextswit
hes. Upon ea
h 
ontext swit
h, the 
urrent value of the HPCs are saved into the
urrent HPC 
ontext and the 
orresponding HPC values for the next s
heduled pro
ess isreloaded. There is inherent ina

ura
y asso
iated with this operation sin
e ea
h pro
essinherits the residual hardware state manipulated by the previously running pro
esses.To help redu
e this ina

ura
y, one may in
rease the size of the s
heduling quantum sothat the noise of initial warm-up period be
omes insigni�
ant.For ea
h pro
ess, there are three modes of operations: kernel only, user only, and fullsystem. In kernel-only mode, hardware events are only 
ounted when the hardware is insupervisor mode. This mode is appropriate if we are interested in monitoring operatingsystem a
tivities in
urred by a parti
ular target pro
ess. We assume kernel a
tivitiesthat o

ur in a pro
ess time sli
e are related to the target pro
ess. This assumption
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ontext swit
hes between di�erent pro
esses o

ur frequently orfor interrupt handling. This, kernel-only mode is best suitable when a given appli
ationruns in isolation for a long time (for instan
e, on the order of several se
onds) withno interruption. In user-only mode, logi
al HPCs (in
luding the 
y
le 
ounters) aresuspended when the pro
essor swit
hes into the kernel. Finally, in full�system mode,HPCs 
ount all hardware events whether due to kernel or appli
ation 
ode. When a
ontext swit
h o

urs, the hardware events o

urring both in the kernel and user modewill be 
ounted by the HPCs of the new pro
ess.We use the notion of an address spa
e as the main indi
ator of a 
ontext. Therefore,the sampling engine is 
apable of reporting performan
e numbers for individual pro
essesas well as the operating system. At this time, we do not di�erentiate between the user-level threads that share the same address spa
e. One possible way of addressing this isto send a performan
e monitoring up
all to the user pro
ess when a hardware ex
eptiono

urs so that a user-de�ned handler 
an asso
iate the re
orded HPCs with the 
urrentuser-level 
ontext (e.g. user-level thread ID). Su
h a te
hnique seems to be plausibleonly if there is a fast (low perturbation) up
all delivery me
hanism. We do not 
urrentlysupport su
h an up
all me
hanism.2.4 Fine-grained HPC MultiplexingTo alleviate the problem of having a limited number of physi
al HPCs, we dynami
allymultiplex the set of hardware events 
ounted by the HPCs using �ne-grained time sli
es.The programming interfa
e 
omponent takes a large set of events to be 
ounted as theinput and assigns them to a number of HPC groups su
h that in ea
h group there are no
on�i
ts due to PMU 
onstraints. The sampling module assigns ea
h group a fra
tionof g 
y
les out of a multiplexing round R, the time period in whi
h all HPC groups willhave a 
han
e to be s
heduled. At the end of ea
h HPC group's time sli
e, the samplingengine automati
ally assigns another HPC group to be 
ounted by the hardware PMU.The value that is read from an HPC after g 
y
les is s
aled up linearly as if that grouphad 
ounted during the entire R-
y
le period. As a result, the user program (e.g. a
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al HPCs on top of n physi
al HPCs whereN 
an be an order of magnitude larger than n.The system 
an easily be programmed to favor 
ertain HPC groups by 
ounting themfor longer periods of time. This is a

omplished by allo
ating multiple g-
y
le time sli
esto the group. In fa
t, one 
an treat a period of g 
y
le as a unit for the hardware PMUtime allo
ation. This PMU multiplexing s
heme is analogous to the time-sharing of aCPU among pro
esses. Figure 2.2 shows an example of four HPC groups, where ea
h isgiven a time share (one or more time sli
es) of the multiplexing round. The share sizeof ea
h group depends on the desired a

ura
y of the hardware events that are in
ludedin the group and on the expe
ted rate of �u
tuation of su
h events. Moreover, thea

ura
y may di�er for di�erent hardware events with the same share size. A defaultshare assignment s
heme might be overridden by expli
it requests from the user that isinterested in 
losely monitoring a spe
i�
 hardware event.Without loss of generality, for the rest of the 
hapter, we assume all groups aregiven equal time shares, whi
h is one time sli
e (g 
y
les). We 
all R
g
the MultiplexingRatio. Larger multiplexing ratios allow a larger number of logi
al HPCs. For instan
e, amultiplexing ratio of 10 
an provide roughly 80 logi
al HPCs on an 8-HPC pro
essor. Thishas to be traded-o� with the fa
t that sampling a

ura
y de
reases as the multiplexingratio in
reases.An issue that must be addressed is the fa
t that a sampling period may happen to
oin
ide with loop iterations in the program. If the order of HPC groups within a periodis �xed and a sampling period happens to 
oin
ide with a loop iteration, then an HPCgroup might always 
ount the events that o

ur in the same �xed part of the iteration. Toavoid this s
enario, we randomize the order of the HPC groups in ea
h sampling period.As a result, ea
h HPC will have an equal 
han
e of being lo
ated at any given spot ofthe iteration.With HPC multiplexing, time is usually measured in terms of CPU 
y
les. Therefore,one 
ounter in ea
h HPC group is reserved to 
ount CPU 
y
les. The use of 
y
le 
ountersas timers allows us to de�ne arbitrary �ne time-sli
es down to a few thousand 
y
les.Another metri
 that 
an be used to de�ne HPC group share sizes is the number of
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Figure 2.2: Time-Based Multiplexing example: There are four HPC groups in this example.Ea
h HPC group is a 
olle
tion of events that are 
ounted simultaneously. An HPC groupis 
ounted in a number of time sli
es of g 
y
les within sampling period of R 
y
les. Theorder of the HPC groups is 
hanged randomly in di�erent sampling periods to avoid a

idental
orrelations.
instru
tions retired. The main advantage of instru
tion�based multiplexing is that theHPC group share sizes are aligned more 
losely with the progress of the appli
ation.Share sizes, with respe
t to physi
al time, depends on the available instru
tion levelparallelism (ILP) and the frequen
y of the miss events.A pathologi
al 
ase for the multiplexing engine is the existen
e of a large numberof short-lived bursts of a parti
ular hardware event. If the burst time is shorter than
R 
y
les, then the multiplexed HPC value of that hardware event might be ina

uratebe
ause the PMU a
tually 
ounts the event only during a fra
tion of R, and thus it maymiss short-lived bursts. However, we expe
t the exe
ution of most appli
ations to gothrough several phases, ea
h longer than R, in whi
h the o

urren
e rate of hardwareevents is stable in the 
ommon 
ase. In Se
tion 2.7, we provide experimental results thatdemonstrate that the statisti
al distan
e between the sampled and real rates of hardwareevents is small in most 
ases.
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al Stall BreakdownWith HPC multiplexing, a potentially large number of logi
al HPCs be
omes available.As a result, a wide range of hardware events 
an be 
ounted simultaneously. However,it is often di�
ult to interpret and understand the HPC values without having a propermodel for CPU performan
e. For instan
e, we do not know whether having a million
a
he misses in a billion CPU 
y
les is a signi�
ant fa
tor in the performan
e of theCPU or not, unless we have a model based on whi
h we have an estimate of the penaltyea
h 
a
he miss in
urs dire
tly (i.e., by 
ausing laten
y in the exe
ution of instru
tions)or indire
tly (e.g., by 
ausing other pipeline stru
tures to saturate, or by 
ausing otheruseful 
a
he lines to be repla
ed).A naïve approa
h is to asso
iate a �xed penalty to ea
h event and simply multiplyit by the event frequen
y to determine the a
tual e�e
t of the event on CPU pefor-man
e [WLLB97℄. While this approa
h is simple to understand and easy to implement,it is not a

urate due to the fa
t that in a supers
alar CPU with out-of-order exe
ution,multiple laten
y-in
urring events 
an overlap. Therefore, the naïve approa
h may resultin an overly pessimisti
 estimate of the e�e
t of ea
h event on the CPU performan
e.Another approa
h is to 
al
ulate a full Cy
le-per-Instru
tion (CPI) breakdown whereCPU 
y
les are attributed di�erent hardware 
omponents or events so that ea
h hard-ware 
omponent h a

ounts for CPIh 
y
les per instru
tion out of the real CPI on av-erage [HP03℄. CPI breakdown is a simple and powerful model, as it 
an 
learly identifyboth program and CPU bottlene
ks. For instan
e, if we know that 60% of CPU 
y
lesare spent waiting for 
a
he misses to resolve, we know that the running programs arestressing the system 
a
hes and a dynami
 optimizer will have to work on redu
ing theprograms' CPU 
a
he footprint, removing potential 
a
he 
on�i
ts, or employing runtimeprefet
hing.The problem with the CPI breakdown model, however, is that it is extremely di�
ultto 
ompute a

urately on a real pro
essor. The main reason is that in a supers
alarout-of-order mi
ropro
essor many laten
y-in
urring events overlap with ea
h other. Insu
h 
ases, it is not 
lear whi
h 
omponent the 
aused laten
y should be 
harged to, as
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h event alone 
an 
ause the laten
y even without the presen
e of the other.A simplifying modi�
ation to the CPI breakdown model the Statisti
al Stall Break-down model whi
h attributes ea
h stall 
y
les to pro
essor 
omponents that are likely tohave 
aused them. We losely de�ne a stall 
y
le to mean a pro
essor 
y
le in whi
h noinstru
tion 
ompletes (retires). Based on this distin
tion, the CPU 
y
les are either stall(non-
ompletion) 
y
les or 
ompletion 
y
les.The rationale behind fo
using only on non-
ompletion stall 
y
les (as opposed to all
y
les) is based on two important observations. First, most CPU 
y
les are stalls. Thisis despite having large a instru
tion window and a wide pipeline, and doing sophisti
atedanalysis for extra
ting Instru
tion-Level Parallelism (ILP). Table 2.2 shows average realCPI versus No-Stall CPI for sixteen appli
ations from the SPEC CPU2000 ben
hmarksuit, running on an IBM POWER5 pro
essor. Also Figure 2.3 shows real CPI and no-stall CPI for the individual appli
ations. It 
an be seen that between 60% to 85% ofCPU 
y
les are stall 
y
les among these appli
ations, with 73% being the average.The se
ond observation is that when there are no stall, CPU throughput, in termsof IPC, is fairly 
lose to the pipeline width and is more or less appli
ation-independent.This is assuming that the design of the mi
ro-ar
hite
ture is well balan
ed and there areno obvious bottlene
k 
omponents [KS04℄. This 
an be seen in Figure 2.3: for most ofthe SPEC CPU2000 appli
ations the No-Stall CPI is very 
lose to the ideal CPI, whi
his around 0.2 on the IBM POWER5 pro
essor (due to having a fet
h bandwidth of 5instru
tions per 
y
le)- on average, no-stall CPI is 0.35 among these appli
ations. Thereal CPI of 
ourse, 
an vary dramati
ally for di�erent appli
ations and 
an be as high as4.25 (e.g., for m
f). So, Table 2.2 shows that while the 
oe�
ient of variation for no-stallCPI is only 14%, it is as high as 53% for the real CPI for the sele
ted appli
ations.These two observations suggest that in order to 
hara
terize 
urable performan
ebottlene
ks (i.e, those that are not 
aused by limited pipeline width), it is su�
ient tofo
us only on the stall 
y
les as opposed to all CPU 
y
les.An important advantage of fo
using only on stall 
y
les, is that it is easier to spe
-ulatively attribute ea
h stall 
y
le to a parti
ular hardware event, using the argumentthat if the parti
ular hardware event had not o

urred, the stall would not have o
-
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k Analysis 21Average Stall Cy
les Per
entage: 73Average Real CPI: 1.53Coe�
ient of Variation for CPI (%): 53Average No Stall-CPI: 0.35Coe�
ient of Variation for NSCPI (%): 14Table 2.2: Summary of stall 
y
les and CPI for the SPEC CPU 2000 appli
ations on the IBMPOWER5 pro
essor.
urred. The key observation is that, in most 
ases, the time hardware 
omponents spendin pro
essing instru
tions will eventually result in stalls. Therefore, if the CPU resumes
ompleting instru
tions after re
eiving the results from a hardware 
omponent, the lastlaten
y-
ausing hardware event in that 
omponenet may be a good 
andidate as the
ause of the stall. In order to do a stall breakdown, a basi
 hardware support is requiredto assign a 
ause to ea
h stall. The IBM POWER5 and PowerPC970 pro
essors bothprovide su
h a stall-to-
ause assignment, and to the best of our knowledge, they are theonly pro
essors with this 
apability. We have used both these pro
essors in all of ourexperiments for analysis the stall breakdown.Su
h a stall-to-
ause assignment is spe
ulative mainly due to the fa
t that stalls fromdi�erent 
auses may overlap and as a result, the laten
y 
aused by a 
omponent is hiddenby the laten
y 
aused by another 
omponenet. Hen
e, in order to identify the real 
ausesfor laten
y, an iterative s
heme may be needed sin
e removing or substantially redu
ingone 
ause of stall either improves performan
e proportional to the stalls assigned to it,or another 
ause for stalls to be revealed.In the next subse
tion, we provide a more detailed des
ription of our hardware modelbased on whi
h hardware 
omponents and 
auses for stalls are de�ned.2.5.1 Hardware ModelA simple hardware model is required to understand how di�erent type of events that
ause laten
y in the operation of a pro
essor may result in stalls. In this se
tion, we
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Figure 2.3: No-Stall CPI versus Real CPI for SPEC CPU2000 appli
ations.
provide a high-level model of the fun
tioning of a pro
essor. While, our hardware modelis in�uen
ed by the ar
hite
ture of IBM POWER pro
essors, we believe it is su�
ientlygeneral to be used for other modern mi
ropro
essors with minor modi�
ations.Figure 2.4 depi
ts the hardware model used and Figure 2.5 depi
ts the state-transitiondiagram for ea
h instru
tion. Instru
tions are fed from the Instru
tion Ca
he (ICa
he)to the front-end pipeline in program order. Up to W instru
tions, at the level of the In-stru
tion Set Ar
hite
ture (ISA), 
an be fet
hed from the ICa
he in ea
h 
y
le. These in-stru
tions are de
oded and possibly translated into µ-instru
tions. The front-end pipelinegenerates bundles of B µ-instru
tions, ea
h asso
iated with one or more ISA instru
tions.In RISC ar
hite
tures, however, we expe
t most ISA instru
tions to be translated intoa single µ-instru
tion, and hen
e, we assume at most B ISA instru
tions 
an 
o-exist ina bundle. The µ-instru
tions within a bundle may have dependen
es between them; forexample, the output of one may be used as an input for another.At most one bundle 
an be dispat
hed in a single 
y
le, where ea
h µ-instru
tion withinthe bundle is dispat
hed to its target Fun
tional Unit (FU). The instru
tion bundles aredispat
hed in program order. At most one µ-instru
tion 
an be dispat
hed to an FU at
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Figure 2.4: The basi
 hardware model for a super-s
alar out-of-order pro
essor. FPU standsfor Floating-Point Unit, IU stands for Integer Unit, LSU stands for Load/Store Unit, BU standsfor Bran
h predi
tion Unit, and FU stands for Fun
tional Unit.
a time, although there may be several FUs of the same type. The total number of FUsmay ex
eed the number of µ-instru
tions in ea
h bundle, so some FUs may not re
eivenew µ-instru
tions every 
y
le.Before a µ-instru
tion bundle 
an be dispat
hed to the fun
tional units, the followingresour
es must be available for ea
h µ-instru
tion in the bundle:1. Rename Bu�er Entries: Rename bu�ers are logi
al registers that are used toeliminate Write-After-Read and Write-After-Write dependen
ies.2. A Reorder Bu�er Entry: The reorder bu�er is a queue that keeps tra
k of thestatus of the dispat
hed bundles. Instru
tion bundles retire from the reorder bu�erin the order they were dispat
hed after all of their µ-instru
tions have �nished, andall earlier bundles have retired.3. Load/Store Bu�er Entries: Load/Store bu�ers are used to bu�er the values
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Figure 2.5: The state transition diagram for instru
tion exe
ution.
read by the load instru
tions or written by the store instru
tions.4. FUs Issue Queue Entries: Ea
h FU has a separate issue queue. Ea
h µ-instru
tion in the bundle needs an entry in the 
orresponding FU's issue queue.If any of these resour
es are not available, the instru
tion dispat
h will be delayeduntil they be
ome available. Typi
ally, this only o

urs when there are long laten
ies inthe FUs so that one of the stru
tures mentioned above be
omes full.On
e a µ-instru
tion bundle is dispat
hed, ea
h µ�instru
tion in it will be queued inthe 
orresponding FU issue queue. The instru
tion remains in the issue queue of the FUuntil all the data it depends on be
omes available, after whi
h it 
an be issued. An issued

µ-instru
tion will be pro
essed by the FU 
ore to produ
e the result. On
e the result isready, the instru
tion's state be
omes �nished. The FU 
ore may reje
t a µ-instru
tionfor a number of reasons, in whi
h 
ase the instru
tion will be put ba
k in the FU issuequeue and will be re-issued later. Instru
tion issue o

urs out-of-order with respe
t toprogram order. On
e the µ-instru
tion bundle retires (
ompletes), all resour
es allo
atedto it, in
luding the entries in the rename bu�ers, the reorder bu�ers, and the load storebu�ers, are released. An instru
tion may be �ushed for di�erent reasons, in
luding bran
hmispredi
tions or ex
eptions. When an instru
tion is �ushed, all resour
es allo
ated tothe instru
tion are released and the instru
tion must be fet
hed and de
oded again laterto exe
ute.A �nished µ-instru
tion may retire only if, (i) all other µ-instru
tions in the instru
-tion's bundle have also �nished and (ii) all earlier (with respe
t to the program order)
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t CommentICa
he Miss Empty Reorder Bu�er Instru
tions must be brought into the ICa
he either fromL2 or memory.Bran
h Mispredi
tion Empty Reorder Bu�er All in-�ight instru
tions after the mispredi
ted bran
h are�ushed.Data Ca
he Miss Retirement Stops A delay in the LSUs to �nish a load or store instru
tiondue to a data 
a
he miss.Address Translation Misses Retirement Stops A miss o

urs as the hardware a

essed address translationstru
tures (e.g. TLB). The miss either delays the pro
ess-ing of a load/store instru
tion in the LSU, or results in thetemporary reje
tion of the instru
tion from the LSU.LSU Basi
 Laten
y Retirement Stops A delay in one of the LSUs to �nish the exe
ution of anissued instru
tion.Reje
tions Retirement Stops Any of the FUs (most likely the LSU) reje
ts an instru
tionfor any (e.g. hitting a resour
e limit). The instru
tion mustbe reissued after some delay or reordering.FPU Laten
y Retirement Stops A delay in one of the FPUs to �nish the 
omputation foran issued instru
tion.IU Laten
y Retirement Stops A delay in one of the IUs to �nish the 
omputation for anissued instru
tion.Other 
auses Retirement Stops A delay in any other hardware 
omponent, usually resultingin a pipeline �ush.Table 2.3: Types of miss events with their potential e�e
t in the mi
roar
hite
ture fun
tion.bundles in the reorder bu�er have already retired. Thus, bundle retirement happensin program order. At most one bundle 
an retire per 
y
le. Therefore, the maximumnumber of ISA instru
tions that in theory 
an retire in a 
y
le is equal to B (whi
h isexpe
ted to be 
lose to the fet
h bandwidth W in a RISC ar
hite
ture).The key idea behind the stall breakdown model is that most bottlene
ks 
an beidenti�ed by spe
ulatively attributing a 
ause to ea
h stall, i.e., a 
y
le in whi
h nobundle from the reorder bu�er 
an retire. There are two major 
ategories of su
h stalls:
• Empty Reorder Bu�er: This implies that the front-end has not been able to feed theba
k-end in time. Assuming the mi
ro-ar
hite
ture is designed and tuned properly,su
h situations happen mostly when there is an ICa
he miss, or when a bran
hmispredi
tion o

urs. We assume the hardware designates the most re
ent event(an ICa
he miss, or a bran
h mispredi
ation) as the 
ause of the stall.
• Completion Stops: The reorder bu�er is not empty, but the oldest bundle in thereorder bu�er 
annot retire. This happens mainly be
ause one or more of its µ�instru
tions have not yet �nished (i.e. they are waiting for an FU to provide theresults). We assume in this 
ase that on
e all µ-instru
tions of a bundle �nish and
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k Analysis 26retirement resumes, the hardware will designate the 
ause of the stall as the lastFU that �nished a µ-instru
tion so that the instru
tion retirement 
ould resume.We 
all the hardware events that 
an 
ause a stall miss events. The miss events we
onsider in this study are listed in Table 2.3 along with the type of stalls they 
ause andthe potential e�e
t they may have.The asso
iation between a stall and a miss event is not ne
essarily pre
ise be
ause ofthe dependen
ies among instru
tions within the same bundle. For instan
e, an instru
tion
i may depend on the output of another instru
tion, j, of the same bundle. In this 
ase,stalls 
aused by miss events during the exe
ution of j are 
harged to i be
ause it is thelast µ�instru
tion in the bundle to �nish.Finally, even if a stall is identi�ed as being 
aused by a parti
ular event, removingthat event does not ne
essarily translate into an elimination of the stall. This is be
auseof the highly 
on
urrent nature of supers
alar out-of-order mi
ropro
essors and the fa
tthat events may overlap so that removing one of them may not regain all the performan
elost be
ause of the stall. This issue is dis
ussed extensively in other work [FBHN03a,FBHN03b, TTC02℄. Addressing this issue in the general 
ase is 
omplex, be
ause intoday's out-of-order pro
essors, hundreds of instru
tions may be in-�ight simultaneously.To solve the problem in its generality, it is ne
essary to 
onsider all possible intera
tionsof any subset of 
on
urrently exe
uting instru
tions, whi
h is beyond the s
ope of anon-line tool.By taking all 
auses of stalls into a

ount, the following formula 
an be used tospe
ulatively 
hara
terize the potential CPU bottlene
ks at ea
h phase in the programexe
ution:

CPIReal =
n∑

i=0

Stalli + CPICwhere, Stalli is the number of stalls 
aused by miss event i in the monitoring period, and
CPIC is number of 
ompletion 
y
les in whi
h at least one instru
tion is 
ompleted. Infa
t, CPIC 
an be used as an estimate for the CPI that 
an be a
hieved by ideal hardwarein whi
h all miss events are removed and performan
e is solely determined by the programdependen
es and the width of the pipeline. Indeed, as we see in Figure 2.3, CPIC is very
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e Size Laten
yLo
al L2 2MB 14 
y
lesLo
al L3 36MB 91 
y
lesLo
al Memory 4GB 280 
y
lesRemote L2 2MB 120 
y
lesRemote L3 36MB 205 
y
lesRemote Memory 4GB 307 
y
lesTable 2.4: The size and approximate a

ess laten
y of di�erent sour
es in the memory hierar
hyin IBM OpenPower 720 Ma
hine
lose to the ideal CPI for all appli
ations we examined. The CPIReal term is easily
omputed by dividing the number of elapsed 
y
les by the number of ISA instru
tionsretired at any period of time. We also rely on hardware PMU features to provide valuesfor Stalli. As a result, we 
an a

urately show how mu
h gain is potentially a
hievableby redu
ing the miss events of a 
ertain type.2.5.2 Sour
e-based Re�nementAn important re�nement to the stall breakdown model is to break down the stalls 
ausedby instru
tion and data 
a
he misses depending on the sour
e from whi
h the 
a
he miss iseventually satis�ed. Table 2.4 shows the di�erent sour
es in the memory hierar
hy in theIBM penPower720 ma
hine and their approximate a

ess laten
ies [VMTO05℄. Severaloptimization te
hniques 
an exploit the sour
e-based stall breakdown. For instan
e, welater show in Se
tion 3.3 that if most of the data 
a
he miss stalls are due to waitingfor data are being fet
hed from 
a
hes on other pro
essor 
hips, then it is likely thata
tive read-write data sharing is o

urring among threads of the same pro
ess. Anotherexample is that if most of the data 
a
he miss stalls are due to waiting for remote memorymodules in a NUMA ar
hite
ture, smart 
ode and data pla
ement or migration s
hemesare perhaps required.Due to the la
k of spe
i�
 hardware support, we use a naïve approa
h to break downdata 
a
he miss stalls based on their sour
es. That is we de�ne stalls waiting for a



Chapter 2. CPU Bottlene
k Analysis 28memory or 
a
he module m as follows:
MStallm = Latencym ∗ AccessFrequencymwhere Latencym is the average laten
y for a

essing module m (whi
h is de�ned bythe hardware 
hara
teristi
s) and AccessFrequencym is the frequen
y of a

essing themodule.Su
h a naïve approa
h might be pessimisti
 as it does not take any overlap of multipledata 
a
he misses in �ight into a

ount. Hen
e, MStallm 
ould be mu
h higher than itsreal value. However, as we show in Se
tion 2.7.2, in pra
ti
e, for many appli
ations mostof the long-laten
y memory instru
tions do not overlap, and as a result, stalls 
ausedby data 
a
he misses as reported by the hardware PMU (i.e., StallDataCacheMiss) is fairly
lose to the sum of the 
al
ulated stalls for all available memory and 
a
he modules(i.e., ∑

m MStallm). For a more a

urate breakdown of data 
a
he miss stalls based onsour
e, additional, albeit minimal hardware support is required whi
h, to the best of ourknowledge, is not available in any of todays' mainstream pro
essors.2.6 ImplementationIn this se
tion, we present about our experimental platform as well as more details aboutthe implementation of our performan
e monitoring fa
ility.2.6.1 Real Hardware versus Simulation EnvironmentWe de
ided to evaluate HPC-multiplexing and stall breakdown on a real mi
ropro
essoras opposed to using a 
y
le-a

urate ma
hine simulator be
ause of two major advantagesa real environment o�ers. First, instru
tion exe
ution on a real pro
essor is mu
h fasterthan in a simulation environment. Depending on the level of details the simulator ismodeling, experiments 
an take several thousand times more than running them on areal pro
essor. Su
h a vast di�eren
e in exe
ution speed allows us to 
olle
t data for mu
hlonger periods of program exe
ution, making the 
olle
ted data more representative andthe resulting analysis more 
omplete and a

urate.
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ond reason for not 
hoosing a simulator is that even detailed 
y
le-a

uratesimulators may not be able to re�e
t some of the limitations of the implementation ofreal mi
ropro
essors. For instan
e, in a simulation environment, virtually any type ofevents 
an be monitored assuming there is no 
ost or 
omplexity for the monitoring. Inreal environment, however, many fa
tors su
h as 
hip spa
e, wire laten
y, and 
omplexityof implementation determine whether it is feasible to monitor a 
ertain type of event ornot.There are two major drawba
ks in using a real mi
ropro
essor, however. First, thehardware programming interfa
e is �xed and provides limited information. It is notpossible, for instan
e, to measure the length of time between any two arbitrary events(e.g., two 
onsequtive stall-
ausing 
a
he misses). Se
ondly, be
ause of the 
omplexityof a real pro
essor, understanding the semanti
s of the hardware events is 
hallengingand requires signi�
ant internal (and potentially proprietary) knowledge of the pro
essorimplementation. Often, information at su
h level of details is not provided in publi
do
umentation.2.6.2 HardwareWe have implemented and evaluated our HPC-based performan
e monitoring fa
ility ontwo IBM pro
essors, PowerPC970 [IBM06℄, and POWER5 [SKT+℄. The PowerPC970pro
essor is used in the Apple PowerMa
 G5 workstation and the POWER5 pro
essor isused in a the IBM OpenPower720 Express 
omputer system. In terms of exe
ution 
oreand pipeline stru
ture, the two pro
essors are quite similar. However, there are signi�
antdi�eren
es in terms of pro
essor inter
onne
tion and the stru
ture of the memory hierar-
hy. Moreover, the POWER5 pro
essor supports simultaneous multithreading (SMT) toallow instru
tions from several hardware threads to be dispat
hed and issued to the fun
-tional units simultaneously. In this study, however, we have not explored the 
hallengesof HPC-based performan
e monitoring under the SMT exe
ution model.The spe
i�
ations of the two pro
essors are listed in Table 2.5.The PMU in both pro
essors is 
apable to 
ount the number of stalls 
aused bymiss events in
luding the ones listed in Table 2.3. When the CPU stops 
ompleting
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k Rate (GHz) 1.8 1.5L1 ICa
he (KB) 32 32L1 DCa
he (KB) 64 64TLB Size 1024 1024L2 (KB) 512 1875 (shared by two 
ores)Fet
h Bandwidth 5 5No. of FXUs 2 2No. of LSUs 2 2No. of FPUs 2 2No. of HPCs 8 6Table 2.5: The spe
i�
ations of the IBM PowerPC970 and POWER5 pro
essors used for ourexperiments.instru
tions, a 
ounter starts 
ounting the number of stalls. On
e the CPU resumes
ompleting instru
tions, the stall 
ount is 
harged to the last miss event spe
ulatively, asthe 
ause for the stall period. The assignment of stall to 
ause is spe
ulative, sin
e (i)several events 
an happen in a single 
y
le and the PMU 
hooses one of them to attributethe just-ended stall period, and (ii) multiple stall 
auses may overlap, yet the stall lengthis attributed to just a single 
ause.2.6.3 Operating SystemWe implemented our performan
e monitoring fa
ility both in K42 and Linux operatingsystems. K42 is an open-sour
e resear
h operating system designed to s
ale well on large,
a
he-
oherent, 64-bit multipro
essor systems [IBMa℄. It provides 
ompatibility with theLinux API and ABI. The K42 kernel is designed in an obje
t-oriented fashion, a featurethat allows for easier prototyping.The sampling engine in both operating systems is built as a fairly small kernel module(a few hundred lines of C/C++ 
ode). The OS kernel is slightly modi�ed to notify
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ess 
reations, exits, and 
ontext swit
hes. In K42, weexploit the fa
t that all major pro
ess management events along with other the operatingsystem events are re
orded in performan
e monitoring tra
e bu�ers. Therefore, upon ea
hover�ow ex
eption, the sampling engine 
he
ks whether a 
ontext swit
h has re
entlyo

urred by 
onsulting the tra
e bu�er. Using this s
heme, there is a delay in dete
ting
ontext swit
hes, but be
ause the granularity of 
ontext swit
hes is usually around 10millise
onds, whi
h is two orders of magnitude larger than the multiplexing granularitywe typi
ally use, the impre
ision added by a small delay in dete
ting 
ontext swit
hes isinsigni�
ant.In order to re
ord the gathered HPC values, in K42 we used the existing performan
emonitoring infrastru
ture [WR03℄. The infrastru
ture provides for an e�
ient, uni�edand s
alable tra
ing fa
ility that allows for 
orre
tness debugging, performan
e debuggingand on-line performan
e monitoring. Variable-length event re
ords are lo
klessly loggedon a per pro
essor basis in the tra
e bu�er mentioned above. The infrastru
ture isuniformly a

essible to the operating system and user programs. The re
orded eventsare en
oded using XML, and thus, mu
h of the implementation of adding and pro
essingnew events is automated [WSS+04℄. The HPC values gathered by the sampling engineare added to the bu�ers and thus available to any interested party.In Linux, we integrated both �ne-grained HPC multiplexing and statisti
al stall break-down into the publi
ly available Linux's OPro�le toolkit [OPr℄. OPro�le is a system-widepro�ler that uses HPCs for both time-based and event-based PC sampling of both userprograms and the operating system kernel. To implement HPC multiplexing, we addeda tra
e bu�er similar to that of K42, to Opro�le's kernel module, mainly to be ableto re
ord potentially large of logi
al HPC ve
tors. Also, Opro�le's over�ow ex
eptionhandler is modi�ed to swit
h between di�erent HPC groups.The PMU library provides a number of 
alls to allow user programs to in
lude a set ofHPC groups to be 
ounted in di�erent 
ounting modes. Also, it allows the user to 
hangethe multiplexing round as well as the period between ea
h two 
onsequtive re
ording ofthe logi
al HPC ve
tor into the tra
e bu�er. In K42, the PMU library 
ommuni
ateswith the sampling engine through a set of system 
alls while in Linux, the PMU library
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reated entries in the oprofilefs �le system for this purpose.
2.7 Experimental EvaluationWe developed and ran a number of experiments to evaluate our approa
h. In this se
tion,we des
ribe these experiments and present their results. First, we brie�y des
ribe how wevalidate the basi
 values we read from the HPCs for di�erent hardware events. We thenpresent the results of our statisti
al analysis of sampling a

ura
y and show how a

ura
y
hanges as a fun
tion of multiplexing granularity and multiplexing ratio. Finally, weanalyze the a

ura
y and usefulness of 
omputing SSB values.In our experimental analysis, we have used a subset of the SPEC2000 ben
hmarksuite [(SP℄, SPEC JBB2000 [Sta℄, VolanoMark [Vol℄, and MySQL database server [MyS℄.Throughout this se
tion we present our results only for a representative set of appli
a-tions. Appli
ation gzip g

 perlbmk 
rafty applu mgrid art mesaInstru
tions Retired 0.01 0.06 0 0 0 0.05 0 0.12L1 DCa
he Loads 0.09 0.04 0 0 0.02 0.07 0.03 0.22L1 DCa
he Stores 0.13 0.08 0 0 0 0.03 0 0.10L1 DCa
he Misses 1.21 0.05 0 0 0.02 0.07 0.07 0.05ICa
he Misses N/A 0.12 0.02 0.09 0.02 N/A 0.03 N/ATLB Misses N/A 0.11 N/A N/A 0.01 0.15 N/A N/AERAT Misses 0.79 0.13 0.01 0.02 0.07 0.71 0.42 0.21L2 Ca
he Misses (Data) 0.24 0.01 0.07 0.02 0.02 0.06 N/A 0.17Bran
h Mispredi
ts 0.36 0.05 0.01 0 0.02 0.18 0 0.13Table 2.6: KL-distan
e between probability distribution P , whi
h is obtained by fully 
ountinghardware events, and P ′, whi
h is obtained through multiplexing. The multiplexing ratio is setto 10 and the multiplexing round R is set to 2 million 
y
les. N/A implies the event is lessfrequent than on
e every 10,000 
y
les, on average, and value 0 is used for any value less than
0.01.
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Figure 2.6: Comparing fully 
ounted L1 DCa
he Miss Ratio with multiplexed (and extrapo-lated) 
ounts of the same event when running g

. The multiplexing ratio is set to 10 and themultiplexing round is set to 2 million 
y
les.2.7.1 A

ura
y of MultiplexingIn order to measure the a

ura
y of multiplexing versus fully 
ounting the hardwareevents, we use a statisti
al analysis. When 
ounting events fully, we asso
iate with ea
hhardware event, e, a probability distribution Pe(Ri) representing the probability of event
e o

urring in the time interval Ri. Pe(Ri) 
an be simply 
al
ulated by dividing thefrequen
y of e re-o

urring in the interval Ri by the total number of e events duringa monitoring session. That is if Ne is the total number of o

urren
es of event e, and
Ne(Ri) is the number of o

urren
es of event e in interval Ri, the probability of event eo

urring within Ri is 
al
ulated as Pe = Ne(Ri)

Ne

so that ∑N
i=0 Pe(Ri) = 1.With multiplexing, on the other hand, we 
ount how many times e o

urs in a subin-terval of Ri, and linearly s
ale it to the entire interval, whi
h will give us another prob-ability distribution P ′

e(Ri). A key question is how the two distributions, Pe and P ′

e,
orresponding to the a
tual 
ounts and sampled 
ounts, di�er. To answer this question,we use Kullba
k Leibler distan
e (KL-distan
e), whi
h is often used to measure similarity(or distan
e) between two probability distributions[CT03℄. KL-distan
e is de�ned as:
K(Pe, P

′

e) =
∑

P (x) log Pe(x)/P ′

e(x)and 
omputes the geometri
 mean over Pe(x)/P ′

e(x).
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e, if Pe(x) is 1.5 times P ′

e(x), log Pe(x)/P ′

e(x) is equal to 0.58 (we use log2everywhere in our 
al
ulations), and if Pe(x) is 8 times P ′

e(x), then log Pe(x)/P ′

e(x) wouldbe equal to 3. Therefore, the noise of very short periods of time where Pe(x) is drasti
allydi�erent from P ′

e(x) will be redu
ed.The reason we use KL-distan
e (as opposed to, for instan
e, the mean over |Pe(x) −

P ′

e(x)|) is that in the 
ontext of runtime optimization, the absolute values of the hardwareevent 
ounts are often not really important be
ause there are many short transient statesin the hardware. What is more important is whether there is a signi�
ant and ratherstable shift in the rate of o

urren
es of a parti
ular hardware event that lasts for asu�
iently long period of time to be worth 
onsidering. Therefore, although there maybe sampling intervals in whi
h the values of Pe and P ′

e di�er signi�
antly, if su
h intervalsare limited in number and isolated, they do not distort the distan
e measure due to the
log fa
tor in KL-distan
e.In this study, we 
onsider any value of K(Pe, P

′

e) below 0.20 to be a

eptable. In-formally speaking, we 
onsider multiplexing to be adequate if the di�eren
e between thevalues of two probability distributions on average does not ex
eed 15%.We measured K(Pe, P
′

e) for a large number of hardware events for the sele
ted SPEC2000appli
ations. Table 2.6 shows the results for several important hardware events and someof the appli
ations. The N/A entries imply that the hardware event was on average lessfrequent than on
e per 10,000 
y
les, and hen
e, insigni�
ant. The 0 entries imply thea
tual value of K(Pe, P
′

e) was less than 0.01. The samples are 
olle
ted over 6-billion
y
les (after skipping over the �rst billion instru
tions). The multiplexing interval R is2 million 
y
les, and the multiplexing ratio is 10. As it 
an be seen from Table 2.6, theKL-distan
e value is small for most hardware events in a majority of appli
ations, witha few ex
eptions we dis
uss later in this se
tion. In Figure 2.6 we graphi
ally depi
tthe rate of o

urren
es for L1 DCa
he Miss Ratio for g

 both when the event is fully
ounted as well as in the multiplexed mode. It 
an be seen that the multiplexed eventrate a

urately follows all signi�
ant and steady 
hanges in the real o

urren
e rate ofthe hardware event even though there are di�eren
es over small periods of time.There are a few 
ases in Table 2.6 with una

eptably high values. However, we note
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ases all 
orrespond to fairly infrequent events (one per 100 
y
les on average).Although infrequent events are unlikely to 
ause performan
e bottlene
ks, we exploredthis issue further by varying the multiplexing granularity and multiplexing ratio for them.We ran several experiments with gzip for whi
h at least three hardware events have arelatively large KL-distan
e: the L1 data 
a
he miss, ERAT (E�e
tive to Real AddressTable whi
h is used by IBM POWER pro
essors as a 
a
he for their relatively largeTLBs) miss, and bran
h mispredi
tion. Figure 2.7 shows the results of the experiments.The graph on the left shows how the a

ura
y 
hanges as a fun
tion of the multiplexinggranularity. As a general rule, larger granularities have higher a

ura
y for infrequentevents. Therefore, we 
hange the multiplexing granularity from 200,000 to 500,000 
y
les.We then wanted to know how sensitive the a

ura
y is to the multiplexing ratio in thismultiplexing granularity. The graph on the right shows the results of our experiments.It appears that none of the three hardware events is highly sensitive to the multiplexingratio. The general 
on
lusion we draw from these experiments is that it is better to uselarger granularities (with a �xed multiplexing ratio) for infrequent hardware events.
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Figure 2.7: Tuning multiplexing ratio and multiplexing granularity for gzip: (a) The KL-distan
e generally de
reases as the multiplexing granularity in
reases. (b) Fixing the granu-larity to 500,000 
y
les, all three hardware events seem to be fairly stable when 
hanging themultiplexing ratio within a realisti
 range.
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Figure 2.8: Stall breakdown for an instan
e of fft run over a period of 40 billion-
y
les onIBM POWER5.2.7.2 Stall BreakdownIn this subse
tion, we present an example of how stall breakdown information look like.In Figure 2.8, we show the result of 
omputing stall breakdown for fft over a period of40 billion 
y
les. There are several observations that 
an be made from the graph. First,the entire run is divided into several fairly long phases in whi
h either CPI is stable,or CPI 
hanges in a fairly regular fashion. In ea
h phase, it is possible to pinpoint oneor more major sour
es of stalls. Se
ondly, there is often a large gap between the real,measured CPI and the ideal CPI, most of whi
h 
an be explained by the stalls. Thirdly,in this parti
ular example, misses in the address translation data stru
tures (i.e., ERATand TLB) seem to be the a primary sour
e of stalls in 
ertain phases of the program.The stall breakdown 
omputed by our sampling engine 
an provide useful and timelyhints to a runtime optimizer, allowing it to fo
us, in this 
ase, on te
hniques to redu
edata 
a
he misses for most of the program and preventing the optimizer from fo
usingon optimizations that might redu
e the 
omputation, bran
h mispredi
tions, or ICa
hemisses as they will not have signi�
ant e�e
t unless they manage to also redu
e data
a
he misses. Also, the online availability of the stall breakdown information allows the
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ations stalls (in million 
y
les in a billion CPU 
y
les)Lo
al Lo
al Remote Remote Lo
al Remote Total Total Error (%)L2 L3 L2 L3 Memory Memory Estimated Measuredart 130 470 0 0 0 0 600 363 65swim 132 80 0 0 255 0 468 346 35apsi 40 315 0 0 0 0 356 331 7m
f 43 321 0 0 0 0 365 310 17spe
j 78 91 20 33 56 7 287 276 3volano 197 6 37 0 0 0 241 235 2vpr 37 75 0 0 0 0 113 97 15
rafty 70 32 0 0 0 0 103 82 25twolf 49 38 0 0 0 0 88 68 29ammp 16 106 0 0 0 0 123 53 132g

 48 10 0 0 0 0 60 51 17bzip2 28 16 0 0 0 0 45 37 20mysql 13 2 1 1 0 0 19 22 -13gzip 16 0 0 0 0 0 16 14 18Table 2.7: Sour
e-based L1 data 
a
he miss stall breakdown: stalls of ea
h storage sour
e isestimated by using its a

ess frequen
y and its average a

ess laten
y. The total stalls due tothe L1 data 
a
he miss is measured by using the IBM POWER5's PMU.runtime optimizer to monitor the results of the applied optimizations, and measure theirbene�ts and potential negative side e�e
ts in a feed-ba
k loop.Sour
e-based BreakdownIn this subse
tion, we present the results of our analysis of the a

ura
y of the naïveapproa
h for breaking down the L1 data 
a
he miss stalls based on their sour
es whi
his des
ribed in Se
tion 2.5.2. Table 2.7 shows both estimated stalls 
aused by varioussour
es using their a

ess frequen
y and average a

ess laten
y, as well as total numberof stalls that are a
tually 
aused by the L1 data 
a
he misses measured by using the IBMPOWER5's PMU.As expe
ted, in most 
ases (with mysql being the ex
eption), the naïve approa
hoverestimates the stalls 
aused by di�erent sour
es, as the sum of all estimated stallsis higher than a
tual stalls 
aused by the L1 data 
a
he misses. However, in most
ases, espe
ially in memory-bound appli
ations, the overestimation error is not so large
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Figure 2.9: The runtime overhead of HPC multiplexing as well as 
omputing and logging SSB(Note that the x-axis is in logarithmi
 s
ale).that makes the sour
e-based breakdown to be misleading. In summary, although thenaïve based approa
h is not a perfe
t solution, in seems to useful in par
ti
e for manyappli
ations.
2.7.3 Runtime OverheadFigure 4.13 shows the runtime overhead of our performan
e monitoring fa
ility for di�er-ent sampling frequen
ies, whi
h is de�ned as the number of over�ow ex
eptions generatedin a unit of time. At ea
h over�ow ex
eption, the HPC values are 
olle
ted, and depend-ing on the logging period, added to the tra
e bu�er. Also, the next HPC group is sele
tedand program the PMU to 
ount it. The runtime overhead is measured by running sev-eral ben
hmarks to 
ompletion and 
omparing the exe
ution time with and without HPCsampling. We found that the runtime overhead in
reases linearly with the sampling fre-quen
y within the range we examined. Moreover, we found that the runtime overheadis fairly independent of the appli
ation that is running among the set of appli
ations weused. In parti
ular, at 20,000 samples per billion 
y
les (i.e., 20000 over�ow ex
eptions),the runtime overhead is around 2%. We believe that with su
h low runtime overhead,our sampling engine is suitable for runtime optimization purposes.
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k Analysis 392.8 Related WorkSoftware HPC multiplexing was previously implemented for PAPI [DLM+03℄, a 
om-monly used performan
e monitoring library that is available on a wide range of ar
hite
-tures. However, in PAPI multiplexing is implemented at user level using the operatingsystem signal me
hanism [May01, MC05℄. A �ne-grained timer is used as a means for
ontrolling the HPC group swit
h. The timer will send a signal to the pro
ess that hasrequested a multiplexed set of hardware events. A major limitation of this approa
h isthat due to the large overhead of HPC group swit
h (the 
ost of signal delivery plus the
ost of kernel/user 
ontext swit
hes), the multiplexing granularity must be large, and as aresult, the extrapolation error may be
ome high for some appli
ations. Another problemwith swit
hing HPC groups in user spa
e is that there is potentially a large laten
y be-tween the time when the timer expires and the time when the signal is a
tually deliveredand the signal handler (where the 
urrent HPC group is read and stored) is 
alled whi
hadds to the multiplexing error. Finally, to the best of our knowledge, there is no quanti-tative study on the overhead and a

