SYSTEM SOFTWARE UTILIZATION OF HARDWARE PERFORMANCE
MONITORING INFORMATION

Reza Azimi

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright (©) 2007 by Reza Azimi

Abstract

System Software Utilization of Hardware Performance Monitoring Information

Reza Azimi
Doctor of Philosophy
Graduate Department of Electrical and Computer Engineering
University of Toronto

2007

Over the past several decades, microprocessors have evolved to assist system software
in implementing new functionality or in improving the performance of programs. The
relative abundance of available silicon may further motivate introducing new hardware
features other than those that are directly required for executing code. The main focus
of this dissertation is on how new hardware support can collect accurate performance
data so as to enable system software in making more informed decisions in improving the
performance of programs.

First, we explore the problem of using Hardware Performance Counters (HPCs) to
identify CPU bottlenecks accurately and efficiently. We address the problem of having
a limited number of available HPCs by developing fine-grained HPC multiplexing that
provides a large set of [ogical HPCs. We develop a simple and useful performance model,
called stall breakdown to identify stressed processor components by focusing on cycles
where the instruction completion stops. We generate the stall breakdown model by using
HPC multiplexing online with negligible overhead.

Secondly, we explore different methods of fine-grained data sampling at the hardware
level. Using the continuous data sampling features of the IBM POWERS processor, we
identify a new technique to produce data samples based on their source, and in a case
study, we demonstrate how to use source-based data samples to accurately characterize
data sharing patterns among concurrent threads to effectively support sharing-aware

schedulers.

i

Finally, we propose novel hardware to track memory accesses at the granularity of
virtual pages. Our proposed hardware is simple, efficient, and generic. We show how the
proposed page access tracking hardware (PATH) can be used to improve performance in
three different areas of memory management. In all three cases, we show that significant

performance improvement can be achieved with negligible software overhead.

il

Dedication

for Afsaneh

who has been with me all along this path.

v

Acknowledgements

I would like to express my deep gratitude to those whose help and support have been
instrumental in making the completion of this dissertation possible.

First and foremost, I am indeed grateful to my supervisor, Professor Michael Stumm,
who has always provided me with his constant care and support, his guidance which
proved to be crucial in many circumstances, and his much needed critical view of my work.
Also, I greatly appreciate the help from the members of my PhD committee, Professor
Ashvin Goel, Professor David Lie, and Professor Andreas Moshovos, whose technical
feedbacks have played an important role in improving the quality of this dissertation. I
should also thank the external examiner of this thesis, Professor Dimitris Nikolopoulos
who spent much time in reading my thesis in some rough personal circumstances and
provided a thoughtful and thorough evaluation of this dissertation. Last but not least, I
need to thank Professor Angela Demke Brown whose active and dedicated collaboration
has been instrumental in the development of the chapter 4 of this dissertation.

In the past five years, I have enjoyed both the company and the effective assistance of
my colleagues at the department of Electrical and Computer Engineering at the Univer-
sity of Toronto. That includes Jonathan Appavoo who was my mentor in the early years,
David Tam who has always been selflessly ready to help others, Livio Soares who has
provided substantial help in developing and improving chapter 4, Adrian Tam, Raymond
Fingas, Thomas Walsh, Alexandre Depoutovitch, and Adam Czajkowski. I should also
thank members of the IBM research, Robert Wisniewski, Orran Krieger, and Dilma da
Silva both for their intellectual assistance and for the important logistics they provided.

Throughout my PhD years, I depended so much on my wonderful wife, Afsaneh Fazly
who, for me, has constantly been a source of unconditional support, energy, and positive
inspiration. Without her, I certainly would not have been able to finish this dissertation.
[am also grateful to my best friends and mentors, Ramtin Khosravi, Kiarash Bazargan,
and Reza Ziaei who were inspiring figures for me to pursue my PhD.

Finally, I am grateful to the financial support I have received from the department
of Electrical and Computer Engineering, University of Toronto, and the Government of

Ontario.

Contents

1 Introduction 1
1.1 CPU Bottleneck Analysis 3
1.2 Analyzing Data Access Patterns through Hardware Data Sampling 4
1.3 Fine-grained Page Access Tracking)
1.4 Summary of Contributions o0 5t
1.5 Organization of the Dissertation 6

2 CPU Bottleneck Analysis 7
2.1 Introduction 7

2.1.1 Challenges of Using HPC 7
Small Number of HPCs 8

Complex Interface oL 8

High Overhead, 9

2.1.2 Our Approach 9
2.1.3 Organization of the Chapter 10

2.2 Current HPC Capabilities 10
221 Event Types 10
2.2.2 Counting Methods 11
Instrumentationo Lo Lo 11

Sampling 12

2.2.3 Counting Modes 13

2.3 Our Performance Monitoring Facility 14
2.4 Fine-grained HPC Multiplexing 16

vi

2.5 Statistical Stall Breakdown 19

2.5.1 Hardware Model 21
2.5.2 Source-based Refinement 000000 27

2.6 Implementation 28
2.6.1 Real Hardware versus Simulation Environment 28
2.6.2 Hardware 29
2.6.3 Operating System 30

2.7 Experimental Evaluationo 32
2.7.1 Accuracy of Multiplexing 33
2.7.2 Stall Breakdown 36
Source-based Breakdown o000 37

2.7.3 Runtime Overhead 38

2.8 Related Work 39
2.9 Concluding Remarks o o 41
Hardware Data Sampling to Detect Thread Sharing 44
3.1 Introduction 44
3.1.1 Organization of Chapter 46
3.1.2 Data Sampling Methods 46
Continuous Data Sampling 46

Instruction Sampling 47

Hardware Data Breakpoints 48

Hardware Bus Monitors 49

3.1.3 Data Sampling Modes oo 49

3.2 Our Sampling Techniques 50
3.2.1 Source-based Data Sampling00 50
3.2.2 Multiple Sampling Criteria o1

3.3 Detecting Data Sharing 0oL 52
3.3.1 Motivation 52
3.3.2 Detecting Sharing Patterns 95

Vil

Constructing shMaps Lo 25

3.3.3 Clustering Threads, 58
shMap Similarity Metric 58

Forming Clusters 29

3.4 Experimental Evaluation 61
3.4.1 Experimantal Platform 61
3.42 Workloads 62
3.4.3 Runtime Sampling Overhead 64
3.4.4 Thread Clustering Accuracy 65
3.4.5 Performance Impact of Thread Clustering 66

3.5 Related Work 68
3.6 Concluding Remarks oo 69
Page Access Tracking to Improve Memory Management 71
4.1 Introduction 71
4.2 Tracking Page Accesseso 76
4.2.1 Design Optionso 7
4.2.2 Low-level Software Structures 79
LRU Stack 80

Miss Rate Curveo 81

4.3 Adaptive Replacement Policies 83
4.3.1 Region-Specific Replacement 84
Selecting Regionso 84

Choosing Replacement Policy 85

Switching Replacement Policy 85

Allocating Memory to Regions 86

4.3.2 LIRS 86

4.4 Memory Allocation 87
Maximizing Throughput 89

Enforcing Prioritieso 89

4.5 Prefetching 91

4.6 Experimental Evaluation 94
4.6.1 Experimental Framework00 94

4.6.2 Applications 96

4.6.3 Analysis of Adaptive Replacement Policies 97

4.6.4 Analysis of Local Memory Allocation 99

4.6.5 Analysis of Prefetching 100

4.6.6 Effect of PAB Sizeo 0oL 101

4.6.7 Analysis of Overhead o000 104

4.7 Related Worko 105
4.8 Concluding Remarks o000 oo 106

5 Concluding Remarks 109
5.1 Summary e e 110
5.1.1 CPU Bottleneck Analysis 110

5.1.2 Hardware Data Sampling 111

5.1.3 Page Access Tracking Hardware 111

5.1.4 Summary of Contributions 112

5.2 Future Directions 113
Bibliography 115

X

List of Tables

2.1 The number of HPCs available in today’s microprocessors
2.2 Summary of stall cycles and CPI for the SPEC CPU 2000
2.3 Types of miss events with their potential effects
2.4 The size and access latency of memory sources in IBM OpenPower
2.5 The specifications of the IBM PowerPC970 and POWERS5
2.6 KL-distance between multiplexed and fully counted distributions.

2.7 Source-based L1 data cache miss stall breakdow
3.1 The Specification of the IBM OpenPower Machine

4.1 Selected Memory Intensive Applications

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

The block diagram of performance monitoring facility 15
Time-Based Multiplexing example 18
No-Stall CPI versus Real CPI for SPEC CPU2000 applications 22
The hardware model for a super-scalar out-of-order processor 23
The state transition diagram for instruction execution. 24
Comparing fully counted L1 DCache Miss Ratio with HPC multiplexing . 33

Tuning multiplexing ratio and multiplexing granularity 35
Stall Breakdown for £fto 36
The runtime overhead of HPC multiplexin 38
The architecture of IBM OpenPower720 53
Default v. Clustered Scheduling 54
Constructing shMaps 57
Runtime overhead of the sharing detection 64
Visual representation of shMap vectors 67
The price of medium-sized computer system 72
LIRS performance as a function of page access information 73
The Architecture of Page Access Tracking Hardware (PATH) 78
The LRU stack with group headers 82
The optimized structure for the LRU group header 84
Enforcing priority through balancing page miss rate. 90
Page Proximity Graph (PPG) 92
Projected execution time with different replacement policies 97

xi

4.9 Global and Local Allocation policy in multi-programmed scenario 98

4.10 The effect of prefetching on page-fault rate and required /O bandwidth . 102

4.11 The effect of PAB size on page replacement performance 103
4.12 The effect of PAB size on prefetching performance 103
4.13 Runtime overhead of PATH 105

xii

Chapter 1

Introduction

As operating systems have evolved over the last fifty years, new hardware structures
and mechanisms were periodically introduced to assist the operating system in its tasks.

Most of these structures and mechanisms have one of the following objectives.

e To facilitate implementation: The hardware provides mechanisms that facili-
tate the implementation of operating system abstractions. Examples include the
introduction of atomic instructions for implementing synchronization primitives
more easily, the separation of kernel and user protection domain at the hardware
level, the automatic virtual-to-physical address translation in the hardware, and

memory-mapped /O mechanisms.

e To improve performance: The hardware provides mechanisms that accelerate
the execution of some of the most common operations inside the operating system.
Examples include the introduction of the Translation Lookaside buffer (TLB) as a
cache of page tables to accelerate the process of virtual-to-physical address transla-
tion, the introduction of Direct Memory Access (DMA) mechanisms to reduce the
overhead of transferring large amount of data from and to peripheral devices, and
automatic user-kernel stack switching to remove the burden of frequently copying
data back and forth between user and kernel address spaces so as to reduce the

cost of context-switching.

e To provide information: The hardware provides detailed information on the cur-

CHAPTER 1. INTRODUCTION 2

rent state of the computer system to assist system software either in implementing
new functionality or in improving performance of existing operations. Examples
include a special register for the currently executing thread to access the thread’s
private data more efficiently, a number of bits in the page tables that are automat-
ically updated to indicate whether a page has recently been accessed or modified,
and the introduction of hardware performance counters (HPCs) to help system

software measure the performance of running applications more accurately.

While much prior work exists, and numerous proposals have been made over the years,
we believe that a lot more work can be done on either introducing new ways of providing
hardware support or enhancing the existing mechanisms. The relative abundance of
available silicon may further motivate introducing new hardware abstractions.

The main focus of this dissertation is on how new hardware support can assist the
operating system in collecting accurate performance data so as to enable the operating
system in making more informed decisions. Usually, the state of the system represented
by the hardware is detailed, low-level, semantically raw, and therefore, voluminous. An
option is to offload to hardware much of the processing of such raw information into
higher-level performance models so that the hardware provides the system software with
more concise and, at the same time, semantically richer information. The problem with
this approach, besides making the hardware design complicated, is that the information
provided by the hardware will be specific to certain algorithms. Moreover, any further
change to the software algorithms will require changes to the hardware.

Another approach is to add minimal hardware support to provide generic information
and then have a thin layer of software that efficiently processes hardware-generated infor-
mation and produces information that can be understood using a high-level performance
model. The main advantage of this approach is that the hardware design will be simple
and the information generated by the hardware remains generic so that in can be used by
a variety of algorithms that may change over time. The key challenge to this approach,
however, lies in the tradeoff between (i) functionality assigned to hardware to reduce
the runtime overhead and (ii) functionality assigned to software to make the generated

information more generic and flexible.

CHAPTER 1. INTRODUCTION 3

In this dissertation we explore this later approach in three different performance-
related cases: (i) analyzing the CPU performance bottlenecks through Hardware Per-
formance Counters (HPCs), (ii) analyzing data access patterns through hardware data
sampling, and (iii) fine-grained page access tracking to improve performance of memory
management algorithms. In each case, we start with the functionality currently provided
by the existing hardware and then build efficient middleware to provide higher-level in-
formation that is based on a higher-level performance model. If the current hardware
does not provide adequate information (even in raw form), we propose new, but minimal,
hardware support. The following subsections briefly describe each of these three cases in

more detail.

1.1 CPU Bottleneck Analysis

A Hardware Performance Monitoring Unit (PMU) is an integral part of most micro-
processors today. It usually provides a few HPCs that are able to count, in real time,
hardware events that occur in the processor. Potentially, the PMU can play an important
role in analyzing performance and identifying the root causes of performance problems.
However, the PMU is usually difficult to use effectively for a number of reasons. First,
there are too few physical HPCs considering that any meaningful performance analysis
requires the simultaneous monitoring of many different types of events. Moreover, HPCs
primarily count low-level micro-architectural events from which it is difficult to extract
high-level insight required for identifying causes of performance problems.

We explore two techniques that help overcome these limitations, allowing the use of
HPCs to dynamically optimize both the operating system and user applications. First,
fine-grained HPC multiplexing is introduced to make a larger set of logical HPCs available
for analysis. Secondly, we introduce a performance summary model called stall breakdown
which speculatively attributes CPU cycles to different hardware components, and as
result, demonstrates which hardware structure is most stressed. Such a model can be
used to guide automatic optimization both in operating system kernels or in user-level

system software.

CHAPTER 1. INTRODUCTION 4

1.2 Analyzing Data Access Patterns through Hardware

Data Sampling

Hardware data sampling is a PMU feature that is provided in some modern microproces-
sors such as Intel’s Itanium and IBM POWER processors family |Inta, IBM06|. It allows
for statistical sampling of data addresses that are used by programs under certain condi-
tions such as TLB misses or data cache misses. Data sampling is a potentially powerful
mechanism that can be used analyze the data access pattern of programs, the result of
which can be used in a number of optimizations. Examples of such optimizations include
prefetching data both for memory and CPU cache [LCFT03], superpage allocation and
management [CDSWO05], and NUMA page placement [THDb].

While data sampling has proven to be effective in several cases [LCFT03, BH, THb|,
we believe there are a number of issues with the way current data sampling schemes
are implemented in today’s processors. First, the set of conditions under which data
is sampled by hardware is not flexible, limiting how data sampling can be used. For
instance, it is not possible to sample data based on the specific storage source from
which the data is fetched. Secondly, only one selection criterion can be specified at a
time and combining multiple selection criteria in either conjunctive or disjunctive forms
is not supported. Finally, data sampling is not always precise in that the recorded data
sample might not be an operand of the instruction that caused the sampling conditions to
be fulfilled (e.g., a cache miss). This is mainly due to the high level of Instruction-Level
Parallelism (ILP) implemented in todays microprocessors with deep pipelines, superscalar
structure, and out-of-order execution.

We explore both hardware and software techniques to address the above-mentioned
problems. We show an example where hardware data sampling could be used effec-
tively to produce signatures to dynamically identify sharing among threads that run in
a multiprocessor. We describe the data sampling features that are desired, and how
we implemented a workaround in an existing microprocessor to indirectly obtain the
information we needed. Finally, we provide specific suggestions for new data sampling

features.

CHAPTER 1. INTRODUCTION 5

1.3 Fine-grained Page Access Tracking

To implement memory management algorithms, operating systems traditionally use a
coarse approximation of memory accesses, obtained by monitoring page faults or scanning
page table entries. The problem with this approach is that any information on the order in
which pages are accessed is lost, yet, there are important classes of memory management
techniques that require page access order information.

Unfortunately, hardware data sampling cannot be directly used for page-access track-
ing. The problem with data sampling (or any other statistical sampling technique) is
that it favors only hot pages, for which memory management is quite trivial. However,
more sophisticated memory management schemes require every single page access to be
is recorded which is obviously impractical due to the very large volume of the information
generated.

We propose simple, yet powerful, new hardware support for tracking page accesses
with substantially higher precision and lower overhead than current software-based strate-
gies can provide. We show how the use of this hardware facilitates the implementation of
various algorithms that (i) implement more adaptive page replacement policies, (ii) allo-
cate memory to VMMs, processes or virtual memory regions so as to improve performance
or to provide isolation and better process prioritization, and (iii) effectively prefetch pages
from virtual memory swap space or memory-mapped files when applications have non-
trivial memory access patterns. Our simulation results show that significant performance
improvements can be achieved, especially when the system is under memory pressure,
while the basic overhead of providing fine-grained information to the operating system

remains negligible for most applications.

1.4 Summary of Contributions

This dissertation makes a number of specific contributions in how hardware can provide
the operating system with accurate and timely information that can be used for dynamic

performance optimization purposes:

CHAPTER 1. INTRODUCTION 6

e We demonstrate the efficient implementation of fine-grained HPC multiplexing to

allow larger number of logical counters with low overhead and reasonable accuracy.

e We develop a simple and useful performance model, called stall breakdown, to
analyze CPU bottlenecks. Using facilities in the IBM POWERS5 processor, we

generate stall breakdown information online with negligible overhead.

e We demonstrate how hardware data sampling can be used in detecting the shar-
ing patterns of concurrent threads on a shared memory multiprocessor with high

precision and low overhead.

e We propose a novel hardware support for fine-grained page access tracking with
minimal overhead and high precision. We also show how this hardware support can
be used in improving memory management in three different areas: (i) adaptive
page replacement policies, (ii) process memory allocation, and (iii) virtual memory

prefetching.

1.5 Organization of the Dissertation

In Chapter 2, we present our work on how to use HPCs to analyze CPU bottlenecks.
In Chapter 3, we demonstrate how we use hardware data sampling to detect sharing
patterns among threads in a shared memory multiprocessor. Then, in Chapter 4 a new
hardware support for fine-grained page access tracking is presented, along with three
use cases that can effectively utilize the new hardware support in improving memory
management. We conclude the dissertation by Chapter 5, which provides a summary of
our work and presents directions for the future work. Chapters 2, 3, and 4 all have
the same following structure. First, an overview of the problem and its existing solutions
is presented. Then, we present our techniques to address the problem, followed by the
description of our experimental framework and results. Then, a summary of related
work is presented. Finally, each chapter ends with concluding remarks containing our

conclusions and specific directions for future work.

Chapter 2

CPU Bottleneck Analysis

2.1 Introduction

Hardware Performance Counters (HPCs) are an integral part of modern microproces-
sor Performance Monitoring Units (PMUs). They can be used to monitor and ana-
lyze performance in real time. HPCs allow the counting of detailed micro-architectural
events in the processor [Inta, Spr02, IBMb, IBM06, AMDO02|, enabling new ways to
monitor and analyze performance of running software. There has been considerable
work that has used HPCs to explore the behavior of applications and identify per-
formance bottlenecks resulting from excessively stressed micro-architecture components
[AV02, DCD03, SHC*T04, CMDANO06, BH, ANP03|. However, there are a number of
challenges that make HPCs difficult to be widely used in identifying CPU bottlenecks.
In this section, we first provide a description of some characteristics of HPCs in today’s
processors that make them challenging to use effectively for online bottleneck analysis,

and then, provide an overview of our techniques to deal with some of these problems.

2.1.1 Challenges of Using HPC

Some of the major challenges in using HPCs in today’s microprocessors include the limited
number of available HPCs, their complex interface, and the potentially high overhead of

their use.

CHAPTER 2. CPU BOTTLENECK ANALYSIS 8

Processor | IBM POWER4 IBM POWERSH Intel Pentium 4 Intel AMD Athlon
of and PPC970 (per H/W thread) and Xeon Itanium II | and Opteron
HPCs 8 6 9 pairs 4 4

Table 2.1: The number of HPCs available in today’s major microprocessors.

Small Number of HPCs

PMUs typically have a small number of HPCs available. Table 2.1 shows the number
of available HPCs in some of the more popular processors. Most processors provide up
to 8 HPCs. Intel Pentium 4 is an exception with 9 pairs of HPCs. However, due to
programming constraints imposed by the hardware implementation, not all of its HPCs
can be programmed simultaneously. This is not specific to Intel Pentium 4, as we have
observed many, rather restrictive cases of such constraints in the IBM PowerPC processors
as well.

The limited number of HPCs implies that only a limited number of hardware events
can be counted simultaneously at any given time. This is a serious limitation considering
that detecting performance bottlenecks in complex superscalar, and potentially out-of-
order, microprocessors often requires detailed and extensive performance knowledge of
several processor components. For instance, in order to measure the [.1 data cache miss
rate on IBM POWERA4, one has to use 4 HPCs simultaneously (L1 Loads, L1 Stores, L1
Load Misses, and L1 Store Misses). One way to get around this limitation is to execute
several runs of an application, each time with a different set of hardware events being
counted. Such an offline approach can be time-consuming (especially for long running
applications), and is completely inappropriate for online analysis. Moreover, merging
the traces generated from several application runs is not straightforward, because there
are asynchronous events (e.g. interrupts and I/O events) in each run that may cause

significant timing drifts.

Complex Interface

The events that can be monitored by HPCs are typically low-level and specific to a micro-

architecture implementation. As a result, they are hard to interpret correctly without

CHAPTER 2. CPU BOTTLENECK ANALYSIS 9

detailed knowledge of the micro-architecture implementation. In fact, in the processors
we have studied, most high-level performance metrics of interest such as Cycles Per
Instruction (CPI), cache miss ratio, and memory bus contention, can only be measured
by carefully combining the occurrence frequency of several hardware events. At best,
this makes HPCs hard to use by average application developers, but even for seasoned
systems programmers, it is challenging to translate the frequency of particular hardware-
level events to their actual impact on end performance due to the complexity of today’s

micro—architectures.

High Overhead

Because PMU resources are shared among all system processes, they can only be pro-
grammed in supervisor mode. Thus, whenever a user process needs to change the set of
events being captured, it must call into the operating system. These expensive kernel
boundary crossings can happen frequently when a wide range of hardware events need

to be captured for a single run of the application.

2.1.2 Our Approach

We have developed two techniques to address some of the problems mentioned above.
First, to overcome the limitation in the number of HPCs, we multiplex the existing
HPCs in a fine-grained way. This technique allows us to provide a much larger set of
logical HPCs to the user, making it is possible to count the occurrences of many micro-
architectural events during a single application run. The fine multiplexing granularity
enables us to capture even short-lived fluctuations in the occurrence rate of hardware
events. In Section 2.7 we present our statistical analysis to show that our multiplexing
approach provides sufficient accuracy for performance tuning and optimization purposes.

Second, we use our multiplexing approach to concurrently interpret the impact of dif-
ferent hardware events on the applications’ end-performance. We present a model called
Statistical Stall Breakdown(SSB) which is based on the traditional CPI breakdown model

that provides insightful and timely information on which micro-architecture components

CHAPTER 2. CPU BOTTLENECK ANALYSIS 10

are most stressed. SSB categorizes the sources of stalls in the microprocessor pipeline,
and quantifies how much each hardware component (e.g., the caches, the branch predic-
tor, and individual functional units) contributes to overall stall in a way that is simple
and easy to understand for the user. SSB information is collected as the program runs
and can be used, for example, by a dynamic optimizer to apply effective optimizations.

We also show that the run-time overhead of collecting the SSB information is small.

2.1.3 Organization of the Chapter

In the next section, we provide more detailed background on basic HPC mechanisms
in today’s microprocessors. Then we present an overview the design of our HPC-based
performance monitoring facility and the features it provides. We follow this section,
by describing the details of fine-grained HPC multiplexing. Next, we present how the
statistical stall breakdown model is defined and generated on a real microprocessor.
Then, we provide more details about our implementation and the platform we used for
our experiments. Next, we present the result of our experiments. We then discuss the

related work, and finally, we present our conclusions and directions for future work.