ura
y of PAPI's multiplexing engine. In theory, one
ould easily build PAPI's high-level platform-independent interfa
e transparently on topof our low-level and e�
ient multiplexing s
heme.Intel's VTune [Intb℄ is one of the most widely used tools to make the PMU fa
ilitiesavailable to developers. It provides both sampling and binary instrumentation fa
ilities,and it outputs a graphi
al display of programs hot spots as well as 
all graph. There areseveral other tools built for various hardware platforms with similar sets of features, su
has Apple's CHUD [App℄ and PCL [PCL℄. They provide fa
ilities to identify program hotspots and the frequen
y of important hardware events su
h as 
a
he misses or bran
hmispredi
tions. To the best of our knowledge, none of these tools allows for pro�lingmore events than the number of HPCs at the same time. Also, they often only exposethe hardware PMU features dire
tly to the user. It is up to the user to interpret thesemanti
s of the low�level hardware events.DCPI is another pro�ling tool that uses �ne-grained sampling of the HPCs to identifysystem-wide hot spots at run-time [ABD+97℄. It also attempts to identify pipeline stalls
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k Analysis 40at the instru
tion level using event-based sampling. There are some hints that HPCmultiplexing is implemented in this system, but no details of the design nor statisti
alanalysis is provided. Moreover, there is a major simplifying assumption made by theauthors, namely that the distan
e between the instru
tions 
ausing the performan
e
ounter to over�ow and the a
tual o

urren
e of the over�ow ex
eption is �xed. Thisassumption is used to attribute stalls to the instru
tions that are 
ausing them. However,our experien
e with more modern real pro
essors with deeper and wider pipeline showsthat this assumption is fairly unrealisti
.Re
ent work suggests a performan
e 
ounter ar
hite
ture for measuring the CPI 
om-ponents using a simpli�ed model to quantify the negative e�e
t of the miss events in themi
ro-ar
hite
ture throughput [EEKS06, KS04℄. The authors 
ompared the a

ura
y oftheir ar
hite
ture to the one implemented in IBM POWER5 using simulation. Althoughthey improved the a

ura
y of CPI breakdown information mainly by taking mispredi
tedpaths into a

ount, their model still la
ks a 
omprehensive analysis of potential overlapsof stalls from di�erent 
auses in the pro
essor ba
k-end. Moreover, due to the di�eren
ein the experimental methodology (a simulation environment versus a real and 
omplexpro
essor) the head-to-head 
omparison with IBM POWER5 may not be meaningful.Nevertheless, su
h attempts 
on�rm the need to implement features in the pro
essorPMU to analyze the 
auses of overlapping stalls more a

urately.Pro�leMe proposes instru
tion sampling to randomly monitor individual instru
tionsas they pass through the di�erent stages of the system pipeline [DHW+℄, in order to gathera

urate information on what are the major sour
es of laten
y. Although instru
tionsampling 
an be e�e
tive, there is little analysis in the paper that shows the a
tual run-time overhead of 
onstru
ting an instru
tion-level pro�le. We believe our approa
h 
an be
omplemented by approa
hes su
h as Pro�leMe to sear
h for bottlene
k in a multi-levelfashion.Wassermann et. al presented an analysis of mi
ropro
essor performan
e using a modelsimilar to SSB to 
hara
terize the e�e
t of stalls 
aused by 
a
he and memory laten-
ies [WLLB97℄. Estimating the number of stalls 
aused by a sour
e is done in softwareby multiplying the number of a

esses to the sour
e by its average a

ess laten
y. Our
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k Analysis 41approa
h extends this e�ort in two dire
tions. First, we exploit hardware support tomeasure the stalls more a

urately. Se
ondly, while we in
lude all possible sour
es ofstall into our analysis, their approa
h mainly fo
used only on 
a
he and memory stalls.Sla
k [FBHN03a℄ and Intera
tion Costs [FBHN03b℄ are two models for a

uratelyestimating how mu
h performan
e gain 
an be a
hieved by idealizing laten
ies of in-dividual instru
tions. Although these approa
hes provide a

urate information on thepotential gain of idealizing individual instru
tions, they require additional hardware sup-port and extensive postmortem analysis, whi
h make them di�
ult to use in the 
ontextof run-time optimization.FlashPoint [MOH96℄ and Lemieux [Lem96℄ both attempt to integrate monitoring thea
tivities the memory inter
onne
t in a shared memory multipro
essor with the existing
a
he-
oheren
e hardware. The basi
 idea is that the 
a
he-
oheren
e hardware auto-mati
ally a
tivates a software trigger on 
a
he 
oheren
e a
tivities that are in
urred asa result of L2 
a
he misses. The trigger is able to obtain mu
h information about 
a
hemisses in
luding their laten
y and then builds summary performan
e information su
has histograms. FlashPoint is implemented in the FLASH multipro
essor, and Lemieuxapproa
h is implemented in NUMA
hine multipro
essor, both presumably with an a
-
eptable runtime overhead (e.g., around 10%). While the features suggested by theseapproa
hes are very useful, the rami�
ation of implementing them in today's mu
h fasterand more 
omplex mi
ropro
essors are not known. Moreover, the fo
us of both ap-proa
hes is primarily on o�-
hip memory tra�
. In prin
iple, one 
an extend theseapproa
hes to the 
ase of on-
hip 
ommuni
ation through shared 
a
he.2.9 Con
luding RemarksHardware performan
e 
ounters (HPCs) are useful for analyzing and understanding theperforman
e of a pro
essor exe
uting 
ode, but there are 
hallenges in using them online. Too few HPCs are available in most today's mi
ropro
essors, and, the de�nitionsof the hardware events that 
an be 
ounted by HPCs are low-level and 
omplex.In this 
hapter, we des
ribed two te
hniques that over
ome the limitations of existing
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k Analysis 42mi
ropro
essor HPCs. First, we provide a larger set of logi
al HPCs by dynami
allymultiplexing physi
al HPCs using statisti
al sampling of hardware events. Using realprograms, we showed experimentally that 
ounts of hardware events obtained throughsampling is statisti
ally similar (i.e. within 15%) to the a
tual event 
ounts. Se
ondly,we proposed a simple performan
e model based on CPI breakdown that fo
uses on stall
y
les, whi
h are de�ned as 
y
les in whi
h no instru
tions 
ompletes. We show that
ompletion stalls are parti
ularly important, as they 
ontribute to over 73% of all CPU
y
les a
ross the SPEC2000 ben
hmarks. Moreover, removing the 
ompletion stalls willresult in a CPU throughput whi
h is fairly appli
ation independent and is 
lose to themaximum CPU throughput determined by the pipeline width. We exploit IBM Pow-erPC970 and POWER5 features to spe
ulatively asso
iate ea
h 
ompletion stall 
y
le tothe pro
essor 
omponent that likely 
aused the stall. The entire stall breakdown modelis 
omputed online by using our HPC multiplexing engine with a run-time overhead ofunder 2%.The fa
ility we have implemented is useful for detailed on-line performan
e analysis ofappli
ation and system 
ode running at full speed with small overhead. It is also e�e
tivein reporting hardware bottlene
ks to tools su
h as a dynami
 optimizer that might guidedynami
 adaptation a
tions in a running system. A number of outside groups havestarted using our sampling-based tool. For example, our tool has been su

essfully usedby several resear
h groups within IBM resear
h over the last few years for the purposeof detailed bottlene
k analysis and guiding performan
e optimization. Their experien
eindi
ates that the stall breakdown fa
ility is a powerful model, whi
h is easy to use andunderstand and that is reasonably a

urate even for fairly 
omplex appli
ations.When we started working on exploiting pro
essor HPCs, we were surprised how dif-�
ult it was to use the 
ounters. Their exa
t semanti
s are generally not de�ned ina publi
 way, and we had to spend 
onsiderable e�ort reverse engineering their realmeaning. Moreover, we were surprised how di�erent the HPCs were from pro
essor topro
essor, even within the same pro
essor family.Throughout this work, we found that to 
orre
tly interpret the values the HPCs, onemust understand the details of the target pro
essor mi
roar
hite
ture, something that is
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k Analysis 43often proprietary and something most software engineers would �nd di�
ult. The HPCs,with the events they 
an 
ount, were 
learly designed more for pro
essor ar
hite
ts thanfor software ar
hite
ts. In many ways, our tool helps map detailed mi
ro-ar
hite
turalevents to higher-level information, understandable by a larger audien
e.Looking into the future, we would hope that pro
essor designers in
rease the numberof HPCs available and that an in
reased number of higher-level events, more useful tosoftware optimizers, be 
ountable. With more 
ountable higher-level events, it be
omespossible to standardize HPCs and their interfa
es a
ross di�erent pro
essors so that itbe
omes easier to port tools su
h as ours to di�erent ar
hite
tures. Long term, weenvision an HPC standard emerging that software 
an rely on and implemented on allpro
essors (similar to the way the �oating point standard is implemented today).



Chapter 3
Hardware Data Sampling to Dete
tThread Sharing
3.1 Introdu
tionHardware data sampling is a me
hanism in the mi
ro-ar
hite
ture to 
olle
t data ad-dresses that are manipulated by programs either periodi
ally or upon o

urren
e of 
er-tain hardware events. Data sampling has been used e�e
tively by a number of resear
hersfor a variety of purposes. For example, it has been used to tra
k a

ess patterns of indi-vidual 
a
he lines in order to be able to insert software prefet
hing hints [LCF+03℄. Otheruses in
lude algorithms to automati
ally dete
t 
a
he working set sizes [BH05℄, isolationof laten
y-
ausing memory regions [BH℄, or to enhan
e NUMA page pla
ement [THb℄algorithms. Finally, there have been attempts to use data sampling to verify program
orre
tness or enfor
e se
urity [ZLF+04℄.Hardware support for data sampling is present in many modern mi
ro-ar
hite
turessu
h as IBM POWER5 [SKT+℄, Intel Itanium [Inta℄, Sun's UltraSpar
 [NZ℄, and AMDBar
elona [CI06℄ pro
essors. In most ar
hite
tures, a spe
ial Data Address Register(DAR) is dedi
ated for sampling data addresses. The 
ontent of the DAR is automat-i
ally updated by the hardware PMU with the operand of a memory instru
tions (loador store). The PMU 
an usually be programmed to update the DAR only when 
ertainsele
tion 
riteria are satis�ed. Examples of su
h sele
tion 
riteria in
lude when a data44
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a
he miss or a TLB miss has o

urred during the exe
ution of a memory instru
tion.Most existing ar
hite
tures provide only one DAR. Hen
e, at any point in time, only onesele
tion 
riterion 
an be used to �lter the data samples by the hardware PMU.In most 
ases, however, the underlying hardware support for data sampling is notadequate. This has for
ed resear
hers to either roughly approximate the informationthey need from hardware, or to propose new hardware support spe
i�
ally for theirpurpose. Examples of limitations of hardware support for data sampling that we haveen
ountered in our own studies are the following.Coarse Sele
tion Criteria: In most ar
hite
tures, the sele
tion 
riteria supportedby the hardware PMU are often not su�
iently spe
i�
. As a result, many of the datasamples that are 
olle
ted by the hardware are not relevant to a parti
ular optimizationte
hnique. Resolving this issue often requires potentially expensive software �lteringte
hniques. An example of su
h �lter me
hanism is presented in Se
tion 3.2.1, wherewe use a 
ombined hardware-software approa
h to 
apture 
a
he misses that are fet
hedfrom a spe
i�
 storage sour
e.In�exible Interfa
e: In most 
ases, the hardware interfa
e for spe
ifying the sele
-tion 
riteria is too in�exible. For instan
e, only one sele
tion 
riterion 
an be spe
i�edat a time. Support for 
ombining multiple sele
tion 
riteria in either 
onjun
tive ordisjun
tive forms is not provided. We show in Se
tion 3.2.2 how we use the HPC mul-tiplexing fa
ility des
ribed in Se
tion 2.4 to implement having multiple sele
tion 
riteriain a disjun
tive form.Also, due to the in�exible hardware interfa
e, data samples are delivered to softwarein raw form whi
h is often too voluminous to be stored and pro
essed in their raw form.One has to build build e�
ient summary data stru
tures at the software level to be ableto over
ome spa
e requirements. A widely used example of su
h data stru
tures is thehistogram. In a 
ase study, we will show how we use a variation of histograms to buildsharing signatures for 
on
urrently running threads.
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t Thread Sharing 463.1.1 Organization of ChapterIn this 
hapter, we �rst present a brief overview of the major methods of hardwaredata sampling and des
ribe the advantages and short
omings of ea
h method. We thenpresent our spe
i�
 me
hanisms (i) to sample data a

ording to the sour
e it is fet
hedfrom, and (ii) to apply multiple sele
tion 
riteria simultaneously. We also provide adetailed explanation of how we use these me
hanisms to dete
t sharing patterns among
on
urrently running threads, and how one 
an use su
h sharing patterns to 
lusterthreads in a 
hip multipro
essor (CMP) ar
hite
ture to avoid expensive 
ross-
hip dataex
hange. At the end of the 
hapter, we dis
uss some of the problems with 
urrenthardware support for data sampling and provide 
on
rete proposals to solve some ofthese problems.3.1.2 Data Sampling MethodsIn this se
tion we provide a brief des
ription of di�erent methods of hardware datasampling. We also dis
uss the major advantages and short
omings of ea
h approa
h.Continuous Data SamplingWith 
ontinuous data sampling, the DAR is 
ontinuously updated by the hardware PMUas memory instru
tions with operands that mat
h the sele
tion 
riteria arrive in thepipeline. With 
ontinuous data sampling, the DAR is 
onstantly overwritten as newinstru
tions are issued. System software 
an take samples of DAR values by o

asionallyreading its value, whi
h will refer to the last operand address that has mat
hed thesele
tion 
riteria.The main advantage of this approa
h is that all address operands of memory instru
-tions have a fairly equal 
han
e of being 
aptured by system software. That is, it ispossible for system software, at least in prin
iple, to re
ord all address operands thatmat
h the sele
tion 
riteria (e.g., a 
a
he miss). This is an important property in 
ertainoptimization s
hemes, where it is important to see all data addresses that 
ause a 
ertainevent su
h as 
a
he miss or TLB miss. Moreover, system software is able to use hardware
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e 
ounters 
orresponding to the sele
tion 
riteria to 
apture exa
tly one in Naddress operands that mat
h the sele
tion 
riteria.The major limitation with 
ontinuous data sampling is that, due to the deep pro
essorpipeline, there is a potentially large distan
e in the dynami
 instru
tion stream betweenthe memory instru
tion that has 
aused the DAR to be updated, and the 
urrent program
ounter (PC). As a result, it is di�
ult to dire
tly attribute the re
orded DAR to aparti
ular instru
tion. In prin
iple, one 
an per
eive a hardware me
hanism to tra
kba
k ea
h instru
tion in the pipeline to an instru
tion address. But to the best of ourknowledge, su
h a me
hanism does not exist in any of the todays' pro
essors.A se
ond issue with 
ontinuous data sampling is that it is inherently spe
ulative inthe sense that the DAR is updated regardless of whether the issued instru
tion that
aused the DAR to update a
tually 
ompleted or �ushed due to bran
h mispredi
tion.As a result, any analysis of the sampled data addresses must take the noise generated bythe mispredi
ted paths into a

ount.Instru
tion SamplingWith instru
tion sampling, an instru
tion is tagged to be monitored by the hardwarePMU as it passes through the di�erent stages in the pro
essor pipeline [DHW+, IBM06,Inta, CI06℄. The address of the tagged instru
tion is stored into a dedi
ated Instru
tionAddress Register (IAR) and the DAR is also updated only when the address operand ofthe tagged instru
tion is 
al
ulated.The main advantage of instru
tion sampling for the purpose of data sampling isthat the sampled addresses 
an be pre
isely tra
ked ba
k to the instru
tions that havea

essed them. This has the potential for more 
omplete analysis, as it is possible to
hara
terize 
omputation bottlene
ks both in terms of the exe
uting 
ode and the datathat is manipulated by the 
ode at the same time. This is signi�
ant as identifying the
ode that is 
onsuming most of the exe
ution time alone may not be su�
ient as a singlesegment of 
ode (e.g., a fun
tion) 
an a

ess many di�erent sets of data addresses (e.g.,depending on the input parameters). Similarly, data sampling alone may not be su�
ienteither, as the data that 
auses long laten
y may be a

essed by many instru
tions through
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ode paths in the program.The major limitation of instru
tion sampling is its low re
all: of the many instru
tionsthat �ow through the pipeline, only very few instru
tions (usually only one) 
an besampled. As a result, many relevant data a

esses will pass by unnoti
ed. This problemis aggravated when sampling is 
onditional to some sele
tion 
riteria (e.g., 
a
he misses),sin
e instru
tion tagging o

urs independently of the sele
tion 
riteria in most pro
essors.This is be
ause instru
tion tagging is usually done at an early stage of the pro
essorpipeline (e.g., the fe
t
h or de
ode stage) whi
h is too early to evaluate any ba
kend-level sele
tion 
riteria (e.g., a 
a
he miss). In su
h 
ases, a large number instru
tionsthat satisfy the sele
tion 
riteria will not be tagged, and a large number instru
tions thatare tagged do not satisfy the sele
tion 
riteria.Hardware Data BreakpointsWith 
ontinuous sampling and instru
tion sampling, it is di�
ult to wat
h every a

ess toa parti
ular memory address. Su
h wat
hing me
hanisms have been used, for instan
e, tomeasure the program 
a
he working set size by measuring the reuse distan
e of a sampledset of 
a
he lines [BH05℄ or to identify potential bugs or atta
ks [ZLF+04℄. While thereare me
hanisms to monitor a

esses to individual pages at the operating system kernel,(e.g., by reseting and 
he
king page table bits), wat
hing a

esses at the granularity of asingle 
a
he line is not dire
tly possible without additional hardware support.An alternative method to monitor spe
i�
 data addresses is to use the data breakpointme
hansim su
h as the one implemented in the AMD64 ar
hite
ture [AMD℄, whi
h isoriginally designed for debugging purposes. If a 
a
he line-sized data item is sele
ted tobe a wat
h point, every subsequent a

ess to the data item will raise an ex
eption tothe operating system. The operating system ex
eption handler 
an examine the 
urrentprogram 
ontext and the wat
hed address.The breakpoint me
hanism is potentially 
ostly to use, sin
e every a

ess to a sele
tedmemory item will 
ause an ex
eption. For instan
e, Berg et al. show that an analysisof 
a
he working set size by using the breakpoint me
hanism 
ould result in an averageoverhead of around 40% [BH04℄.
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h to sample data a

essed is to monitor the memory bus transa
tionsand sample the addresses that appear on the bus, rather than sampling the addresseson ea
h pro
essor individually. Real systems su
h as Sun Mi
rosystem's Fire Link havetaken this approa
h [NZ℄.While monitoring the memory bus has the advantage of having the global order ofre
orded data samples a
ross the entire system, it has several drawba
ks. First, addressesthat appear on the bus are already �ltered by a potentially large on-
hip 
a
he. Asa result, mu
h of the appli
ation data a

ess pattern is not visible to any bus-basedanalyzer. This problem is parti
ularly aggravated in todays hierar
hi
al multipro
essingar
hite
tures (i.e., SMP-CMP-SMT). Se
ond, bus-based data sampling requires spe
ialhardware support, whi
h makes it hard to be used for o�-the-shelf 
ommodity pro
essors.Finally, only physi
al addresses appear on the memory bus, and as a result, a softwareanalyzer must map the physi
al addresses ba
k to their 
orresponding virtual addressesin an online fashion.
3.1.3 Data Sampling ModesThe DAR 
an be read usually by both kernel and user-level software. Software mayde
ide to read and re
ord the DAR periodi
ally, i.e., time-based sampling or upon a
ertain number of instan
es of a parti
ular event, i.e., event-based sampling. Time-basedsampling is simple and generi
, and it 
aptures the frequen
y distribution of a

esses to alldata items uniformly. On the other hand, event-based sampling is more targeted towardsmonitoring and sampling addresses that are involved in spe
i�
 hardware events (e.g.,
a
he misses, TLB misses, or 
a
he invalidations in multipro
essor systems). As a result,event-based sampling may be better suited for 
ertain optimizations, as it automati
allyignores all unrelated data a

esses.
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hniquesIn this se
tion, we des
ribe two novel data sampling te
hniques we developed and usedfor the purpose of dete
ting data sharing patterns among 
on
urrent threads. These twote
hniques are fairly generi
 and 
an be potentially used for other purposes than theone we used in our work. The �rst te
hnique is to sample data based on the sour
e itis fet
hed from, and the se
ond te
hnique is to 
ombine multiple sampling 
riteria in adisjun
tive form.3.2.1 Sour
e-based Data SamplingIt is often useful to be able to determine the storage sour
e from whi
h a sampled dataaddress item is fet
hed. The storage sour
es in
lude L1 
a
he, lo
al or remote L2 
a
hes(in SMP systems), lo
al or remote L3 
a
hes, and lo
al or remote DRAM memory mod-ules (in NUMA systems). For instan
e, our thread sharing dete
tion s
heme is basedon the ability to sample data items that are 
onsistently fet
hed from L2 or L3 
a
hesof remote pro
essor 
hips. Having sour
e information is, in this 
ase, helpful to be ableto 
on
lude that there is 
onsistent data sharing among threads that are running onmultiple separate pro
essor 
hips. Another use of the sour
e information is in a NUMApage pla
ement s
heme that dynami
ally monitors the a

esses of threads to both lo
aland remote memory modules and determines the optimal lo
ation of a given data pageand potentially migrates the pages a

ordingly.However, to the best of our knowledge, sampling data a

ording to their sour
esis not dire
tly available in the PMU features of any of today's mi
ropro
essors. As aworkaround, we have exploited IBM POWER5's PMU features to 
ondu
t sour
e-basedsampling indire
tly. IBM POWER5 supports the 
ontinuous data sampling method. Thesele
tion 
riteria, however, is �xed to be only either an L1 data 
a
he miss or a TLBmiss or both. As a result, in 
ontinuous data sampling, the DAR 
ould hold the addressof the last L1 data 
a
he miss. But it is not possible to dire
tly determine the sour
efrom whi
h an L1 data 
a
he miss will be eventually fet
hed. On the other hand, IBMPOWER5 PMU 
an 
ount L1 data 
a
he misses broken down by the sour
es from whi
h
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a
he miss is satis�ed. Therefore, it is possible to set the PMU over�ow ex
eption tobe raised when a threshold on the number of L1 data 
a
he misses from a 
ertain sour
eis rea
hed. On
e an over�ow ex
eption is raised, the last data 
a
he miss is likely to bethe data 
a
he miss that 
aused an over�ow ex
eption. Therefore, by reading the DARonly when the 
a
he miss 
ounter of a spe
i�
 sour
e over�ows, we ensure that most ofthe data samples read are a
tually fet
hed from the parti
ular sour
e.3.2.2 Multiple Sampling CriteriaMost modern CPUs support only one DAR. Hen
e, at any point in time, only one datasampling 
riterion 
an be spe
i�ed. This is a limitation, as one may need to simultane-ously monitor data addresses with di�erent 
riteria, ea
h with a 
ertain distribution. Forinstan
e, in analyzing a data a

ess pattern with the goal of improving page pla
ementin a NUMA ar
hite
ture, one may need to sample data addresses that are fet
hed bothfrom lo
al memory modules and from remote memory modules at the same time. Astraightforward solution would be to have multiple DARs that 
an be independently pro-grammed for di�erent 
riteria. We are not aware of potential 
hallenges in the hardwareimplementation of having multiple DARs. However, it does not seem that the hardwaredesigners are willing to add more data sampling resour
es unless resear
hers show howsu
h resour
es 
an be utilized e�e
tively.Our, rather temporary, solution for this problem is to integrate data sampling withthe HPC multiplexing introdu
ed in Se
tion 2.4. With this approa
h, we sample data forea
h spe
i�ed 
riterion during a time sli
e of g 
y
les in a multiplexing round of R 
y
les.When the time sli
e is over, another data sampling 
riterion is spe
i�ed as the new HPCgroup is programmed. Spe
ifying a data sampling 
riterion is typi
ally lightweight, asit requires manipulating the same 
ontrol registers that are used for swit
hing from oneHPC group to the other. Several data samples 
an be re
orded within a time sli
e g asthe HPC of the 
orresponding event over�ows.The length of a time sli
e (e.g., g 
y
les) should be long enough so that the samplingevent 
ounter over�ows at least on
e. Otherwise, no samples will be re
orded, as theHPCs are reset every time they are s
heduled. To 
ope with this problem, one may