2.2 Current HPC Capabilities

In most of today’s microprocessors, HPCs are implemented as a small set of registers that
each can be programmed to count the number of occurrences of a particular hardware
event. There are several HPC control registers that define (i) which hardware events each

HPC should count, and (ii) how the events are to be counted.

2.2.1 Event Types

The basic types of events that HPCs can count include CPU cycles, instruction comple-
tions, storage hierarchy accesses (hits and misses), TLB misses, branch mispredictions,
and bus snooping activities. Some processors may also provide counts of more detailed

event types that are related to the specific implementation of the micro-architecture, such

CHAPTER 2. CPU BOTTLENECK ANALYSIS 11

as prefetch buffer accesses, instructions that pass a given stage of the system pipeline,
flushing of instructions upon certain conditions, and fullness of different queues inside
the processor.

The hardware often provides limited capabilities on how the events at the hardware
level can be combined or aggregated. Aggregation is usually in the form of summing up
the events that occur on multiple instances of a component type (e.g., functional units,
or load/store channels). The control registers can be used to define specific conditions
under which an event is to be counted or not to be counted. For example, HPC can
be programmed to either count while an interrupt service routine (ISR) is running or
not. However, such conditions are usually primitive and fixed, i.e., it is not possible to
logically combine several hardware supported conditions to define a new, more elaborate

hardware event type.

2.2.2 Counting Methods

The value of HPCs can be recorded through either instrumentation or sampling. Next,

we describe a brief background on these two methods.

Instrumentation

To use instrumentation, the source code is augmented, or the binary is patched, with
code that configures the control registers and reads the HPCs at particular points in
the program. The main advantage of instrumentation is that it is possible to gather
information between two specific points in the dynamic execution path of a program.
However, using instrumentation also has its drawbacks. First, modifying source or binary
code can be time consuming and cumbersome. Second, it introduces perturbations mainly
in two forms (i) the increase in the program code size and subsequently in the size of
instrumented programs instruction cache footprints, and (ii) the overhead of executing
extra code in the common path. This type of overhead is more pronounced in dynamic
instrumentation systems [BH00, CSL04, TM94| where trampoline code, which usually

includes several branch instructions, must be installed at each instrumentation site in

CHAPTER 2. CPU BOTTLENECK ANALYSIS 12

order to keep the program code layout unchanged. Such trampolines have negative
impact on the spatial locality of program instructions that directly affects instruction

cache performance.

Sampling

With sampling, the values of the HPCs are periodically collected either after a specified
time period (i.e., time-based sampling) or after counting a specified number of a specific
hardware event (i.e., event-based sampling). In order to do time-based sampling any timer
facility can be used. For event-based sampling, the PMU can be programmed to generate
an overflow exception after reaching a certain threshold on the count of a specific hard-
ware event. To generate overflow exceptions, the control registers must be programmed
properly, and the HPCs must be loaded with an initial value that corresponds to the
overflow threshold.

Unlike instrumentation, sampling does not require modification of the source or binary
of the programs but only requires an appropriate exception handler. Hence, sampling
typically incurs lower overhead because no code is executed in the common path, and
also because it doe not increase the code size and hence does not increase the program in-
struction cache footprint. The overflow exception handler, however, has a direct overhead
due to its execution, and some indirect overhead due to polluting both the instruction
and data caches. The overall sampling overhead, therefore, depends on the sampling
frequency.

An alternative to reduce the sampling overhead is to use polling in combination with
sampling. With this approach is that the operating system reads and records the value
of the HPC registers at certain events that invoke the operating system (e.g., context
switchings, page-faults, system calls, and other hardware interrupts). The basic idea is
to piggyback the process of recording HPC values on already expensive operating system
invocations that occur anyway as a result of system activities, and therefore, to avoid
incurring extra exceptions (either timer-based or event-based) to record HPCs. If the
operating system is not invoked as frequently as the desired rate for recording HPCs,

exceptions can be raised.

CHAPTER 2. CPU BOTTLENECK ANALYSIS 13

The key advantage of the polling-based approach is that it reduces both the pertur-
bation and the runtime overhead of sampling the HPC values. However, this approach
introduces several challenges. First, it is difficult to explicitly control the sampling rate
since operating system invocations may occur with an irregular pattern which directly
depends on the activities of running programs. Secondly, with the current architecture
of the PMUs, some useful information about the current state of execution is provided
by the PMU, only at the time where an HPCs overflow exception occurs. By recording
HPCs at arbitrary spots with respect to the function of PMU, such information cannot
be captured. Finally, the modifications required to the operating system kernel in this
approach is relatively intrusive as potentially many invocation points in the kernel must

be modified to include calls to record HPCs.

Sampling and instrumentation methods can be used in a complementary fashion.
In attempting to locate performance bottlenecks, it is typically too costly to start with
instrumentation because the location of the problem is not known. Sampling can be used
to efficiently identify program hot spots or stressed hardware components. Then, if the
collected information is not sufficiently precise, instrumentation can be used on specific
targets (e.g. the detected hot spots) to gather further detailed data at the instruction

level.

2.2.3 Counting Modes

HPCs can be programmed to count events only when the processor is executing in user
mode, in kernel mode, or in either of the two modes. With cooperation from the operating
system, it is possible to further extend this and virtualize the HPCs by process or thread
so that each process or thread is presented with their own set of dedicated HPCs. To
implement this, the operating system must save and restore the value of the HPCs as

part of the context switch.

CHAPTER 2. CPU BOTTLENECK ANALYSIS 14

2.3 Our Performance Monitoring Facility

We have designed and implemented a performance monitoring facility that can be used
both for sampling and instrumentation. Figure 2.1 shows the block diagram of our facility.
At the application level, users are provided with a programming interface through a user-
level library. Thus, an application can be instrumented by inserting library calls manually
or by using dynamic instrumentation tools. Calls from user applications are received by
the operating system component which consists of a sampling module and a programming

interface module.

The sampling module implements HPC multiplexing, PC and data sampling, and the
stall breakdown model which we will discuss in detail later. The programming interface
module allows for configuring the sampling engine, or for programming the hardware
PMU directly. In the latter case, it receives the specification of a set of hardware events
to be counted and automatically configures the hardware PMU. The values of the HPCs
can be read directly by the user program, or logged in a per-process trace buffer by the
sampling engine.

The key to achieving acceptable overhead is to minimize the frequency of crossing the
user-kernel protection boundary. In our implementation, the sampling module is fully
implemented in the operating system kernel. As a result, except for infrequent control
operations (such as initialization or reset), there will be no context-switches between the

user code and the performance monitoring module located in the kernel space.

The sampling engine can obtain HPC values either periodically or after a designated
number of a hardware event occurrences. In both cases, we use PMU overflow excep-
tions. For periodic sampling we use one of the HPCs as the CPU cycle counter, allowing

sampling intervals accurate down to a CPU cycle.

The frequency of sampling is a critical parameter. Sampling too infrequently may
result in inaccuracies because changes in system behavior might be missed. On the
other hand, too fine-grained sampling may result in unnecessarily high overhead. Our
experience shows we can afford to take samples every 200,000 cycles (100 microseconds

on a 2GHz CPU) with approximately 2% runtime overhead. This rate is our default

CHAPTER 2. CPU BOTTLENECK ANALYSIS 15

User Applications
PMU Library L

OS Kernel
Process
A/Creation/Exit

II-‘rograming Sampling c
Interf ontext
nterface Module |g4— -
Configuring Overflow
Control Register Exceptions
and HPCs

Hardware PMU

Figure 2.1: The block diagram of our HPC-based performance monitoring facility.

sampling frequency, although it can be overridden by the user.

In order to be able to isolate measurements of individual applications and the oper-
ating system, the sampling engine maintains a set of HPC contexts. HPC contexts are
switched whenever the operating system switches processes. For this, the operating sys-
tem must notify the sampling engine of all process creations and exits, as well as context
switches. Upon each context switch, the current value of the HPCs are saved into the
current HPC context and the corresponding HPC values for the next scheduled process is
reloaded. There is inherent inaccuracy associated with this operation since each process
inherits the residual hardware state manipulated by the previously running processes.
To help reduce this inaccuracy, one may increase the size of the scheduling quantum so

that the noise of initial warm-up period becomes insignificant.

For each process, there are three modes of operations: kernel only, user only, and full
system. In kernel-only mode, hardware events are only counted when the hardware is in
supervisor mode. This mode is appropriate if we are interested in monitoring operating
system activities incurred by a particular target process. We assume kernel activities

that occur in a process time slice are related to the target process. This assumption

CHAPTER 2. CPU BOTTLENECK ANALYSIS 16

may not be valid when context switches between different processes occur frequently or
for interrupt handling. This, kernel-only mode is best suitable when a given application
runs in isolation for a long time (for instance, on the order of several seconds) with
no interruption. In user-only mode, logical HPCs (including the cycle counters) are
suspended when the processor switches into the kernel. Finally, in full-system mode,
HPCs count all hardware events whether due to kernel or application code. When a
context switch occurs, the hardware events occurring both in the kernel and user mode
will be counted by the HPCs of the new process.

We use the notion of an address space as the main indicator of a context. Therefore,
the sampling engine is capable of reporting performance numbers for individual processes
as well as the operating system. At this time, we do not differentiate between the user-
level threads that share the same address space. One possible way of addressing this is
to send a performance monitoring upcall to the user process when a hardware exception
occurs so that a user-defined handler can associate the recorded HPCs with the current
user-level context (e.g. user-level thread ID). Such a technique seems to be plausible
only if there is a fast (low perturbation) upcall delivery mechanism. We do not currently

support such an upcall mechanism.

2.4 Fine-grained HPC Multiplexing

To alleviate the problem of having a limited number of physical HPCs, we dynamically
multiplex the set of hardware events counted by the HPCs using fine-grained time slices.
The programming interface component takes a large set of events to be counted as the
input and assigns them to a number of HPC groups such that in each group there are no
conflicts due to PMU constraints. The sampling module assigns each group a fraction
of g cycles out of a multiplering round R, the time period in which all HPC groups will
have a chance to be scheduled. At the end of each HPC group’s time slice, the sampling
engine automatically assigns another HPC group to be counted by the hardware PMU.
The value that is read from an HPC after g cycles is scaled up linearly as if that group

had counted during the entire R-cycle period. As a result, the user program (e.g. a

CHAPTER 2. CPU BOTTLENECK ANALYSIS 17

run-time optimizer) is presented with N logical HPCs on top of n physical HPCs where
N can be an order of magnitude larger than n.

The system can easily be programmed to favor certain HPC groups by counting them
for longer periods of time. This is accomplished by allocating multiple g-cycle time slices
to the group. In fact, one can treat a period of g cycle as a unit for the hardware PMU
time allocation. This PMU multiplexing scheme is analogous to the time-sharing of a
CPU among processes. Figure 2.2 shows an example of four HPC groups, where each is
given a time share (one or more time slices) of the multiplexing round. The share size
of each group depends on the desired accuracy of the hardware events that are included
in the group and on the expected rate of fluctuation of such events. Moreover, the
accuracy may differ for different hardware events with the same share size. A default
share assignment scheme might be overridden by explicit requests from the user that is

interested in closely monitoring a specific hardware event.

Without loss of generality, for the rest of the chapter, we assume all groups are
given equal time shares, which is one time slice (g cycles). We call g the Multiplexing
Ratio. Larger multiplexing ratios allow a larger number of logical HPCs. For instance, a
multiplexing ratio of 10 can provide roughly 80 logical HPCs on an 8-HPC processor. This
has to be traded-off with the fact that sampling accuracy decreases as the multiplexing

ratio increases.

An issue that must be addressed is the fact that a sampling period may happen to
coincide with loop iterations in the program. If the order of HPC groups within a period
is fixed and a sampling period happens to coincide with a loop iteration, then an HPC
group might always count the events that occur in the same fixed part of the iteration. To
avoid this scenario, we randomize the order of the HPC groups in each sampling period.
As a result, each HPC will have an equal chance of being located at any given spot of
the iteration.

With HPC multiplexing, time is usually measured in terms of CPU cycles. Therefore,
one counter in each HPC group is reserved to count CPU cycles. The use of cycle counters
as timers allows us to define arbitrary fine time-slices down to a few thousand cycles.

Another metric that can be used to define HPC group share sizes is the number of

CHAPTER 2. CPU BOTTLENECK ANALYSIS 18

Multiplexing Round
(R cycles) >

<

—
Allocation

Unit (g cycles) |:| HPC Group 1

|:| HPC Group 2

- HPC Group 3

- HPC Group 4

Figure 2.2: Time-Based Multiplexing example: There are four HPC groups in this example.
Each HPC group is a collection of events that are counted simultaneously. An HPC group
is counted in a number of time slices of g cycles within sampling period of R cycles. The
order of the HPC groups is changed randomly in different sampling periods to avoid accidental

correlations.

instructions retired. The main advantage of instruction based multiplexing is that the
HPC group share sizes are aligned more closely with the progress of the application.
Share sizes, with respect to physical time, depends on the available instruction level

parallelism (ILP) and the frequency of the miss events.

A pathological case for the multiplexing engine is the existence of a large number
of short-lived bursts of a particular hardware event. If the burst time is shorter than
R cycles, then the multiplexed HPC value of that hardware event might be inaccurate
because the PMU actually counts the event only during a fraction of R, and thus it may
miss short-lived bursts. However, we expect the execution of most applications to go
through several phases, each longer than R, in which the occurrence rate of hardware
events is stable in the common case. In Section 2.7, we provide experimental results that
demonstrate that the statistical distance between the sampled and real rates of hardware

events is small in most cases.

CHAPTER 2. CPU BOTTLENECK ANALYSIS 19

2.5 Statistical Stall Breakdown

With HPC multiplexing, a potentially large number of logical HPCs becomes available.
As a result, a wide range of hardware events can be counted simultaneously. However,
it is often difficult to interpret and understand the HPC values without having a proper
model for CPU performance. For instance, we do not know whether having a million
cache misses in a billion CPU cycles is a significant factor in the performance of the
CPU or not, unless we have a model based on which we have an estimate of the penalty
each cache miss incurs directly (i.e., by causing latency in the execution of instructions)
or indirectly (e.g., by causing other pipeline structures to saturate, or by causing other

useful cache lines to be replaced).

A naive approach is to associate a fized penalty to each event and simply multiply
it by the event frequency to determine the actual effect of the event on CPU pefor-
mance [WLLB97|. While this approach is simple to understand and easy to implement,
it is not accurate due to the fact that in a superscalar CPU with out-of-order execution,
multiple latency-incurring events can overlap. Therefore, the naive approach may result

in an overly pessimistic estimate of the effect of each event on the CPU performance.

Another approach is to calculate a full Cycle-per-Instruction (CPI) breakdown where
CPU cycles are attributed different hardware components or events so that each hard-
ware component h accounts for CPI}, cycles per instruction out of the real CPI on av-
erage |HP03|. CPI breakdown is a simple and powerful model, as it can clearly identify
both program and CPU bottlenecks. For instance, if we know that 60% of CPU cycles
are spent waiting for cache misses to resolve, we know that the running programs are
stressing the system caches and a dynamic optimizer will have to work on reducing the
programs’ CPU cache footprint, removing potential cache conflicts, or employing runtime

prefetching.

The problem with the CPI breakdown model, however, is that it is extremely difficult
to compute accurately on a real processor. The main reason is that in a superscalar
out-of-order microprocessor many latency-incurring events overlap with each other. In

such cases, it is not clear which component the caused latency should be charged to, as

CHAPTER 2. CPU BOTTLENECK ANALYSIS 20

each event alone can cause the latency even without the presence of the other.

A simplifying modification to the CPI breakdown model the Statistical Stall Break-
down model which attributes each stall cycles to processor components that are likely to
have caused them. We losely define a stall cycle to mean a processor cycle in which no
instruction completes (retires). Based on this distinction, the CPU cycles are either stall
(non-completion) cycles or completion cycles.

The rationale behind focusing only on non-completion stall cycles (as opposed to all
cycles) is based on two important observations. First, most CPU cycles are stalls. This
is despite having large a instruction window and a wide pipeline, and doing sophisticated
analysis for extracting Instruction-Level Parallelism (ILP). Table 2.2 shows average real
CPI versus No-Stall CPI for sixteen applications from the SPEC CPU2000 benchmark
suit, running on an IBM POWERS5 processor. Also Figure 2.3 shows real CPI and no-
stall CPI for the individual applications. It can be seen that between 60% to 85% of
CPU cycles are stall cycles among these applications, with 73% being the average.

The second observation is that when there are no stall, CPU throughput, in terms
of IPC, is fairly close to the pipeline width and is more or less application-independent.
This is assuming that the design of the micro-architecture is well balanced and there are
no obvious bottleneck components [KS04|. This can be seen in Figure 2.3: for most of
the SPEC CPU2000 applications the No-Stall CPI is very close to the ideal CPI, which
is around 0.2 on the IBM POWERS5 processor (due to having a fetch bandwidth of 5
instructions per cycle)- on average, no-stall CPI is 0.35 among these applications. The
real CPI of course, can vary dramatically for different applications and can be as high as
4.25 (e.g., for mcf). So, Table 2.2 shows that while the coefficient of variation for no-stall
CPI is only 14%, it is as high as 53% for the real CPI for the selected applications.

These two observations suggest that in order to characterize curable performance
bottlenecks (i.e, those that are not caused by limited pipeline width), it is sufficient to
focus only on the stall cycles as opposed to all CPU cycles.

An important advantage of focusing only on stall cycles, is that it is easier to spec-
ulatively attribute each stall cycle to a particular hardware event, using the argument

that if the particular hardware event had not occurred, the stall would not have oc-

CHAPTER 2. CPU BOTTLENECK ANALYSIS 21

Average Stall Cycles Percentage: 73
Average Real CPI: 1.53
Coefficient of Variation for CPI (%): 53
Average No Stall-CPI: 0.35
Coefficient of Variation for NSCPI (%): | 14

Table 2.2: Summary of stall cycles and CPI for the SPEC CPU 2000 applications on the IBM
POWERS5 processor.

curred. The key observation is that, in most cases, the time hardware components spend
in processing instructions will eventually result in stalls. Therefore, if the CPU resumes
completing instructions after receiving the results from a hardware component, the last
latency-causing hardware event in that componenet may be a good candidate as the
cause of the stall. In order to do a stall breakdown, a basic hardware support is required
to assign a cause to each stall. The IBM POWERS5 and PowerPC970 processors both
provide such a stall-to-cause assignment, and to the best of our knowledge, they are the
only processors with this capability. We have used both these processors in all of our
experiments for analysis the stall breakdown.

Such a stall-to-cause assignment is speculative mainly due to the fact that stalls from
different causes may overlap and as a result, the latency caused by a component is hidden
by the latency caused by another componenet. Hence, in order to identify the real causes
for latency, an iterative scheme may be needed since removing or substantially reducing
one cause of stall either improves performance proportional to the stalls assigned to it,
or another cause for stalls to be revealed.

In the next subsection, we provide a more detailed description of our hardware model

based on which hardware components and causes for stalls are defined.

2.5.1 Hardware Model

A simple hardware model is required to understand how different type of events that

cause latency in the operation of a processor may result in stalls. In this section, we

CHAPTER 2. CPU BOTTLENECK ANALYSIS 22

B Non Stall CP1I
O Real CP1

5
4
3
2
1 -

Ideal CPI
02 0

Figure 2.3: No-Stall CPI versus Real CPI for SPEC CPU2000 applications.

provide a high-level model of the functioning of a processor. While, our hardware model
is influenced by the architecture of IBM POWER processors, we believe it is sufficiently
general to be used for other modern microprocessors with minor modifications.

Figure 2.4 depicts the hardware model used and Figure 2.5 depicts the state-transition
diagram for each instruction. Instructions are fed from the Instruction Cache (ICache)
to the front-end pipeline in program order. Up to W instructions, at the level of the In-
struction Set Architecture (ISA), can be fetched from the ICache in each cycle. These in-
structions are decoded and possibly translated into p-instructions. The front-end pipeline
generates bundles of B p-instructions, each associated with one or more ISA instructions.
In RISC architectures, however, we expect most ISA instructions to be translated into
a single p-instruction, and hence, we assume at most B ISA instructions can co-exist in
a bundle. The p-instructions within a bundle may have dependences between them; for
example, the output of one may be used as an input for another.

At most one bundle can be dispatched in a single cycle, where each p-instruction within
the bundle is dispatched to its target Functional Unit (FU). The instruction bundles are

dispatched in program order. At most one p-instruction can be dispatched to an FU at

CHAPTER 2. CPU BOTTLENECK ANALYSIS 23

|Cache

| Frontend Pipeline |

micro-instruction
Bundle

FPU U0 U1 LSU BU

Issue Qu?l_J? L Functional
Units
. (FU)
FU Core
v

NI

Retirement f-T-Nef-T - -F-EKF-LA-T-F-] Reorder
< =350 U0 IR 0yl el el

Buffer

Figure 2.4: The basic hardware model for a super-scalar out-of-order processor. FPU stands
for Floating-Point Unit, IU stands for Integer Unit, LSU stands for Load/Store Unit, BU stands

for Branch prediction Unit, and FU stands for Functional Unit.

a time, although there may be several FUs of the same type. The total number of FUs
may exceed the number of p-instructions in each bundle, so some FUs may not receive
new p-instructions every cycle.

Before a p-instruction bundle can be dispatched to the functional units, the following

resources must be available for each p-instruction in the bundle:

1. Rename Buffer Entries: Rename buffers are logical registers that are used to

eliminate Write-After-Read and Write-After- Write dependencies.

2. A Reorder Buffer Entry: The reorder buffer is a queue that keeps track of the
status of the dispatched bundles. Instruction bundles retire from the reorder buffer
in the order they were dispatched after all of their p-instructions have finished, and

all earlier bundles have retired.

3. Load/Store Buffer Entries: Load/Store buffers are used to buffer the values

CHAPTER 2. CPU BOTTLENECK ANALYSIS 24

Figure 2.5: The state transition diagram for instruction execution.

read by the load instructions or written by the store instructions.

4. FUs Issue Queue Entries: Each FU has a separate issue queue. FEach u-

instruction in the bundle needs an entry in the corresponding FU’s issue queue.

If any of these resources are not available, the instruction dispatch will be delayed
until they become available. Typically, this only occurs when there are long latencies in
the FUs so that one of the structures mentioned above becomes full.

Once a p-instruction bundle is dispatched, each p—instruction in it will be queued in
the corresponding FU issue queue. The instruction remains in the issue queue of the FU
until all the data it depends on becomes available, after which it can be issued. An issued
p-instruction will be processed by the FU core to produce the result. Once the result is
ready, the instruction’s state becomes finished. The FU core may reject a p-instruction
for a number of reasons, in which case the instruction will be put back in the FU issue
queue and will be re-issued later. Instruction issue occurs out-of-order with respect to
program order. Once the p-instruction bundle retires (completes), all resources allocated
to it, including the entries in the rename buffers, the reorder buffers, and the load store
buffers, are released. An instruction may be flushed for different reasons, including branch
mispredictions or exceptions. When an instruction is flushed, all resources allocated to
the instruction are released and the instruction must be fetched and decoded again later
to execute.

A finished p-instruction may retire only if, (i) all other p-instructions in the instruc-

tion’s bundle have also finished and (ii) all earlier (with respect to the program order)

CHAPTER 2. CPU BOTTLENECK ANALYSIS

25

Cause

Effect

Comment

ICache Miss

Empty Reorder Buffer

Instructions must be brought into the ICache either from
L2 or memory.

Branch Misprediction

Empty Reorder Buffer

All in-flight instructions after the mispredicted branch are
flushed.

Data Cache Miss

Retirement Stops

A delay in the LSUs to finish a load or store instruction
due to a data cache miss.

Address Translation Misses

Retirement Stops

A miss occurs as the hardware accessed address translation
structures (e.g. TLB). The miss either delays the process-
ing of a load/store instruction in the LSU, or results in the
temporary rejection of the instruction from the LSU.

LSU Basic Latency

Retirement Stops

A delay in one of the LSUs to finish the execution of an
issued instruction.

Rejections

Retirement Stops

Any of the FUs (most likely the LSU) rejects an instruction
for any (e.g. hitting a resource limit). The instruction must
be reissued after some delay or reordering.

FPU Latency

Retirement Stops

A delay in one of the FPUs to finish the computation for
an issued instruction.

TU Latency

Retirement Stops

A delay in one of the IUs to finish the computation for an
issued instruction.

Other causes

Retirement Stops

A delay in any other hardware component, usually resulting
in a pipeline flush.