Chapter 3. Hardware Data Sampling to Dete
t Thread Sharing 52redu
e the threshold on whi
h the sampling event is supposed to over�ow. However, inthe worst 
ase, the sampling event may not o

ur even on
e during the time sli
e. Inthis 
ase, a possible solution is to treat the sampling event 
ounters di�erently by savingtheir value at the end of a time sli
e and restoring them when they are s
heduled in again(as opposed to reseting them). In pra
ti
e, however, the sampling events of interest areoften frequent enough to be 
aptured in a single time sli
e multiple times. This is be
auseif an event is dire
tly or indire
tly 
ausing a performan
e bottlene
k, it must be fairlyfrequent.3.3 Dete
ting Data SharingIn this se
tion we provide the details of a spe
i�
 
ase study where we use the datasampling te
hniques des
ribed in Se
tion 3.2 to improve performan
e by adding sharing-awareness to the operating system CPU s
heduler in a Chip Multipro
essor (CMP) envi-ronment. First we des
ribe the motivation behind the work. In Se
tion 3.3.2 we des
ribethe details of our te
hnique in building sharing signuatures for running threads. Finally,in Se
tion 3.3.3 we dis
uss our approa
h in 
lustering threads that share data together.3.3.1 MotivationAs limits in mi
ropro
essor te
hnology have slowed improvements in 
lo
k frequen
y, andmi
ro-ar
hite
ture 
omplexity has limited more radi
al exploitation of Instru
tion LevelParallelism (ILP), major mi
ropro
essor manufa
turers have turned towards providingThread-Level Parallelism (TLP) as a means to speed up appli
ations. Both CMP andsimultaneous multithreading (SMT) te
hnologies were introdu
ed over the last severalyears even for small-s
ale 
omputer systems su
h as laptops, and desktop 
omputers, aswell as for large-s
ale servers. As a result, shared memory multipro
essors have be
omein
reasingly prevalent. This trend seems to 
ontinue as CPU 
hips are equipped with anin
reasing number of pro
essing 
ores.A key di�eren
e between traditional shared memory multipro
essors (SMPs) and moremodern multi-
ore systems is that the latter have non-uniform data sharing overheads;
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Figure 3.1: The ar
hite
ture of IBM OpenPower720. The numbers on arrows show the laten
yof a

ess from a thread to di�erent levels of memory hierar
hy. Any 
ross-
hip sharing takes atleast 120 CPU 
y
les.i.e., the overhead of data sharing between two pro
essing 
omponents di�ers dependingon their physi
al lo
ation. For pro
essing units that reside on the same CPU 
ore (i.e.,hardware virtual 
ontexts), 
ommuni
ation typi
ally o

urs through a shared L1 
a
he,with laten
y of 1-2 
y
les. For pro
essing units that do not reside on the same CPU
ore but reside on the same 
hip, 
ommuni
ation typi
ally o

urs through a shared L2
a
he, with laten
y of 10 to 20 
y
les. Pro
essing units that reside on separate 
hips
ommuni
ate either through sharing memory or through a 
a
he-
oheren
e proto
ol,both with an average laten
y of hundreds of CPU 
y
les. As a spe
i�
 example, 
onsiderthe IBM OpenPower720's laten
ies depi
ted in Figure 3.1.Most resear
h done on 
a
he-aware CPU s
heduling has fo
used on maximizing andexploiting 
a
he a�nity, both in unipro
essor and multipro
essor systems [TTG95℄. How-ever, to the best of our knowledge, 
urrent CPU s
hedulers do not take non-uniform datasharing overheads into a

ount. As a result, threads that a
tively share data will notne
essarily be 
o-lo
ated onto the same 
hip. Figure 3.2 shows an example of a s
enariowhere two 
lusters of threads are distributed a
ross the pro
essing units of two 
hips.
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a. default b. 
lusteredFigure 3.2: Default versus 
lustered s
heduling. The solid lines represent high-laten
y 
ross-
hip 
ommuni
ations, the dashed lines are low-laten
y intra-
hip 
ommuni
ations (when sharingo

urs within the L1 and L2 
a
hes).The distribution of threads to pro
essors is usually done as a result of some dynami
load-balan
ing s
heme with no regard for thread sharing. Consequently, when threadswithin a 
luster share data frequently, a typi
al s
heduling algorithm (as shown on theleft) is likely to 
ause threads being assigned to 
ores of di�erent 
hips, so that there willbe a high degree of high-laten
y, inter-
hip 
ommuni
ation (shown with the solid lines).However, if the operating system is able to dete
t intra-
luster thread sharing patternsand s
hedule the threads a

ordingly, then threads that share data heavily 
ould bes
heduled to run on the same 
hip and, as a result, most of the 
ommuni
ation (dashedlines) will take pla
e in the form of L1 or L2 
a
he sharing.However, automati
ally dete
ting sharing patterns among 
on
urrently exe
utingthreads is non trivial. A basi
 approa
h to this problem is to to use page-level pro-te
tion and a

ess information provided by hardware in the page tables to tra
k the dataea
h thread is a

essing. This approa
h has been used in the past to implement, forinstan
e, software distributed shared memory (DSM) [ACD+96℄. There are two majordrawba
ks with this approa
h. First, using page granularity as the unit of sharing is too
oarse in many 
ases resulting in a high degree of falsely dete
ted sharing. Se
ondly, theinformation on whether a page is a

essed or not is available either through frequentlys
anning and reseting page table entries, or by prote
ting pages from a

ess and re
ordinga page a

ess upon a subsequent page fault. Both options are potentially 
ostly, both in



Chapter 3. Hardware Data Sampling to Dete
t Thread Sharing 55terms of their dire
t overhead and also in terms of their indire
t negative impa
t on per-forman
e through 
a
he pollution and TLB �ushing that 
ome as a result of page-tabletraversal and manipulation.In the next se
tion, we show how to use hardware data sampling to e�e
tively dete
tsharing patterns among threads. A major advantage of our approa
h is that it is able toa

urately tra
k data sharing down to a single 
a
he line (whi
h is the unit of hardware
a
he 
oheren
e). Moreover, as we show in Se
tion 3.4, it is possible to a
hieve lowruntime overhead by having a light-weight layer of software that pro
esses the datasamples generated.3.3.2 Dete
ting Sharing PatternsUsing our sour
e-based data sampling me
hanism, we sample data a

esses that (i) in
urmiss in the L1 data 
a
he and (ii) are eventually fet
hed from 
a
hes on a remote pro
essor
hip (remote L2 or L3). We then use these samples to 
onstru
t a summary data stru
turefor ea
h thread, 
alled shMap. Finally, 
ompare the threads' shMaps with ea
h other toidentify the threads that are a
tively sharing data and 
luster them a

ordingly. Next,we present the details on how we build shMaps and use them for thread 
lustering.Constru
ting shMapsEa
h shMap is a small ve
tor (e.g., 256 entries) of 8 bit-wide saturating 
ounters. Wepartition the appli
ation address spa
e into �xed sized blo
ks. Ea
h blo
k is mapped toa 
ounter in the shMap ve
tor using a hash fun
tion. An shMap entry is in
rementedonly when the 
orresponding thread in
urs a remote 
a
he miss on the blo
k. Note thatthreads that share data but happen to be lo
ated on the same 
hip do not 
ause their
shMaps to be updated as they do not in
ur any remote 
a
he miss.The blo
k size is an important parameter. The advantage of a large blo
k size is thatthe total size of the shMap's span over an appli
ation's address spa
e in
reases. However,large blo
k sizes may make the a

ess tra
king less pre
ise, whi
h may result in falselydete
ting and reporting sharing where in fa
t, the a

esses are in di�erent spots within
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k. In this study, we set the blo
k size to be equal to the size of an L2 
a
heline (e.g., 128 bytes), whi
h is the unit of hardware-level data sharing in most hardware
a
he-
oheren
e proto
ols. False sharing within a single 
a
he line 
an still happen, buthardware 
a
he-
oheren
e will not be able to distinguish it from true sharing either, andas a result, it will still in
ur 
a
he line invalidations and 
ross-
hip 
ommuni
ations.Constru
ting shMaps involves two 
hallenges. First, to re
ord and pro
ess everysingle remote 
a
he miss is prohibitively expensive, espe
ially for appli
ations in whi
hthere is a large volume of read/write sharing among threads and subsequently, frequentremote 
a
he misses. Se
ondly, with a relatively small shMap, there will be a lot of
ollisions in hashing virtual addresses of remote 
a
he misses onto shMap entries, asappli
ations virtual address spa
e are mu
h larger than the shMap span (e.g., 64Kbytes).We use two di�erent te
hniques to deal with the two 
hallenges. To 
ope with thehigh volume of data, we use temporal sampling, and to redu
e the 
ollision rate (a
tuallyto eliminate 
ollision altogether) we use spatial sampling. Using temporal and spatialsampling of remote 
a
he misses 
ombined instead of 
apturing them pre
isely is su�
ientfor the purpose of dete
ting sharing among threads, be
ause we are not interested inknowing the absolute volume of sharing and all the addresses that are shared, but ratheronly need an indi
ation of whether two threads are sharing data or not. Statisti
alsampling s
hemes ensures that if a data item is highly shared (i.e., remote 
a
he misseson it o

ur highly frequently), it will be re
orded with high probability.We now des
ribe the two te
hniques, temporal sampling and spatial sampling in moredetail.Temporal Sampling: We re
ord and pro
ess one in N o

urren
es of remote 
a
hemiss events. In order to avoid undesired 
oin
idental repetitions, we 
onstantly readjust
N by a small random value. Moreover, the value of N is further adjusted by the 
urrentfrequen
y of remote 
a
he misses whi
h 
an also be measured by the HPCs. A high rateof remote 
a
he misses allows for larger values for N so as to redu
e the runtime overheadand at the same time be able to obtain obtain a representative sample of addresses.Spatial Sampling: Rather than monitoring the entire virtual address spa
e, wesele
t a fairly small set of sample blo
ks to be monitored for remote 
a
he misses. There
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Figure 3.3: Constru
ting shMaps: ea
h remote 
a
he miss by a thread will be hashed to anentry in both the shMap �lter and the thread's shMap. A remote 
a
he miss will be re
orded(i.e., shMap entry is in
remented), only if either the shMap �lter entry is not already allo
ated,or is previously allo
ated for the same virtual address. Cir
led numbers represent the order ofa

ess. Remote 
a
he misses "1" and "2" are re
orded be
ause their entries in the shMap �lterare free. Remote 
a
he misses "3" and "4" are dis
arded be
ause their shMap �lter entries arealready reserved for di�ernt virtual addresses.has to be at least one remote 
a
he miss on a blo
k to make it eligible to be sele
ted. Thespatial sampling s
heme then sele
ts the sample blo
ks somewhat randomly among theeligible blo
ks. The justi�
ation for spatial sampling is if there is high level of sharingamong threads, there will be some hot sharing spots that will likely be 
aptured by thespatial sampling s
heme. Also, having several hot spots is a 
lear indi
ation of high levelof sharing among threads.We implement spatial sampling by using a �lter to sele
t remote 
a
he miss addresses.This shMap Filter is essentially a ve
tor of addresses with the same number of entriesas an shMap. All threads of a pro
ess use the same shMap �lter. Figure 3.3 shows thefun
tion of shMap �lter. A sampled remote 
a
he miss address is allowed to pass throughthe shMap �lter only if its 
orresponding entry in the shMap �lter has the same address
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a
he miss is dis
arded and not used in the analysis. Ea
h
shMap �lter entry is initialized (in an immutable fashion) by the �rst remote 
a
he missthat is mapped to the entry. Threads 
ompete for the entries on shMap �lter.In an unlikely pathologi
al 
ase, it is possible that some threads starve out others bygrabbing the majority of the shMap �lter entries, thus preventing the remote 
a
he missesof the other threads to be pro
essed. This does not 
ause a problem with our s
heme,as we envision the thread 
lustering pro
ess to be iterative. That is, after dete
tingsharing among some threads and 
lustering them, if there is still a high rate of remote
a
he misses, thread 
lustering is a
tivated again, and the previously starved threads willobtain another 
han
e of 
apturing entries on the shMap �lter.3.3.3 Clustering ThreadsIn this subse
tion, we des
ribe our approa
h for 
lustering shMap ve
tors into groups ofthreads that a
tively share data. We �rst des
ribe the similarity metri
 we use in our
lustering s
heme. Then we des
ribe the a
tual 
lustering algorithm we implemented toform the thread 
lusters.
shMap Similarity Metri
We de�ne the similarity of two threads' shMap ve
tors as their dot produ
ts:

similarity(T1, T2) =
N∑

i=0

T1[i] ∗ T2[i]The rationale behind 
hoosing this metri
 for similarity is two fold. First, it automati
allytakes into a

ount only those entries where both ve
tors have non-zero values. Note that
T1 and T2 have non-zero values in the same lo
ation only if they have had remote 
a
hemisses on the same 
a
he line (i.e., the 
a
he line is being shared a
tively). We 
onsidervery small values (e.g., less than 3) to be zero as they may be in
idental or due to 
oldsharing and may not re�e
t a real sharing pattern.Se
ondly, the metri
 takes into a

ount the intensity of sharing by multiplying thenumber of remote misses ea
h of the parti
ipating threads in
urred on the target 
a
heline. That is, if two ve
tors have a large number of remote misses on a small number of
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a
he lines, the similarity value will be large, 
orre
tly identifying that the two threadsare a
tively sharing data. Other similarity metri
s 
ould be used, but we found thismetri
 to work quite well for the purpose of thread 
lustering (See Se
tion 3.4).Forming ClustersOne way to 
luster threads based on shMap ve
tors is to use standard ma
hine learningalgorithms, su
h as hierar
hi
al 
lustering or K-means [JMF99℄. Unfortunately, su
h al-gorithms are 
omputationally too expensive to be used online in systems with potentiallyhundreds or thousands of a
tive threads, or they require the maximum number of 
lustersto be known in advan
e (for K-means, for instan
e), whi
h is not a realisti
 assumptionto make in our environment.To avoid high overhead, we use a simple heuristi
 for 
lustering threads based on twoassumptions that are simplifying but fairly realisti
. First, we assume data is naturallypartitioned a

ording to appli
ation logi
, and threads that work on two separate parti-tions do not share mu
h ex
ept for data that is globally shared (i.e., pro
ess-wide) amongall threads. In order to remove the e�e
ts of globally shared data on 
lustering, we builda histogram for shMap ve
tors in whi
h ea
h entry shows how many shMap ve
tors havea non-zero value for the entry. We 
onsider a 
a
he line to be globally shared if morethan half of the total number of threads have in
urred a remote miss on it. We ignoreinformation on globally shared 
a
he line when 
omposing 
lusters.The se
ond assumption is that if a subset of threads share data, the sharing is rea-sonably symmetri
. That is, we assume it is likely that all of them in
ur remote misseson similar 
a
he lines, no matter how they are partitioned.Using the two above assumptions, we de�ne a simple 
lustering algorithm as follows.Based on the �rst assumption, if the similarity between shMap ve
tors is greater thana 
ertain threshold, we 
onsider them to belong to the same 
luster. Also, a

ording tothe se
ond assumption, any shMap ve
tor 
an be 
onsidered as a 
luster representativesin
e all elements of a 
luster share 
ommon data equally strongly.The 
lustering algorithm, shown in Algorithm 1, s
ans through all threads in one passand 
ompares the similarity of ea
h thread with the representatives of previously known
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t Thread Sharing 601: NumKnownClusters ⇐ 0 {one pass 
lustering algorithm}2: for t = 0 to NumThreads do3: FoundACluster ⇐ false4: for c = 0 to NumKnownClusters do5: repShMap ⇐ Clusters[c]6: if Similarity(shMapt, repShMap) > SHARING_THRESHOLD then7: add t to the 
luster c8: FoundACluster ⇐ true9: break10: end if11: end for{
reate a new 
luster if t is not similar to any of the previously known 
lusters}12: if FoundACluster is false then13: Clusters[NumKnownClusters] ⇐ shMapt14: NumKnownClusters + +15: end if16: end for Algorithm 1: Clustering shMap ve
tors for N threads.

lusters. If a thread t is similar to the representative of 
luster c (i.e., the similaritymetri
 between the two shMap ve
tors ex
eeds a 
ertain threshold), thread t is addedto the 
luster c. If no su
h a 
luster is found (i.e., shmapt is not similar to any ofthe representatives of the previously known 
lusters), a new 
luster is 
reated, and t isassigned to be the representative of the newly formed 
luster. The set of known 
lustersis empty at the beginning.The 
omputational 
omplexity of this algorithm is O(T ∗ c) where T is the number ofthreads that are su�ering from remote 
a
he misses, and c is the total number of 
lusterswhi
h is usually mu
h smaller than T .
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t Thread Sharing 61CPU Cores IBM POWER5, 1.5GHz, SMTL1 DCa
he 64KB, 4-way asso
iativeL1 ICa
he 64KB, 4-way asso
iativeL2 2MB, 10-way asso
iative, shared by the two 
ores on a 
hipL3 36MB, 12-way asso
iative, o�-
hip, a vi
tim 
a
he for L2Lo
al Memory 4GBRemote Memory 4GBNo. of CPU Chips 2Table 3.1: The Spe
i�
ation of the IBM OpenPower Ma
hine.3.4 Experimental EvaluationIn this se
tion, we present the results of our experiments to evaluate our hardware datasampling te
hniques. The basi
 fo
us of our evaluation is to exhibit the e�e
tiveness ofour te
hniques for hardware data sampling by showing their uses in a real use 
ase (e.g.,thread 
lustering).First, we present the details of our experimental platform and the workload we used.Se
ondly, we demonstrate the runtime overhead of hardware sampling of remote 
a
hemisses. Then, we show the a

ura
y of our sharing dete
tion and thread 
lusteringte
hniques under the sele
ted real workloads. Finally, we brie�y present the performan
eresults of a sharing-aware thread s
heduler that uses our sharing dete
tion and thread
lustering approa
h.3.4.1 Experimantal PlatformThe multipro
essor used in our experiments is an IBM OpenPower720 Express 
omputersystem. It is an 8-way POWER5 
onsisting of a 2x2x2 SMPxCMPxSMT 
on�guration,as shown in Figure 3.1. Table 3.1 shows the spe
i�
ation of the hardware 
omponents inthe system.While our evaluation platform is su�
iently 
omplete to show the e�e
tiveness andoverhead of our basi
 te
hniques and me
hanisms, in order to fully realize the potentials
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t Thread Sharing 62and limitations of the thread 
lustering approa
h, we will have to evaluate it on ma
hineswith a larger number of pro
essors, whi
h is beyond the s
ope of this thesis.We used Linux 2.6.15 as the operating system. We modi�ed Linux to add the featureswe needed for hardware performan
e monitoring, in
luding the stall breakdown (SeeSe
tion 2.5) and sampling of remote 
a
he miss addresses. We also modi�ed the LinuxCPU s
heduler to allow for expli
it relo
ation of threads at runtime, guided by the thread
lustering information provided by our approa
h.3.4.2 WorkloadsFor our experiments, we used a syntheti
 mi
roben
hmark and three 
ommer
ial serverworkloads: VolanoMark whi
h is a ben
hmark for Internet 
hat servers [Vol℄, SPECJBB2000, whi
h is a Java-based appli
ation server workload [Sta℄, and RUBiS, whi
h is anOLTP database workload. For VolanoMark and SPEC JBB2000, we used IBM J2SE 5.0as our Java virtual ma
hine. For RUBiS [RUB℄, we used MySQL 5.0.22 as our databaseserver [MyS℄. These server workloads are written in a multithreaded, 
lient-server pro-gramming style, where there is a thread to handle ea
h 
lient 
onne
tion for the life timeof the 
onne
tion. We present details of ea
h ben
hmark below.Syntheti
 Mi
roben
hmark: The syntheti
 mi
roben
hmark is a simple multi-threaded program in whi
h ea
h worker thread reads and modi�es a s
oreboard. Ea
hs
oreboard is shared by several threads, and there are several s
oreboards. All s
ore-boards are a

essed by a �xed number of threads. Ea
h thread has a private 
hunk ofdata to work on whi
h is fairly large so that a

essing it often 
auses data 
a
he misses.This is to verify that our te
hnique is able to distinguish remote 
a
he misses that arebeing 
aused by a

essing the s
oreboards from lo
al 
a
he misses that are 
aused bya

essing private data. The 
lustering algorithm should be able to 
luster threads thatshare a s
oreboard.VolanoMark: VolanoMark is an instant messaging 
hat server workload. It 
onsistsof a Java-based 
hat server and a Java-based 
lient driver. The number of rooms, number
onne
tions per room, and 
lient think times are 
on�gurable parameters. The serveris written using the traditional, multithreaded, 
lient-server programming model, where
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h 
onne
tion is handled by a designated thread for the life-time of the 
onne
tion.In a
tuality, Volanomark uses two designated threads per 
onne
tion. Given the natureof the 
omputational task, threads belonging to the same room should experien
e moreintense data sharing than threads belonging to di�erent rooms. In our experiments, weused four rooms with 8 
lients per room as our test 
ase.SPEC JBB2000 SPEC JBB2000 is a self-
ontained Java-based ben
hmark that
onsists of multiple threads a

essing designated warehouses. Ea
h warehouse is approx-imately 25 MB in size and stored internally as a B-tree variant. Ea
h thread a

essesa �xed warehouse for the life-time of the experiment. Given the nature of the 
ompu-tational task, threads belonging to the same warehouse should experien
e more intensedata sharing than threads belonging to di�erent warehouses. In our experiments, wemodi�ed the default 
on�guration of SPEC JBB2000 so that multiple threads 
an a

essa 
ommon warehouse.RUBiS RUBiS is an online transa
tion pro
essing (OLTP) server workload thatrepresents an online au
tion site workload in a multi-tiered environment. The 
lientdriver is a Java-based web 
lient that a

esses an online au
tion web server. The front-end web server uses PHP to 
onne
t to a ba
k-end database. We fo
us on the performan
eof the database server. We made a minor modi�
ation to the PHP 
lient module so thatit uses persistent 
onne
tions to the data base, allowing for multiple SQL requests to bemade within a 
onne
tion. While this modi�
ation improves performan
e by redu
ingthe rate of TCP/IP 
onne
tion (and thread) 
reation on the database server, it alsoenables our algorithm to monitor the sharing pattern of individual threads in the longterm.In our workload 
on�guration, we used two separate database instan
es within a singleMySQL pro
ess. This 
on�guration may represent, for instan
e, two separate au
tionsites run by a single large media 
ompany. We expe
t that threads that belong to thesame database instan
e to experien
e more intense sharing with ea
h other than withother threads in the MySQL pro
ess.
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Figure 3.4: Runtime overhead of the sharing dete
tion phase for SPEC JBB2000 as a fun
tionof the temporal sampling rate, and the time (in billion CPU 
y
les) that is required to 
olle
ta million remote miss samples given the temporal sampling rate.3.4.3 Runtime Sampling OverheadFigure 3.4 shows the runtime overhead of hardware data sampling as a fun
tion of therate we used for temporal sampling in terms of the per
entage of the remote misses thatare a
tually examined for SPEC JBB2000. As a higher per
entage of the remote 
a
hemisses are 
aptured, the overhead naturally in
reases. However, the time to 
olle
t asu�
ient number of remote 
a
he miss samples be
omes shorter. In our experiments,we have found we need roughly a million samples to a

urately dete
t sharing patterns.Therefore, the right Y-axis of Figure 3.4 represents how long (in billion CPU 
y
les) weneed to stay in the dete
tion phase to 
olle
t a million samples of remote 
a
he misses.The higher the sampling rate, the higher is the run-time overhead, but the shorter thesharing dete
tion phase will last.A

ording to Figure 3.4, it appears that a temporal sampling rate of 10 (
apturingone in every 10 remote 
a
he misses) is a good balan
e point in the trade-o� betweenruntime overhead and the length of sample 
olle
tion period as it results in a runtimeoverhead of around 2% for a period of 10 billion 
y
les (roughly 7 se
onds of exe
ution
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3.4.4 Thread Clustering A

ura
yFigure 3.5 shows a visual representation of shMap ve
tors after our 
lustering s
heme isapplied for the four workloads. Ea
h appli
ation is represented by a gray s
ale matrixof pixels in whi
h ea
h row represents an shMap ve
tor for a thread. The gray s
alerepresents the frequen
y of remote 
a
he misses that are re
orded for entries in theshMap ve
tor. Darker pixels represent higher frequen
ies.A

ording to the s
heme used to 
onstru
t shMap ve
tors, two shMaps having non-zero values on the same entry is a sign of a
tive read-write sharing. In the visual represen-tation in Figure 3.5, this e�e
t is demonstrated as verti
al dark lines (whi
h are formed bythe dark pixels on identi
al 
olumns for di�erent rows). In order to simplify the pi
ture,we have removed the dark pixels that are shared by almost all threads (globally-shareddata).From Figure 3.5 it is 
lear that the shMap's are e�e
tive in dete
ting sharing and
lustering threads for three appli
ations out of four (mi
roben
hmark, SPEC JBB2000,and RUBiS). In the three 
ases, the automati
ally dete
ted 
lusters are identi
al to 
lustersthat would have been identi�ed manually, with spe
i�
 knowledge of appli
ations logi
(i.e., a 
luster for ea
h s
oreboard for the mi
roben
hmark, for ea
h warehouse in SPECJBB2000, and for ea
h database instan
e in MySQL).For VolanoMark however, the dete
ted 
lusters do not 
onform to our per
eption ofthe way data is paritioned in the server (i.e., there is one data partition per 
hat room).It turns out that the read-write sharing patterns among the threads in VolanoMark isfairly 
ompli
ated. Due to unavailability of the workload sour
e 
ode, we were unableto explore the exa
t behaviour of the appli
ation's threads. However, our performan
eresults (des
ribed in the next Se
tion) shows that signi�
ant performan
e improvement
an be gained by a thread s
heduler that takes even su
h a seemingly imperfe
t thread
lustering information into a

ount.
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e Impa
t of Thread ClusteringIn this subse
tion, we brie�y des
ribe performan
e results of our sharing-aware threads
heduler, developed by my 
olleague David Tam. The details of the experiments andtheir performan
e analysis 
an be found in Tam et. al [TAS07℄. To summarize, our ex-periments with a sharing-aware thread s
heduler that uses our thread 
lustering s
hemedemonstrates that most (up to 70%) expensive, 
ross-
hip read-write sharing 
an be elim-inated a
ross the set of workloads we studied, 
ompared to the default thread s
hedulerthat is used in the Linux kernel.Also, our experiments on our IBM OpenPower720 ma
hine show that the sharing-aware thread s
heduler is able to improve end performan
e by up to 7% 
ompared to thedefault Linux thread s
heduler. Early results of running similar experiments on a largermultipro
essor (with 8 IBM POWER5 
hips, instead of two) shows that the potentialend-performan
e improvement 
an be substantially higher (e.g., up to 20%).
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Cluster1

Cluster2

Cluster4

Cluster3

shMap
Vectors

shMapVector Entriesa. Mi
roben
hmark

b. SPECJBB


. RUBiS

d. VolanoMarkFigure 3.5: Visual representation of shMap ve
tors. Ea
h shMap entry is represented with agray s
ale pixel. A row of pixels in ea
h pi
ture represents a single thread's shMap ve
tor. Themore frequent remote misses on the entry, the darker the point.
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t Thread Sharing 683.5 Related WorkMost of the existing hardware data sampling te
hniques are already dis
ussed in Se
-tion 3.1.2 where advantages and disadvantages of ea
h of them are des
ribed. In thisse
tion, we des
ribe some of the resear
h work that use alternative approa
hes of moni-toring data at the hardware level.Intel Itanium 2 supports a laten
y-based �ltering approa
h to 
ontrol hardware datasampling [Inta℄. In this s
heme, users 
an spe
ify a lower bound, in terms of number of
y
les, on the laten
y of a data 
a
he miss [MMdS05℄. In theory, this s
heme 
an be usedto implement sour
e-based sampling, given there is signi�
ant di�eren
e in the a

esslaten
y for di�erent memory sour
es. A major problem with this approa
h, however,is that due to a potentially large variation in the laten
y of a

essing single sour
e, itis di�
ult to �nd a right lower bound for laten
y that guarantees the 
apture of mostdata a

esses to a sour
e. Moreover, an aliasing e�e
t may o

ur for di�erent sour
esthat have similar average a

ess laten
y. Nonetheless, this te
hnique is used by Bu
k andHollingsworth [THa℄ and also Lu et al. [LCF+03℄ to isolate data addresses that frequently
ause long-laten
y 
a
he misses without further exploring the sour
e of the 
a
he misses.However, our approa
h for sour
e-based sampling of data 
a
he misses is more robustthan the laten
y-based approa
h used in Itanium 2, as it does not rely on potentially�u
tuating a

ess laten
ies in order to identify the sour
e of the data.In order to address some of the inherent limitations of data sampling, some resear
hershave suggested alternative te
hniques mainly by introdu
ing semanti
ally ri
her datamonitors at the hardware level. For instan
e, Qureshi and Patt suggest hardware UtilityMonitors to monitor every L1 
a
he miss and build a summary histogram at the hard-ware level based on the reuse distan
e of 
a
he misses [QP06℄. Also, the authors of theiWat
her framework suggest a spe
i�
 hardware data monitoring support to 
onstantlymonitor a

esses to 
ertain designated memory region, so that whenever an a

ess to aspe
i�ed region o

urs, a user-de�ned fun
tion runs automati
ally by hardware withoutgenerating a trap to the operating system [ZQLT04℄. While these approa
hes appear tobe e�e
tive, they serve only spe
i�
 purposes. Ideally, in the new generation of hardware
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t Thread Sharing 69data monitoring ar
hite
ture, there should be a fairly small set of me
hanisms that aresu�
iently �exible to be used by a wide range of optimization or debugging purposes.3.6 Con
luding RemarksHardware data sampling is a potentially powerful me
hanism as many resear
hers havebeen able to build e�e
tive optimization s
hemes using data samples generated by hard-ware. However, in our attempt to do the same, we en
ountered some limitations in theexisting hardware data sampling me
hanisms embedded in today's pro
essors.First, supported hardware data sampling sele
tion 
riteria are often too 
oarse-grainedand in�exible. In parti
ular, it is is not possible to sample data 
a
he misses spe
i�
allybased on the memory or 
a
he sour
e from whi
h 
a
he misses are served. As a result,extra software �ltering is required in order to sele
t 
a
he miss samples of a 
ertainsour
e from a potentially large set of data 
a
he misses. In this 
hapter, we des
ribeda te
hnique based on features provided by the IBM POWER5 pro
essor to solve thisproblem e�
iently. We showed how su
h a �ltering s
heme 
an be used to generatesample addresses of remote 
a
he misses.A se
ond limitation in today's mi
ropro
essors is that only one sampling sele
tion
riterion 
an be set at a time. In parti
ular, it is not possible to 
ombine multiplesele
tion 
riteria 
onjun
tively or disjun
tively at the hardware level. In this 
hapter, wedes
ribed how to use �ne-grained HPC multiplexing to be able to use multiple sampling
riteria disjun
tively at �ne granularity.As a 
ase study, we des
ribed how to use sour
e-based data sampling to addressthe problem of automati
ally dete
ting sharing among 
on
urrently running threads.We showed how to e�
iently build small sharing signatures for ea
h thread out of thehardware data samples generated for remote 
a
he misses. Furthermore, we showedthat a simple thread 
lustering algorithm 
an be used to 
luster threads into groups ofthreads that a
tively share data. Our experimental analysis shows that both our sour
e-based data sampling and our thread 
lustering algorithm are reasonably a

urate for real
ommer
ial server workloads.
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t Thread Sharing 70In the study, we used a te
hnique to indire
tly sample the address of data 
a
he missesbased on their sour
es. Although our approa
h works reasonably well, it is spe
i�
 toIBM POWER5 pro
essor, as it uses spe
i�
 features of this pro
essor (i.e., 
ontinuousdata sampling, and the ability to 
ount data 
a
he misses by their sour
es). For moregeneral and reliable sour
e-based data sampling, spe
i�
 hardware support would berequired. Su
h extra hardware support would be modest, as 
urrent PMUs are alreadyable to distinguish the sour
e from whi
h 
a
he misses are satis�ed. It only requiresanother level of �ltering at the hardware level so as to update the DAR only if the data
a
he miss is handled by a sour
e spe
i�ed by software.Another 
hara
teristi
 of the 
ontinuous data sampling feature we used in our studyis that the DAR is 
onstantly updated whether the 
orresponding instru
tion 
ompletes(retires) or not. As a result, the DAR may be updated while the CPU is exe
uting a 
odepath spe
ulatively, whi
h may turn out to be a mispredi
ted path and must be �ushedlater. The DAR, in this 
ase, will be the operand address of an instru
tion that neverexe
uted to 
ompletion. This is a serious problem 
onsidering that approximately onein �ve instru
tions is a bran
h, and at any point in time, there are potentially severalbran
hes predi
ted in a nested fashion. Hen
e, it will be di�
ult to analyze whether there
orded DAR 
orresponds to a valid path or not. We believe that in order to 
ompletelyresolve this issue additional hardware support is required either to invalidate the 
ontentof the DAR or restore its previous value in the 
ase of a mispredi
ted path �ush.Finally, we believe our hardware data sampling te
hniques 
an be used for otherpurposes than sharing dete
tion. For instan
e, one 
an explore the use of sour
e-basedsampling in adaptive fun
tion and data pla
ement algorithms in a NUMA environment.Another idea is to use sour
e-based data sampling to identify highly 
ontended lo
ks.
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Page A

ess Tra
king to ImproveMemory Management
4.1 Introdu
tionComputer system physi
al memory sizes have in
reased 
onsistently over the years, yetoptimizing the allo
ation and management of memory 
ontinues to be important. Apopular per
eption is that memory is abundant and inexpensive. While the former maybe true, the latter is 
ertainly not. Figure 4.1 shows how the pri
e of three medium-s
aledmultipro
essor systems 
hanges as physi
al memory size is in
reased. The base pri
e isfor a setup in whi
h ea
h system is equipped with its maximum pro
essing power. Allpri
es are taken from the 
orresponding 
ompanies list-pri
es. From the �gure, it is 
learthat memory pri
e is the dominant fa
tor in the 
ost of 
omputer systems as they areequipped with more memory than in their standard setups.Moreover, numerous appli
ations exist that 
an exhaust any amount of physi
al mem-ory available. For instan
e, many appli
ations from 
omputational biology may approa
ha terabyte in terms of memory requirements [ZAKB+05, BRS05℄. With the re-emergen
eof Virtual Memory Monitors (VMMs), as a key te
hnology for server 
onsolidation, thenumber of appli
ations simultaneously running on the same hardware in
reases signi�-
antly with an attendant in
rease in memory pressure. Worse, extending available mem-ory through demand paging 
ontinues to grow more unattra
tive as disk a

ess times,71
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Figure 4.1: The pri
e of medium-sized 
omputer systems as a fun
tion of physi
al memory size.dominated by positioning delays, fall farther behind relative to CPU and memory speeds.To utilize memory e�e
tively, a

urate information about the memory a

ess patternof appli
ations is needed. Traditionally, operating systems tra
k appli
ation memorya

esses either by monitoring page faults or by periodi
ally s
anning page table entriesfor spe
i�
 bits set by hardware. These approa
hes provide only a 
oarse approximationof the true order of page a

esses for use in memory management algorithms, limitingthe ability to implement sophisti
ated strategies.An alternative approa
h available in systems with software-managed TLBs is to re
ordand pro
ess page a

esses upon ea
h TLB miss. While this approa
h 
an provide signif-i
antly more �ne-grained page a

esses information, it adds prohibitively large overheadto a software TLB miss handler, whi
h is already a performan
e-
riti
al 
omponent.An entirely software-based alternative has been suggested by re
ent work [ZPS+04,YBKM06℄, where virtual pages are divided into an a
tive set and an ina
tive set. Pagesin the ina
tive set are prote
ted by manipulating page-table bits, so that every a

ess tothem will generate an ex
eption and hen
e the operating system will be noti�ed. Pagesin the a
tive set are not prote
ted, and as a result, a

esses to these are not dire
tlytra
ked. On
e a page in the ina
tive set is a

essed, it is moved to the a
tive set. Asimple repla
ement algorithm su
h as CLOCK [CH81℄ is used to move stale pages out ofthe a
tive set and into the ina
tive set. While the a
tive set is mu
h smaller than theina
tive set, it is meant to absorb the majority of page a

esses, whi
h results in mu
hredu
ed software overhead 
ompared to raising an ex
eption on every page a

ess.
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(a) Performan
e of LIRS vs. LRU (b) The e�e
t of a
tive set sizeFigure 4.2: Graph (a) shows how LIRS outperforms LRU when exe
uting fft, for di�erentmemory sizes. Graph (b) shows for a �xed memory size (703Mbytes), how LIRS' performan
e
hange as the a
tive set size in
reases, while the runtime overhead of maintaining the a
tive setde
reases (the proje
ted exe
ution time does not in
lude the runtime overhead).While this software-approa
h is shown to be e�e
tive with 
ertain types of appli
a-tions, its overhead for many memory-intensive appli
ations is una

eptably high. An ap-proa
h to redu
e the overhead is to in
rease the size of the a
tive set adaptively [YBKM06℄.However, the bigger the a
tive set, the less a

urate the sequen
e of page a

esses willbe, sin
e more a

esses are absorbed by the a
tive set. As a result, the utility of havingthe sequen
e of page a

esses for a parti
ular memory management algorithm will dimin-ish. An example of su
h a 
ase is shown in Figure 4.2 for FFT taken from the Splash-2suite [WOT+95℄. On the left, the performan
e of LIRS [JZ02℄, a well-known memorymanagement algorithm is 
ompared against LRU. LIRS takes into a

ount not only re-
en
y of page a

esses, but also reuse distan
e when 
onsidering a page for repla
ement.A more detailed des
ription of LIRS is presented in Se
tion 4.3.2. The measurement isdone under the assumption that the overhead of 
olle
ting page a

ess information is zeroand the a
tive set is 128 entries. The graph on the right shows how LIRS performan
edegrades as the a
tive set size in
reases, while the overhead of re
ording page a

essesnaturally de
reases. As a result, to a
hieve LIRS' potential in improving performan
e, ahigh runtime overhead (100% or more) must be paid, otherwise, most of the advantageof LIRS over LRU disappear.
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ope with this potentially large overhead, 
ustom hardware is suggested by Zhouet al. [ZPS+04℄. While their approa
h is e�e
tive in tra
king physi
al memoryMiss RatioCurves, it does not provide raw page a

ess information to the operating system, andthus 
annot be used for memory management algorithms other than the one whi
h isintended for. Moreover, the hardware required by this approa
h is substantial and growswith the size of physi
al memory.In this 
hapter, we propose a novel Page A

ess Tra
king Hardware (PATH) to beadded to the pro
essor mi
ro-ar
hite
ture for the purpose of monitoring appli
ation mem-ory a

ess patterns at �ne granularity and with low overhead. Similar to the softwareapproa
h, PATH is designed based on two observations. First, a relatively small set ofhot pages is responsible for a large fra
tion of the total page a

esses. Se
ond, the exa
torder of page a

esses within the hot set is unimportant sin
e these pages should alwaysbe in memory. By ignoring a

esses to hot pages, we 
an vastly redu
e the number ofa

esses that must be tra
ked, while fo
using on the set of pages that are interesting
andidates for memory management optimizations.The key innovation with our PATH design lies in the tradeo� between fun
tionalityassigned to hardware and fun
tionality assigned to software. The hardware we proposeis (i) small and simple, (ii) s
alable, in that it is independent of system memory size,and (iii) introdu
es little overhead, imposing no delays on the 
ommon exe
ution path ofthe mi
ro-ar
hite
ture. We delegate to software (spe
i�
ally, an ex
eption handler) theonline maintenan
e of data stru
tures to be used by the memory manager when makingpoli
y de
isions.We show that the operating system 
an bene�t from our approximate informationby 
onsidering three uses for the memory manager: (i) implementing more adaptivepage repla
ement poli
ies (ii) allo
ating memory to VMMs, pro
esses or virtual memoryregions so as to provide better isolation and to better support pro
ess priorities, and(iii) prefet
hing pages from virtual memory swap spa
e or memory-mapped �les whenappli
ations have non-trivial memory a

ess patterns. We brie�y des
ribe these use 
asesin more details.Adaptive Page Repla
ement: There is a large body of prior art in page and
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a
he repla
ement poli
ies [MM03, SKW03, JS94, BM04, GC97, JZ02, JCZ05,GBH04, ZvBB05, CNMC00, KMC02℄. Many of the algorithms proposed are based on anapproximation of LRU with various extensions to adapt to sequential and looping patternsfor whi
h LRU behaves poorly. In most 
ases, the e�e
tiveness of these algorithmshas only been shown in the 
ontext of �le system 
a
hing, where pre
ise informationon the timing and order of a

esses is available. With �ner-grained virtual memorya

ess information, adaptive page repla
ement algorithms, su
h as the one we present inSe
tion 4.3, 
an lead to signi�
ant performan
e improvements.Memory Allo
ation: Most existing operating systems allo
ate memory pages toappli
ations on-demand and from a global pool. This strategy 
an lead to unfair prior-itization e�e
ts, whereby a low-priority pro
ess with a high page fault rate is allo
ateda large number of physi
al pages to the detriment of higher priority pro
esses. Systemthroughput may also su�er sin
e extra pages may be allo
ated to appli
ations that donot bene�t from them. Working set models, as implemented on 
urrent ar
hite
tures,do not provide an a

urate estimate of memory requirements sin
e they only take intoa

ount whether a page is a

essed or not over a period of time. The number of distin
tpages a

essed before a given page is reused (i.e., the reuse distan
e [ZPS+04℄) gives abetter indi
ation of memory needs, but operating systems often do not have a

ess tosu�
iently detailed page a

ess information to estimate of reuse distan
e. In Se
tion 4.4,we show how our PATH provides a

urate reuse distan
e information that 
an be usedto improve memory allo
ation.Virtual Memory Prefet
hing: I/O bandwidth has in
reased dramati
ally over theyears, whi
h allows for more aggressive and spe
ulative prefet
hing of memory pages. Thedanger with an aggressive prefet
hing s
heme, however, is that pages 
ould be repla
edthat would still be of use (to the same or other appli
ations). Hen
e it is importantto prefet
h wisely. Conventional operating system prefet
hing s
hemes based on spatiallo
ality assume that whenever a page is a

essed, it is likely that neighboring pages willalso soon be a

essed. While simple and e�e
tive for many appli
ations, this 
an performpoorly for appli
ations with little spatial lo
ality in their a

ess patterns. The availabilityof �ner-grained page a

ess information allows for alternative prefet
hing s
hemes; we
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ribe one strategy based on temporal lo
ality in Se
tion 4.5.Underlying all these te
hniques for improved memory management is our PATH sup-port for tra
king page a

esses at relatively �ne granularity, whi
h we des
ribe in detailin Se
tion 4.2.Our simulation results show that substantial performan
e improvements (up to 500%in some 
ases) 
an be a
hieved, espe
ially when the system is under memory pressure.While the algorithms based on PATH have di�erent time and spa
e overhead tradeo�s,the basi
 overhead of providing �ne-grained page-a