Table 2.3: Types of miss events with their potential effect in the microarchitecture function.

bundles in the reorder buffer have already retired. Thus, bundle retirement happens

in program order. At most one bundle can retire per cycle. Therefore, the maximum

number of ISA instructions that in theory can retire in a cycle is equal to B (which is

expected to be close to the fetch bandwidth W in a RISC architecture).

The key idea behind the stall breakdown model is that most bottlenecks can be

identified by speculatively attributing a cause to each stall, i.e., a cycle in which no

bundle from the reorder buffer can retire. There are two major categories of such stalls:

o Empty Reorder Buffer: This implies that the front-end has not been able to feed the

back-end in time. Assuming the micro-architecture is designed and tuned properly,

such situations happen mostly when there is an [Cache miss, or when a branch

misprediction occurs. We assume the hardware designates the most recent event

(an ICache miss, or a branch mispredication) as the cause of the stall.

e Completion Stops: The reorder buffer is not empty, but the oldest bundle in the

reorder buffer cannot retire. This happens mainly because one or more of its p

instructions have not yet finished (i.e. they are waiting for an FU to provide the

results). We assume in this case that once all p-instructions of a bundle finish and

CHAPTER 2. CPU BOTTLENECK ANALYSIS 26

retirement resumes, the hardware will designate the cause of the stall as the last

FU that finished a p-instruction so that the instruction retirement could resume.

We call the hardware events that can cause a stall miss events. The miss events we
consider in this study are listed in Table 2.3 along with the type of stalls they cause and
the potential effect they may have.

The association between a stall and a miss event is not necessarily precise because of
the dependencies among instructions within the same bundle. For instance, an instruction
1 may depend on the output of another instruction, j, of the same bundle. In this case,
stalls caused by miss events during the execution of j are charged to ¢ because it is the
last p—instruction in the bundle to finish.

Finally, even if a stall is identified as being caused by a particular event, removing
that event does not necessarily translate into an elimination of the stall. This is because
of the highly concurrent nature of superscalar out-of-order microprocessors and the fact
that events may overlap so that removing one of them may not regain all the performance
lost because of the stall. This issue is discussed extensively in other work [FBHNO3a,
FBHNO3b, TTC02]. Addressing this issue in the general case is complex, because in
today’s out-of-order processors, hundreds of instructions may be in-flight simultaneously.
To solve the problem in its generality, it is necessary to consider all possible interactions
of any subset of concurrently executing instructions, which is beyond the scope of an
on-line tool.

By taking all causes of stalls into account, the following formula can be used to
speculatively characterize the potential CPU bottlenecks at each phase in the program
execution:

n
CPlgea =Y _ Stall; + CPI¢
i=0
where, Stall; is the number of stalls caused by miss event 7 in the monitoring period, and
CPIg is number of completion cycles in which at least one instruction is completed. In
fact, C PIc can be used as an estimate for the CPI that can be achieved by ideal hardware
in which all miss events are removed and performance is solely determined by the program

dependences and the width of the pipeline. Indeed, as we see in Figure 2.3, C'Pl¢ is very

CHAPTER 2. CPU BOTTLENECK ANALYSIS 27

Source Size | Latency
Local L2 2MB | 14 cycles
Local L3 36MB | 91 cycles

Local Memory 4GB | 280 cycles

Remote 1.2 2MB | 120 cycles

Remote L3 36MB | 205 cycles

Remote Memory | 4GB | 307 cycles

Table 2.4: The size and approximate access latency of different sources in the memory hierarchy

in IBM OpenPower 720 Machine

close to the ideal CPI for all applications we examined. The CPlg., term is easily
computed by dividing the number of elapsed cycles by the number of ISA instructions
retired at any period of time. We also rely on hardware PMU features to provide values
for Stall;. As a result, we can accurately show how much gain is potentially achievable

by reducing the miss events of a certain type.

2.5.2 Source-based Refinement

An important refinement to the stall breakdown model is to break down the stalls caused
by instruction and data cache misses depending on the source from which the cache miss is
eventually satisfied. Table 2.4 shows the different sources in the memory hierarchy in the
IBM penPower720 machine and their approximate access latencies [VMTOO05]. Several
optimization techniques can exploit the source-based stall breakdown. For instance, we
later show in Section 3.3 that if most of the data cache miss stalls are due to waiting
for data are being fetched from caches on other processor chips, then it is likely that
active read-write data sharing is occurring among threads of the same process. Another
example is that if most of the data cache miss stalls are due to waiting for remote memory
modules in a NUMA architecture, smart code and data placement or migration schemes
are perhaps required.

Due to the lack of specific hardware support, we use a naive approach to break down

data cache miss stalls based on their sources. That is we define stalls waiting for a

CHAPTER 2. CPU BOTTLENECK ANALYSIS 28

memory or cache module m as follows:
M Stall,, = Latency,, * AccessFrequency,,

where Latency,, is the average latency for accessing module m (which is defined by
the hardware characteristics) and AccessFrequency,, is the frequency of accessing the
module.

Such a naive approach might be pessimistic as it does not take any overlap of multiple
data cache misses in flight into account. Hence, M Stall,, could be much higher than its
real value. However, as we show in Section 2.7.2, in practice, for many applications most
of the long-latency memory instructions do not overlap, and as a result, stalls caused
by data cache misses as reported by the hardware PMU (i.e., Stall paracachemiss) s fairly
close to the sum of the calculated stalls for all available memory and cache modules
(i.e., >, M Stall,,). For a more accurate breakdown of data cache miss stalls based on
source, additional, albeit minimal hardware support is required which, to the best of our

knowledge, is not available in any of todays’ mainstream processors.

2.6 Implementation

In this section, we present about our experimental platform as well as more details about

the implementation of our performance monitoring facility.

2.6.1 Real Hardware versus Simulation Environment

We decided to evaluate HPC-multiplexing and stall breakdown on a real microprocessor
as opposed to using a cycle-accurate machine simulator because of two major advantages
a real environment offers. First, instruction execution on a real processor is much faster
than in a simulation environment. Depending on the level of details the simulator is
modeling, experiments can take several thousand times more than running them on a
real processor. Such a vast difference in execution speed allows us to collect data for much
longer periods of program execution, making the collected data more representative and

the resulting analysis more complete and accurate.

CHAPTER 2. CPU BOTTLENECK ANALYSIS 29

The second reason for not choosing a simulator is that even detailed cycle-accurate
simulators may not be able to reflect some of the limitations of the implementation of
real microprocessors. For instance, in a simulation environment, virtually any type of
events can be monitored assuming there is no cost or complexity for the monitoring. In
real environment, however, many factors such as chip space, wire latency, and complexity
of implementation determine whether it is feasible to monitor a certain type of event or
not.

There are two major drawbacks in using a real microprocessor, however. First, the
hardware programming interface is fixed and provides limited information. It is not
possible, for instance, to measure the length of time between any two arbitrary events
(e.g., two consequtive stall-causing cache misses). Secondly, because of the complexity
of a real processor, understanding the semantics of the hardware events is challenging
and requires significant internal (and potentially proprietary) knowledge of the processor
implementation. Often, information at such level of details is not provided in public

documentation.

2.6.2 Hardware

We have implemented and evaluated our HPC-based performance monitoring facility on
two IBM processors, PowerPC970 [IBM06|, and POWER5 [SKT*|. The PowerPC970
processor is used in the Apple PowerMac G5 workstation and the POWERS processor is
used in a the IBM OpenPower720 Express computer system. In terms of execution core
and pipeline structure, the two processors are quite similar. However, there are significant
differences in terms of processor interconnection and the structure of the memory hierar-
chy. Moreover, the POWERS5 processor supports simultaneous multithreading (SMT) to
allow instructions from several hardware threads to be dispatched and issued to the func-
tional units simultaneously. In this study, however, we have not explored the challenges
of HPC-based performance monitoring under the SMT execution model.

The specifications of the two processors are listed in Table 2.5.

The PMU in both processors is capable to count the number of stalls caused by

miss events including the ones listed in Table 2.3. When the CPU stops completing

CHAPTER 2. CPU BOTTLENECK ANALYSIS 30

PowerPC97 POWERS5

Clock Rate (GHz) 1.8 1.5

L1 ICache (KB) 32 32

L1 DCache (KB) 64 64
TLB Size 1024 1024
L2 (KB) 512 1875 (shared by two cores)
Fetch Bandwidth 5 5

No. of FXUs 2 2

No. of LSUs 2 2

No. of FPUs 2 2

No. of HPCs 8 6

Table 2.5: The specifications of the IBM PowerPC970 and POWERS processors used for our

experiments.

instructions, a counter starts counting the number of stalls. Once the CPU resumes
completing instructions, the stall count is charged to the last miss event speculatively, as
the cause for the stall period. The assignment of stall to cause is speculative, since (i)
several events can happen in a single cycle and the PMU chooses one of them to attribute
the just-ended stall period, and (ii) multiple stall causes may overlap, yet the stall length

is attributed to just a single cause.

2.6.3 Operating System

We implemented our performance monitoring facility both in K42 and Linux operating
systems. K42 is an open-source research operating system designed to scale well on large,
cache-coherent, 64-bit multiprocessor systems [[BMa|. It provides compatibility with the
Linux API and ABI. The K42 kernel is designed in an object-oriented fashion, a feature
that allows for easier prototyping.

The sampling engine in both operating systems is built as a fairly small kernel module

(a few hundred lines of C/C++ code). The OS kernel is slightly modified to notify

CHAPTER 2. CPU BOTTLENECK ANALYSIS 31

the sampling engine of all process creations, exits, and context switches. In K42, we
exploit the fact that all major process management events along with other the operating
system events are recorded in performance monitoring trace buffers. Therefore, upon each
overflow exception, the sampling engine checks whether a context switch has recently
occurred by consulting the trace buffer. Using this scheme, there is a delay in detecting
context switches, but because the granularity of context switches is usually around 10
milliseconds, which is two orders of magnitude larger than the multiplexing granularity
we typically use, the imprecision added by a small delay in detecting context switches is

insignificant.

In order to record the gathered HPC values, in K42 we used the existing performance
monitoring infrastructure [WR03]. The infrastructure provides for an efficient, unified
and scalable tracing facility that allows for correctness debugging, performance debugging
and on-line performance monitoring. Variable-length event records are locklessly logged
on a per processor basis in the trace buffer mentioned above. The infrastructure is
uniformly accessible to the operating system and user programs. The recorded events
are encoded using XML, and thus, much of the implementation of adding and processing
new events is automated [WSS*04]. The HPC values gathered by the sampling engine
are added to the buffers and thus available to any interested party.

In Linux, we integrated both fine-grained HPC multiplexing and statistical stall break-
down into the publicly available Linux’s OProfile toolkit [OPr]|. OProfile is a system-wide
profiler that uses HPCs for both time-based and event-based PC sampling of both user
programs and the operating system kernel. To implement HPC multiplexing, we added
a trace buffer similar to that of K42, to Oprofile’s kernel module, mainly to be able
to record potentially large of logical HPC vectors. Also, Oprofile’s overflow exception

handler is modified to switch between different HPC groups.

The PMU library provides a number of calls to allow user programs to include a set of
HPC groups to be counted in different counting modes. Also, it allows the user to change
the multiplexing round as well as the period between each two consequtive recording of
the logical HPC vector into the trace buffer. In K42, the PMU library communicates

with the sampling engine through a set of system calls while in Linux, the PMU library

CHAPTER 2. CPU BOTTLENECK ANALYSIS 32

uses newly created entries in the oprofilefs file system for this purpose.

2.7 Experimental Evaluation

We developed and ran a number of experiments to evaluate our approach. In this section,
we describe these experiments and present their results. First, we briefly describe how we
validate the basic values we read from the HPCs for different hardware events. We then
present the results of our statistical analysis of sampling accuracy and show how accuracy
changes as a function of multiplexing granularity and multiplexing ratio. Finally, we

analyze the accuracy and usefulness of computing SSB values.

In our experimental analysis, we have used a subset of the SPEC2000 benchmark
suite [(SP], SPEC JBB2000 [Sta|, VolanoMark [Vol|, and MySQL database server [MyS].
Throughout this section we present our results only for a representative set of applica-

tions.

Application gzip | gcec | perlbmk | crafty | applu | mgrid art mesa
Instructions Retired 0.01 | 0.06 0 0 0 0.05 0 0.12
L1 DCache Loads 0.09 | 0.04 0 0 0.02 0.07 0.03 0.22
L1 DCache Stores 0.13 | 0.08 0 0 0 0.03 0 0.10
L1 DCache Misses 1.21 | 0.05 0 0 0.02 0.07 0.07 0.05
ICache Misses N/A | 0.12 0.02 0.09 0.02 N/A 0.03 N/A
TLB Misses N/A | 0.11 N/A N/A 0.01 0.15 N/A | N/A
ERAT Misses 0.79 | 0.13 0.01 0.02 0.07 0.71 0.42 0.21

L2 Cache Misses (Data) | 0.24 | 0.01 0.07 0.02 0.02 0.06 N/A 0.17
Branch Mispredicts 0.36 | 0.05 0.01 0 0.02 0.18 0 0.13

Table 2.6: KL-distance between probability distribution P, which is obtained by fully counting
hardware events, and P’, which is obtained through multiplexing. The multiplexing ratio is set
to 10 and the multiplexing round R is set to 2 million cycles. N/A implies the event is less
frequent than once every 10,000 cycles, on average, and value 0 is used for any value less than

0.01.

CHAPTER 2. CPU BOTTLENECK ANALYSIS 33

0.025

0.02 ‘1
0.015 i h l

0.01 -

= Fully Counted —— Multiplexed

L1D Miss Ratio

0.005 - :

0 100 200
Time (million cycles)

Figure 2.6: Comparing fully counted L1 DCache Miss Ratio with multiplexed (and extrapo-
lated) counts of the same event when running gcc. The multiplexing ratio is set to 10 and the

multiplexing round is set to 2 million cycles.

2.7.1 Accuracy of Multiplexing

In order to measure the accuracy of multiplexing versus fully counting the hardware
events, we use a statistical analysis. When counting events fully, we associate with each
hardware event, e, a probability distribution P.(R;) representing the probability of event
e occurring in the time interval R;. P.(R;) can be simply calculated by dividing the
frequency of e re-occurring in the interval R; by the total number of e events during
a monitoring session. That is if N, is the total number of occurrences of event e, and
N.(R;) is the number of occurrences of event e in interval R;, the probability of event e
occurring within R; is calculated as P, = %fi) so that YN P.(R;) = 1.

With multiplexing, on the other hand, we count how many times e occurs in a subin-
terval of R;, and linearly scale it to the entire interval, which will give us another prob-
ability distribution P/(R;). A key question is how the two distributions, P. and P,
corresponding to the actual counts and sampled counts, differ. To answer this question,
we use Kullback Leibler distance (KL-distance), which is often used to measure similarity

(or distance) between two probability distributions|CT03|. KL-distance is defined as:
K(P., P) ZP)log P.(z)/P.(x)

and computes the geometric mean over P.(x)/P.(x).

CHAPTER 2. CPU BOTTLENECK ANALYSIS 34

For instance, if P.(x) is 1.5 times P!(x), log P.(x)/P.(x) is equal to 0.58 (we use logs
everywhere in our calculations), and if P.(x) is 8 times P.(z), then log P.(x)/P.(x) would
be equal to 3. Therefore, the noise of very short periods of time where P,(x) is drastically

different from P!(z) will be reduced.

The reason we use KL-distance (as opposed to, for instance, the mean over |P,(z) —
P!(x)]) is that in the context of runtime optimization, the absolute values of the hardware
event counts are often not really important because there are many short transient states
in the hardware. What is more important is whether there is a significant and rather
stable shift in the rate of occurrences of a particular hardware event that lasts for a
sufficiently long period of time to be worth considering. Therefore, although there may
be sampling intervals in which the values of P, and P! differ significantly, if such intervals
are limited in number and isolated, they do not distort the distance measure due to the

log factor in KL-distance.

In this study, we consider any value of K(P,, P!) below 0.20 to be acceptable. In-
formally speaking, we consider multiplexing to be adequate if the difference between the

values of two probability distributions on average does not exceed 15%.

We measured K (P, P.) for a large number of hardware events for the selected SPEC2000
applications. Table 2.6 shows the results for several important hardware events and some
of the applications. The N/A entries imply that the hardware event was on average less
frequent than once per 10,000 cycles, and hence, insignificant. The 0 entries imply the
actual value of K(P., P!) was less than 0.01. The samples are collected over 6-billion
cycles (after skipping over the first billion instructions). The multiplexing interval R is
2 million cycles, and the multiplexing ratio is 10. As it can be seen from Table 2.6, the
KL-distance value is small for most hardware events in a majority of applications, with
a few exceptions we discuss later in this section. In Figure 2.6 we graphically depict
the rate of occurrences for L1 DCache Miss Ratio for gcc both when the event is fully
counted as well as in the multiplexed mode. It can be seen that the multiplexed event

rate accurately follows all significant and steady changes in the real occurrence rate of

the hardware event even though there are differences over small periods of time.

There are a few cases in Table 2.6 with unacceptably high values. However, we note

CHAPTER 2. CPU BOTTLENECK ANALYSIS 35

that these cases all correspond to fairly infrequent events (one per 100 cycles on average).
Although infrequent events are unlikely to cause performance bottlenecks, we explored
this issue further by varying the multiplexing granularity and multiplexing ratio for them.
We ran several experiments with gzip for which at least three hardware events have a
relatively large KL-distance: the L1 data cache miss, ERAT (Effective to Real Address
Table which is used by IBM POWER processors as a cache for their relatively large
TLBs) miss, and branch misprediction. Figure 2.7 shows the results of the experiments.
The graph on the left shows how the accuracy changes as a function of the multiplexing
granularity. As a general rule, larger granularities have higher accuracy for infrequent
events. Therefore, we change the multiplexing granularity from 200,000 to 500,000 cycles.
We then wanted to know how sensitive the accuracy is to the multiplexing ratio in this
multiplexing granularity. The graph on the right shows the results of our experiments.
It appears that none of the three hardware events is highly sensitive to the multiplexing
ratio. The general conclusion we draw from these experiments is that it is better to use

larger granularities (with a fixed multiplexing ratio) for infrequent hardware events.

O L1 DCache Miss
18 1.8 + ERAT Miss
16 1.6+ X Branch Mispredictions
14 147
8 15 8 12
g5 5
B 10 B 104
5 ke
- 08 ~ 084
< <
06 06+
04 04
02 02

0.0~ 0.0

100 1000 5 10

15 20

Multiplexing Granularity in 1000 Cycles. Multiplexing Ratio
@ (b)

Figure 2.7: Tuning multiplexing ratio and multiplexing granularity for gzip: (a) The KL-
distance generally decreases as the multiplexing granularity increases. (b) Fixing the granu-
larity to 500,000 cycles, all three hardware events seem to be fairly stable when changing the

multiplexing ratio within a realistic range.

CHAPTER 2. CPU BOTTLENECK ANALYSIS 36

6 B LSU Latency
Addr. Trans.
c 5 Miss
] B DCache Miss
3]
3 4
o I \ ® ICache Miss
S 3 N
lg.’ Brach
) Mispred.
% FPU Latency
)
1 IU Latency
0 = Completion

Time (billion cycles)

Figure 2.8: Stall breakdown for an instance of £ft run over a period of 40 billion-cycles on

IBM POWERS5.

2.7.2 Stall Breakdown

In this subsection, we present an example of how stall breakdown information look like.
In Figure 2.8, we show the result of computing stall breakdown for £ft over a period of
40 billion cycles. There are several observations that can be made from the graph. First,
the entire run is divided into several fairly long phases in which either CPI is stable,
or CPI changes in a fairly regular fashion. In each phase, it is possible to pinpoint one
or more major sources of stalls. Secondly, there is often a large gap between the real,
measured CPI and the ideal CPI, most of which can be explained by the stalls. Thirdly,
in this particular example, misses in the address translation data structures (i.e., ERAT

and TLB) seem to be the a primary source of stalls in certain phases of the program.

The stall breakdown computed by our sampling engine can provide useful and timely
hints to a runtime optimizer, allowing it to focus, in this case, on techniques to reduce
data cache misses for most of the program and preventing the optimizer from focusing
on optimizations that might reduce the computation, branch mispredictions, or ICache
misses as they will not have significant effect unless they manage to also reduce data

cache misses. Also, the online availability of the stall breakdown information allows the

CHAPTER 2. CPU BOTTLENECK ANALYSIS 37

Applications stalls (in million cycles in a billion CPU cycles)

Local | Local | Remote | Remote Local Remote Total Total Error (%)

L2 L3 L2 L3 Memory | Memory | Estimated | Measured

art 130 470 0 0 0 0 600 363 65
swim 132 80 0 0 255 0 468 346 35
apsi 40 315 0 0 0 0 356 331 7
mcf 43 321 0 0 0 0 365 310 17
specj 78 91 20 33 56 7 287 276 3
volano 197 6 37 0 0 0 241 235 2
vpr 37 75 0 0 0 0 113 97 15
crafty 70 32 0 0 0 0 103 82 25
twolf 49 38 0 0 0 0 88 68 29
ammp 16 106 0 0 0 0 123 53 132
gee 48 10 0 0 0 0 60 51 17
bzip2 28 16 0 0 0 0 45 37 20
mysql 13 2 1 1 0 0 19 22 -13
gzip 16 0 0 0 0 0 16 14 18

Table 2.7: Source-based L1 data cache miss stall breakdown: stalls of each storage source is
estimated by using its access frequency and its average access latency. The total stalls due to

the L1 data cache miss is measured by using the IBM POWERS5’s PMU.

runtime optimizer to monitor the results of the applied optimizations, and measure their

benefits and potential negative side effects in a feed-back loop.

Source-based Breakdown

In this subsection, we present the results of our analysis of the accuracy of the naive
approach for breaking down the L1 data cache miss stalls based on their sources which
is described in Section 2.5.2. Table 2.7 shows both estimated stalls caused by various
sources using their access frequency and average access latency, as well as total number
of stalls that are actually caused by the L1 data cache misses measured by using the IBM
POWER5’s PMU.

As expected, in most cases (with mysql being the exception), the naive approach
overestimates the stalls caused by different sources, as the sum of all estimated stalls
is higher than actual stalls caused by the L1 data cache misses. However, in most

cases, especially in memory-bound applications, the overestimation error is not so large

CHAPTER 2. CPU BOTTLENECK ANALYSIS 38

14
Q)
a
S, L2 e
T L0 oo
Q
'§ T SRR T R SO
Q6
o
E @ ool
s
B 2 e T
&
0 T T T T
1 2 5 20 40 100

Sampling Frequency (1000 samples per a billion cycles)

Figure 2.9: The runtime overhead of HPC multiplexing as well as computing and logging SSB

(Note that the x-axis is in logarithmic scale).

that makes the source-based breakdown to be misleading. In summary, although the
naive based approach is not a perfect solution, in seems to useful in parctice for many

applications.

2.7.3 Runtime Overhead

Figure 4.13 shows the runtime overhead of our performance monitoring facility for differ-
ent sampling frequencies, which is defined as the number of overflow exceptions generated
in a unit of time. At each overflow exception, the HPC values are collected, and depend-
ing on the logging period, added to the trace buffer. Also, the next HPC group is selected
and program the PMU to count it. The runtime overhead is measured by running sev-
eral benchmarks to completion and comparing the execution time with and without HPC
sampling. We found that the runtime overhead increases linearly with the sampling fre-
quency within the range we examined. Moreover, we found that the runtime overhead
is fairly independent of the application that is running among the set of applications we
used. In particular, at 20,000 samples per billion cycles (i.e., 20000 overflow exceptions),
the runtime overhead is around 2%. We believe that with such low runtime overhead,

our sampling engine is suitable for runtime optimization purposes.

CHAPTER 2. CPU BOTTLENECK ANALYSIS 39

2.8 Related Work

Software HPC multiplexing was previously implemented for PAPI [DLM*03|, a com-
monly used performance monitoring library that is available on a wide range of architec-
tures. However, in PAPI multiplexing is implemented at user level using the operating
system signal mechanism |[May01, MCO05|. A fine-grained timer is used as a means for
controlling the HPC group switch. The timer will send a signal to the process that has
requested a multiplexed set of hardware events. A major limitation of this approach is
that due to the large overhead of HPC group switch (the cost of signal delivery plus the
cost of kernel /user context switches), the multiplexing granularity must be large, and as a
result, the extrapolation error may become high for some applications. Another problem
with switching HPC groups in user space is that there is potentially a large latency be-
tween the time when the timer expires and the time when the signal is actually delivered
and the signal handler (where the current HPC group is read and stored) is called which
adds to the multiplexing error. Finally, to the best of our knowledge, there is no quanti-
tative study on the overhead and accuracy of PAPI’s multiplexing engine. In theory, one
could easily build PAPI’s high-level platform-independent interface transparently on top

of our low-level and efficient multiplexing scheme.