ess information to the operatingsystem is less than 6% a
ross all the appli
ations we examined (less than 3% in all buttwo appli
ations) whi
h is at least an order of magnitude less than the overhead of existingsoftware approa
hes.4.2 Tra
king Page A

essesMemory management algorithms are often �rst des
ribed assuming the 
omplete pagea

ess sequen
e is available and later implemented using a 
oarse approximation of thissequen
e. For example, the well-known Least-Re
ently-Used (LRU) page repla
ementalgorithm requires the 
omplete a

ess sequen
e to implement exa
tly, but is 
ommonlyapproximated by the CLOCK algorithm, whi
h 
oarsely groups pages into re
ently-used,somewhat re
ently-used, and not re
ently-used 
ategories. Optimizations to the basi
LRU algorithm, and other sophisti
ated memory management strategies, require moredetailed page a

ess information than systems 
urrently provide. Tra
king all page a
-
esses, however, is prohibitively expensive and generates too mu
h information for onlinepro
essing. The key question, then, is how to redu
e the volume of information to amanageable level, while retaining su�
ient detail on the order of page a

esses.Our approa
h is based on two observations: (i) a relatively small set of hot pages areresponsible for a large fra
tion of the total page a

esses, and (ii) the exa
t order of pagea

esses within the set of hot pages is unimportant sin
e these pages should always be inmemory. By ignoring a

esses to hot pages, we 
an vastly redu
e the number of a

essesthat must be tra
ked, while fo
using on the set of pages that are interesting 
andidates
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king to Improve Memory Management 77for memory managmenet optimizations.4.2.1 Design OptionsCurrent memory management hardware already 
ontains an e�e
tive �lter to 
at
h a
-
esses to the hottest N pages: the Translation Lookaside Bu�er (TLB). Thus, one pos-sibility for tra
king page a

esses is to augment existing hardware or software TLB misshandlers to re
ord a tra
e of all TLB misses. Aside from the overhead that this wouldadd to the 
riti
al path of address translation, the primary problem with this strategyis that TLBs are too small on today's pro
essors to 
apture the set of hot pages, whi
hin turn leads to tra
es that are still too large for online use. Simply in
reasing the TLBsize is not a viable option, sin
e the size is limited by fast a

ess requirements. We note,however, that the TLB provides more fun
tionality than is needed to simply tra
k pagea

esses. Thus, we propose the addition of a new hardware stru
ture that essentiallyfun
tions as a signi�
antly larger TLB for the purpose of �ltering out a

esses to hotpages, while re
ording a tra
e of a

esses to other pages. We 
all this stru
ture PageA

ess Tra
king Hardware (PATH). Although software TLB miss handlers 
ould 
olle
tthe same information (for ar
hite
tures that provide them), extra work would be requiredon the performan
e-
riti
al miss handling path.The existing TLB 
an 
ontinue to �lter out a

esses to the hottest pages, while thenew PATH maintains a superset of the pages handled by the TLB, and is only neededwhen a TLB miss o

urs. Further, PATH is not required for address translation, and
an be a

essed asyn
hronously with respe
t to TLB miss handling. Sin
e the speed ofa

ess is not 
riti
al, the 
omponents in PATH 
an be sized independently, 
onstrainedonly by the resour
es available on 
hip and the desired pre
ision of tra
king. In thefollowing subse
tions, we present the details of our PATH design and show how thea

ess tra
es it 
olle
ts 
an be used to build various software data stru
tures used formemory management.Figure 4.3 depi
ts the three major 
omponents of our PATH design. The Page A

essBu�er (PAB) and the Asso
iative Filter work together to remove a

esses to hot pagesfrom the tra
e; other a

esses are re
orded in the Page A

ess Log (PAL), whi
h raises
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Figure 4.3: The Ar
hite
ture of Page A

ess Tra
king Hardware (PATH).an ex
eption when it be
omes full, in order to allow for software pro
essing.The Page A

ess Bu�er (PAB) 
ontains the set of re
ently a

essed virtual pages,augmented with an address spa
e identi�er to distinguish between pages from di�erentpro
esses. The PAB is stru
turally similar to a TLB ex
ept that (i) it is updated onlyon a TLB miss, (ii) it need not 
ontain the physi
al addresses of the pages it holds, and(iii) it is signi�
antly larger than a typi
al TLB. As the PAB size in
reases, more pagesare 
onsidered hot and more a

esses are �ltered out of the tra
e, thus redu
ing bothpro
essing overhead and a

ura
y. Our experiments show that a PAB with 2048 entriesis a good point in this tradeo�. In Se
tion 4.6.6, we examine, in detail, the tradeo�between overhead and usefulness of the tra
es with varying PAB sizes. Moreover, witha 2K-entry PAB, PATH will have a very small 
hip footprint. Finally, some existingar
hite
tures su
h as IBM POWER and AMD Opteron already have a fairly large (e.g.512 to 1024 entry) se
ond-level TLB1. One 
an envision integrating PATH with a slightlylarger version of su
h a se
ond-level TLB. We show in Se
tion 4.6.7 that using the same1IBM POWER's �rst level address translation 
a
he is 128 entries and is 
alled the E�e
tive-to-RealAddress Table (ERAT).
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tive set in the software approa
h will result in an una

eptably highoverhead.A page a

ess is 
onsidered for re
ording only if it misses in the PAB. However,be
ause of the limited asso
iativity of the PAB, it 
an be sus
eptible to repeated 
on�i
tmisses from the same small set of (hot) pages. To deal with this problem, PATH in
ludesan Asso
iative Filter that �lters page a

ess information further. The asso
iative �lteris a small (e.g., 64 entries), fully-asso
iative table with an LRU repla
ement poli
y thatis updated on every PAB miss. It e�e
tively �lters out the re
ording of a

esses to hotpages due to short term 
on�i
t misses in the PAB.Finally, misses in the asso
iative �lter are re
orded in the Page A

ess Log (PAL)whi
h is a small (e.g., 128 entry) bu�er. When the log be
omes full, an ex
eption israised, 
ausing an operating system ex
eption handler to read the 
ontents of the PALand reset the PAL pointer. In the following subse
tion, we show how system software
an use the information re
orded in the PAL to 
onstru
t a variety of data stru
turesused in memory management.PATH must also provide an interfa
e to allow software to 
ontrol it and performlookup operations. This interfa
e allows the operating system to empty the PAL when-ever the CPU be
omes idle, say during I/O, to redu
e the overhead of PAL servi
ing.The operating system 
an also dynami
ally turn o� PATH when the system is not undermemory pressure, thereby redu
ing power 
onsumption.Given this ar
hite
ture, PATH provides a �ne-grained approximation of the sequen
eof pages that are a

essed. Sequential or looping a

ess patterns over an area larger thanwhat is 
overed by the PAB (e.g., 64MB) are very likely to be 
ompletely re
orded byPATH in their proper order. Moreover, if a page is not hot so that it does not permanentlyreside in the PAB, its reuse distan
e 
an also be a

urately 
aptured by PATH due tothe subsequent PAB misses it 
auses.4.2.2 Low-level Software Stru
turesThe bene�ts of having LRU sta
ks and/or Miss Rate Curves available are well re
og-nized and, 
orrespondingly, hardware support to generate these data stru
tures has been
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tion, we argue that these data stru
tures 
anbe 
onstru
ted e�
iently in software from the information obtained by PATH des
ribedabove. Spe
i�
ally, we show how both LRU sta
ks and Miss Rate Curves 
an be main-tained on-line by the PAL over�ow ex
eption handling 
ode. Both stru
tures 
an, inturn, be used by memory management software to make informed de
isions. By dele-gating the maintenan
e of these data stru
tures to software, our design provides greater�exibility and 
ustomizability than previously proposed hardware support.LRU Sta
kThe LRU sta
k maintains a re
en
y order among the pages within an address range. Thetop of the sta
k is the most re
ently a

essed page, while the bottom of the sta
k is theleast re
ently a

essed page. In our s
heme, ea
h page a

essed (as re
orded by the PAL)is moved from its 
urrent lo
ation in the sta
k to the top of the sta
k. The LRU sta
k isupdated for every page a

ess re
orded in the PAL.To enable fast page lookup and e�
ient update in the LRU sta
k, we suggest usinga stru
ture typi
ally used to maintain page tables, su
h as a traditional multi-level pagetable or a hash table. Ea
h element in this stru
ture represents a virtual page and
ontains two referen
es: one to the previous page in the LRU sta
k and one to the nextpage in the LRU sta
k. Con
eptually, the LRU sta
k is a doubly-linked list, and elementsare repositioned within the sta
k by adjusting referen
es to neighboring elements. Thus,a virtual page 
an be looked up with a few (usually 2 or 3) linear indexing operations,and moving a page to the top of the LRU sta
k involves updating at most 6 referen
e�elds in the sta
k: 2 referen
es asso
iated with the page being moved, 2 of its previousneighbors, 1 at the previous head of the list, and the head of the list itself.The LRU sta
k has an element for ea
h page that was ever a

essed (not just thepages 
urrently in memory). Assuming 4 KB virtual pages, 32-bit page referen
es 
an beused for address ranges up to 16 TB, resulting in a spa
e overhead of 8 bytes per virtualpage used. To save on physi
al memory usage, LRU sta
k pages 
an be swapped out todisk if the elements they 
ontain represent pages that are not 
urrently being a

essed.The working set size of the LRU sta
k is roughly proportional to the working set size of
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e, a working set size of several GB implies that several MB willbe 
onsumed by the LRU sta
k.Miss Rate CurveA Miss Rate Curve (MRC) depi
ts the page miss rate for di�erent memory sizes, givena page repla
ement strategy. More formally, MRC is a fun
tion, λr,p(M), de�ned foraddress range r and page repla
ement poli
y p. λr,p(M) identi�es the number of pagemisses the pro
ess will in
ur on r over a 
ertain time period if M physi
al pages areavailable. Often, the slope of λ at a given memory size is of more interest than its a
tualvalue. If the slope is �at then making additional pages available will not signi�
antlyredu
e the miss rate, but if the slope is steep then even a few additional pages 
ansigni�
antly redu
e the page miss rate.We use a de�nition of MRC that is slightly di�erent from the one used by Zhou etal. [ZPS+04℄ to make it more suitable for our proposed hardware support. Our variant ofMRC identi�es the absolute number of misses that o

ur over a period of time and notthe miss ratio that is normalized by dividing the number of misses by the total numberof a

esses. Not requiring the total number of memory a

esses signi�
antly simpli�esthe hardware support required.Our method of maintaining λ on-line is based on Mattson's sta
k algorithm [MGST70℄and Kim et al.'s algorithm [KHW91℄ used for o�-line analysis. We augment the elementsof the LRU sta
k des
ribed above with a rank �eld used to re
ord the distan
e of theelement from top of the sta
k (i.e., the reuse distan
e). Ea
h λ is maintained as a his-togram. Con
eptually, whenever a page is a

essed, the histogram values 
orrespondingto memory sizes smaller than the rank of the a

essed page are in
remented by one. Inaddition, the page is moved to the top of the sta
k, while setting its rank �eld to zeroand de
rementing the rank �eld of every element between the original position of thepage and the previous top of sta
k by one.Time is divided into a series of epo
hs (e.g., a few se
onds). At the end of ea
h epo
h,the value of λ (i.e., the histogram) is saved and reset. Ea
h pro
ess may store a historyof values of λ for several epo
hs in order to be able to make more a

urate de
isions.
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RankFigure 4.4: The LRU sta
k with group headers that are used for updating the LRU-ranks ofpages e�
iently.In order to redu
e overhead, page groups of size g 
an be de�ned and the rank �eld
an be rede�ned to re
ord the distan
e to the top of the sta
k in terms of number ofpage groups. Adding an array of referen
es to the head of ea
h page group redu
es theoverhead of updating the rank �elds by a fa
tor of g. Figure 4.4 shows how the groupheader array is used to �nd the group boundaries, sin
e only the elements at the groupboundaries need to be updated.Algorithm 2 shows the basi
 steps that must be taken for every page that appearsin the PAL to maintain λ histograms for the LRU page repla
ement poli
y. Note thatthe group size g is de�ned by software and 
an 
hange a

ording to the desired level ofpre
ision for λ.A further optimization is possible based on the observation that at any instan
e intime, we are only interested in λ at the point 
orresponding to the amount of physi
almemory allo
ated to the virtual address range under study and the slope of λ around thatpoint. Hen
e, the LRU sta
k 
an be divided into only 4 groups as shown in Figure 4.5:the top M − g pages, where M is the 
urrent physi
al memory allo
ated to the addressrange, two groups of g pages on both sides of M , and all the remaining pages at thebottom of the LRU sta
k. With this optimization, only four entries need to be updatedon ea
h page a

ess to maintain λ.In the next three se
tions, we present algorithms to improve memory managementperforman
e in three di�erent areas: adpative page repla
ement, pro
ess memory allo-
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king to Improve Memory Management 83Require: V addr ≥ RegionStart ∧ V addr ≤ (RegionStart + RegionSize)1: lruRank ⇐ Stack[V addr].rank2: move V addr element to the top of the LRU sta
k3: Stack[V addr].rank = 0{update group headers and page ranks for groups lower than lruRank}4: for i = 0 to lruRank do5: GroupHeaders[i] ⇐ Stack[GroupHeaders[i]].prev6: Stack[GroupHeaders[i]].rank + +7: end for{update MRC for LRU}8: for j = 0 to lruRank do9: λLRU [j] + +10: end forAlgorithm 2: Update λLRU and the LRU sta
k on ea
h re
orded page Vaddr.
ation, and virtual memory prefet
hinag. We des
ribe how these algorithm utilize theinformation generated by PATH either in the raw form, or in the form of LRU sta
k orMRC.
4.3 Adaptive Repla
ement Poli
iesUsing information from PATH, we have implemented two adaptive page repla
ementalgorithms. The �rst one, Region-Spe
i�
 Repla
ement, attempts to automati
ally applythe appropriate repla
ement poli
y on a per-region basis for di�erent regions de�ned inthe appli
ation's virtual address spa
e. The se
ond one is a re
ently proposed adaptivepoli
y 
alled Low Inter�Referen
e Set (LIRS) [JZ02℄. The reason for 
hoosing LIRS isthat it is fairly simple and, for �le system 
a
hing, has proven to be 
ompetitive with thebest algorithms.
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Figure 4.5: The optimized stru
ture for the LRU group headers, 
onsidering in most 
ases it isimportant to know the slope of λ only around the 
urrent physi
al memory size. Only a �xednumber of page groups (4 in this �gure) are 
onsidered to be updated at ea
h page a

ess.4.3.1 Region-Spe
i�
 Repla
ementThe rationale behind region-spe
i�
 page repla
ement is the desire to be able to rea
tindividually to the spe
i�
 a

ess patterns of ea
h large data stru
ture within a singleappli
ation. Studies in the 
ontext of �le system 
a
hing [CNMC00℄ have shown thatby analyzing the a

esses to individual �les separately, one 
an model the a

ess pat-tern of the appli
ations more a

urately. Also, Harty and Cheriton [HC92℄ presenteda framework for appli
ation-
ontrolled page 
a
hing in whi
h ea
h appli
ation 
an em-ploy 
a
hing poli
ies that �t its needs most. We argue that memory-
onsuming datastru
tures (e.g., multidimensional arrays, hash-tables, graphs) usually have stable a

esspatterns, and by dete
ting these patterns, one 
an optimize the 
a
hing s
heme for ea
hof these data stru
tures individually.Sele
ting RegionsMost large data stru
tures reside in 
ontiguous regions in the virtual address spa
e. The
ontiguity of data stru
ture memory is not an essential fa
tor but signi�
antly simpli�esthe implementation of region-spe
i�
 repla
ement. For large data stru
tures that do notreside in 
ontiguous regions, one 
an use 
ustom allo
ators that allo
ate 
orrelated datafrom a pre-allo
ated large 
hunk of virtual memory. Lattner and Adve [LA05℄ show how
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luster individually allo
ated, but 
orrelated, memory items in an automated fashion.As a result, large data stru
tures (e.g., a graph of millions of nodes) are more likely tobe lo
ated in a large 
ontiguous region of address spa
e. In our simulation studies, wehave assigned a region for ea
h large stati
 data stru
ture as well as any large mmappedareas.Choosing Repla
ement Poli
yWe separately but simultaneously 
ompute λ for ea
h region for both the LRU and MRUpoli
ies, and we pi
k the poli
y that would result in a lower miss rate. To 
ompute λMRU ,we use the same s
heme shown in Figure 4.5 and Algorithm 2, but with pages ranked inreverse order. Hen
e, for ea
h page, we maintain two ranks, one for LRU and the otherfor MRU. Given that the rank value is at most 4, the rank 
an be represented by twobits, so the 
orresponding spa
e overhead is negligible.Swit
hing Repla
ement Poli
yWe swit
h to a new poli
y only if it is 
onsistently better than the 
urrent poli
y. Thedefault poli
y is LRU. If a region is being a

essed in a looping pattern, it will have lowervalues for λMRU , but if the region is being a

essed in temporal 
lusters, λLRU will havelower value.The algorithm for swit
hing page repla
ement poli
y is a
tivated only if a 
ertainthreshold in the number of 
apa
ity misses is rea
hed in an epo
h. Otherwise, we assumethe 
urrent repla
ement poli
y is working well.However, swit
hing is an expensive operation and should not be done lightly. To avoidover-rea
ting to short-lived �u
tuations, we use a saturating 
ounter that is in
rementedwhen one poli
y is better than the other in an epo
h, and de
remented otherwise. Thepoli
y swit
h is triggered whenever the 
ounter rea
hes one of two extreme points. Also,to redu
e swit
hing overheads, we do not evi
t the 
urrent pages from physi
al memorywhen a poli
y swit
h is made. We have observed in our experiments that for many realappli
ations poli
y swit
hing is indeed a rare event.
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ating Memory to RegionsWith region-spe
i�
 page repla
ement, it is ne
essary to de
ide how many physi
al pagesto allo
ate for ea
h region. At the end of ea
h epo
h, we use the pre
omputed λ valuesto 
al
ulate how mu
h memory ea
h region a
tually needs. We de�ne benefit and penaltyfun
tions for ea
h region as follows:
benefitr(g) = λr,p(M − g) − λr,p(M)

penaltyr(g) = λr,p(M) − λr,p(M + g)We balan
e memory among regions within a single pro
ess address spa
e by takingaway memory from regions with low penalty and awarding them to the regions withhigher bene�t. The number of regions in an appli
ation is typi
ally small (e.g., usuallyless than 10). Thus, balan
ing memory within a single appli
ation at the end of ea
hepo
h is not a 
ostly operation.4.3.2 LIRSThe key idea behind LIRS is to 
onsider not only re
en
y, but also reuse distan
e when
onsidering a page for repla
ement. The LIRS algorithm divides pages into two sets:High Inter-referen
e Re
en
y (HIR) and Low Inter-referen
e Re
en
y (LIR) sets. Thepages in the LIR set are always kept resident in memory even if they have not beenre
ently a

essed. Candidate pages for repla
ement are always 
hosen from the HIR seteven if they have been re
ently a

essed. On
e a page in the HIR set is a

essed with areuse distan
e shorter than that of some pages in the LIR set, it is moved to the LIR set.If a page stays in LIR for a long time without being a

essed again, it is purged from theLIR set. Only a small fra
tion of physi
al memory is allo
ated to pages in the HIR set.A more detailed des
ription of the algorithm 
an be found in the LIRS paper [JZ02℄.LIRS e�e
tively eliminates LRU's poor handling of sequential and looping patternsin �le system 
a
hing. However, to apply LIRS to virtual memory, one must be ableto measure the distan
e between two 
onse
utive referen
es to a page fairly a

urately,whi
h is 
hallenging with traditional operating system page a

ess monitoring te
hniques.
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t, a follow-up attempt to implement LIRS for virtual memory by the LIRS design-ers using 
onventional operating system te
hniques resulted in a 
ompli
ated algorithmto approximate the reuse distan
e information and limited su

ess [JCZ05℄. By usinginformation from PATH, we were able to implement the original LIRS algorithm in astraightforward way. In fa
t, we adopted the LIRS designers' original algorithm in oursimulation environment with minor modi�
ations.4.4 Memory Allo
ationIn multi-programmed environments, how the operating system de
ides to allo
ate phys-i
al memory to ea
h pro
ess is of great importan
e when the system is under memorypressure. In this se
tion, we show how the availability of �ne-grained page a

ess infor-mation 
an help improve memory allo
ation among pro
esses.In most general-purpose operating systems today, memory is allo
ated to a pro
essfrom a global pool of pages, on-demand, when the pro
ess in
urs a fault. All pages areequal 
andidates for repla
ement, irrespe
tive of whi
h pro
ess they belong to. The a
tualamount of memory allo
ated to ea
h pro
ess is a dire
t fun
tion of the page repla
ementpoli
y in use and the page fault rate of the pro
ess. Pro
esses that a

ess more pagesthan others over a period of time will be allo
ated a larger number of pages, sin
e theyfault on more pages and keep their own pages re
ent.Global memory allo
ation has two major advantages. First, it is simple and easy toimplement with little overhead. Se
ondly, for workloads with similar a

ess patterns,global memory allo
ation naturally tends to minimize the total number of page-faults.Despite its wide adoption, global memory allo
ation has two signi�
ant short
omings:(i) sub-optimal system throughput for workloads with di�erent a

ess patterns, and (ii)la
k of pro
ess isolation and unfair prioritization e�e
ts. We brie�y dis
uss these twoshort
omings in more detail.Sub-optimal System Throughput: Global memory allo
ation makes the assump-tion that ea
h appli
ation bene�ts the same when given an extra page. In reality, however,one appli
ation's throughput may rise sharply as it is given more pages, whereas others
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e no performan
e gains. If the goal is to maximize overall system through-put, memory should be taken away from pro
esses that are not bene�tting mu
h fromthem and be given to pro
esses that bene�t the most. The rationale is that while thethroughput of the vi
tim pro
esses are not seriously a�e
ted, a large boost in the through-put of the pro
esses that are assigned more memory 
an be obtained. However, a major
hallenge is how to a

urately measure the utility of pages for di�erent appli
ations.La
k of Isolation and Prioritization: In a system under memory pressure, pro-
ess prioritization done only through CPU s
heduling 
an be ine�e
tive. Chapin hasillustrated the prioritization problem due to la
k of memory isolation in operating sys-tems, and motivated the 
on
ept of memory prioritization [Cha97℄. As a simple example,
onsider two pro
esses A and B, with A's working set size larger than system memorysize and B's working set size 
onsiderably smaller. Moreover, B is slow to tou
h the pagesin its working set (e.g., due to a high amount of 
omputation). Even if the user givesmu
h higher priority to B than A, a system with global memory management will notisolate B from A. A's page-fault rate will be mu
h higher than B's, despite the fa
t thatB has more CPU time. As a 
onsequen
e, pages from pro
ess B will be vi
timized inorder to a

ommodate page faults from pro
ess A. Prioritization is espe
ially importantin large servers used for server 
onsolidation where ea
h user runs its appli
ation withina virtual ma
hine. In order to maintain a 
ertain level of servi
e for ea
h user, the op-erating system must be able to prote
t pro
esses (i.e., virtual ma
hine instan
es) frombeing deprived of memory by other memory-
onsuming appli
ations.To address the two short
omings of global memory allo
ation dis
ussed above, weemploy a lo
al memory allo
ation s
heme, where ea
h pro
ess is given a pool of privatepages that 
an then be governed by its independent page repla
ement poli
y. Memorypools are dynami
ally sized as new pro
esses are laun
hed, existing pro
esses' memorydemand 
hanges, or pro
esses exit. A major 
hallenge in lo
al memory allo
ation isto dete
t how mu
h memory an appli
ation needs at any given point in time. Simplesampling s
hemes, su
h as the one suggested by Waldspurger et al., have been shown tobe e�e
tive in measuring the working set of an appli
ation [Wal02℄. The problem withthe working set model is that it does not give an indi
ation of how the performan
e