Intel’s VTune [Intb| is one of the most widely used tools to make the PMU facilities
available to developers. It provides both sampling and binary instrumentation facilities,
and it outputs a graphical display of programs hot spots as well as call graph. There are
several other tools built for various hardware platforms with similar sets of features, such
as Apple’s CHUD [App| and PCL |PCL|. They provide facilities to identify program hot
spots and the frequency of important hardware events such as cache misses or branch
mispredictions. To the best of our knowledge, none of these tools allows for profiling
more events than the number of HPCs at the same time. Also, they often only expose
the hardware PMU features directly to the user. It is up to the user to interpret the

semantics of the low level hardware events.

DCPI is another profiling tool that uses fine-grained sampling of the HPCs to identify

system-wide hot spots at run-time [ABD*97|. It also attempts to identify pipeline stalls

CHAPTER 2. CPU BOTTLENECK ANALYSIS 40

at the instruction level using event-based sampling. There are some hints that HPC
multiplexing is implemented in this system, but no details of the design nor statistical
analysis is provided. Moreover, there is a major simplifying assumption made by the
authors, namely that the distance between the instructions causing the performance
counter to overflow and the actual occurrence of the overflow exception is fized. This
assumption is used to attribute stalls to the instructions that are causing them. However,
our experience with more modern real processors with deeper and wider pipeline shows

that this assumption is fairly unrealistic.

Recent work suggests a performance counter architecture for measuring the CPI com-
ponents using a simplified model to quantify the negative effect of the miss events in the
micro-architecture throughput [EEKS06, KS04]. The authors compared the accuracy of
their architecture to the one implemented in IBM POWERS using simulation. Although
they improved the accuracy of CPI breakdown information mainly by taking mispredicted
paths into account, their model still lacks a comprehensive analysis of potential overlaps
of stalls from different causes in the processor back-end. Moreover, due to the difference
in the experimental methodology (a simulation environment versus a real and complex
processor) the head-to-head comparison with IBM POWERS5 may not be meaningful.
Nevertheless, such attempts confirm the need to implement features in the processor

PMU to analyze the causes of overlapping stalls more accurately.

ProfileMe proposes instruction sampling to randomly monitor individual instructions
as they pass through the different stages of the system pipeline [DHW ™|, in order to gather
accurate information on what are the major sources of latency. Although instruction
sampling can be effective, there is little analysis in the paper that shows the actual run-
time overhead of constructing an instruction-level profile. We believe our approach can be
complemented by approaches such as ProfileMe to search for bottleneck in a multi-level

fashion.

Wassermann et. al presented an analysis of microprocessor performance using a model
similar to SSB to characterize the effect of stalls caused by cache and memory laten-
cies [WLLB97|. Estimating the number of stalls caused by a source is done in software

by multiplying the number of accesses to the source by its average access latency. Our

CHAPTER 2. CPU BOTTLENECK ANALYSIS 41

approach extends this effort in two directions. First, we exploit hardware support to
measure the stalls more accurately. Secondly, while we include all possible sources of
stall into our analysis, their approach mainly focused only on cache and memory stalls.

Slack [FBHNO3a| and Interaction Costs [FBHNO3b| are two models for accurately
estimating how much performance gain can be achieved by idealizing latencies of in-
dividual instructions. Although these approaches provide accurate information on the
potential gain of idealizing individual instructions, they require additional hardware sup-
port and extensive postmortem analysis, which make them difficult to use in the context
of run-time optimization.

FlashPoint [MOH96| and Lemieux |Lem96| both attempt to integrate monitoring the
activities the memory interconnect in a shared memory multiprocessor with the existing
cache-coherence hardware. The basic idea is that the cache-coherence hardware auto-
matically activates a software trigger on cache coherence activities that are incurred as
a result of L2 cache misses. The trigger is able to obtain much information about cache
misses including their latency and then builds summary performance information such
as histograms. FlashPoint is implemented in the FLASH multiprocessor, and Lemieux
approach is implemented in NUMAchine multiprocessor, both presumably with an ac-
ceptable runtime overhead (e.g., around 10%). While the features suggested by these
approaches are very useful, the ramification of implementing them in today’s much faster
and more complex microprocessors are not known. Moreover, the focus of both ap-
proaches is primarily on off-chip memory traffic. In principle, one can extend these

approaches to the case of on-chip communication through shared cache.

2.9 Concluding Remarks

Hardware performance counters (HPCs) are useful for analyzing and understanding the
performance of a processor executing code, but there are challenges in using them on
line. Too few HPCs are available in most today’s microprocessors, and, the definitions
of the hardware events that can be counted by HPCs are low-level and complex.

In this chapter, we described two techniques that overcome the limitations of existing

CHAPTER 2. CPU BOTTLENECK ANALYSIS 42

microprocessor HPCs. First, we provide a larger set of logical HPCs by dynamically
multiplexing physical HPCs using statistical sampling of hardware events. Using real
programs, we showed experimentally that counts of hardware events obtained through
sampling is statistically similar (i.e. within 15%) to the actual event counts. Secondly,
we proposed a simple performance model based on CPI breakdown that focuses on stall
cycles, which are defined as cycles in which no instructions completes. We show that
completion stalls are particularly important, as they contribute to over 73% of all CPU
cycles across the SPEC2000 benchmarks. Moreover, removing the completion stalls will
result in a CPU throughput which is fairly application independent and is close to the
maximum CPU throughput determined by the pipeline width. We exploit IBM Pow-
erPC970 and POWERS features to speculatively associate each completion stall cycle to
the processor component that likely caused the stall. The entire stall breakdown model
is computed online by using our HPC multiplexing engine with a run-time overhead of

under 2%.

The facility we have implemented is useful for detailed on-line performance analysis of
application and system code running at full speed with small overhead. It is also effective
in reporting hardware bottlenecks to tools such as a dynamic optimizer that might guide
dynamic adaptation actions in a running system. A number of outside groups have
started using our sampling-based tool. For example, our tool has been successfully used
by several research groups within IBM research over the last few years for the purpose
of detailed bottleneck analysis and guiding performance optimization. Their experience
indicates that the stall breakdown facility is a powerful model, which is easy to use and

understand and that is reasonably accurate even for fairly complex applications.

When we started working on exploiting processor HPCs, we were surprised how dif-
ficult it was to use the counters. Their exact semantics are generally not defined in
a public way, and we had to spend considerable effort reverse engineering their real
meaning. Moreover, we were surprised how different the HPCs were from processor to

processor, even within the same processor family.

Throughout this work, we found that to correctly interpret the values the HPCs, one

must understand the details of the target processor microarchitecture, something that is

CHAPTER 2. CPU BOTTLENECK ANALYSIS 43

often proprietary and something most software engineers would find difficult. The HPCs,
with the events they can count, were clearly designed more for processor architects than
for software architects. In many ways, our tool helps map detailed micro-architectural
events to higher-level information, understandable by a larger audience.

Looking into the future, we would hope that processor designers increase the number
of HPCs available and that an increased number of higher-level events, more useful to
software optimizers, be countable. With more countable higher-level events, it becomes
possible to standardize HPCs and their interfaces across different processors so that it
becomes easier to port tools such as ours to different architectures. Long term, we
envision an HPC standard emerging that software can rely on and implemented on all

processors (similar to the way the floating point standard is implemented today).

Chapter 3

Hardware Data Sampling to Detect
Thread Sharing

3.1 Introduction

Hardware data sampling is a mechanism in the micro-architecture to collect data ad-
dresses that are manipulated by programs either periodically or upon occurrence of cer-
tain hardware events. Data sampling has been used effectively by a number of researchers
for a variety of purposes. For example, it has been used to track access patterns of indi-
vidual cache lines in order to be able to insert software prefetching hints [LCF03|. Other
uses include algorithms to automatically detect cache working set sizes |[BH05|, isolation
of latency-causing memory regions |BH|, or to enhance NUMA page placement |[THb]|
algorithms. Finally, there have been attempts to use data sampling to verify program
correctness or enforce security [ZLFT04].

Hardware support for data sampling is present in many modern micro-architectures
such as IBM POWERS5 [SKTT|, Intel Itanium [Inta|, Sun’s UltraSparc [NZ|, and AMD
Barcelona |CI06| processors. In most architectures, a special Data Address Register
(DAR) is dedicated for sampling data addresses. The content of the DAR is automat-
ically updated by the hardware PMU with the operand of a memory instructions (load
or store). The PMU can usually be programmed to update the DAR only when certain

selection criteria are satisfied. Examples of such selection criteria include when a data

44

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 45

cache miss or a TLB miss has occurred during the execution of a memory instruction.
Most existing architectures provide only one DAR. Hence, at any point in time, only one

selection criterion can be used to filter the data samples by the hardware PMU.

In most cases, however, the underlying hardware support for data sampling is not
adequate. This has forced researchers to either roughly approximate the information
they need from hardware, or to propose new hardware support specifically for their
purpose. Examples of limitations of hardware support for data sampling that we have

encountered in our own studies are the following.

Coarse Selection Criteria: In most architectures, the selection criteria supported
by the hardware PMU are often not sufficiently specific. As a result, many of the data
samples that are collected by the hardware are not relevant to a particular optimization
technique. Resolving this issue often requires potentially expensive software filtering
techniques. An example of such filter mechanism is presented in Section 3.2.1, where
we use a combined hardware-software approach to capture cache misses that are fetched

from a specific storage source.

Inflexible Interface: In most cases, the hardware interface for specifying the selec-
tion criteria is too inflexible. For instance, only one selection criterion can be specified
at a time. Support for combining multiple selection criteria in either conjunctive or
disjunctive forms is not provided. We show in Section 3.2.2 how we use the HPC mul-
tiplexing facility described in Section 2.4 to implement having multiple selection criteria

in a disjunctive form.

Also, due to the inflexible hardware interface, data samples are delivered to software
in raw form which is often too voluminous to be stored and processed in their raw form.
One has to build build efficient summary data structures at the software level to be able
to overcome space requirements. A widely used example of such data structures is the
histogram. In a case study, we will show how we use a variation of histograms to build

sharing signatures for concurrently running threads.

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 46

3.1.1 Organization of Chapter

In this chapter, we first present a brief overview of the major methods of hardware
data sampling and describe the advantages and shortcomings of each method. We then
present our specific mechanisms (i) to sample data according to the source it is fetched
from, and (ii) to apply multiple selection criteria simultaneously. We also provide a
detailed explanation of how we use these mechanisms to detect sharing patterns among
concurrently running threads, and how one can use such sharing patterns to cluster
threads in a chip multiprocessor (CMP) architecture to avoid expensive cross-chip data
exchange. At the end of the chapter, we discuss some of the problems with current
hardware support for data sampling and provide concrete proposals to solve some of

these problems.

3.1.2 Data Sampling Methods

In this section we provide a brief description of different methods of hardware data

sampling. We also discuss the major advantages and shortcomings of each approach.

Continuous Data Sampling

With continuous data sampling, the DAR is continuously updated by the hardware PMU
as memory instructions with operands that match the selection criteria arrive in the
pipeline. With continuous data sampling, the DAR is constantly overwritten as new
instructions are issued. System software can take samples of DAR values by occasionally
reading its value, which will refer to the last operand address that has matched the
selection criteria.

The main advantage of this approach is that all address operands of memory instruc-
tions have a fairly equal chance of being captured by system software. That is, it is
possible for system software, at least in principle, to record all address operands that
match the selection criteria (e.g., a cache miss). This is an important property in certain
optimization schemes, where it is important to see all data addresses that cause a certain

event such as cache miss or TLB miss. Moreover, system software is able to use hardware

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 47

performance counters corresponding to the selection criteria to capture exactly one in N
address operands that match the selection criteria.

The major limitation with continuous data sampling is that, due to the deep processor
pipeline, there is a potentially large distance in the dynamic instruction stream between
the memory instruction that has caused the DAR to be updated, and the current program
counter (PC). As a result, it is difficult to directly attribute the recorded DAR to a
particular instruction. In principle, one can perceive a hardware mechanism to track
back each instruction in the pipeline to an instruction address. But to the best of our
knowledge, such a mechanism does not exist in any of the todays’ processors.

A second issue with continuous data sampling is that it is inherently speculative in
the sense that the DAR is updated regardless of whether the issued instruction that
caused the DAR to update actually completed or flushed due to branch misprediction.
As a result, any analysis of the sampled data addresses must take the noise generated by

the mispredicted paths into account.

Instruction Sampling

With instruction sampling, an instruction is tagged to be monitored by the hardware
PMU as it passes through the different stages in the processor pipeline [DHW*, IBM06,
Inta, CI06]. The address of the tagged instruction is stored into a dedicated Instruction
Address Register (IAR) and the DAR is also updated only when the address operand of
the tagged instruction is calculated.

The main advantage of instruction sampling for the purpose of data sampling is
that the sampled addresses can be precisely tracked back to the instructions that have
accessed them. This has the potential for more complete analysis, as it is possible to
characterize computation bottlenecks both in terms of the executing code and the data
that is manipulated by the code at the same time. This is significant as identifying the
code that is consuming most of the execution time alone may not be sufficient as a single
segment of code (e.g., a function) can access many different sets of data addresses (e.g.,
depending on the input parameters). Similarly, data sampling alone may not be sufficient

either, as the data that causes long latency may be accessed by many instructions through

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 48

different code paths in the program.

The major limitation of instruction sampling is its low recall: of the many instructions
that flow through the pipeline, only very few instructions (usually only one) can be
sampled. As a result, many relevant data accesses will pass by unnoticed. This problem
is aggravated when sampling is conditional to some selection criteria (e.g., cache misses),
since instruction tagging occurs independently of the selection criteria in most processors.
This is because instruction tagging is usually done at an early stage of the processor
pipeline (e.g., the fectch or decode stage) which is too early to evaluate any backend-
level selection criteria (e.g., a cache miss). In such cases, a large number instructions
that satisfy the selection criteria will not be tagged, and a large number instructions that

are tagged do not satisfy the selection criteria.

Hardware Data Breakpoints

With continuous sampling and instruction sampling, it is difficult to watch every access to
a particular memory address. Such watching mechanisms have been used, for instance, to
measure the program cache working set size by measuring the reuse distance of a sampled
set of cache lines [BHO5] or to identify potential bugs or attacks [ZLF*04]|. While there
are mechanisms to monitor accesses to individual pages at the operating system kernel,
(e.g., by reseting and checking page table bits), watching accesses at the granularity of a
single cache line is not directly possible without additional hardware support.

An alternative method to monitor specific data addresses is to use the data breakpoint
mechansim such as the one implemented in the AMDG64 architecture [AMD]|, which is
originally designed for debugging purposes. If a cache line-sized data item is selected to
be a watch point, every subsequent access to the data item will raise an exception to
the operating system. The operating system exception handler can examine the current
program context and the watched address.

The breakpoint mechanism is potentially costly to use, since every access to a selected
memory item will cause an exception. For instance, Berg et al. show that an analysis
of cache working set size by using the breakpoint mechanism could result in an average

overhead of around 40% |BHO04|.

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 49

Hardware Bus Monitors

Another approach to sample data accessed is to monitor the memory bus transactions
and sample the addresses that appear on the bus, rather than sampling the addresses
on each processor individually. Real systems such as Sun Microsystem’s Fire Link have

taken this approach [NZ].

While monitoring the memory bus has the advantage of having the global order of
recorded data samples across the entire system, it has several drawbacks. First, addresses
that appear on the bus are already filtered by a potentially large on-chip cache. As
a result, much of the application data access pattern is not visible to any bus-based
analyzer. This problem is particularly aggravated in todays hierarchical multiprocessing
architectures (i.e., SMP-CMP-SMT). Second, bus-based data sampling requires special
hardware support, which makes it hard to be used for off-the-shelf commodity processors.
Finally, only physical addresses appear on the memory bus, and as a result, a software
analyzer must map the physical addresses back to their corresponding virtual addresses

in an online fashion.

3.1.3 Data Sampling Modes

The DAR can be read usually by both kernel and user-level software. Software may
decide to read and record the DAR periodically, i.e., time-based sampling or upon a
certain number of instances of a particular event, i.e., event-based sampling. Time-based
sampling is simple and generic, and it captures the frequency distribution of accesses to all
data items uniformly. On the other hand, event-based sampling is more targeted towards
monitoring and sampling addresses that are involved in specific hardware events (e.g.,
cache misses, TLB misses, or cache invalidations in multiprocessor systems). As a result,
event-based sampling may be better suited for certain optimizations, as it automatically

ignores all unrelated data accesses.

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 50
3.2 Our Sampling Techniques

In this section, we describe two novel data sampling techniques we developed and used
for the purpose of detecting data sharing patterns among concurrent threads. These two
techniques are fairly generic and can be potentially used for other purposes than the
one we used in our work. The first technique is to sample data based on the source it
is fetched from, and the second technique is to combine multiple sampling criteria in a

disjunctive form.

3.2.1 Source-based Data Sampling

It is often useful to be able to determine the storage source from which a sampled data
address item is fetched. The storage sources include L1 cache, local or remote 1.2 caches
(in SMP systems), local or remote L3 caches, and local or remote DRAM memory mod-
ules (in NUMA systems). For instance, our thread sharing detection scheme is based
on the ability to sample data items that are consistently fetched from L2 or L3 caches
of remote processor chips. Having source information is, in this case, helpful to be able
to conclude that there is consistent data sharing among threads that are running on
multiple separate processor chips. Another use of the source information is in a NUMA
page placement scheme that dynamically monitors the accesses of threads to both local
and remote memory modules and determines the optimal location of a given data page
and potentially migrates the pages accordingly.

However, to the best of our knowledge, sampling data according to their sources
is not directly available in the PMU features of any of today’s microprocessors. As a
workaround, we have exploited IBM POWERS5’s PMU features to conduct source-based
sampling indirectly. IBM POWERS supports the continuous data sampling method. The
selection criteria, however, is fixed to be only either an L1 data cache miss or a TLB
miss or both. As a result, in continuous data sampling, the DAR could hold the address
of the last L1 data cache miss. But it is not possible to directly determine the source
from which an L1 data cache miss will be eventually fetched. On the other hand, IBM
POWERS5 PMU can count L1 data cache misses broken down by the sources from which

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 51

the cache miss is satisfied. Therefore, it is possible to set the PMU overflow exception to
be raised when a threshold on the number of L1 data cache misses from a certain source
is reached. Once an overflow exception is raised, the last data cache miss is likely to be
the data cache miss that caused an overflow exception. Therefore, by reading the DAR
only when the cache miss counter of a specific source overflows, we ensure that most of

the data samples read are actually fetched from the particular source.

3.2.2 Multiple Sampling Criteria

Most modern CPUs support only one DAR. Hence, at any point in time, only one data
sampling criterion can be specified. This is a limitation, as one may need to simultane-
ously monitor data addresses with different criteria, each with a certain distribution. For
instance, in analyzing a data access pattern with the goal of improving page placement
in a NUMA architecture, one may need to sample data addresses that are fetched both
from local memory modules and from remote memory modules at the same time. A
straightforward solution would be to have multiple DARs that can be independently pro-
grammed for different criteria. We are not aware of potential challenges in the hardware
implementation of having multiple DARs. However, it does not seem that the hardware
designers are willing to add more data sampling resources unless researchers show how
such resources can be utilized effectively.

Our, rather temporary, solution for this problem is to integrate data sampling with
the HPC multiplexing introduced in Section 2.4. With this approach, we sample data for
each specified criterion during a time slice of g cycles in a multiplexing round of R cycles.
When the time slice is over, another data sampling criterion is specified as the new HPC
group is programmed. Specifying a data sampling criterion is typically lightweight, as
it requires manipulating the same control registers that are used for switching from one
HPC group to the other. Several data samples can be recorded within a time slice g as
the HPC of the corresponding event overflows.

The length of a time slice (e.g., g cycles) should be long enough so that the sampling
event counter overflows at least once. Otherwise, no samples will be recorded, as the

HPCs are reset every time they are scheduled. To cope with this problem, one may

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 52

reduce the threshold on which the sampling event is supposed to overflow. However, in
the worst case, the sampling event may not occur even once during the time slice. In
this case, a possible solution is to treat the sampling event counters differently by saving
their value at the end of a time slice and restoring them when they are scheduled in again
(as opposed to reseting them). In practice, however, the sampling events of interest are
often frequent enough to be captured in a single time slice multiple times. This is because
if an event is directly or indirectly causing a performance bottleneck, it must be fairly

frequent.

3.3 Detecting Data Sharing

In this section we provide the details of a specific case study where we use the data
sampling techniques described in Section 3.2 to improve performance by adding sharing-
awareness to the operating system CPU scheduler in a Chip Multiprocessor (CMP) envi-
ronment. First we describe the motivation behind the work. In Section 3.3.2 we describe
the details of our technique in building sharing signuatures for running threads. Finally,

in Section 3.3.3 we discuss our approach in clustering threads that share data together.

3.3.1 Motivation

As limits in microprocessor technology have slowed improvements in clock frequency, and
micro-architecture complexity has limited more radical exploitation of Instruction Level
Parallelism (ILP), major microprocessor manufacturers have turned towards providing
Thread-Level Parallelism (TLP) as a means to speed up applications. Both CMP and
simultaneous multithreading (SMT) technologies were introduced over the last several
years even for small-scale computer systems such as laptops, and desktop computers, as
well as for large-scale servers. As a result, shared memory multiprocessors have become
increasingly prevalent. This trend seems to continue as CPU chips are equipped with an
increasing number of processing cores.

A key difference between traditional shared memory multiprocessors (SMPs) and more

modern multi-core systems is that the latter have non-uniform data sharing overheads;

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 53

Chip 1 Chip 2

POWERS

Core
— 90 \200@@
& \14 120 :
\\$ L2 I

L3 et | M L2
S

280 310

Memory Memory

Figure 3.1: The architecture of IBM OpenPower720. The numbers on arrows show the latency
of access from a thread to different levels of memory hierarchy. Any cross-chip sharing takes at

least 120 CPU cycles.

i.e., the overhead of data sharing between two processing components differs depending
on their physical location. For processing units that reside on the same CPU core (i.e.,
hardware virtual contexts), communication typically occurs through a shared L1 cache,
with latency of 1-2 cycles. For processing units that do not reside on the same CPU
core but reside on the same chip, communication typically occurs through a shared [.2
cache, with latency of 10 to 20 cycles. Processing units that reside on separate chips
communicate either through sharing memory or through a cache-coherence protocol,
both with an average latency of hundreds of CPU cycles. As a specific example, consider

the IBM OpenPower720’s latencies depicted in Figure 3.1.

Most research done on cache-aware CPU scheduling has focused on maximizing and
exploiting cache affinity, both in uniprocessor and multiprocessor systems [TTG95|. How-
ever, to the best of our knowledge, current CPU schedulers do not take non-uniform data
sharing overheads into account. As a result, threads that actively share data will not
necessarily be co-located onto the same chip. Figure 3.2 shows an example of a scenario

where two clusters of threads are distributed across the processing units of two chips.

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 54

Chip 1 Chip 2 Chip 1 Chip 2

S O
« ~ | 1 [\p-=eeueaas A
. ., LRSS
. .
. DS K \ 7N .
e 0 1 H .
TN 2 ER *
S B
: . D M . P
5 5
(R .
0
A .
SN .
’ . "
P
. .
.
.

LA
: X [l
CCAN '
. o
. RN 1
. . '
. .
SO e] 3
et
o ' 1 A Y
< S 1

g
0
R [
0
.
4 .
0
B .
Y
. 0
. S . O
~ . ! .
Y ’
AR ’

a. default b. clustered

Figure 3.2: Default versus clustered scheduling. The solid lines represent high-latency cross-
chip communications, the dashed lines are low-latency intra-chip communications (when sharing

occurs within the L1 and L2 caches).

The distribution of threads to processors is usually done as a result of some dynamic
load-balancing scheme with no regard for thread sharing. Consequently, when threads
within a cluster share data frequently, a typical scheduling algorithm (as shown on the
left) is likely to cause threads being assigned to cores of different chips, so that there will
be a high degree of high-latency, inter-chip communication (shown with the solid lines).
However, if the operating system is able to detect intra-cluster thread sharing patterns
and schedule the threads accordingly, then threads that share data heavily could be
scheduled to run on the same chip and, as a result, most of the communication (dashed

lines) will take place in the form of L1 or L2 cache sharing.