Chapter 4. Page A

ess Tra
king to Improve Memory Management 89of an appli
ation will 
hange if it is given less memory than the measured working setsize, whi
h be
omes an issue in systems under memory pressure. We use the MRC modelboth for maximizing throughput and enfor
ing e�e
tive isolation and prioritization amongpro
esses.Maximizing ThroughputOur approa
h to optimizing throughput is similar to the greedy algorithm used by Zhou etal. [ZPS+04℄ with a di�erent level of hardware integration. In this approa
h, ea
h pro
essis initially allo
ated an equal amount of physi
al memory. At ea
h memory allo
ationstep, given λ is 
al
ulated for all pro
esses, penaltyP and benfitP for pro
ess P are 
al-
ulated as follows:
benefitP (g) = λp(M) − λp(M + g)

penaltyP (g) = λp(M − g) − λp(M)The greedy algorithm takes g pages away from the pro
ess with the least value for
penaltyP (g), and assigns them to the pro
ess with the highest value for benefitP (g).We 
al
ulate λ for ea
h pro
ess by treating the entire pro
ess address spa
e as a singleregion. If a pro
ess uses region-spe
i�
 page repla
ement, as des
ribed in Se
tion 4.3.1,we 
an measure the penalty of redu
ing pro
ess memory by using λ fun
tions already
al
ulated for ea
h region, and de�ne benefitP and penaltyP fun
tions for the pro
ess as:

benefitP (g) = λrmax,p(Mrmax
) − λrmax,p(Mrmax

+ g)

penaltyP (g) = λrmin,p(Mrmin
− g) − λrmin,p(Mrmin

)where rmin is the region with minimum penalty , and Mrmin
is the number of pages 
ur-rently allo
ated to region rmin. Similarly rmax is the region with maximum benefit , and

Mrmax
is the number of physi
al pages allo
ated to region rmaxEnfor
ing PrioritiesTo better support pro
ess priorities, we have implemented a simple poli
y to try tobalan
e appli
ation miss rates among appli
ations with the same priority. Figure 4.6shows an abstra
ted example for two pro
esses. At any point in time, the available
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Figure 4.6: Enfor
ing priority through balan
ing page miss rate. At ea
h point in time thepoli
y is to ensure same page fault rate for both appli
ations. As available memory 
hanges,di�erent page fault rate is set for both appli
ations.
physi
al memory is dynami
ally partitioned between the two pro
esses so that the twopro
esses su�er the same page miss rate. In the example, N1 pages are allo
ated to
Process1 and N2 pages are allo
ated to Process2, where N1 +N2 is equal to the amountof available memory and both pro
esses su�er from the same miss rate. If the amount ofavailable physi
al memory 
hanges (as other pro
esses laun
h or exit, for instan
e), thebalan
e line will be moved to a new level to a

ommodate the 
hange. In this 
ase, N ′

1pages are allo
ated to Process1 and N ′

2 pages to Process2, su
h that N ′

1 + N ′

2 is equalto the amount of available memory and both pro
esses su�er from the same miss rate.Another poli
y might dynami
ally partition memory a

ording to λ values so thatea
h pro
ess runs with a performan
e that is within a small margin of the performan
elevel required by a Servi
e-Level Agreement (SLA). In this approa
h, physi
al memoryallo
ated to a pro
ess 
hanges freely as long as the miss rate stays within the a

eptablemiss rate range that is spe
i�ed by the SLA. The λ fun
tion is used to predi
t the missrate for any given physi
al memory size. We are 
ontinuing to explore fairness and pro
essisolation using the �ne-grained memory a

ess information provided by PATH.
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hingAnother 
ommon te
hnique to 
lose the laten
y gap between disk and memory a

essis prefet
hing by predi
ting whi
h pages an appli
ation will use in the near future, andstart fet
hing these pages to memory before they are a
tually used. Prefet
hing is par-ti
ularly e�e
tive for appli
ations with working set sizes so large that even an optimalpage repla
ement poli
y still results in a high page fault rate.Given the rapid growth of disk I/O bandwidth in re
ent years, one 
an aggressivelyemploy spe
ulative prefet
hing te
hniques that trade potentially wasted I/O bandwidthfor additional improvement in laten
y. The problem with spe
ulative prefet
hing is thatit may result in still-needed pages of either the same or other appli
ations being repla
ed.In order to avoid this problem, spe
ulation pre
ision must be high, meaning a page thatis repla
ed by a prefet
hed page should not be a

essed earlier than the prefet
hed pageagain.There are several poli
ies for predi
ting whi
h pages to prefet
h. A simple approa
h isbased on spatial lo
ality: pages that are adja
ent to a faulted page in the virtual addressspa
e are 
andidates for prefet
hing on the assumption that they will also be a

essedsoon. More pre
isely, whenever a page-fault o

urs, the next w next pages in the addressspa
e would be prefet
hed, where the value of w 
ould be either �xed or dynami
allyadjusted based on how a

urately the prefet
hing poli
y has been performing. Thiss
heme is e�e
tive for many 
ases, sin
e many large memory-
onsuming appli
ationsa

ess pages in 
ontiguous 
hunks that are mu
h larger than a virtual page size. However,there are important 
lasses of appli
ations that a

ess memory with di�erent types ofregularity than spatial lo
ality.Another prefet
hing approa
h is based on automati
ally analyzing appli
ation logi
 inorder to identify regular a

ess patterns. With this approa
h, a 
ompiler inspe
ts programsour
e 
ode and inserts 
ode into the exe
utable to provide hints to the operating systemon whi
h pages should be prefet
hed soon. The main advantage of this approa
h is thatit automati
ally exploits high-level information on programs page a

esses and hen
e
an identify regularities that are hard to identify by just monitoring the sequen
e of
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Figure 4.7: Page Proximity Graph (PPG). Ea
h node represents a virtual page. Ea
h nodehas a �xed maximum number of edges to other nodes. An edge represents the fa
t that there istemporal proximity between the adja
ent nodes. The weight on ea
h edge represent the numberof times su
h temporal proximity is observed between the two nodes.a

essed virtual pages. The major drawba
ks of 
ompiler hint-based prefet
hing are twofold. First, it is appli
able only to appli
ations whose a

ess pattern 
an be analyzedby a stati
 
ompiler analysis. In prin
iple, one 
an extend this approa
h to a run-timeenvironment (e.g., Java virtual ma
hine) where more information regarding program datastru
tures and exe
ution path is available. To the best of our knowledge, this approa
hhas not been explored yet. The se
ond drawba
k of 
ompiler hint-based prefet
hing isthat it is spe
i�
 to parti
ular programming environments that have a 
ompiler modi�edfor generating prefet
hing hints.As an alternative, we have developed a predi
tion model, similar to a Markov predi
-tor [JG99℄, that in
orporates the temporal lo
ality of a

esses to pages into the prefet
h-ing strategy. By temporal lo
ality we refer to the fa
t that a set of pages are a

essedwithin a short period of time (e.g., time to a

ess a few pages).Similar to re
en
y-based predi
tion models, su
h as the one proposed by Saulsbury el.al [SDS00℄, we use the LRU sta
k to �nd temporal lo
ality among pages. Note, however,that for this purpose the LRU sta
k must be pre
isely maintained. As we showed in
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tion 4.2.2, the LRU sta
k is a

urately maintained by using the PATH-generatedinformation.We propose a new strategy based on temporal lo
ality, whi
h assumes that if a setof pages are a

essed repeatedly, they are likely to be a

essed again together within ashort period of time.To dete
t pages that are a

essed with temporal lo
ality, we build a weighted dire
tedgraph, 
alled Page Proximity Graph (PPG). Ea
h virtual page is a node in the graph.An edge (p1, p2) indi
ates that page p2 was a

essed shortly after p1. Ea
h edge has aweight, w, that indi
ates how many times the two pages were a

essed within a shortperiod of time. To save spa
e, PPG's degree D is limited to a small number (e.g., 10).For ea
h page p, we maintain a Proximity Set, Xp, where |Xp| is at most D. Figure 4.7shows a simple example of PPG where D is equal to 8.The PPG is updated on ea
h page fault as follows. A window of Wscan pages in theLRU sta
k is 
onsidered, starting from the 
urrent lo
ation of the faulted page p towardsthe top of the sta
k. If any page q in the s
an window is already in Xp, the weighton (p, q) is in
remented by one. Otherwise, q is 
onsidered as a 
andidate to be addedto Xp. The weight to all other nodes in Xp that do not appear in the s
an window isde
remented in order to de
ay obsolete proximity information. If the weight on any edge
(p, s) rea
hes zero, s is removed from Xp.Prefet
hing is initiated whenever a page fault o

urs on a page, su
h as p. To generatethe set of pages to be prefet
hed, the PPG is traversed starting from p in a breadth-�rst fashion, and all pages en
ountered are added to the prefet
h set. In Figure 4.7,the prefet
hed set starting from P1 is shown in gray, when traversing to a depth of 2.The deeper the breadth-�rst traversal, the more spe
ulative prefet
hing will be. One
an dynami
ally adjust the depth of the traversal a

ording to the 
urrent prefet
hinge�e
tiveness and available I/O bandwidth. If a page in the prefet
h set is already residentin memory, it will be arti�
ially tou
hed to prevent the page repla
ement algorithm fromevi
ting it under the assumption that the page will likely be a

essed soon.We evaluate prefet
hing e�e
tiveness using two metri
s, re
all and pre
ision, wherere
all is measured as the number of page-faults that are prevented from o

urring by
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ation Suite Des
ription Footprint (MB)MrBayes N/A Bayesian inferen
e of phylogeny 600MMCubing Illimine Data Cubing by fa
torizing latti
e spa
e 480SPECJbb2000 N/A Commer
ial Server Workload 850FFT Splash 2 Fast-Fourier Transform 770O
ean(
ontiguous partitions) Splash 2 Large-s
ale O
ean Movement Simulator 889O
ean(non-
ontiguous partitions) Splash 2 Large-s
ale O
ean Movement Simulator 903LU(
ontiguous partitions) Splash 2 Simulated CFD using SSOR 760LU(non-
ontiguous partitions) Splash 2 Simulated CFD using SSOR 800FMM Splash 2 N-body problem, Fast Multipole Method method 480CG NPB Conjugate Gradient Method 476BT NPB Blo
k Approximate Fa
torization 691MG NPB Mult-Grid Kernel 430SP NPB Solving a system of Pentadiagonal equations 724Table 4.1: Sele
ted Memory Intensive Appli
ationsprefet
hing, and pre
ision is measured by measuring the extra I/O bandwidth that isimposed by prefet
hing. The more pre
ise prefet
hing is, the lower the required I/Obandwidth will be.In order to limit the potential negative e�e
t of prefet
hing in evi
ting still-neededpages, we limit the number of pages that are prefet
hed but not yet a

essed by theappli
ation. On
e this limit is rea
hed, the prefet
hing algorithm stops until some of theprefet
hed pages are a
tually used. As a result, a prefet
hing s
heme that is mispredi
tingwill not be able to pollute the 
a
he of pages more than a 
ertain amount. The limit 
anbe set as a proportion of the size of the 
a
he of pages.4.6 Experimental Evaluation4.6.1 Experimental FrameworkThe goal of our evaluation is to show that the information generated by PATH is indeeduseful for the memory management algorithms dis
ussed in this 
hapter. Towards thisgoal, we used a tra
e-based simulation approa
h for two reasons. First, the informationgenerated by PATH is not dire
tly available in any of today's pro
essors. One solutionwould be to implement PATH fun
tionality in a 
y
le-a

urate simulator. The problem
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h is that 
y
le-a

urate simulation is extremely slow, espe
ially for thetype of memory-intensive appli
ations we are 
onsidering.Se
ondly, fully implementing all of the algorithms dis
ussed in this 
hapter in a realoperating system would require substantial 
hanges to the operating system kernel. More-over, many implementation-spe
i�
 issues that are not ne
essarily related to memorymanagement may interfere. For instan
e, prefet
hing from swap spa
e 
annot be e�e
-tive unless the layout of the swap spa
e is dynami
ally re-organized in order to minimizethe number of disk head seeks. Otherwise, no matter how a

urate prefet
hing is, per-forman
e will be 
ompletely determined by the disk I/O subsystem. Our investigationof the swap spa
e implementation in the Linux kernel showed that swap spa
e be
omesqui
kly fragmented under most workloads we examined. As a result, only a very smallfra
tion of available I/O bandwidth 
an be utilized for prefet
hing. Dealing with allsu
h issues is simply beyond the s
ope of this evaluation, whi
h is to simply show thatPATH-generated information is useful.Therefore, to measure the exe
ution time of appli
ations, we ran all workloads individ-ually on a real system with an AMD Athlon 1.5GHz pro
essor, and timed their exe
utionwith their entire working set size �tting in memory so that no page faults o

ur. Weestimate proje
ted exe
ution time given the page fault rate determined by our simulationexperiments. We use Bo
hs [Bo
℄, a widely used full-system fun
tional simulator for theIA-32 ar
hite
ture, to run the appli
ations and re
ord their memory a

esses. The mem-ory tra
e generated by the ma
hine simulator is fed into a memory manager simulatorthat simulates the memory-management algorithms in a multi-programmed environment.The proje
ted exe
ution time is 
al
ulated using the following formula:
Projected_Exec_Time = Exec_Time0 + WaitPF

WaitPF = Average_LatencyPage_Fault ∗ Total_Page_Faultswhere Exec_T ime0 is the exe
ution time measured when no page fault o

urs. We assumethat on
e a pro
ess faults on a page, it will be blo
ked for Average_LatencyPage_Fault
y
les; we use a �xed value of one million CPU 
y
les for Average_LatencyPage_Fault.This value 
onservatively underestimates the 
ost of page faults as the average disk a

ess
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y of even fast disks is in the order of a few millise
onds.Moreover, we optimisti
ally assume that I/O bandwidth is not a bottlene
k; i.e., weassume that saturation of I/O 
hannel 
apa
ity will not delay exe
ution. However, wemeasured the potential impa
t of the algorithms on required I/O bandwidth.We added a TLB simulator to Bo
hs so it 
ould gather TLB misses generated byappli
ations. In our experiments we set the TLB size to 128 entries and its asso
iativityto 16. Although Bo
hs simulates the entire software sta
k (i.e., user programs as well asthe operating system kernel), we re
ord only user-level TLB misses. A memory tra
e isessentially a series of page a

esses that are time�stamped by the number of instru
tions
ompleted by an appli
ation sin
e the last TLB miss. In order to re
ord modi�
ationof pages by the appli
ations, a memory write instru
tion that hits on a non-dirty TLBentry is 
onsidered to be a TLB write miss, and is also re
orded into the tra
e. Weslightly modi�ed the Linux kernel version 2.6.10 to inform the ma
hine simulator of anypro
ess fork, exit, 
ontext-swit
h, or page-fault events. Moreover, all mmap relatedsystem 
alls are relayed to the simulator. Having this information enables us to isolatethe exa
t sequen
e of virtual addresses ea
h pro
ess has a

essed or modi�ed throughoutits exe
ution.4.6.2 Appli
ationsTable 4.1 shows the set of memory-
onsuming appli
ations we use from various ben
h-mark suites: six appli
ations from the Splash-2 suite [WOT+95℄, four from the NASParallel Ben
hmark (NPB) suite [NAS℄, SPECjbb2000 [Sta℄, MMCubing from the Illim-ine data mining suite [Ill℄, and MrBayes, a Bayesian inferen
e engine for phylogeny [MrB℄.We did not in
lude SPEC CPU ben
hmarks, as they have fairly small memory footprints.Also, we did not in
lude database ben
hmarks, primarily be
ause database servers usuallyexploit their 
omplete knowledge of a

essed pages to optimize the repla
ement poli
iesmore e�e
tively inside the server.We ran the appli
ations with large problem sizes within the pra
ti
al limits of thesimulation environment. However, all of these appli
ations 
ould 
onsume tens of gi-gabytes of memory for large but still realisti
 problem sizes. For our experiments, we



Chapter 4. Page A

ess Tra
king to Improve Memory Management 97
 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 300  350  400  450  500  550  600  650  700  750  800

P
ro

je
c
te

d
 E

x
e
c
. 
T

im
e
 (

b
il
li
o

n
 c

y
c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 450  500  550  600  650  700  750  800  850  900

P
ro

je
c
te

d
 E

x
e
c
. 
T

im
e
 (

b
il
li
o

n
 c

y
c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

a. LU 
ont. (FMM, MG, and SP) b. O
ean 
ont. (O
ean non-
ont.)
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100  200  300  400  500  600  700  800

P
ro

je
c

te
d

 E
x

e
c

. 
T

im
e

 (
b

il
li
o

n
 c

y
c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 500  550  600  650  700  750  800  850  900  950  1000 1050

P
ro

je
c

te
d

 E
x

e
c

. 
T

im
e

 (
b

il
li
o

n
 c

y
c
le

s
)

Memory Size (MB)

Global LRU
LIRS

Region-based


. BT (FFT and MrBayes) d. SPEC JBB (LU non-
ont. and CG)Figure 4.8: Proje
ted exe
ution time of sele
ted appli
ations with di�erent repla
ement poli
ies.The appli
ations listed within parentheses have similar behavior.
olle
ted memory tra
es that 
over the exe
ution of a few hundred billion instru
tionsfor ea
h appli
ation. A warm up time is 
onsidered at the beginning of the simulationin whi
h no measurement is done. The length of the warm up time is observed by ea
happli
ation's initialization time. Note, however, that we did not exe
ute appli
ations to
ompletion.4.6.3 Analysis of Adaptive Repla
ement Poli
iesFigure 4.8 shows the e�e
t of using di�erent repla
ement poli
ies on appli
ation exe
utiontime as memory size is varied. The �gure shows the results for a set of four appli
ationswith representative behavior. For most of the appli
ations, using one of the adaptivepoli
ies (i.e., LIRS or region-based) resulted in a signi�
ant improvement in the proje
ted
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. Global LRU (Faults) d. Lo
al Fairness (Faults)Figure 4.9: Global and Lo
al Allo
ation poli
y in multi-programmed s
enario: Spe
JBB andBT. In (a) and (b), the performan
e of the two algorithms is shown, while the goal is to maximizeoverall system throughput (in terms of IPC). In (
) and (d), the fairness of the two algorithmsis shown, while the goal is to rea
h the same page-fault rate for both appli
ations.
exe
ution time (e.g., around 500% for LU 
ont.). Comparing region-spe
i�
 and LIRSpoli
ies, in some 
ases one performs slightly better than the other and vi
e versa, butgenerally their di�eren
e is not signi�
ant. There are also rare 
ases in whi
h one of theadaptive poli
ies performs slightly worse than the basi
 LRU algorithm (e.g., O
ean forLIRS and SPECJbb for region-spe
i�
).
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al Memory Allo
ationTo demonstrate the bene�ts of �ne-grained memory a

ess pattern information for lo
al(per-pro
ess) memory allo
ation s
hemes, we have designed two experiments. In the �rstexperiment, we show that total system throughput (in terms of Instru
tions Per Cy
le)
an be improved over a traditional global allo
ation s
heme. The se
ond experimentdemonstrates that in a system under memory pressure, it is possible to obtain fairness,in terms of page-fault rate, through memory isolation.In all setups, two appli
ations are running simultaneously: SPECJbb and BT. Withoutloss of generality, in order to make the experiment more 
lear, we assumed that the IPCof both appli
ations is 1 when running in isolation. Also, as mentioned earlier, ea
h pagefault is 
onsidered to have �xed laten
y of one million 
y
les. We used a warm-up timeof 30 billion instru
tions and a running time of 60 billion instru
tions 
ombined.Figure 4.9 (a) shows the average IPC for both appli
ations when run with globalallo
ation mode; graph (b) shows the average IPC when the appli
ations run with lo
almemory allo
ation, set to maximize throughput. The trend in IPC is similar for bothsetups; however, our lo
al allo
ation poli
y a
hieves higher overall IPC in that the numberof 
y
les needed to exe
ute 60 billion instru
tions with lo
al memory allo
ation is about18% lower than that is required with global memory allo
ation (145 vs. 178 billion
y
les). This is mainly be
ause SPECJbb has a higher bene�t from getting extra pagesthan BT while a global memory allo
ation s
heme 
onsiders the utility of ea
h page thesame for both appli
ations.Graphs (
) and (d) of Figure 4.9 show the page-fault rate of the same two appli
ationsrunning with global and lo
al allo
ation poli
ies, respe
tively. For the lo
al allo
ationpoli
y, however, we have 
on�gured the poli
y to maintain page-fault fairness, as de-s
ribed in Se
tion 4.4. Although the lo
al allo
ation poli
y 
on�gured for fairness takesmu
h longer to 
omplete, it is quite visible that the page-fault rate ea
h appli
ation issu�ering is similar, therefore su

essfully rea
hing its obje
tive.
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hingIn a set of experiments, we have 
ompared the temporal and spatial lo
ality-basedprefet
hing algorithms. Figure 4.10 shows their e�e
t on both page-fault rate and re-quired I/O bandwidth for a set of sele
ted appli
ations. The rest of the appli
ations weexamined perform similarly to one of the appli
ations shown in the �gure, and are listedin parenthesis in the �gure. For ea
h appli
ation two graphs are shown. The graphs onthe left show how the page-fault rate is a�e
ted as a result of prefet
hing. The graphson the right side show the impa
t of prefet
hing on I/O bandwidth both for page-in andpage-out operations.For the spatial lo
ality-based poli
y, we set the initial prefet
hing window w to 64whi
h 
an dynami
ally grow depending on a
hieved pre
ision. For the temporal lo
ality-based poli
y, we set the size of the proximity set for ea
h page to 10 and the s
an windowsize Wscan to 64 pages. The depth of the breadth��rst traversal in the PPG graph waslimited to 3. Finally, for both algorithms we set the size of the pool of pages that areprefet
hed but not a