However, automatically detecting sharing patterns among concurrently executing
threads is non trivial. A basic approach to this problem is to to use page-level pro-
tection and access information provided by hardware in the page tables to track the data
each thread is accessing. This approach has been used in the past to implement, for
instance, software distributed shared memory (DSM) [ACD*96]. There are two major
drawbacks with this approach. First, using page granularity as the unit of sharing is too
coarse in many cases resulting in a high degree of falsely detected sharing. Secondly, the
information on whether a page is accessed or not is available either through frequently
scanning and reseting page table entries, or by protecting pages from access and recording

a page access upon a subsequent page fault. Both options are potentially costly, both in

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 55

terms of their direct overhead and also in terms of their indirect negative impact on per-
formance through cache pollution and TLB flushing that come as a result of page-table
traversal and manipulation.

In the next section, we show how to use hardware data sampling to effectively detect
sharing patterns among threads. A major advantage of our approach is that it is able to
accurately track data sharing down to a single cache line (which is the unit of hardware
cache coherence). Moreover, as we show in Section 3.4, it is possible to achieve low
runtime overhead by having a light-weight layer of software that processes the data

samples generated.

3.3.2 Detecting Sharing Patterns

Using our source-based data sampling mechanism, we sample data accesses that (i) incur
miss in the L1 data cache and (ii) are eventually fetched from caches on a remote processor
chip (remote L2 or L3). We then use these samples to construct a summary data structure
for each thread, called shMap. Finally, compare the threads’” shMaps with each other to
identify the threads that are actively sharing data and cluster them accordingly. Next,

we present the details on how we build shMaps and use them for thread clustering.

Constructing shMaps

Each shMap is a small vector (e.g., 256 entries) of 8 bit-wide saturating counters. We
partition the application address space into fixed sized blocks. Each block is mapped to
a counter in the shMap vector using a hash function. An shMap entry is incremented
only when the corresponding thread incurs a remote cache miss on the block. Note that
threads that share data but happen to be located on the same chip do not cause their
shMaps to be updated as they do not incur any remote cache miss.

The block size is an important parameter. The advantage of a large block size is that
the total size of the shMap’s span over an application’s address space increases. However,
large block sizes may make the access tracking less precise, which may result in falsely

detecting and reporting sharing where in fact, the accesses are in different spots within

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 516

the large block. In this study, we set the block size to be equal to the size of an L2 cache
line (e.g., 128 bytes), which is the unit of hardware-level data sharing in most hardware
cache-coherence protocols. False sharing within a single cache line can still happen, but
hardware cache-coherence will not be able to distinguish it from true sharing either, and
as a result, it will still incur cache line invalidations and cross-chip communications.

Constructing shMaps involves two challenges. First, to record and process every
single remote cache miss is prohibitively expensive, especially for applications in which
there is a large volume of read /write sharing among threads and subsequently, frequent
remote cache misses. Secondly, with a relatively small shMap, there will be a lot of
collisions in hashing virtual addresses of remote cache misses onto shMap entries, as
applications virtual address space are much larger than the shMap span (e.g., 64Kbytes).

We use two different techniques to deal with the two challenges. To cope with the
high volume of data, we use temporal sampling, and to reduce the collision rate (actually
to eliminate collision altogether) we use spatial sampling. Using temporal and spatial
sampling of remote cache misses combined instead of capturing them precisely is sufficient
for the purpose of detecting sharing among threads, because we are not interested in
knowing the absolute volume of sharing and all the addresses that are shared, but rather
only need an indication of whether two threads are sharing data or not. Statistical
sampling schemes ensures that if a data item is highly shared (i.e., remote cache misses
on it occur highly frequently), it will be recorded with high probability.

We now describe the two techniques, temporal sampling and spatial sampling in more
detail.

Temporal Sampling: We record and process one in N occurrences of remote cache
miss events. In order to avoid undesired coincidental repetitions, we constantly readjust
N by a small random value. Moreover, the value of N is further adjusted by the current
frequency of remote cache misses which can also be measured by the HPCs. A high rate
of remote cache misses allows for larger values for IV so as to reduce the runtime overhead
and at the same time be able to obtain obtain a representative sample of addresses.

Spatial Sampling: Rather than monitoring the entire virtual address space, we

select a fairly small set of sample blocks to be monitored for remote cache misses. There

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 57

Thread A Thread B

shMap
vector A LLLL LI LT ET PO ETTET QT gqll]
shMa
vectars LLLLLL LTI LTI T TITT1Td

Figure 3.3: Constructing shMaps: each remote cache miss by a thread will be hashed to an
entry in both the shMap filter and the thread’s shMap. A remote cache miss will be recorded
(i.e., shMap entry is incremented), only if either the shM ap filter entry is not already allocated,
or is previously allocated for the same virtual address. Circled numbers represent the order of
access. Remote cache misses "1" and "2" are recorded because their entries in the shMap filter
are free. Remote cache misses "3" and "4" are discarded because their shMap filter entries are

already reserved for differnt virtual addresses.

has to be at least one remote cache miss on a block to make it eligible to be selected. The
spatial sampling scheme then selects the sample blocks somewhat randomly among the
eligible blocks. The justification for spatial sampling is if there is high level of sharing
among threads, there will be some hot sharing spots that will likely be captured by the
spatial sampling scheme. Also, having several hot spots is a clear indication of high level

of sharing among threads.

We implement spatial sampling by using a filter to select remote cache miss addresses.
This shMap Filter is essentially a vector of addresses with the same number of entries
as an shMap. All threads of a process use the same shMap filter. Figure 3.3 shows the
function of shMap filter. A sampled remote cache miss address is allowed to pass through

the shMap filter only if its corresponding entry in the shMap filter has the same address

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 58

value. Otherwise, the remote cache miss is discarded and not used in the analysis. Each
shMap filter entry is initialized (in an immutable fashion) by the first remote cache miss
that is mapped to the entry. Threads compete for the entries on shMap filter.

In an unlikely pathological case, it is possible that some threads starve out others by
grabbing the majority of the shMap filter entries, thus preventing the remote cache misses
of the other threads to be processed. This does not cause a problem with our scheme,
as we envision the thread clustering process to be iterative. That is, after detecting
sharing among some threads and clustering them, if there is still a high rate of remote
cache misses, thread clustering is activated again, and the previously starved threads will

obtain another chance of capturing entries on the shMap filter.

3.3.3 Clustering Threads

In this subsection, we describe our approach for clustering shMap vectors into groups of
threads that actively share data. We first describe the similarity metric we use in our
clustering scheme. Then we describe the actual clustering algorithm we implemented to

form the thread clusters.

shMap Similarity Metric

We define the similarity of two threads’ shMap vectors as their dot products:

similarity(Ty, Ty) = Z T1[i] * To[d]

The rationale behind choosing this metric for similarity is two fold. First, it automatically
takes into account only those entries where both vectors have non-zero values. Note that
T7 and T5 have non-zero values in the same location only if they have had remote cache
misses on the same cache line (i.e., the cache line is being shared actively). We consider
very small values (e.g., less than 3) to be zero as they may be incidental or due to cold
sharing and may not reflect a real sharing pattern.

Secondly, the metric takes into account the intensity of sharing by multiplying the
number of remote misses each of the participating threads incurred on the target cache

line. That is, if two vectors have a large number of remote misses on a small number of

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 59

cache lines, the similarity value will be large, correctly identifying that the two threads
are actively sharing data. Other similarity metrics could be used, but we found this

metric to work quite well for the purpose of thread clustering (See Section 3.4).

Forming Clusters

One way to cluster threads based on shMap vectors is to use standard machine learning
algorithms, such as hierarchical clustering or K-means |[JMF99|. Unfortunately, such al-
gorithms are computationally too expensive to be used online in systems with potentially
hundreds or thousands of active threads, or they require the maximum number of clusters
to be known in advance (for K-means, for instance), which is not a realistic assumption
to make in our environment.

To avoid high overhead, we use a simple heuristic for clustering threads based on two
assumptions that are simplifying but fairly realistic. First, we assume data is naturally
partitioned according to application logic, and threads that work on two separate parti-
tions do not share much except for data that is globally shared (i.e., process-wide) among
all threads. In order to remove the effects of globally shared data on clustering, we build
a histogram for shMap vectors in which each entry shows how many shMap vectors have
a non-zero value for the entry. We consider a cache line to be globally shared if more
than half of the total number of threads have incurred a remote miss on it. We ignore
information on globally shared cache line when composing clusters.

The second assumption is that if a subset of threads share data, the sharing is rea-
sonably symmetric. That is, we assume it is likely that all of them incur remote misses
on similar cache lines, no matter how they are partitioned.

Using the two above assumptions, we define a simple clustering algorithm as follows.
Based on the first assumption, if the similarity between shMap vectors is greater than
a certain threshold, we consider them to belong to the same cluster. Also, according to
the second assumption, any shMap vector can be considered as a cluster representative
since all elements of a cluster share common data equally strongly.

The clustering algorithm, shown in Algorithm 1, scans through all threads in one pass

and compares the similarity of each thread with the representatives of previously known

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 60

1: NumKnownClusters < 0 {one pass clustering algorithm}

2: for t =0 to NumT hreads do

3: FoundACluster <= false

4: for ¢ =0 to NumKnownClusters do

5: repShMap < Clusters|c|

6: if Similarity(shMapy, repShMap) > SHARING _THRESHOLD then
7: add t to the cluster ¢

8: FoundACluster < true
9: break
10: end if

11: end for
{create a new cluster if t is not similar to any of the previously known clusters}

12: if FoundACluster is false then

13: Clusters[NumKnownClusters] < shMap;
14: NumKnownClusters + +

15: end if

16: end for

Algorithm 1: Clustering shMap vectors for N threads.

clusters. If a thread ¢ is similar to the representative of cluster ¢ (i.e., the similarity
metric between the two shMap vectors exceeds a certain threshold), thread ¢ is added
to the cluster c¢. If no such a cluster is found (i.e., shmap; is not similar to any of
the representatives of the previously known clusters), a new cluster is created, and ¢ is
assigned to be the representative of the newly formed cluster. The set of known clusters

is empty at the beginning.

The computational complexity of this algorithm is O(T % ¢) where T is the number of
threads that are suffering from remote cache misses, and c is the total number of clusters

which is usually much smaller than T'.

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 61

CPU Cores IBM POWERS5, 1.5GHz, SMT

L1 DCache 64KB, 4-way associative

L1 ICache 64KB, 4-way associative

L2 2MB, 10-way associative, shared by the two cores on a chip
L3 36MB, 12-way associative, off-chip, a victim cache for [.2
Local Memory 4GB

Remote Memory 4GB

No. of CPU Chips | 2

Table 3.1: The Specification of the IBM OpenPower Machine.
3.4 Experimental Evaluation

In this section, we present the results of our experiments to evaluate our hardware data
sampling techniques. The basic focus of our evaluation is to exhibit the effectiveness of
our techniques for hardware data sampling by showing their uses in a real use case (e.g.,
thread clustering).

First, we present the details of our experimental platform and the workload we used.
Secondly, we demonstrate the runtime overhead of hardware sampling of remote cache
misses. Then, we show the accuracy of our sharing detection and thread clustering
techniques under the selected real workloads. Finally, we briefly present the performance
results of a sharing-aware thread scheduler that uses our sharing detection and thread

clustering approach.

3.4.1 Experimantal Platform

The multiprocessor used in our experiments is an IBM OpenPower720 Express computer
system. It is an 8-way POWERS consisting of a 2x2x2 SMPxCMPxSMT configuration,
as shown in Figure 3.1. Table 3.1 shows the specification of the hardware components in
the system.

While our evaluation platform is sufficiently complete to show the effectiveness and

overhead of our basic techniques and mechanisms, in order to fully realize the potentials

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 62

and limitations of the thread clustering approach, we will have to evaluate it on machines
with a larger number of processors, which is beyond the scope of this thesis.

We used Linux 2.6.15 as the operating system. We modified Linux to add the features
we needed for hardware performance monitoring, including the stall breakdown (See
Section 2.5) and sampling of remote cache miss addresses. We also modified the Linux
CPU scheduler to allow for explicit relocation of threads at runtime, guided by the thread

clustering information provided by our approach.

3.4.2 Workloads

For our experiments, we used a synthetic microbenchmark and three commercial server
workloads: VolanoMark which is a benchmark for Internet chat servers [Vol|, SPEC
JBB2000, which is a Java-based application server workload [Sta|, and RUBiS, which is an
OLTP database workload. For VolanoMark and SPEC JBB2000, we used IBM J2SE 5.0
as our Java virtual machine. For RUBiS [RUB]|, we used MySQL 5.0.22 as our database
server [MyS|. These server workloads are written in a multithreaded, client-server pro-
gramming style, where there is a thread to handle each client connection for the life time
of the connection. We present details of each benchmark below.

Synthetic Microbenchmark: The synthetic microbenchmark is a simple multi-
threaded program in which each worker thread reads and modifies a scoreboard. Each
scoreboard is shared by several threads, and there are several scoreboards. All score-
boards are accessed by a fixed number of threads. Each thread has a private chunk of
data to work on which is fairly large so that accessing it often causes data cache misses.
This is to verify that our technique is able to distinguish remote cache misses that are
being caused by accessing the scoreboards from local cache misses that are caused by
accessing private data. The clustering algorithm should be able to cluster threads that
share a scoreboard.

VolanoMark: VolanoMark is an instant messaging chat server workload. It consists
of a Java-based chat server and a Java-based client driver. The number of rooms, number
connections per room, and client think times are configurable parameters. The server

is written using the traditional, multithreaded, client-server programming model, where

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 63

each connection is handled by a designated thread for the life-time of the connection.
In actuality, Volanomark uses two designated threads per connection. Given the nature
of the computational task, threads belonging to the same room should experience more
intense data sharing than threads belonging to different rooms. In our experiments, we

used four rooms with 8 clients per room as our test case.

SPEC JBB2000 SPEC JBB2000 is a self-contained Java-based benchmark that
consists of multiple threads accessing designated warehouses. Each warehouse is approx-
imately 25 MB in size and stored internally as a B-tree variant. Each thread accesses
a fixed warehouse for the life-time of the experiment. Given the nature of the compu-
tational task, threads belonging to the same warehouse should experience more intense
data sharing than threads belonging to different warehouses. In our experiments, we
modified the default configuration of SPEC JBB2000 so that multiple threads can access

a common warehouse.

RUBIS RUBIS is an online transaction processing (OLTP) server workload that
represents an online auction site workload in a multi-tiered environment. The client
driver is a Java-based web client that accesses an online auction web server. The front-
end web server uses PHP to connect to a back-end database. We focus on the performance
of the database server. We made a minor modification to the PHP client module so that
it uses persistent connections to the data base, allowing for multiple SQL requests to be
made within a connection. While this modification improves performance by reducing
the rate of TCP/IP connection (and thread) creation on the database server, it also
enables our algorithm to monitor the sharing pattern of individual threads in the long

term.

In our workload configuration, we used two separate database instances within a single
MySQL process. This configuration may represent, for instance, two separate auction
sites run by a single large media company. We expect that threads that belong to the
same database instance to experience more intense sharing with each other than with

other threads in the MySQL process.

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 64

10? ‘ ‘ \ Overhead %0
. Tracking Tipe—-© -
| ?
I‘ [
8t -
g :
3 " :
i 18
g : -
o : :
2R 20 @
g £
E ' :
: g
2 o 10 3§
S
"'O)
£ e ()
R | 0
e - 50

Remote Misses Captured (%)

Figure 3.4: Runtime overhead of the sharing detection phase for SPEC JBB2000 as a function
of the temporal sampling rate, and the time (in billion CPU cycles) that is required to collect

a million remote miss samples given the temporal sampling rate.

3.4.3 Runtime Sampling Overhead

Figure 3.4 shows the runtime overhead of hardware data sampling as a function of the
rate we used for temporal sampling in terms of the percentage of the remote misses that
are actually examined for SPEC JBB2000. As a higher percentage of the remote cache
misses are captured, the overhead naturally increases. However, the time to collect a
sufficient number of remote cache miss samples becomes shorter. In our experiments,
we have found we need roughly a million samples to accurately detect sharing patterns.
Therefore, the right Y-axis of Figure 3.4 represents how long (in billion CPU cycles) we
need to stay in the detection phase to collect a million samples of remote cache misses.
The higher the sampling rate, the higher is the run-time overhead, but the shorter the
sharing detection phase will last.

According to Figure 3.4, it appears that a temporal sampling rate of 10 (capturing
one in every 10 remote cache misses) is a good balance point in the trade-off between
runtime overhead and the length of sample collection period as it results in a runtime

overhead of around 2% for a period of 10 billion cycles (roughly 7 seconds of execution

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 65

on a 1.5GHz IBM POWERS).

3.4.4 Thread Clustering Accuracy

Figure 3.5 shows a visual representation of shMap vectors after our clustering scheme is
applied for the four workloads. Each application is represented by a gray scale matrix
of pixels in which each row represents an shMap vector for a thread. The gray scale
represents the frequency of remote cache misses that are recorded for entries in the

shMap vector. Darker pixels represent higher frequencies.

According to the scheme used to construct shMap vectors, two shMaps having non-
zero values on the same entry is a sign of active read-write sharing. In the visual represen-
tation in Figure 3.5, this effect is demonstrated as vertical dark lines (which are formed by
the dark pixels on identical columns for different rows). In order to simplify the picture,
we have removed the dark pixels that are shared by almost all threads (globally-shared
data).

From Figure 3.5 it is clear that the shMap’s are effective in detecting sharing and
clustering threads for three applications out of four (microbenchmark, SPEC JBB2000,
and RUBiS). In the three cases, the automatically detected clusters are identical to clusters
that would have been identified manually, with specific knowledge of applications logic
(i.e., a cluster for each scoreboard for the microbenchmark, for each warehouse in SPEC

JBB2000, and for each database instance in MySQL).

For VolanoMark however, the detected clusters do not conform to our perception of
the way data is paritioned in the server (i.e., there is one data partition per chat room).
It turns out that the read-write sharing patterns among the threads in VolanoMark is
fairly complicated. Due to unavailability of the workload source code, we were unable
to explore the exact behaviour of the application’s threads. However, our performance
results (described in the next Section) shows that significant performance improvement
can be gained by a thread scheduler that takes even such a seemingly imperfect thread

clustering information into account.

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 66

3.4.5 Performance Impact of Thread Clustering

In this subsection, we briefly describe performance results of our sharing-aware thread
scheduler, developed by my colleague David Tam. The details of the experiments and
their performance analysis can be found in Tam et. al [TAS07|. To summarize, our ex-
periments with a sharing-aware thread scheduler that uses our thread clustering scheme
demonstrates that most (up to 70%) expensive, cross-chip read-write sharing can be elim-
inated across the set of workloads we studied, compared to the default thread scheduler
that is used in the Linux kernel.

Also, our experiments on our IBM OpenPower720 machine show that the sharing-
aware thread scheduler is able to improve end performance by up to 7% compared to the
default Linux thread scheduler. Early results of running similar experiments on a larger
multiprocessor (with 8 IBM POWERS5 chips, instead of two) shows that the potential

end-performance improvement can be substantially higher (e.g., up to 20%).

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING

shMap

Vectors

shMap

shMap
Vectors

shMap
Vectors

Nate LA

Clusterl

Cluster2

Cluster3

Cluster4

shMapVector Entries

a. Microbenchmark

Vectors | | I | "
' |
| |

cluster1

cluster2

cluster3

clustera

shMap Vector Entries

b. SPECJBB

shMap Vector Entries

c. RUBIS

ENL ke

Cluster1

Cluster2

=zx | Cluster1

:'; - - LT - |clusterz
L .

Cluster3
I clustera
L . . i L cl

shMap Vector Entries

d. VolanoMark

67

Figure 3.5: Visual representation of shMap vectors. Each shMap entry is represented with a

gray scale pixel. A row of pixels in each picture represents a single thread’s shMap vector. The

more frequent remote misses on the entry, the darker the point.

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 68

3.5 Related Work

Most of the existing hardware data sampling techniques are already discussed in Sec-
tion 3.1.2 where advantages and disadvantages of each of them are described. In this
section, we describe some of the research work that use alternative approaches of moni-

toring data at the hardware level.

Intel Ttanium 2 supports a latency-based filtering approach to control hardware data
sampling [Inta|. In this scheme, users can specify a lower bound, in terms of number of
cycles, on the latency of a data cache miss [MMdSO05|. In theory, this scheme can be used
to implement source-based sampling, given there is significant difference in the access
latency for different memory sources. A major problem with this approach, however,
is that due to a potentially large variation in the latency of accessing single source, it
is difficult to find a right lower bound for latency that guarantees the capture of most
data accesses to a source. Moreover, an aliasing effect may occur for different sources
that have similar average access latency. Nonetheless, this technique is used by Buck and
Hollingsworth [THa| and also Lu et al. [LCFT03] to isolate data addresses that frequently
cause long-latency cache misses without further exploring the source of the cache misses.
However, our approach for source-based sampling of data cache misses is more robust
than the latency-based approach used in Itanium 2, as it does not rely on potentially

fluctuating access latencies in order to identify the source of the data.

In order to address some of the inherent limitations of data sampling, some researchers
have suggested alternative techniques mainly by introducing semantically richer data
monitors at the hardware level. For instance, Qureshi and Patt suggest hardware Utility
Monitors to monitor every L1 cache miss and build a summary histogram at the hard-
ware level based on the reuse distance of cache misses [QP06|. Also, the authors of the
1 Watcher framework suggest a specific hardware data monitoring support to constantly
monitor accesses to certain designated memory region, so that whenever an access to a
specified region occurs, a user-defined function runs automatically by hardware without
generating a trap to the operating system [ZQLT04]. While these approaches appear to

be effective, they serve only specific purposes. Ideally, in the new generation of hardware

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 69

data monitoring architecture, there should be a fairly small set of mechanisms that are

sufficiently flexible to be used by a wide range of optimization or debugging purposes.

3.6 Concluding Remarks

Hardware data sampling is a potentially powerful mechanism as many researchers have
been able to build effective optimization schemes using data samples generated by hard-
ware. However, in our attempt to do the same, we encountered some limitations in the
existing hardware data sampling mechanisms embedded in today’s processors.

First, supported hardware data sampling selection criteria are often too coarse-grained
and inflexible. In particular, it is is not possible to sample data cache misses specifically
based on the memory or cache source from which cache misses are served. As a result,
extra software filtering is required in order to select cache miss samples of a certain
source from a potentially large set of data cache misses. In this chapter, we described
a technique based on features provided by the IBM POWERS5 processor to solve this
problem efficiently. We showed how such a filtering scheme can be used to generate
sample addresses of remote cache misses.

A second limitation in today’s microprocessors is that only one sampling selection
criterion can be set at a time. In particular, it is not possible to combine multiple
selection criteria conjunctively or disjunctively at the hardware level. In this chapter, we
described how to use fine-grained HPC multiplexing to be able to use multiple sampling
criteria disjunctively at fine granularity.

As a case study, we described how to use source-based data sampling to address
the problem of automatically detecting sharing among concurrently running threads.
We showed how to efficiently build small sharing signatures for each thread out of the
hardware data samples generated for remote cache misses. Furthermore, we showed
that a simple thread clustering algorithm can be used to cluster threads into groups of
threads that actively share data. Our experimental analysis shows that both our source-
based data sampling and our thread clustering algorithm are reasonably accurate for real

commercial server workloads.

CHAPTER 3. HARDWARE DATA SAMPLING TO DETECT THREAD SHARING 70

In the study, we used a technique to indirectly sample the address of data cache misses
based on their sources. Although our approach works reasonably well, it is specific to
IBM POWERD) processor, as it uses specific features of this processor (i.e., continuous
data sampling, and the ability to count data cache misses by their sources). For more
general and reliable source-based data sampling, specific hardware support would be
required. Such extra hardware support would be modest, as current PMUs are already
able to distinguish the source from which cache misses are satisfied. It only requires
another level of filtering at the hardware level so as to update the DAR only if the data
cache miss is handled by a source specified by software.

Another characteristic of the continuous data sampling feature we used in our study
is that the DAR is constantly updated whether the corresponding instruction completes
(retires) or not. As a result, the DAR may be updated while the CPU is executing a code
path speculatively, which may turn out to be a mispredicted path and must be flushed
later. The DAR, in this case, will be the operand address of an instruction that never
erecuted to completion. This is a serious problem considering that approximately one
in five instructions is a branch, and at any point in time, there are potentially several
branches predicted in a nested fashion. Hence, it will be difficult to analyze whether the
recorded DAR corresponds to a valid path or not. We believe that in order to completely
resolve this issue additional hardware support is required either to invalidate the content
of the DAR . or restore its previous value in the case of a mispredicted path flush.

Finally, we believe our hardware data sampling techniques can be used for other
purposes than sharing detection. For instance, one can explore the use of source-based
sampling in adaptive function and data placement algorithms in a NUMA environment.

Another idea is to use source-based data sampling to identify highly contended locks.

Chapter 4

Page Access Tracking to Improve

Memory Management

4.1 Introduction

Computer system physical memory sizes have increased consistently over the years, yet
optimizing the allocation and management of memory continues to be important. A
popular perception is that memory is abundant and inexpensive. While the former may
be true, the latter is certainly not. Figure 4.1 shows how the price of three medium-scaled
multiprocessor systems changes as physical memory size is increased. The base price is
for a setup in which each system is equipped with its maximum processing power. All
prices are taken from the corresponding companies list-prices. From the figure, it is clear
that memory price is the dominant factor in the cost of computer systems as they are
equipped with more memory than in their standard setups.

Moreover, numerous applications exist that can exhaust any amount of physical mem-
ory available. For instance, many applications from computational biology may approach
a terabyte in terms of memory requirements [ZAKB05, BRS05|. With the re-emergence
of Virtual Memory Monitors (VMMSs), as a key technology for server consolidation, the
number of applications simultaneously running on the same hardware increases signifi-
cantly with an attendant increase in memory pressure. Worse, extending available mem-

ory through demand paging continues to grow more unattractive as disk access times,

71

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 72

140 IBM-XSeries 366 —a—

HP-DL580 ---@-a
120 - Dell Power-Edge 6800 A’ 1

100 -

Price ($1000 US)

0 10 20 30 40 50 60 70
Memory Size (GBytes)

Figure 4.1: The price of medium-sized computer systems as a function of physical memory size.

dominated by positioning delays, fall farther behind relative to CPU and memory speeds.

To utilize memory effectively, accurate information about the memory access pattern
of applications is needed. Traditionally, operating systems track application memory
accesses either by monitoring page faults or by periodically scanning page table entries
for specific bits set by hardware. These approaches provide only a coarse approximation
of the true order of page accesses for use in memory management algorithms, limiting
the ability to implement sophisticated strategies.

An alternative approach available in systems with software-managed TLBs is to record
and process page accesses upon each TLB miss. While this approach can provide signif-
icantly more fine-grained page accesses information, it adds prohibitively large overhead
to a software TLB miss handler, which is already a performance-critical component.

An entirely software-based alternative has been suggested by recent work [ZPS*04,
YBKMO6]|, where virtual pages are divided into an active set and an inactive set. Pages
in the inactive set are protected by manipulating page-table bits, so that every access to
them will generate an exception and hence the operating system will be notified. Pages
in the active set are not protected, and as a result, accesses to these are not directly
tracked. Once a page in the inactive set is accessed, it is moved to the active set. A
simple replacement algorithm such as CLOCK |CH81] is used to move stale pages out of
the active set and into the inactive set. While the active set is much smaller than the
inactive set, it is meant to absorb the majority of page accesses, which results in much

reduced software overhead compared to raising an exception on every page access.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 73

450 130

Global LRU —A— . Exec. Time —&— 4 oqg
LIRS -- e

S ---- Overhead ---©--

400

350

150
300

250 o
200 100

150

Software Overhead (%)

100 50

Projected Exec. Time(billion cycles)
Projected Exec. Time (billion cycles)

50

0450 500 550 600 650 700 750 800 128 512 2K 4K 8K 16K 32K0
Memory Size (MB) Active Set Size (# of Pages)
(a) Performance of LIRS vs. LRU (b) The effect of active set size

Figure 4.2: Graph (a) shows how LIRS outperforms LRU when executing fft, for different
memory sizes. Graph (b) shows for a fixed memory size (703Mbytes), how LIRS’ performance
change as the active set size increases, while the runtime overhead of maintaining the active set

decreases (the projected execution time does not include the runtime overhead).

While this software-approach is shown to be effective with certain types of applica-
tions, its overhead for many memory-intensive applications is unacceptably high. An ap-
proach to reduce the overhead is to increase the size of the active set adaptively [YBKMO06|.
However, the bigger the active set, the less accurate the sequence of page accesses will
be, since more accesses are absorbed by the active set. As a result, the utility of having
the sequence of page accesses for a particular memory management algorithm will dimin-
ish. An example of such a case is shown in Figure 4.2 for FFT taken from the Splash-2
suite [WOTT95]. On the left, the performance of LIRS [JZ02], a well-known memory
management algorithm is compared against LRU. LIRS takes into account not only re-
cency of page accesses, but also reuse distance when considering a page for replacement.
A more detailed description of LIRS is presented in Section 4.3.2. The measurement is
done under the assumption that the overhead of collecting page access information is zero
and the active set is 128 entries. The graph on the right shows how LIRS performance
degrades as the active set size increases, while the overhead of recording page accesses
naturally decreases. As a result, to achieve LIRS’ potential in improving performance, a
high runtime overhead (100% or more) must be paid, otherwise, most of the advantage

of LIRS over LRU disappear.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 74

To cope with this potentially large overhead, custom hardware is suggested by Zhou
et al. [ZPS*04]. While their approach is effective in tracking physical memory Miss Ratio
Curves, it does not provide raw page access information to the operating system, and
thus cannot be used for memory management algorithms other than the one which is
intended for. Moreover, the hardware required by this approach is substantial and grows

with the size of physical memory.

In this chapter, we propose a novel Page Access Tracking Hardware (PATH) to be
added to the processor micro-architecture for the purpose of monitoring application mem-
ory access patterns at fine granularity and with low overhead. Similar to the software
approach, PATH is designed based on two observations. First, a relatively small set of
hot pages is responsible for a large fraction of the total page accesses. Second, the exact
order of page accesses within the hot set is unimportant since these pages should always
be in memory. By ignoring accesses to hot pages, we can vastly reduce the number of
accesses that must be tracked, while focusing on the set of pages that are interesting

candidates for memory management optimizations.

The key innovation with our PATH design lies in the tradeoff between functionality
assigned to hardware and functionality assigned to software. The hardware we propose
is (i) small and simple, (ii) scalable, in that it is independent of system memory size,
and (iii) introduces little overhead, imposing no delays on the common execution path of
the micro-architecture. We delegate to software (specifically, an exception handler) the
online maintenance of data structures to be used by the memory manager when making

policy decisions.

We show that the operating system can benefit from our approximate information
by considering three uses for the memory manager: (i) implementing more adaptive
page replacement policies (ii) allocating memory to VMMs, processes or virtual memory
regions so as to provide better isolation and to better support process priorities, and
(iii) prefetching pages from virtual memory swap space or memory-mapped files when
applications have non-trivial memory access patterns. We briefly describe these use cases

in more details.

Adaptive Page Replacement: There is a large body of prior art in page and

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 75

buffer cache replacement policies [MMO03, SKW03, JS94, BM04, GC97, JZ02, JCZ05,
GBHO04, ZvBB05, CNMC00, KMC02|. Many of the algorithms proposed are based on an
approximation of LRU with various extensions to adapt to sequential and looping patterns
for which LRU behaves poorly. In most cases, the effectiveness of these algorithms
has only been shown in the context of file system caching, where precise information
on the timing and order of accesses is available. With finer-grained virtual memory
access information, adaptive page replacement algorithms, such as the one we present in

Section 4.3, can lead to significant performance improvements.

Memory Allocation: Most existing operating systems allocate memory pages to
applications on-demand and from a global pool. This strategy can lead to unfair prior-
itization effects, whereby a low-priority process with a high page fault rate is allocated
a large number of physical pages to the detriment of higher priority processes. System
throughput may also suffer since extra pages may be allocated to applications that do
not benefit from them. Working set models, as implemented on current architectures,
do not provide an accurate estimate of memory requirements since they only take into
account whether a page is accessed or not over a period of time. The number of distinct
pages accessed before a given page is reused (i.e., the reuse distance [ZPS104]) gives a
better indication of memory needs, but operating systems often do not have access to
sufficiently detailed page access information to estimate of reuse distance. In Section 4.4,
we show how our PATH provides accurate reuse distance information that can be used

to improve memory allocation.

Virtual Memory Prefetching: I/O bandwidth has increased dramatically over the
years, which allows for more aggressive and speculative prefetching of memory pages. The
danger with an aggressive prefetching scheme, however, is that pages could be replaced
that would still be of use (to the same or other applications). Hence it is important
to prefetch wisely. Conventional operating system prefetching schemes based on spatial
locality assume that whenever a page is accessed, it is likely that neighboring pages will
also soon be accessed. While simple and effective for many applications, this can perform
poorly for applications with little spatial locality in their access patterns. The availability

of finer-grained page access information allows for alternative prefetching schemes; we

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 76

describe one strategy based on temporal locality in Section 4.5.

Underlying all these techniques for improved memory management is our PATH sup-
port for tracking page accesses at relatively fine granularity, which we describe in detail
in Section 4.2.

Our simulation results show that substantial performance improvements (up to 500%
in some cases) can be achieved, especially when the system is under memory pressure.
While the algorithms based on PATH have different time and space overhead tradeoffs,
the basic overhead of providing fine-grained page-access information to the operating
system is less than 6% across all the applications we examined (less than 3% in all but
two applications) which is at least an order of magnitude less than the overhead of existing

software approaches.

4.2 Tracking Page Accesses

Memory management algorithms are often first described assuming the complete page
access sequence is available and later implemented using a coarse approximation of this
sequence. For example, the well-known Least-Recently-Used (LRU) page replacement
algorithm requires the complete access sequence to implement exactly, but is commonly
approximated by the CLOCK algorithm, which coarsely groups pages into recently-used,
somewhat recently-used, and not recently-used categories. Optimizations to the basic
LRU algorithm, and other sophisticated memory management strategies, require more
detailed page access information than systems currently provide. Tracking all page ac-
cesses, however, is prohibitively expensive and generates too much information for online
processing. The key question, then, is how to reduce the volume of information to a
manageable level, while retaining sufficient detail on the order of page accesses.

Our approach is based on two observations: (i) a relatively small set of hot pages are
responsible for a large fraction of the total page accesses, and (ii) the exact order of page
accesses within the set of hot pages is unimportant since these pages should always be in
memory. By ignoring accesses to hot pages, we can vastly reduce the number of accesses

that must be tracked, while focusing on the set of pages that are interesting candidates

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 77

for memory managmenet optimizations.

4.2.1 Design Options

Current memory management hardware already contains an effective filter to catch ac-
cesses to the hottest N pages: the Translation Lookaside Buffer (TLB). Thus, one pos-
sibility for tracking page accesses is to augment existing hardware or software TLB miss
handlers to record a trace of all TLB misses. Aside from the overhead that this would
add to the critical path of address translation, the primary problem with this strategy
is that TLBs are too small on today’s processors to capture the set of hot pages, which
in turn leads to traces that are still too large for online use. Simply increasing the TLB
size is not a viable option, since the size is limited by fast access requirements. We note,
however, that the TLB provides more functionality than is needed to simply track page
accesses. Thus, we propose the addition of a new hardware structure that essentially
functions as a significantly larger TLB for the purpose of filtering out accesses to hot
pages, while recording a trace of accesses to other pages. We call this structure Page
Access Tracking Hardware (PATH). Although software TLB miss handlers could collect
the same information (for architectures that provide them), extra work would be required
on the performance-critical miss handling path.

The existing TLB can continue to filter out accesses to the hottest pages, while the
new PATH maintains a superset of the pages handled by the TLB, and is only needed
when a TLB miss occurs. Further, PATH is not required for address translation, and
can be accessed asynchronously with respect to TLB miss handling. Since the speed of
access is not critical, the components in PATH can be sized independently, constrained
only by the resources available on chip and the desired precision of tracking. In the
following subsections, we present the details of our PATH design and show how the
access traces it collects can be used to build various software data structures used for
memory management.

Figure 4.3 depicts the three major components of our PATH design. The Page Access
Buffer (PAB) and the Associative Filter work together to remove accesses to hot pages

from the trace; other accesses are recorded in the Page Access Log (PAL), which raises

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 78

Interface to Higher Level Algorithms

Updating MRC | Software Layer

....... i 1 .
' »|Exception Hand erq Updating LRU Stack] :

Exception L")
' ,PAL pointer '
' PAL Overflow : K . Software
' pramnn Exception” 3 (11111 [lPage Access Log (PAL) ! Loadkup
E : Miss :
: \ 4 |Associative Filter |
: Virtual TLB Miss AMiss (_______
,...] cpu |Addresg TLB Lookup | page 5
CORE | Lookup :Page Access Access
Tracking Buffer
Hardware (PAB)
(PATH)

Figure 4.3: The Architecture of Page Access Tracking Hardware (PATH).

an exception when it becomes full, in order to allow for software processing.

The Page Access Buffer (PAB) contains the set of recently accessed virtual pages,
augmented with an address space identifier to distinguish between pages from different
processes. The PAB is structurally similar to a TLB except that (i) it is updated only
on a TLB miss, (ii) it need not contain the physical addresses of the pages it holds, and
(iii) it is significantly larger than a typical TLB. As the PAB size increases, more pages
are considered hot and more accesses are filtered out of the trace, thus reducing both
processing overhead and accuracy. Our experiments show that a PAB with 2048 entries
is a good point in this tradeoff. In Section 4.6.6, we examine, in detail, the tradeoff
between overhead and usefulness of the traces with varying PAB sizes. Moreover, with
a 2K-entry PAB, PATH will have a very small chip footprint. Finally, some existing
architectures such as IBM POWER and AMD Opteron already have a fairly large (e.g.
512 to 1024 entry) second-level TLB!. One can envision integrating PATH with a slightly

larger version of such a second-level TLB. We show in Section 4.6.7 that using the same

LIBM POWER’s first level address translation cache is 128 entries and is called the Effective-to-Real
Address Table (ERAT).

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 79

2K size for the active set in the software approach will result in an unacceptably high
overhead.

A page access is considered for recording only if it misses in the PAB. However,
because of the limited associativity of the PAB, it can be susceptible to repeated conflict
misses from the same small set of (hot) pages. To deal with this problem, PATH includes
an Associative Filter that filters page access information further. The associative filter
is a small (e.g., 64 entries), fully-associative table with an LRU replacement policy that
is updated on every PAB miss. It effectively filters out the recording of accesses to hot
pages due to short term conflict misses in the PAB.

Finally, misses in the associative filter are recorded in the Page Access Log (PAL)
which is a small (e.g., 128 entry) buffer. When the log becomes full, an exception is
raised, causing an operating system exception handler to read the contents of the PAL
and reset the PAL pointer. In the following subsection, we show how system software
can use the information recorded in the PAL to construct a variety of data structures
used in memory management.

PATH must also provide an interface to allow software to control it and perform
lookup operations. This interface allows the operating system to empty the PAL when-
ever the CPU becomes idle, say during I/O, to reduce the overhead of PAL servicing.
The operating system can also dynamically turn off PATH when the system is not under
memory pressure, thereby reducing power consumption.

Given this architecture, PATH provides a fine-grained approximation of the sequence
of pages that are accessed. Sequential or looping access patterns over an area larger than
what is covered by the PAB (e.g., 64MB) are very likely to be completely recorded by
PATH in their proper order. Moreover, if a page is not hot so that it does not permanently
reside in the PAB, its reuse distance can also be accurately captured by PATH due to

the subsequent PAB misses it causes.

4.2.2 Low-level Software Structures

The benefits of having LRU stacks and/or Miss Rate Curves available are well recog-

nized and, correspondingly, hardware support to generate these data structures has been

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 80

previously proposed |[ZPST04|. In this section, we argue that these data structures can
be constructed efficiently in software from the information obtained by PATH described
above. Specifically, we show how both LRU stacks and Miss Rate Curves can be main-
tained on-line by the PAL overflow exception handling code. Both structures can, in
turn, be used by memory management software to make informed decisions. By dele-
gating the maintenance of these data structures to software, our design provides greater

flexibility and customizability than previously proposed hardware support.

LRU Stack

The LRU stack maintains a recency order among the pages within an address range. The
top of the stack is the most recently accessed page, while the bottom of the stack is the
least recently accessed page. In our scheme, each page accessed (as recorded by the PAL)
is moved from its current location in the stack to the top of the stack. The LRU stack is
updated for every page access recorded in the PAL.

To enable fast page lookup and efficient update in the LRU stack, we suggest using
a structure typically used to maintain page tables, such as a traditional multi-level page
table or a hash table. Each element in this structure represents a virtual page and
contains two references: one to the previous page in the LRU stack and one to the next
page in the LRU stack. Conceptually, the LRU stack is a doubly-linked list, and elements
are repositioned within the stack by adjusting references to neighboring elements. Thus,
a virtual page can be looked up with a few (usually 2 or 3) linear indexing operations,
and moving a page to the top of the LRU stack involves updating at most 6 reference
fields in the stack: 2 references associated with the page being moved, 2 of its previous
neighbors, 1 at the previous head of the list, and the head of the list itself.

The LRU stack has an element for each page that was ever accessed (not just the
pages currently in memory). Assuming 4 KB virtual pages, 32-bit page references can be
used for address ranges up to 16 TB, resulting in a space overhead of 8 bytes per virtual
page used. To save on physical memory usage, LRU stack pages can be swapped out to
disk if the elements they contain represent pages that are not currently being accessed.

The working set size of the LRU stack is roughly proportional to the working set size of

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 81

the address range. Hence, a working set size of several GB implies that several MB will

be consumed by the LRU stack.

Miss Rate Curve

A Miss Rate Curve (MRC) depicts the page miss rate for different memory sizes, given
a page replacement strategy. More formally, MRC is a function, A, (M), defined for
address range r and page replacement policy p. A, ,(M) identifies the number of page
misses the process will incur on r over a certain time period if M physical pages are
available. Often, the slope of A at a given memory size is of more interest than its actual
value. If the slope is flat then making additional pages available will not significantly
reduce the miss rate, but if the slope is steep then even a few additional pages can
significantly reduce the page miss rate.

We use a definition of MRC that is slightly different from the one used by Zhou et
al. |ZPS*04] to make it more suitable for our proposed hardware support. Our variant of
MRC identifies the absolute number of misses that occur over a period of time and not
the miss ratio that is normalized by dividing the number of misses by the total number
of accesses. Not requiring the total number of memory accesses significantly simplifies
the hardware support required.

Our method of maintaining A on-line is based on Mattson’s stack algorithm [MGST70|
and Kim et al.’s algorithm [KHW91| used for off-line analysis. We augment the elements
of the LRU stack described above with a rank field used to record the distance of the
element from top of the stack (i.e., the reuse distance). Each A is maintained as a his-
togram. Conceptually, whenever a page is accessed, the histogram values corresponding
to memory sizes smaller than the rank of the accessed page are incremented by one. In
addition, the page is moved to the top of the stack, while setting its rank field to zero
and decrementing the rank field of every element between the original position of the
page and the previous top of stack by one.

Time is divided into a series of epochs (e.g., a few seconds). At the end of each epoch,
the value of A (i.e., the histogram) is saved and reset. Each process may store a history

of values of A for several epochs in order to be able to make more accurate decisions.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 82

Group
Boundary
-

Stack
Bottom

LRU Group Headers

Figure 4.4: The LRU stack with group headers that are used for updating the LRU-ranks of

pages efficiently.

In order to reduce overhead, page groups of size g can be defined and the rank field
can be redefined to record the distance to the top of the stack in terms of number of
page groups. Adding an array of references to the head of each page group reduces the
overhead of updating the rank fields by a factor of g. Figure 4.4 shows how the group
header array is used to find the group boundaries, since only the elements at the group
boundaries need to be updated.

Algorithm 2 shows the basic steps that must be taken for every page that appears
in the PAL to maintain A histograms for the LRU page replacement policy. Note that
the group size ¢ is defined by software and can change according to the desired level of
precision for \.

A further optimization is possible based on the observation that at any instance in
time, we are only interested in A at the point corresponding to the amount of physical
memory allocated to the virtual address range under study and the slope of A around that
point. Hence, the LRU stack can be divided into only 4 groups as shown in Figure 4.5:
the top M — g pages, where M is the current physical memory allocated to the address
range, two groups of g pages on both sides of M, and all the remaining pages at the
bottom of the LRU stack. With this optimization, only four entries need to be updated
on each page access to maintain \.

In the next three sections, we present algorithms to improve memory management

performance in three different areas: adpative page replacement, process memory allo-

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT

83

Require: Vaddr > RegionStart A Vaddr < (RegionStart + RegionSize)

1:

2:

3:

10:

IruRank < Stack|[Vaddr].rank

move Vaddr element to the top of the LRU stack

Stack|Vaddr].rank = 0

{update group headers and page ranks for groups lower than lruRank}

: for ¢ = 0 to lruRank do

GroupH eaders[i] <= Stack|GroupH eadersi].prev
Stack|GroupHeadersli]].rank + +
end for

{update MRC' for LRU}

: for 7 =0 to lruRank do

Arrulj] ++

end for

Algorithm 2: Update Apry and the LRU stack on each recorded page Vg

cation, and virtual memory prefetchinag. We describe how these algorithm utilize the

information generated by PATH either in the raw form, or in the form of LRU stack or

MRC.

4.3 Adaptive Replacement Policies

Using information from PATH, we have implemented two adaptive page replacement

algorithms. The first one, Region-Specific Replacement, attempts to automatically apply

the appropriate replacement policy on a per-region basis for different regions defined in

the application’s virtual address space. The second one is a recently proposed adaptive

policy called Low Inter Reference Set (LIRS) [JZ02|. The reason for choosing LIRS is

that it is fairly simple and, for file system caching, has proven to be competitive with the

best algorithms.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 84

: Current

| ¢ Physical MeEMOIy ——————p
1 Size
1
1
1

Stack:

H C N B
Bottom

LRU Group Headers

Figure 4.5: The optimized structure for the LRU group headers, considering in most cases it is
important to know the slope of A only around the current physical memory size. Only a fixed

number of page groups (4 in this figure) are considered to be updated at each page access.

4.3.1 Region-Specific Replacement

The rationale behind region-specific page replacement is the desire to be able to react
individually to the specific access patterns of each large data structure within a single
application. Studies in the context of file system caching [CNMCO00| have shown that
by analyzing the accesses to individual files separately, one can model the access pat-
tern of the applications more accurately. Also, Harty and Cheriton [HC92| presented
a framework for application-controlled page caching in which each application can em-
ploy caching policies that fit its needs most. We argue that memory-consuming data
structures (e.g., multidimensional arrays, hash-tables, graphs) usually have stable access
patterns, and by detecting these patterns, one can optimize the caching scheme for each

of these data structures individually.

Selecting Regions

Most large data structures reside in contiguous regions in the virtual address space. The
contiguity of data structure memory is not an essential factor but significantly simplifies
the implementation of region-specific replacement. For large data structures that do not
reside in contiguous regions, one can use custom allocators that allocate correlated data

from a pre-allocated large chunk of virtual memory. Lattner and Adve |[LA05| show how

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 85

to cluster individually allocated, but correlated, memory items in an automated fashion.
As a result, large data structures (e.g., a graph of millions of nodes) are more likely to
be located in a large contiguous region of address space. In our simulation studies, we
have assigned a region for each large static data structure as well as any large mmapped

areas.

Choosing Replacement Policy

We separately but simultaneously compute A for each region for both the LRU and MRU
policies, and we pick the policy that would result in a lower miss rate. To compute A gy,
we use the same scheme shown in Figure 4.5 and Algorithm 2, but with pages ranked in
reverse order. Hence, for each page, we maintain two ranks, one for LRU and the other
for MRU. Given that the rank value is at most 4, the rank can be represented by two

bits, so the corresponding space overhead is negligible.

Switching Replacement Policy

We switch to a new policy only if it is consistently better than the current policy. The
default policy is LRU. If a region is being accessed in a looping pattern, it will have lower
values for \yry, but if the region is being accessed in temporal clusters, Apry will have
lower value.

The algorithm for switching page replacement policy is activated only if a certain
threshold in the number of capacity misses is reached in an epoch. Otherwise, we assume
the current replacement policy is working well.