essed yet to be at most 10% of the physi
al memory.In our experiments, we assumed unlimited I/O bandwidth and that the only sour
e ofstall is I/O laten
y. This means that on
e a set of pages are designated to be prefet
hed(at most 64 pages), they are assumed to be available in memory within a 
onstant delaytime. Furthermore, we have not taken the e�e
t of disk positional delays into a

ount.For many appli
ations, su
h as MG and FFT, the spatial lo
ality-based poli
y is quitee�e
tive both in terms of re
all and pre
ision. Our temporal lo
ality-based algorithm thatmonitors the sequen
e of the a

essed pages is also able to dete
t regularity in the a

esspattern with similar e�e
tiveness. There are appli
ations, su
h as LU non-
ontiguous,for whi
h the temporal lo
ality-based algorithm signi�
antly outperforms the spatiallo
ality-based algorithm, both in terms of redu
ing the page-faults and pre
ision. Thee�e
t of prefet
hing on I/O bandwidth for LU non-
ontiguous is remarkable in the sensethat prefet
hing manages to prevent pages in the prefet
hed set from being repla
ed byarti�
ially tou
hing them. As a result, the required I/O bandwidth with prefet
hing islower than that required without prefet
hing for some memory sizes. Finally, for some
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ations, su
h as SPECJbb, neither of the prefet
hing algorithms is e�e
tive. This
an indi
ate that more appli
ation-level information is required to predi
t next a

esses.For instan
e, Demke-Brown et al. shows e�e
tive use of 
ompiler analysis to generatea

urate prefet
hing hints automati
ally [BMK01℄.4.6.6 E�e
t of PAB SizeFigures 4.11 and 4.12 show the e�e
t of di�erent PAB sizes on the proje
ted exe
utiontime and runtime overhead for both the page repla
ement and prefet
hing algorithms forsome of the appli
ations that bene�t from �ne-grained page a

ess information. Re
allthat the PAB absorbs the a

esses to hot pages and prevents them from appearing inthe page a

ess tra
e. In these experiments, we vary the PAB size from 128 to 32Kentries, So that the PAB will span from 512KB to 128MB respe
tively. As the PAB sizein
reases, we expe
t that an in
reased number of page a

esses to be �ltered by PATHand thus the page a

ess information generated be
omes less a

urate. At the same time,we expe
t pro
essing overhead to de
rease as fewer page a

esses are re
orded.As we see in the graphs, runtime overhead drops signi�
antly as PAB size in
reases.At the same time, the proje
ted exe
ution time does not seem to be varying mu
h as thePAB size is in
reased from 128 to 2K entries. One ex
eption is FFT with LIRS (shown inFigure 4.2). Overall, it appears that a 2K-entry PAB represents a good tradeo� betweenoverhead and a

ura
y.
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tion, we 
ompare PATH's runtime overhead to a software-only approa
h. Tomeasure PATH's basi
 overhead, we emulated ex
eptions generated by PATH in a realenvironment using an 1.5GHz AMD Athlon pro
essor. For ea
h appli
ation, we 
olle
teda tra
e of PAL over�ow ex
eptions along with the 
ontent of the PAL at the time ofex
eption. Ea
h over�ow event is time-stamped using the number of instru
tions retiredsin
e the start of the appli
ation. We then replayed these tra
es by arti�
ially generatingex
eptions at the same rate as in the tra
e by using hardware performan
e 
ounter over-�ow ex
eptions. At ea
h ex
eption, we read the 
ontents of the PAL from the tra
e andupdated the LRU sta
k and MRC data stru
tures. To 
al
ulate the overhead, we mea-sure the total number of CPU 
y
les needed to exe
ute a 
ertain number of appli
ationinstru
tions (e.g. a few tens of billions), with and without PATH ex
eptions.The software-only approa
h is implemented in Linux-2.6.15. We measure only the
ost of maintaining the a
tive set whi
h in
ludes the 
ost of extra page prote
tion faults,page table walks to set the prote
tion bits, �ushing the 
orresponding TLB entries, ando

asionally trimming the a
tive set using CLOCK.Figure 4.13 shows the runtime overhead of both PATH and the software-only approa
ha
ross the sele
ted set of appli
ations, as a fun
tion of a
tive set size (PAB size inPATH). There are a number of observations. First, the overhead of the software-onlyapproa
h is quite high (up to more than 200% of the base exe
ution time) for a numberof appli
ations (e.g., FFT, LU-non
., MMCubing and SPECJbb) even with a fairly largea
tive set size. Se
ond, the runtime overhead of PATH is very small in all appli
ationsif a large PAB (e.g., 32K) is used. For the target 2K PAB size, the overhead of PATHremains less than 3% in all but two appli
ations (LU-non
., and SPECJbb for both ofwhi
h the overhead is less than 6%). The relatively small overhead is easily o�set bythe substantial performan
e improvement a
hieved by the PATH-generated informationwhen the system is under memory pressure. Note that the OS 
an turn PATH o� whenthe system is not under memory pressure, and as a result there will not be any unwantedruntime overhead.
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Figure 4.13: Runtime overhead of PATH-generated information 
ompared to the software-onlyapproa
h (SOFT). To help visualize the 
omparison, all runtime overhead numbers larger than100% are trun
ated.It is important to note that our approa
h for measuring the overhead is pessimisti
as we ensure the programs' working sets �t in memory and no page faults o

ur duringthe 
ourse of our measurement. In pra
ti
e, however, mu
h of the pro
essing of PATH-generated information 
an be overlapped with potentially long I/O operations 
aused bypage faults.4.7 Related WorkZhou et al. suggest the use of a 
ustom-designed hardware monitor on the memory busto e�
iently 
al
ulate MRC online [ZPS+04℄. In their approa
h, mu
h of the overhead of
omputing MRC 
an be avoided by o�oading to hardware almost 
ompletely. In 
ontrast,we argue in favor of having a simpler hardware that provides lower-level, but more generi
,information about page a

esses that 
an be used to solve many problems in
luding thememory allo
ation problem. We have shown that with the use of �ne-grained page a

essinformation, the operating system 
an make better de
isions on at least three di�erent
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es required, the data stru
tures in PATH aresimpler and smaller, and unlike the MRC monitor in Zhou et al.'s approa
h, do not growproportionally with the size of system physi
al memory.Cooperative Robust Automati
 Memory Management(CRAMM) 
olle
ts detailedmemory referen
e information to be used to adjust the heap size of a Java virtual ma
hinedynami
ally in order to prevent a severe performan
e drop during garbage 
olle
tion dueto paging [YBKM06℄. The authors have used the software-only approa
h to tra
k MRCin order to predi
t memory usage and adjust the JVM heap size a

ordingly. To redu
eoverhead, CRAMM dynami
ally adjusts the size of the a
tive set by monitoring runtimeoverhead. Su
h an approa
h is presumably e�e
tive in tra
king MRC for JVM's heapsize. However, our results show that for many memory intensive appli
ations, in
reasingthe size of the a
tive set will result in signi�
ant performan
e degradation of memorymanagement algorithms.Tra
king memory a

esses at the hardware level has been suggested by other re-sear
hers, although to address di�erent problems. For instan
e, Qureshi et al. suggestedthe use of hardware utility monitors to monitor memory a

esses solely to 
ompute MRCat the granularity of individual CPU 
a
he lines [QP06℄. Their hardware uses the 
om-puted 
urves to dynami
ally partition shared L2 
a
hes to improve performan
e or enfor
eprioritization.4.8 Con
luding RemarksTraditionally, operating systems tra
k appli
ation memory a

esses either by monitoringpage faults or by periodi
ally s
anning page table entries. With this approa
h, importantinformation on the reuse distan
e and temporal proximity of virtual page a

esses that
an be used for improving memory management algorithms is lost. Previous work hassuggested the use of a purely software-based approa
h that uses virtual page prote
tionto tra
k page a

esses more a

urately. While this software-based approa
h is e�e
tivefor some appli
ations, for many appli
ations it in
urs una

eptably high overhead.In this 
hapter, we proposed novel Page A

ess Tra
king Hardware (PATH) that
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ords page a

ess sequen
es in a relatively a

urate, yet e�
ient way. In terms ofstru
ture and fun
tion, PATH is simple and easy to implement. In terms of hardwareresour
es required, PATH's stru
tures are fairly small (e.g., around 10KB in size in total)and, unlike previously proposed hardware me
hanisms for page a

ess tra
king, they donot grow proportionally with the size of physi
al memory.We explored several algorithms in the operating system that 
an exploit the informa-tion provided by PATH to improve memory management in three di�erent areas: (i) toimplement more adaptive adaptive page repla
ement poli
ies, (ii) to make smart de
isionin allo
ating memory to 
on
urrently running pro
esses, and (iii) to guide the prefet
h-ing of pages from virtual memory swap spa
e. Our experimental analysis showed thatwith PATH, signi�
ant performan
e improvements (e.g., as high as 500% in some 
ases)
an be a
hieved for appli
ations, espe
ially when systems are under memory pressure.Unlike software-only approa
hes for tra
king �ne-grained page a

ess information, theruntime overhead of PATH remains small (i.e., in the 3%-6% range) a
ross a wide rangeof memory-intensive appli
ations.Further work is still required in evaluating the e�e
tiveness of information generatedby PATH with a more diverse set of appli
ations. Moreover, to ensure s
alability ofPATH for very large memory setups, more experiments with larger appli
ation problemsizes must be 
ondu
ted.Another important extension is to explore the use of PATH in a multipro
essor setup.There are important open issues, su
h as how to 
olle
tively use PATH tra
es of parallelappli
ations that are generated on multiple pro
essors. Similarly, work needs to be donein perfe
ting PATH support for multithreaded appli
ations. Currently, the PATH tra
egenerated for an appli
ation running on a CPU is pro
essed into a single LRU sta
k orthe Page Proximity Graph. If the appli
ation is multithreaded, this approa
h resultsin intermingling tra
es of several threads into a single aggregate data stru
ture. As aresult, important information about both reuse distan
e and temporal proximity of pagea

esses on a per thread basis is lost. To solve this problem, simple extensions 
an bemade to the software layer to keep tra
k of multiple LRU sta
ks on a per thread basis.We believe that additional uses of information provided by PATH will be
ome appar-
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ess Tra
king to Improve Memory Management 108ent over time, as we experiment with a wider variety of memory intensive appli
ations.Two possible ideas are super page management and page pla
ement in a NUMA ar
hi-te
ture.Finally, we have observed that steps have already been taken by the hardware per-forman
e monitoring 
ommunity to fa
ilitate integration of PATH into real hardware.For instan
e, the idea of adding a generi
 tra
e bu�er to the PMU of next generationCPUs seems to have attra
ted attention [Mer06, Cal06℄. One 
an easily envision addingmodest-sized �lters, su
h as those in PATH (or to use a se
ond level TLB for this pur-pose), to the existing hardware substrate to support a

urate 
apture of the page a

essessequen
es, as proposed in this 
hapter.



Chapter 5
Con
luding Remarks
Over the past several de
ades, mi
ropro
essor ar
hite
tures have evolved to in
reasinglyprovide system software with information for implementing new fun
tionality or for im-proving the performan
e of appli
ation and operating system 
ode. This evolution ispartially a

elerated by the in
reasing abundan
e of sili
on in modern mi
ropro
essors,whi
h enables embedding new hardware features other than those that are dire
tly re-quired for exe
uting 
ode.In this dissertation, we explored hardware performan
e monitoring features of today'smi
ropro
essors and we explored software te
hniques for exploiting these features at theoperating system level to improve software performan
e.At a high level, our approa
h, has been to try to utilize, as mu
h as possible, existingmi
ropro
essor performan
e monitoring features for the purpose of performan
e analysisand optimization. If the information required for spe
i�
 performan
e optimization te
h-niques was not provided through existing hardware performan
e monitoring features, orwas too 
ostly to obtain, we proposed minimal extra hardware support.We based our resear
h and experimentation primarily on existing hardware, and de-fault to simulation only when we explore newly propose hardware support. This approa
hhas several advantages. First, it allows us to observe hardware-software intera
tion s
e-narios in a real environment, taking into a

ount all 
omplexities of real systems. Se
-ondly, using real hardware allows us to run long-running experiments at real-time speedwhi
h is several orders of magnitude faster than a detailed system simulator. Finally,109



Chapter 5. Con
luding Remarks 110having explored existing hardware in great detail provides us with the insight to proposenew hardware support more realisti
ally, and to the minimal extent needed.To 
on
lude this thesis, we �rst provide a brief summary of our work and the major
ontributions of this thesis. We then provide dire
tions for future resear
h in improvingthe e�e
tiveness and utility of hardware performan
e monitoring and how the operatingsystem 
an bene�t from su
h improvements.
5.1 SummaryWe �rst present a summary of our resear
h e�ort on di�erent areas of hardware perfor-man
e monitoring. We then enumerate spe
i�
 resear
h 
ontribution our resear
h hasmade.5.1.1 CPU Bottlene
k AnalysisWe explored the problem of a

urately and e�
iently identifying CPU bottlene
ks byusing Hardware Performan
e Counters (HPCs). Towards a
hieving this goal we fa
edtwo 
hallenges. First, too few HPCs are available in mi
ropro
essors today. Se
ondly,there has to be a simple and e�
ient performan
e model with whi
h CPU bottlene
ks
an be de�ned and quanti�ed. We addressed the �rst 
hallenge by applying low-levelHPC multiplexing to make a large set of logi
al HPCs available. We addressed these
ond 
hallenge by 
hara
terizing a simple, but powerful, performan
e model, 
alled stallbreakdown, to identify those pro
essor 
omponents that are stressed most. Our modelfo
uses on 
y
les where the instru
tion 
ompletion stops. We show that su
h 
y
les areresponsible for most of the di�eren
e between the ideal and real throughput of today'sCPU. To generate stall breakdown online, we used IBM POWER5 and PowerPC970hardware performan
e monitoring features to spe
ulatively asso
iate stalls to the CPU
omponents that are likely to have 
aused them. By using our HPC multiplexing engine,we build the stall breakdown model online with negligible runtime overhead.



Chapter 5. Con
luding Remarks 1115.1.2 Hardware Data SamplingWe explored di�erent methods of �ne-grained data sampling at the hardware level, havingre
ognized that pre
ise information on the data a

ess patterns of appli
ations is requiredfor implementing many performan
e optimizations. A

urately analyzing appli
ationdata a

ess patterns is parti
ularly important be
ause of the widening gap between CPUand memory speed 
ausing most CPU 
y
les to be spent waiting for long-laten
y memorymodules to provide data.We found existing hardware data sampling te
hniques to have major limitations,making them only partially useful. For instan
e, the sour
e from whi
h data is fet
hedis not dire
tly identi�ed by any of the existing mi
ropro
essor performan
e monitoringunits. However, using IBM POWER5's 
ontinuous data sampling features, we were ableto implement a te
hnique to sample data based on sour
e indire
tly. Moreover, we wereable to sample data based on multiple sele
tion 
riteria simultaneously by using ourHPC multiplexing engine. In a 
ase study, we showed how to use sour
e-based datasampling to a

urately 
hara
terize data sharing patterns among 
on
urrent threads ina multipro
essor environment. We further showed how to use this 
hara
terization ofsharing among threads to 
luster them into groups of threads that a
tively share data.5.1.3 Page A

ess Tra
king HardwareTo improve the performan
e of memory management, we proposed simple hardware 
a-pable of tra
king memory a

esses at the granularity. Our proposal was based on theobservation that the existing data sampling methods have inherent limitations. First, itis di�
ult to �nd the reuse distan
e of a parti
ular memory address, and se
ondly, it isnot possible to pre
isely identify sets of pages that are a

essed together.Our proposed hardware is simple and s
alable, and it is generi
 in that it produ
es araw tra
e of memory a

esses from whi
h the most frequently a

esses pages are automat-i
ally removed by the hardware. We used our proposed page a

ess tra
king hardware(PATH) in e�
iently 
onstru
ting pre
ise LRU sta
k and Miss Rate Curves (MRCs)for virtual pages. We further showed the use of these data stru
tures in implement-
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luding Remarks 112ing algorithms for three di�erent areas of memory management. In all three 
ases weshowed, through simulation, that signi�
ant performan
e improvement 
an be a
hievedwith negligible software overhead.
5.1.4 Summary of ContributionsOur resear
h has resulted in the following spe
i�
 
ontributions:

• Our te
hniques and in parti
ular the proposed ar
hite
ture for HPC multiplexingwith the sampling engine based in the operating system kernel, allows for samplingat a �ner granularity and more e�
iently than previously possible. Moreover,through the use of �ne-grained HPC multiplexing we were able to make a largerset of logi
al HPCs available.
• We developed the Stall Breakdown model that assists in identifying the moststressed 
omponents of the mi
ropro
essor. The key insight in developing thissimple model was fo
using on non-
ompletion CPU 
y
les, as opposed to fo
usingon individual stages in the pro
essor pipeline. Using IBM POWER5 fa
ilities, wewere able to generate stall breakdown information online with negligible overhead.
• We identi�ed a novel te
hnique to sample data 
a
he misses based on the sour
efrom whi
h they are served. WE demonstrated the value of this type of datasampling by e�
iently 
onstru
ting sharing signatures for 
on
urrent threads tosupport sharing-aware s
hedulers.
• We proposed a novel page a

ess tra
king hardware (PATH) that has negligibleoverhead and high pre
ision, and we showed how to use this hardware support toimprove memory management in three di�erent areas: (i) adaptive page repla
e-ment poli
ies, (ii) pro
ess memory allo
ation, and (iii) virtual memory prefet
hing.



Chapter 5. Con
luding Remarks 1135.2 Future Dire
tionsThe ar
hite
ture of the Performan
e Monitoring Unit (PMU) has dramati
ally evolvedover the last de
ade. Pro
essor ar
hite
ts have started to devote additional resour
esto provide more pre
ise and diverse fun
tionality in the mi
ropro
essor PMU. Today,in almost every major mi
ropro
essor, a large set of di�erent hardware events 
an bemonitored. Furthermore, there have been major enhan
ements in te
hniques of 
loselymonitoring individual instru
tions as they �ow through the pipeline to allow pinpointingexa
t root 
auses of performan
e problems. Finally, several pro
essor PMUs have intro-du
ed new data stru
tures, su
h as tra
e bu�ers. These data stru
tures greatly in
reasethe power of PMUs, whi
h traditionally have been 
omposed of only a set of 
ounters.Despite the fa
t that PMUs 
an be found in most today's mi
ropro
essors, their fea-tures are not widely exploited by software developers and thus, PMUs have remained"se
ond 
lass 
itizens" [Cal06℄. On the one hand, the software 
ommunity often �ndsPMU features inadequate or 
omplex to use. On the other hand, the hardware ar
hite
-ture 
ommunity is not willing to adopt new PMU features unless their utility is 
learlydemonstrated. We believe that, in order to further motivate the evolution of PMUs, thesoftware 
ommunity will need to provide more 
on
rete 
ases of real performan
e im-provements (or redu
tion in energy 
onsumption) that are only made possible by usinga

urate PMU-generated information. Moreover, we believe our approa
h of using theexisting PMU as mu
h as possible and proposing only minimal extra hardware, wheneverne
essary en
ourages further enhan
ements in the ar
hite
ture of next generation PMUs.A key reason why PMU features are not widely used for software-level optimizationsmay be due to the fa
t that spe
i�
 PMU features required are available only on aparti
ular ar
hite
ture. Even when the required features are available a
ross severalar
hite
tures, it is often a non-trivial task to exploit these features be
ause of substantialdi�eren
es in the user-interfa
e, terminology, and semanti
s of hardware events a
rossdi�erent pro
essor PMUs. We believe that, in order to resolve this issue, PMU featuresshould, at least partially, be standardized. The pro
ess of standardization may involvemaking a 
lear distin
tion between (i) hardware implementation-spe
i�
 features intended
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luding Remarks 114primarily for pro
essor ar
hite
ts to aid in the debugging and performan
e tuning ofseveral revisions of a pro
essor family, and (ii) higher-level, implementation-independentfeatures to aid software designers in understanding and improving the performan
e oftheir software.Towards standardization of PMU features to aid software optimization, we believean extended stall-breakdown model, whi
h fo
uses on pre
isely measuring the penalty ofmiss events is a useful feature that should be implemented with a similar interfa
e a
rossall pro
essor families with similar semanti
s. The key underlying feature is the abilityto attribute CPU 
y
les wasted as a result of a miss event to pro
essor 
omponents,program instru
tions, and a�e
ted data addresses that are involved in the miss event.Additionally, the hardware performan
e monitoring infrastru
ture should be extendedto all 
omponents in of the 
omputer system, not only the CPU. Components of interestin
lude the memory bus (or any other type of memory inter
onne
t in a NUMA sys-tem), the pro
essor inter
onne
t, the I/O inter
onne
t, and the individual I/O devi
essu
h as network interfa
e, graphi
al pro
essing unit (GPU), and hard disks. Having a
-
urate information on the performan
e of all these 
omponents will enable the systemsoftware to have a more 
omplete view of system performan
e and its potential bottle-ne
ks. For instan
e, Antonopoulos et al. demonstrate the 
on
rete possibility of memorybus bandwidth limitation to be
ome a performan
e bottlene
k for highly optimized par-allel appli
ations, and how a bandwidth 
ons
ious CPU-s
heduler 
an utilize memorybus bandwidth information to avoid this bottlene
k [ANP03℄. There are also 
lear in-di
ations that the 
omputer hardware industry has a
knowledged the importan
e of thesystem-wide hardware performan
e monitoring and is taking meaningful steps towardsit [Kei06, Kag06, NZ℄.Finally, with the widespread revival of virtualization te
hnology, we believe an impor-tant future 
hallenge for hardware performan
e monitoring fa
ilities is to provide propersupport for virtualized environments. As virtual ma
hines have be
ome in
reasingly pop-ular, they introdu
e new questions on how the hardware 
an monitor the system to �ndperforman
e bottlene
ks of a virtual ma
hine running on a physi
al ma
hine shared bymany other virtual ma
hine instan
es. When a virtual ma
hine is s
heduled to run, it



Chapter 5. Con
luding Remarks 115inherits the residual state of virtual ma
hines running previously on the same CPU. Thise�e
t introdu
es additional noise to the performan
e measurements done through thePMU. Also, 
on
urrently running virtual ma
hines interfere with ea
h other on sharedresour
es su
h shared on-
hip 
a
hes, memory bus, and I/O inter
onne
t fabri
.
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