However, switching is an expensive operation and should not be done lightly. To avoid
over-reacting to short-lived fluctuations, we use a saturating counter that is incremented
when one policy is better than the other in an epoch, and decremented otherwise. The
policy switch is triggered whenever the counter reaches one of two extreme points. Also,
to reduce switching overheads, we do not evict the current pages from physical memory
when a policy switch is made. We have observed in our experiments that for many real

applications policy switching is indeed a rare event.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 86

Allocating Memory to Regions

With region-specific page replacement, it is necessary to decide how many physical pages
to allocate for each region. At the end of each epoch, we use the precomputed A values
to calculate how much memory each region actually needs. We define benefit and penalty

functions for each region as follows:

benefit,(g) = A\rp(M — g) — A p (M)
penalty,(g) =)‘r,p(M) - Ar,p(M + 9)

We balance memory among regions within a single process address space by taking
away memory from regions with low penalty and awarding them to the regions with
higher benefit. The number of regions in an application is typically small (e.g., usually
less than 10). Thus, balancing memory within a single application at the end of each

epoch is not a costly operation.

4.3.2 LIRS

The key idea behind LIRS is to consider not only recency, but also reuse distance when
considering a page for replacement. The LIRS algorithm divides pages into two sets:
High Inter-reference Recency (HIR) and Low Inter-reference Recency (LIR) sets. The
pages in the LIR set are always kept resident in memory even if they have not been
recently accessed. Candidate pages for replacement are always chosen from the HIR set
even if they have been recently accessed. Once a page in the HIR set is accessed with a
reuse distance shorter than that of some pages in the LIR set, it is moved to the LIR set.
If a page stays in LIR for a long time without being accessed again, it is purged from the
LIR set. Only a small fraction of physical memory is allocated to pages in the HIR set.
A more detailed description of the algorithm can be found in the LIRS paper |JZ02].
LIRS effectively eliminates LRU’s poor handling of sequential and looping patterns
in file system caching. However, to apply LIRS to virtual memory, one must be able
to measure the distance between two consecutive references to a page fairly accurately,

which is challenging with traditional operating system page access monitoring techniques.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 87

In fact, a follow-up attempt to implement LIRS for virtual memory by the LIRS design-
ers using conventional operating system techniques resulted in a complicated algorithm
to approximate the reuse distance information and limited success [JCZ05]. By using
information from PATH, we were able to implement the original LIRS algorithm in a
straightforward way. In fact, we adopted the LIRS designers’ original algorithm in our

simulation environment with minor modifications.

4.4 Memory Allocation

In multi-programmed environments, how the operating system decides to allocate phys-
ical memory to each process is of great importance when the system is under memory
pressure. In this section, we show how the availability of fine-grained page access infor-
mation can help improve memory allocation among processes.

In most general-purpose operating systems today, memory is allocated to a process
from a global pool of pages, on-demand, when the process incurs a fault. All pages are
equal candidates for replacement, irrespective of which process they belong to. The actual
amount of memory allocated to each process is a direct function of the page replacement
policy in use and the page fault rate of the process. Processes that access more pages
than others over a period of time will be allocated a larger number of pages, since they
fault on more pages and keep their own pages recent.

Global memory allocation has two major advantages. First, it is simple and easy to
implement with little overhead. Secondly, for workloads with similar access patterns,
global memory allocation naturally tends to minimize the total number of page-faults.
Despite its wide adoption, global memory allocation has two significant shortcomings:
(i) sub-optimal system throughput for workloads with different access patterns, and (ii)
lack of process isolation and unfair prioritization effects. We briefly discuss these two
shortcomings in more detail.

Sub-optimal System Throughput: Global memory allocation makes the assump-
tion that each application benefits the same when given an extra page. In reality, however,

one application’s throughput may rise sharply as it is given more pages, whereas others

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 88

may experience no performance gains. If the goal is to maximize overall system through-
put, memory should be taken away from processes that are not benefitting much from
them and be given to processes that benefit the most. The rationale is that while the
throughput of the victim processes are not seriously affected, a large boost in the through-
put of the processes that are assigned more memory can be obtained. However, a major

challenge is how to accurately measure the utility of pages for different applications.

Lack of Isolation and Prioritization: In a system under memory pressure, pro-
cess prioritization done only through CPU scheduling can be ineffective. Chapin has
illustrated the prioritization problem due to lack of memory isolation in operating sys-
tems, and motivated the concept of memory prioritization [Cha97|. As a simple example,
consider two processes A and B, with A’s working set size larger than system memory
size and B’s working set size considerably smaller. Moreover, B is slow to touch the pages
in its working set (e.g., due to a high amount of computation). Even if the user gives
much higher priority to B than A, a system with global memory management will not
isolate B from A. A’s page-fault rate will be much higher than B’s, despite the fact that
B has more CPU time. As a consequence, pages from process B will be victimized in
order to accommodate page faults from process A. Prioritization is especially important
in large servers used for server consolidation where each user runs its application within
a virtual machine. In order to maintain a certain level of service for each user, the op-
erating system must be able to protect processes (i.e., virtual machine instances) from

being deprived of memory by other memory-consuming applications.

To address the two shortcomings of global memory allocation discussed above, we
employ a local memory allocation scheme, where each process is given a pool of private
pages that can then be governed by its independent page replacement policy. Memory
pools are dynamically sized as new processes are launched, existing processes’ memory
demand changes, or processes exit. A major challenge in local memory allocation is
to detect how much memory an application needs at any given point in time. Simple
sampling schemes, such as the one suggested by Waldspurger et al., have been shown to
be effective in measuring the working set of an application [Wal02|. The problem with

the working set model is that it does not give an indication of how the performance

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 89

of an application will change if it is given less memory than the measured working set
size, which becomes an issue in systems under memory pressure. We use the MRC model
both for maximizing throughput and enforcing effective isolation and prioritization among

processes.

Maximizing Throughput

Our approach to optimizing throughput is similar to the greedy algorithm used by Zhou et
al. |ZPST 04| with a different level of hardware integration. In this approach, each process
is initially allocated an equal amount of physical memory. At each memory allocation
step, given A is calculated for all processes, penaltyp, and benfitp for process P are cal-

culated as follows:

benefitp(g) = Ap(M) — Ap(M + g)

penalty p(g) = Ap(M — g) = Ap(M)
The greedy algorithm takes g pages away from the process with the least value for
penalty p(g), and assigns them to the process with the highest value for benefit (g).

We calculate A for each process by treating the entire process address space as a single
region. If a process uses region-specific page replacement, as described in Section 4.3.1,
we can measure the penalty of reducing process memory by using A functions already

calculated for each region, and define benefit , and penalty p functions for the process as:

beneﬁtp(g) =)\rmazyp(Mrmaz> -)\T‘mazyp(Mrmaz + g)
pena/ltyp(g) = Arminyp(MTmin - g) - Arminyp(Mrmin)

where 7,,;, is the region with minimum penalty, and M, is the number of pages cur-

Tmin
rently allocated to region r,,;,. Similarly 7,,.. is the region with maximum benefit, and

M,

Tmaz

is the number of physical pages allocated to region 7,4,

Enforcing Priorities

To better support process priorities, we have implemented a simple policy to try to
balance application miss rates among applications with the same priority. Figure 4.6

shows an abstracted example for two processes. At any point in time, the available

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 90

Miss

Miss
Rate Rate
ERER EEEEEEEEEEEEEEEEEREEEEEESRS
n
|]
1]
|]
IIII‘IIII " EEEEEEEEEEEEEEEEEEEEESR
: : :
[] X]
[] 1]
|] »]
N, N’} Memory N, N', Memory
Size Size
Process 1 Process 2

Figure 4.6: Enforcing priority through balancing page miss rate. At each point in time the
policy is to ensure same page fault rate for both applications. As available memory changes,

different page fault rate is set for both applications.

physical memory is dynamically partitioned between the two processes so that the two
processes suffer the same page miss rate. In the example, N; pages are allocated to
Process; and N, pages are allocated to Processy, where Ny + Ny is equal to the amount
of available memory and both processes suffer from the same miss rate. If the amount of
available physical memory changes (as other processes launch or exit, for instance), the
balance line will be moved to a new level to accommodate the change. In this case, N
pages are allocated to Process; and Nj pages to Processs, such that N| + NJ is equal

to the amount of available memory and both processes suffer from the same miss rate.

Another policy might dynamically partition memory according to A\ values so that
each process runs with a performance that is within a small margin of the performance
level required by a Service-Level Agreement (SLA). In this approach, physical memory
allocated to a process changes freely as long as the miss rate stays within the acceptable
miss rate range that is specified by the SLA. The X\ function is used to predict the miss
rate for any given physical memory size. We are continuing to explore fairness and process

isolation using the fine-grained memory access information provided by PATH.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 91

4.5 Prefetching

Another common technique to close the latency gap between disk and memory access
is prefetching by predicting which pages an application will use in the near future, and
start fetching these pages to memory before they are actually used. Prefetching is par-
ticularly effective for applications with working set sizes so large that even an optimal

page replacement policy still results in a high page fault rate.

Given the rapid growth of disk I/O bandwidth in recent years, one can aggressively
employ speculative prefetching techniques that trade potentially wasted 1/O bandwidth
for additional improvement in latency. The problem with speculative prefetching is that
it may result in still-needed pages of either the same or other applications being replaced.
In order to avoid this problem, speculation precision must be high, meaning a page that
is replaced by a prefetched page should not be accessed earlier than the prefetched page
again.

There are several policies for predicting which pages to prefetch. A simple approach is
based on spatial locality: pages that are adjacent to a faulted page in the virtual address
space are candidates for prefetching on the assumption that they will also be accessed
soon. More precisely, whenever a page-fault occurs, the next w next pages in the address
space would be prefetched, where the value of w could be either fixed or dynamically
adjusted based on how accurately the prefetching policy has been performing. This
scheme is effective for many cases, since many large memory-consuming applications
access pages in contiguous chunks that are much larger than a virtual page size. However,
there are important classes of applications that access memory with different types of

regularity than spatial locality.

Another prefetching approach is based on automatically analyzing application logic in
order to identify regular access patterns. With this approach, a compiler inspects program
source code and inserts code into the executable to provide hints to the operating system
on which pages should be prefetched soon. The main advantage of this approach is that
it automatically exploits high-level information on programs page accesses and hence

can identify regularities that are hard to identify by just monitoring the sequence of

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 92

E l

;
- L9
A4 .
3,°
3
.

y T p7 (—>{IIIIMIT
N2 o Y ’L_
e lommm -

Proximity P3
Set

ps [—>[TTIT]

Figure 4.7: Page Proximity Graph (PPG). Each node represents a virtual page. Each node
has a fixed maximum number of edges to other nodes. An edge represents the fact that there is
temporal proximity between the adjacent nodes. The weight on each edge represent the number

of times such temporal proximity is observed between the two nodes.

accessed virtual pages. The major drawbacks of compiler hint-based prefetching are two
fold. First, it is applicable only to applications whose access pattern can be analyzed
by a static compiler analysis. In principle, one can extend this approach to a run-time
environment (e.g., Java virtual machine) where more information regarding program data
structures and execution path is available. To the best of our knowledge, this approach
has not been explored yet. The second drawback of compiler hint-based prefetching is
that it is specific to particular programming environments that have a compiler modified
for generating prefetching hints.

As an alternative, we have developed a prediction model, similar to a Markov predic-
tor [JG99], that incorporates the temporal locality of accesses to pages into the prefetch-
ing strategy. By temporal locality we refer to the fact that a set of pages are accessed
within a short period of time (e.g., time to access a few pages).

Similar to recency-based prediction models, such as the one proposed by Saulsbury el.
al [SDS00], we use the LRU stack to find temporal locality among pages. Note, however,

that for this purpose the LRU stack must be precisely maintained. As we showed in

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 93

Section 4.2.2, the LRU stack is accurately maintained by using the PATH-generated
information.

We propose a new strategy based on temporal locality, which assumes that if a set
of pages are accessed repeatedly, they are likely to be accessed again together within a
short period of time.

To detect pages that are accessed with temporal locality, we build a weighted directed
graph, called Page Prozimity Graph (PPG). Each virtual page is a node in the graph.
An edge (p1,p2) indicates that page p, was accessed shortly after p;. Each edge has a
weight, w, that indicates how many times the two pages were accessed within a short
period of time. To save space, PPG’s degree D is limited to a small number (e.g., 10).
For each page p, we maintain a Prozimity Set, X,, where |X,| is at most D. Figure 4.7
shows a simple example of PPG where D is equal to 8.

The PPG is updated on each page fault as follows. A window of W, pages in the
LRU stack is considered, starting from the current location of the faulted page p towards
the top of the stack. If any page ¢ in the scan window is already in X, the weight
on (p,q) is incremented by one. Otherwise, ¢ is considered as a candidate to be added
to X,. The weight to all other nodes in X, that do not appear in the scan window is
decremented in order to decay obsolete proximity information. If the weight on any edge
(p, s) reaches zero, s is removed from X,

Prefetching is initiated whenever a page fault occurs on a page, such as p. To generate
the set of pages to be prefetched, the PPG is traversed starting from p in a breadth-
first fashion, and all pages encountered are added to the prefetch set. In Figure 4.7,
the prefetched set starting from P; is shown in gray, when traversing to a depth of 2.
The deeper the breadth-first traversal, the more speculative prefetching will be. One
can dynamically adjust the depth of the traversal according to the current prefetching
effectiveness and available I/O bandwidth. If a page in the prefetch set is already resident
in memory, it will be artificially touched to prevent the page replacement algorithm from
evicting it under the assumption that the page will likely be accessed soon.

We evaluate prefetching effectiveness using two metrics, recall and precision, where

recall is measured as the number of page-faults that are prevented from occurring by

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 94

Application Suite Description Footprint (MB)
MrBayes N/A Bayesian inference of phylogeny 600
MMCubing Tllimine Data Cubing by factorizing lattice space 480
SPECJbb2000 N/A Commercial Server Workload 850
FFT Splash 2 | Fast-Fourier Transform 770
Ocean(contiguous partitions) Splash 2 | Large-scale Ocean Movement Simulator 889
Ocean(non-contiguous partitions) | Splash 2 | Large-scale Ocean Movement Simulator 903
LU(contiguous partitions) Splash 2 | Simulated CFD using SSOR 760
LU(non-contiguous partitions) Splash 2 | Simulated CFD using SSOR 800
FMM Splash 2 | N-body problem, Fast Multipole Method method 480
CG NPB Conjugate Gradient Method 476
BT NPB Block Approximate Factorization 691
MG NPB Mult-Grid Kernel 430
SP NPB Solving a system of Pentadiagonal equations 724

Table 4.1: Selected Memory Intensive Applications

prefetching, and precision is measured by measuring the extra I/O bandwidth that is
imposed by prefetching. The more precise prefetching is, the lower the required 1/0
bandwidth will be.

In order to limit the potential negative effect of prefetching in evicting still-needed
pages, we limit the number of pages that are prefetched but not yet accessed by the
application. Once this limit is reached, the prefetching algorithm stops until some of the
prefetched pages are actually used. As a result, a prefetching scheme that is mispredicting
will not be able to pollute the cache of pages more than a certain amount. The limit can

be set as a proportion of the size of the cache of pages.

4.6 Experimental Evaluation

4.6.1 Experimental Framework

The goal of our evaluation is to show that the information generated by PATH is indeed
useful for the memory management algorithms discussed in this chapter. Towards this
goal, we used a trace-based simulation approach for two reasons. First, the information
generated by PATH is not directly available in any of today’s processors. One solution

would be to implement PATH functionality in a cycle-accurate simulator. The problem

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 95

with this approach is that cycle-accurate simulation is extremely slow, especially for the
type of memory-intensive applications we are considering.

Secondly, fully implementing all of the algorithms discussed in this chapter in a real
operating system would require substantial changes to the operating system kernel. More-
over, many implementation-specific issues that are not necessarily related to memory
management may interfere. For instance, prefetching from swap space cannot be effec-
tive unless the layout of the swap space is dynamically re-organized in order to minimize
the number of disk head seeks. Otherwise, no matter how accurate prefetching is, per-
formance will be completely determined by the disk 1/O subsystem. Our investigation
of the swap space implementation in the Linux kernel showed that swap space becomes
quickly fragmented under most workloads we examined. As a result, only a very small
fraction of available I/O bandwidth can be utilized for prefetching. Dealing with all
such issues is simply beyond the scope of this evaluation, which is to simply show that
PATH-generated information is useful.

Therefore, to measure the execution time of applications, we ran all workloads individ-
ually on a real system with an AMD Athlon 1.5GHz processor, and timed their execution
with their entire working set size fitting in memory so that no page faults occur. We
estimate projected execution time given the page fault rate determined by our simulation
experiments. We use Bochs [Boc|, a widely used full-system functional simulator for the
[A-32 architecture, to run the applications and record their memory accesses. The mem-
ory trace generated by the machine simulator is fed into a memory manager simulator
that simulates the memory-management algorithms in a multi-programmed environment.

The projected execution time is calculated using the following formula:

Projected Ezec Time = Fxec Timeg + Waitpp

Waitpr = Avemge_LatencypageiFault x Total Page Faults

where Exec Timey is the execution time measured when no page fault occurs. We assume
that once a process faults on a page, it will be blocked for Average Latencypage Fauit
cycles; we use a fixed value of one million CPU cycles for Average Latencypage Fault-

This value conservatively underestimates the cost of page faults as the average disk access

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 96

latency of even fast disks is in the order of a few milliseconds.

Moreover, we optimistically assume that 1/O bandwidth is not a bottleneck; i.e., we
assume that saturation of 1/O channel capacity will not delay execution. However, we
measured the potential impact of the algorithms on required 1/O bandwidth.

We added a TLB simulator to Bochs so it could gather TLB misses generated by
applications. In our experiments we set the TLB size to 128 entries and its associativity
to 16. Although Bochs simulates the entire software stack (i.e., user programs as well as
the operating system kernel), we record only user-level TLB misses. A memory trace is
essentially a series of page accesses that are time—stamped by the number of instructions
completed by an application since the last TLLB miss. In order to record modification
of pages by the applications, a memory write instruction that hits on a non-dirty TLB
entry is considered to be a TLB write miss, and is also recorded into the trace. We
slightly modified the Linux kernel version 2.6.10 to inform the machine simulator of any
process fork, exit, context-switch, or page-fault events. Moreover, all mmap related
system calls are relayed to the simulator. Having this information enables us to isolate
the exact sequence of virtual addresses each process has accessed or modified throughout

its execution.

4.6.2 Applications

Table 4.1 shows the set of memory-consuming applications we use from various bench-
mark suites: six applications from the Splash-2 suite [WOT*95]|, four from the NAS
Parallel Benchmark (NPB) suite [NAS]|, SPECjbb2000 [Sta], MMCubing from the Illim-
ine data mining suite |I11|, and MrBayes, a Bayesian inference engine for phylogeny [MrB].
We did not include SPEC CPU benchmarks, as they have fairly small memory footprints.
Also, we did not include database benchmarks, primarily because database servers usually
exploit their complete knowledge of accessed pages to optimize the replacement policies
more effectively inside the server.

We ran the applications with large problem sizes within the practical limits of the
simulation environment. However, all of these applications could consume tens of gi-

gabytes of memory for large but still realistic problem sizes. For our experiments, we

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT

Projected Exec. Time (billion cycles)

Projected Exec. Time (billion cycles)

1200 —

1100
1000
900
800
700
600
500
400
300
200

100
300 350 400 450 500 550 600 650 700 750 800

a. LU cont. (FMM, MG, and SP)

1000
900
800
700
600
500
400

aGlobal

Region-based ---@---

o

Memory Size (MB)

2o

i

Global LRU
LIRS --O--
Region-based ---®---

200

300 400 500 600 700
Memory Size (MB)

c. BT (FFT and MrBayes)

8000

Global LRU
LIRS --O--
Region-based ---®---

7000 O-.._
6000
5000
4000
3000

2000

Projected Exec. Time (billion cycles)

1000

0
450 500 550 600 650 700 750 800 850 900

Memory Size (MB)

b. Ocean cont. (Ocean non-cont.)

3500 Global LRU
LIRS --O--
Region-based ---@---

3000
2500
2000
1500

1000

500

Projected Exec. Time (billion cycles)

(]
500 550 600 650 700 750 800 850 900 950 1000 1050
Memory Size (MB)

d. SPEC JBB (LU non-cont. and CG)

97

Figure 4.8: Projected execution time of selected applications with different replacement policies.

The applications listed within parentheses have similar behavior.

collected memory traces that cover the execution of a few hundred billion instructions

for each application. A warm up time is considered at the beginning of the simulation

in which no measurement is done. The length of the warm up time is observed by each

application’s initialization time. Note, however, that we did not execute applications to

completion.

4.6.3 Analysis of Adaptive Replacement Policies

Figure 4.8 shows the effect of using different replacement policies on application execution

time as memory size is varied. The figure shows the results for a set of four applications

with representative behavior. For most of the applications, using one of the adaptive

policies (i.e., LIRS or region-based) resulted in a significant improvement in the projected

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 98

Multi-Process Global LRU Local Allocation (Performance)

[&] [&]
4 o
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Cycles (billion) Cycles (billion)
a. Global LRU (IPC) b. Local Performance (IPC)
Multi-Process Global LRU Local Allocation (Fairness)
24000 - SpeclBB 24000 SpecJBE ——
22000) ,"\\\“ BT ------- 22000 | "/\‘\ BT -------
20000 [20000 1/ |
18000 | || { 18000
@ o ! \ P :
E 16000 | | E 16000
L 14000 |/ L 14000
® / < i
§ 12000 / § 12000 ¢
10000 | 10000
8000 8000
6000 6000
4000 4000
0 20 40 60 80 100 120 140 160 0 100 200 300 400 500 600
Cycles (billion) Cycles (billion)
c. Global LRU (Faults) d. Local Fairness (Faults)

Figure 4.9: Global and Local Allocation policy in multi-programmed scenario: SpecJBB and
BT.In (a) and (b), the performance of the two algorithms is shown, while the goal is to maximize
overall system throughput (in terms of IPC). In (c¢) and (d), the fairness of the two algorithms

is shown, while the goal is to reach the same page-fault rate for both applications.

execution time (e.g., around 500% for LU cont.). Comparing region-specific and LIRS
policies, in some cases one performs slightly better than the other and vice versa, but
generally their difference is not significant. There are also rare cases in which one of the
adaptive policies performs slightly worse than the basic LRU algorithm (e.g., Ocean for
LIRS and SPECJbb for region-specific).

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 99

4.6.4 Analysis of Local Memory Allocation

To demonstrate the benefits of fine-grained memory access pattern information for local
(per-process) memory allocation schemes, we have designed two experiments. In the first
experiment, we show that total system throughput (in terms of Instructions Per Cycle)
can be improved over a traditional global allocation scheme. The second experiment
demonstrates that in a system under memory pressure, it is possible to obtain fairness,
in terms of page-fault rate, through memory isolation.

In all setups, two applications are running simultaneously: SPECJbb and BT. Without
loss of generality, in order to make the experiment more clear, we assumed that the [PC
of both applications is 1 when running in isolation. Also, as mentioned earlier, each page
fault is considered to have fixed latency of one million cycles. We used a warm-up time
of 30 billion instructions and a running time of 60 billion instructions combined.

Figure 4.9 (a) shows the average IPC for both applications when run with global
allocation mode; graph (b) shows the average IPC when the applications run with local
memory allocation, set to maximize throughput. The trend in IPC is similar for both
setups; however, our local allocation policy achieves higher overall IPC in that the number
of cycles needed to execute 60 billion instructions with local memory allocation is about
18% lower than that is required with global memory allocation (145 vs. 178 billion
cycles). This is mainly because SPECJbb has a higher benefit from getting extra pages
than BT while a global memory allocation scheme considers the utility of each page the
same for both applications.

Graphs (c¢) and (d) of Figure 4.9 show the page-fault rate of the same two applications
running with global and local allocation policies, respectively. For the local allocation
policy, however, we have configured the policy to maintain page-fault fairness, as de-
scribed in Section 4.4. Although the local allocation policy configured for fairness takes
much longer to complete, it is quite visible that the page-fault rate each application is

suffering is similar, therefore successfully reaching its objective.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 100

4.6.5 Analysis of Prefetching

In a set of experiments, we have compared the temporal and spatial locality-based
prefetching algorithms. Figure 4.10 shows their effect on both page-fault rate and re-
quired I/O bandwidth for a set of selected applications. The rest of the applications we
examined perform similarly to one of the applications shown in the figure, and are listed
in parenthesis in the figure. For each application two graphs are shown. The graphs on
the left show how the page-fault rate is affected as a result of prefetching. The graphs
on the right side show the impact of prefetching on 1/O bandwidth both for page-in and

page-out operations.

For the spatial locality-based policy, we set the initial prefetching window w to 64
which can dynamically grow depending on achieved precision. For the temporal locality-
based policy, we set the size of the proximity set for each page to 10 and the scan window
size Wean to 64 pages. The depth of the breadth first traversal in the PPG graph was
limited to 3. Finally, for both algorithms we set the size of the pool of pages that are

prefetched but not accessed yet to be at most 10% of the physical memory.

In our experiments, we assumed unlimited I/O bandwidth and that the only source of
stall is I/O latency. This means that once a set of pages are designated to be prefetched
(at most 64 pages), they are assumed to be available in memory within a constant delay

time. Furthermore, we have not taken the effect of disk positional delays into account.

For many applications, such as MG and FFT, the spatial locality-based policy is quite
effective both in terms of recall and precision. Our temporal locality-based algorithm that
monitors the sequence of the accessed pages is also able to detect regularity in the access
pattern with similar effectiveness. There are applications, such as LU non-contiguous,
for which the temporal locality-based algorithm significantly outperforms the spatial
locality-based algorithm, both in terms of reducing the page-faults and precision. The
effect of prefetching on I/O bandwidth for LU non-contiguous is remarkable in the sense
that prefetching manages to prevent pages in the prefetched set from being replaced by
artificially touching them. As a result, the required 1/O bandwidth with prefetching is

lower than that required without prefetching for some memory sizes. Finally, for some

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 101

applications, such as SPECJbb, neither of the prefetching algorithms is effective. This
can indicate that more application-level information is required to predict next accesses.
For instance, Demke-Brown et al. shows effective use of compiler analysis to generate

accurate prefetching hints automatically [BMKO1].

4.6.6 Effect of PAB Size

Figures 4.11 and 4.12 show the effect of different PAB sizes on the projected execution
time and runtime overhead for both the page replacement and prefetching algorithms for
some of the applications that benefit from fine-grained page access information. Recall
that the PAB absorbs the accesses to hot pages and prevents them from appearing in
the page access trace. In these experiments, we vary the PAB size from 128 to 32K
entries, So that the PAB will span from 512KB to 128MB respectively. As the PAB size
increases, we expect that an increased number of page accesses to be filtered by PATH
and thus the page access information generated becomes less accurate. At the same time,
we expect processing overhead to decrease as fewer page accesses are recorded.

As we see in the graphs, runtime overhead drops significantly as PAB size increases.
At the same time, the projected execution time does not seem to be varying much as the
PAB size is increased from 128 to 2K entries. One exception is FFT with LIRS (shown in
Figure 4.2). Overall, it appears that a 2K-entry PAB represents a good tradeoff between

overhead and accuracy.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT

500 7 A A Na hjng —A— 250 No Prefetching —A—
5 450 Spatial Locality --&--- Spatial Locality --@--
3 Temporal Locality ---@--- Temporal Locality ---@---
° G
ES . 200 RS A, S
° [R G Q-nmmees LS ©
5 I ;
% § 150 f a A e A A '\‘
E 3 e \
[«© . 5
g c ‘@ \
) = 100 \
d £ o\
g) o\
3 = 50 O\
o \
2 \
a A\

o \
300 350 400 450 500 550 600 650 700 750 800 300 350 400 450 500 550 600 650 700 750 800

Memory Size (MB)

Memory Size (MBytes)

a. LU Non-contiguous Partitions (MMCubing, and MrBayes)

6000 No Prefetching —&— 160 No Prefetching ——
— Spatial Locality --©--- Spatial Locality --©---
3 Temporal Locality ---@--- 140 Temporal Locality ---@---
< 5000
g N
5 ‘3 120
= 4000 £
8 c 100
= S
2 =
S 3000 ﬁ 80
g £
60
g 2000 £
3 o
§ o 40
‘s 1000
L 20
o
0 0
150 200 250 300 350 400 450 500 200 300 350 400 450 500
Memory Size (MB) Memory Size (MBytes)
b. MG (SP, LU cont., BT, FFT, and Ocean)
3500 No Prefetching —a— 300 No Prefetching —a—
—_ Spatial Locality -- Spatial Locality -
& 3000 Temporal Locality --- 250 Temporal Locality -
o
> —
° 4
S 2500 =
g £ 200
é c
g 2000 é
= ﬁ 150
o 1500 c
2 @
] = 100
g 1000 °
8 =
e 500 50
a
0 0
500 550 650 700 750 800 850 900 550 600 650 700 750 800 850 900
Memory Size (MB) Memory Size (MBytes)

Figure 4.10: The effect of prefetching both on page-fault rate and on required I/O bandwidth.

In parenthesis are applications that exhibit similar behaviour.

¢c. SPEC JBB (FMM)

102

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 103

900 Exec. Time —a— L 14 800 ° Exec. Time —a— | 18
Overhead --©-- A Qe - Overhead ---©&--
n D. 7z
i 800 12 g 700 1.6
g S 14
G 700 R g 600 Q :
5 1 9 5 9
= 600 - < = A A A A 12 £
g 08 § g o0 8
@ 500 8 o ° 12
E ©eeeeen @ E E 400 G §
3’; 400 G).,n_. 0.6 g 3 0.8 g
0., 300 .
2 N £ = 06 &
o 904 o ° Q. o
2 200 g 200 A 04
2, 2, ’
A S Oeeeenee
g L0 0.2 £ 100 0.2
0 0 0 0
128 256 512 1K 2K 4K 8K 16K 32K 128 256 512 1K 2K 4K 8K 16K 32K
PAB Entries PAB Entries

(a) LU Contiguous LIRS (575 MB) (b) Ocean Contiguous LIRS (780 MB)

400 Exec. Time —a— 60 500 Exec. Time —&— 16

—_ Overhead ---©-- 4 —_ -

2 350 o 50 g) = 1

5 300 l‘ g %o = 2

1.

5 0 2 § o g
E 250 A —a k) :.E’ 300 1 3
Y 2 o 2
E 200 0 % E 250 ® 08

. . o . <)
(3] o

2 150 E g 200 06
w 20 <« w <
- o - 150 a
% 100 % 0.4
'ﬂo—" 10 -“o—’- 100 fo I 0.
a 90 £ 50 g 02

[CEETRR {2 R o W
0 i I 0 0
128 256 512 1K 2K 4K 8K 16K 32K 128 256 512 1K 2K 4K 8K 16K 32K
PAB Entries PAB Entries

(c) FFT Region-Specific Repl. (576 MB) (d) BT Region-Specific Repl. (515 MB)

Figure 4.11: The effect of PAB size on the projected execution time and runtime overhead for

page replacement algorithms.

300 N N R N , Exec. Time —4A— | 7 200 Exec. Time —A— L 7

— —Ovefhead ~G— | g @ O . Overhead -
8 250 P 6 & T @ O POy) 6
s S 160 :
o o
c 5 ~ c 5 ~
£ 200 g g 140 e e e g
- ° - o
> e.. 4 3 s 120 4 3
£ ' H E 100 H
£ 150 . g = g
5] 0. 3 O S go 3 O
8 z 3 _ E
i 100 O... = (L B <
E £C T Q 2 o E 112 &
1] - ° B
@ - @ 40
g %0 R 3 1
o B o 20

0 O 0 0 0

128 256 512 1K 2K 4K 8K 16K 32K 128 256 512 1K 2K 4K 8K 16K 32K

PAB Entries PAB Entries

(a) MMCubing Prefetching (234 MB) (b) LU Non Contiguous Prefetching (312 MB)

Figure 4.12: The effect of PAB size on the projected execution time and runtime overhead for

prefetching algorithms.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 104

4.6.7 Analysis of Overhead

In this section, we compare PATH’s runtime overhead to a software-only approach. To
measure PATH’s basic overhead, we emulated exceptions generated by PATH in a real
environment using an 1.5GHz AMD Athlon processor. For each application, we collected
a trace of PAL overflow exceptions along with the content of the PAL at the time of
exception. Each overflow event is time-stamped using the number of instructions retired
since the start of the application. We then replayed these traces by artificially generating
exceptions at the same rate as in the trace by using hardware performance counter over-
flow exceptions. At each exception, we read the contents of the PAL from the trace and
updated the LRU stack and MRC data structures. To calculate the overhead, we mea-
sure the total number of CPU cycles needed to execute a certain number of application

instructions (e.g. a few tens of billions), with and without PATH exceptions.

The software-only approach is implemented in Linux-2.6.15. We measure only the
cost of maintaining the active set which includes the cost of extra page protection faults,
page table walks to set the protection bits, flushing the corresponding TLB entries, and

occasionally trimming the active set using CLOCK.

Figure 4.13 shows the runtime overhead of both PATH and the software-only approach
across the selected set of applications, as a function of active set size (PAB size in
PATH). There are a number of observations. First, the overhead of the software-only
approach is quite high (up to more than 200% of the base execution time) for a number
of applications (e.g., FFT, LU-nonc., MMCubing and SPECJbb) even with a fairly large
active set size. Second, the runtime overhead of PATH is very small in all applications
if a large PAB (e.g., 32K) is used. For the target 2K PAB size, the overhead of PATH
remains less than 3% in all but two applications (LU-nonc., and SPECJbb for both of
which the overhead is less than 6%). The relatively small overhead is easily offset by
the substantial performance improvement achieved by the PATH-generated information
when the system is under memory pressure. Note that the OS can turn PATH off when
the system is not under memory pressure, and as a result there will not be any unwanted

runtime overhead.

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 105

100
] []128
90 - 512
- _ I 2K
X 80 -
< W 4K
T 70 [sk
Y60 W 16K
£ W 32K
950+
3 -
E30-
JE |
= 20
“ —
10 -
0:__ L ;LL-.;‘Ll - N Y T Y |
I gL FEE EE OEE OELD OEID EER EE EE EID EE
58 58 §3 58 §8 58 §8 58 £8 58 58 &3
sg 00 g8 0@ 22 FhH <£g sS= B ol ab
§§ §s == gg ©© 55 Hu& g3 535 == o8 0
o O < 5 m@ :8) L w OO
5 D *—E O | w w
23 = §§ % &

Figure 4.13: Runtime overhead of PATH-generated information compared to the software-only

approach (SOFT). To help visualize the comparison, all runtime overhead numbers larger than

100% are truncated.

It is important to note that our approach for measuring the overhead is pessimistic
as we ensure the programs’ working sets fit in memory and no page faults occur during
the course of our measurement. In practice, however, much of the processing of PATH-

generated information can be overlapped with potentially long I/O operations caused by

page faults.

4.7 Related Work

Zhou et al. suggest the use of a custom-designed hardware monitor on the memory bus
to efficiently calculate MRC online [ZPS*04]. In their approach, much of the overhead of
computing MRC can be avoided by offloading to hardware almost completely. In contrast,
we argue in favor of having a simpler hardware that provides lower-level, but more generic,
information about page accesses that can be used to solve many problems including the
memory allocation problem. We have shown that with the use of fine-grained page access

information, the operating system can make better decisions on at least three different

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 106

problems. In terms of hardware resources required, the data structures in PATH are
simpler and smaller, and unlike the MRC monitor in Zhou et al.’s approach, do not grow
proportionally with the size of system physical memory.

Cooperative Robust Automatic Memory Management(CRAMM) collects detailed
memory reference information to be used to adjust the heap size of a Java virtual machine
dynamically in order to prevent a severe performance drop during garbage collection due
to paging [YBKMOG|. The authors have used the software-only approach to track MRC
in order to predict memory usage and adjust the JVM heap size accordingly. To reduce
overhead, CRAMM dynamically adjusts the size of the active set by monitoring runtime
overhead. Such an approach is presumably effective in tracking MRC for JVM’s heap
size. However, our results show that for many memory intensive applications, increasing
the size of the active set will result in significant performance degradation of memory
management algorithms.

Tracking memory accesses at the hardware level has been suggested by other re-
searchers, although to address different problems. For instance, Qureshi et al. suggested
the use of hardware utility monitors to monitor memory accesses solely to compute MRC
at the granularity of individual CPU cache lines [QP06|. Their hardware uses the com-
puted curves to dynamically partition shared L2 caches to improve performance or enforce

prioritization.

4.8 Concluding Remarks

Traditionally, operating systems track application memory accesses either by monitoring
page faults or by periodically scanning page table entries. With this approach, important
information on the reuse distance and temporal proximity of virtual page accesses that
can be used for improving memory management algorithms is lost. Previous work has
suggested the use of a purely software-based approach that uses virtual page protection
to track page accesses more accurately. While this software-based approach is effective
for some applications, for many applications it incurs unacceptably high overhead.

In this chapter, we proposed novel Page Access Tracking Hardware (PATH) that

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 107

records page access sequences in a relatively accurate, yet efficient way. In terms of
structure and function, PATH is simple and easy to implement. In terms of hardware
resources required, PATH’s structures are fairly small (e.g., around 10KB in size in total)
and, unlike previously proposed hardware mechanisms for page access tracking, they do
not grow proportionally with the size of physical memory.

We explored several algorithms in the operating system that can exploit the informa-
tion provided by PATH to improve memory management in three different areas: (i) to
implement more adaptive adaptive page replacement policies, (ii) to make smart decision
in allocating memory to concurrently running processes, and (iii) to guide the prefetch-
ing of pages from virtual memory swap space. Our experimental analysis showed that
with PATH, significant performance improvements (e.g., as high as 500% in some cases)
can be achieved for applications, especially when systems are under memory pressure.
Unlike software-only approaches for tracking fine-grained page access information, the
runtime overhead of PATH remains small (i.e., in the 3%-6% range) across a wide range
of memory-intensive applications.

Further work is still required in evaluating the effectiveness of information generated
by PATH with a more diverse set of applications. Moreover, to ensure scalability of
PATH for very large memory setups, more experiments with larger application problem

sizes must be conducted.

Another important extension is to explore the use of PATH in a multiprocessor setup.
There are important open issues, such as how to collectively use PATH traces of parallel
applications that are generated on multiple processors. Similarly, work needs to be done
in perfecting PATH support for multithreaded applications. Currently, the PATH trace
generated for an application running on a CPU is processed into a single LRU stack or
the Page Proximity Graph. If the application is multithreaded, this approach results
in intermingling traces of several threads into a single aggregate data structure. As a
result, important information about both reuse distance and temporal proximity of page
accesses on a per thread basis is lost. To solve this problem, simple extensions can be

made to the software layer to keep track of multiple LRU stacks on a per thread basis.

We believe that additional uses of information provided by PATH will become appar-

CHAPTER 4. PAGE ACCESS TRACKING TO IMPROVE MEMORY MANAGEMENT 108

ent over time, as we experiment with a wider variety of memory intensive applications.
Two possible ideas are super page management and page placement in a NUMA archi-
tecture.

Finally, we have observed that steps have already been taken by the hardware per-
formance monitoring community to facilitate integration of PATH into real hardware.
For instance, the idea of adding a generic trace buffer to the PMU of next generation
CPUs seems to have attracted attention [Mer(06, Cal06]. One can easily envision adding
modest-sized filters, such as those in PATH (or to use a second level TLB for this pur-
pose), to the existing hardware substrate to support accurate capture of the page accesses

sequences, as proposed in this chapter.

Chapter 5

Concluding Remarks

Over the past several decades, microprocessor architectures have evolved to increasingly
provide system software with information for implementing new functionality or for im-
proving the performance of application and operating system code. This evolution is
partially accelerated by the increasing abundance of silicon in modern microprocessors,
which enables embedding new hardware features other than those that are directly re-
quired for executing code.

In this dissertation, we explored hardware performance monitoring features of today’s
microprocessors and we explored software techniques for exploiting these features at the
operating system level to improve software performance.

At a high level, our approach, has been to try to utilize, as much as possible, existing
microprocessor performance monitoring features for the purpose of performance analysis
and optimization. If the information required for specific performance optimization tech-
niques was not provided through existing hardware performance monitoring features, or
was too costly to obtain, we proposed minimal extra hardware support.

We based our research and experimentation primarily on existing hardware, and de-
fault to simulation only when we explore newly propose hardware support. This approach
has several advantages. First, it allows us to observe hardware-software interaction sce-
narios in a real environment, taking into account all complexities of real systems. Sec-
ondly, using real hardware allows us to run long-running experiments at real-time speed

which is several orders of magnitude faster than a detailed system simulator. Finally,

109

CHAPTER 5. CONCLUDING REMARKS 110

having explored existing hardware in great detail provides us with the insight to propose

new hardware support more realistically, and to the minimal extent needed.

To conclude this thesis, we first provide a brief summary of our work and the major
contributions of this thesis. We then provide directions for future research in improving
the effectiveness and utility of hardware performance monitoring and how the operating

system can benefit from such improvements.

5.1 Summary

We first present a summary of our research effort on different areas of hardware perfor-
mance monitoring. We then enumerate specific research contribution our research has

made.

5.1.1 CPU Bottleneck Analysis

We explored the problem of accurately and efficiently identifying CPU bottlenecks by
using Hardware Performance Counters (HPCs). Towards achieving this goal we faced
two challenges. First, too few HPCs are available in microprocessors today. Secondly,
there has to be a simple and efficient performance model with which CPU bottlenecks
can be defined and quantified. We addressed the first challenge by applying low-level
HPC multiplexing to make a large set of logical HPCs available. We addressed the
second challenge by characterizing a simple, but powerful, performance model, called stall
breakdown, to identify those processor components that are stressed most. Our model
focuses on cycles where the instruction completion stops. We show that such cycles are
responsible for most of the difference between the ideal and real throughput of today’s
CPU. To generate stall breakdown online, we used IBM POWERS5 and PowerPC970
hardware performance monitoring features to speculatively associate stalls to the CPU
components that are likely to have caused them. By using our HPC multiplexing engine,

we build the stall breakdown model online with negligible runtime overhead.

CHAPTER 5. CONCLUDING REMARKS 111

5.1.2 Hardware Data Sampling

We explored different methods of fine-grained data sampling at the hardware level, having
recognized that precise information on the data access patterns of applications is required
for implementing many performance optimizations. Accurately analyzing application
data access patterns is particularly important because of the widening gap between CPU
and memory speed causing most CPU cycles to be spent waiting for long-latency memory
modules to provide data.

We found existing hardware data sampling techniques to have major limitations,
making them only partially useful. For instance, the source from which data is fetched
is not directly identified by any of the existing microprocessor performance monitoring
units. However, using IBM POWERS’s continuous data sampling features, we were able
to implement a technique to sample data based on source indirectly. Moreover, we were
able to sample data based on multiple selection criteria simultaneously by using our
HPC multiplexing engine. In a case study, we showed how to use source-based data
sampling to accurately characterize data sharing patterns among concurrent threads in
a multiprocessor environment. We further showed how to use this characterization of

sharing among threads to cluster them into groups of threads that actively share data.

5.1.3 Page Access Tracking Hardware

To improve the performance of memory management, we proposed simple hardware ca-
pable of tracking memory accesses at the granularity. Our proposal was based on the
observation that the existing data sampling methods have inherent limitations. First, it
is difficult to find the reuse distance of a particular memory address, and secondly, it is
not possible to precisely identify sets of pages that are accessed together.

Our proposed hardware is simple and scalable, and it is generic in that it produces a
raw trace of memory accesses from which the most frequently accesses pages are automat-
ically removed by the hardware. We used our proposed page access tracking hardware
(PATH) in efficiently constructing precise LRU stack and Miss Rate Curves (MRCs)

for virtual pages. We further showed the use of these data structures in implement-

CHAPTER 5. CONCLUDING REMARKS 112

ing algorithms for three different areas of memory management. In all three cases we
showed, through simulation, that significant performance improvement can be achieved

with negligible software overhead.

5.1.4 Summary of Contributions

Our research has resulted in the following specific contributions:

e Our techniques and in particular the proposed architecture for HPC multiplexing
with the sampling engine based in the operating system kernel, allows for sampling
at a finer granularity and more efficiently than previously possible. Moreover,
through the use of fine-grained HPC multiplexing we were able to make a larger

set of logical HPCs available.

e We developed the Stall Breakdown model that assists in identifying the most
stressed components of the microprocessor. The key insight in developing this
simple model was focusing on non-completion CPU cycles, as opposed to focusing
on individual stages in the processor pipeline. Using IBM POWERS5 facilities, we

were able to generate stall breakdown information online with negligible overhead.

e We identified a novel technique to sample data cache misses based on the source
from which they are served. WE demonstrated the value of this type of data
sampling by efficiently constructing sharing signatures for concurrent threads to

support sharing-aware schedulers.

e We proposed a novel page access tracking hardware (PATH) that has negligible
overhead and high precision, and we showed how to use this hardware support to
improve memory management in three different areas: (i) adaptive page replace-

ment policies, (ii) process memory allocation, and (iii) virtual memory prefetching.

CHAPTER 5. CONCLUDING REMARKS 113

5.2 Future Directions

The architecture of the Performance Monitoring Unit (PMU) has dramatically evolved
over the last decade. Processor architects have started to devote additional resources
to provide more precise and diverse functionality in the microprocessor PMU. Today,
in almost every major microprocessor, a large set of different hardware events can be
monitored. Furthermore, there have been major enhancements in techniques of closely
monitoring individual instructions as they flow through the pipeline to allow pinpointing
exact root causes of performance problems. Finally, several processor PMUs have intro-
duced new data structures, such as trace buffers. These data structures greatly increase

the power of PMUs, which traditionally have been composed of only a set of counters.

Despite the fact that PMUs can be found in most today’s microprocessors, their fea-
tures are not widely exploited by software developers and thus, PMUs have remained
"second class citizens" [Cal06]. On the one hand, the software community often finds
PMU features inadequate or complex to use. On the other hand, the hardware architec-
ture community is not willing to adopt new PMU features unless their utility is clearly
demonstrated. We believe that, in order to further motivate the evolution of PMUs, the
software community will need to provide more concrete cases of real performance im-
provements (or reduction in energy consumption) that are only made possible by using
accurate PMU-generated information. Moreover, we believe our approach of using the
existing PMU as much as possible and proposing only minimal extra hardware, whenever

necessary encourages further enhancements in the architecture of next generation PMUs.

A key reason why PMU features are not widely used for software-level optimizations
may be due to the fact that specific PMU features required are available only on a
particular architecture. Even when the required features are available across several
architectures, it is often a non-trivial task to exploit these features because of substantial
differences in the user-interface, terminology, and semantics of hardware events across
different processor PMUs. We believe that, in order to resolve this issue, PMU features
should, at least partially, be standardized. The process of standardization may involve

making a clear distinction between (i) hardware implementation-specific features intended

CHAPTER 5. CONCLUDING REMARKS 114

primarily for processor architects to aid in the debugging and performance tuning of
several revisions of a processor family, and (ii) higher-level, implementation-independent
features to aid software designers in understanding and improving the performance of

their software.

Towards standardization of PMU features to aid software optimization, we believe
an extended stall-breakdown model, which focuses on precisely measuring the penalty of
miss events is a useful feature that should be implemented with a similar interface across
all processor families with similar semantics. The key underlying feature is the ability
to attribute CPU cycles wasted as a result of a miss event to processor components,

program instructions, and affected data addresses that are involved in the miss event.

Additionally, the hardware performance monitoring infrastructure should be extended
to all components in of the computer system, not only the CPU. Components of interest
include the memory bus (or any other type of memory interconnect in a NUMA sys-
tem), the processor interconnect, the I/O interconnect, and the individual 1/O devices
such as network interface, graphical processing unit (GPU), and hard disks. Having ac-
curate information on the performance of all these components will enable the system
software to have a more complete view of system performance and its potential bottle-
necks. For instance, Antonopoulos et al. demonstrate the concrete possibility of memory
bus bandwidth limitation to become a performance bottleneck for highly optimized par-
allel applications, and how a bandwidth conscious CPU-scheduler can utilize memory
bus bandwidth information to avoid this bottleneck |[ANPO03|. There are also clear in-
dications that the computer hardware industry has acknowledged the importance of the
system-wide hardware performance monitoring and is taking meaningful steps towards
it [Kei06, Kag06, NZ|.

Finally, with the widespread revival of virtualization technology, we believe an impor-
tant future challenge for hardware performance monitoring facilities is to provide proper
support for virtualized environments. As virtual machines have become increasingly pop-
ular, they introduce new questions on how the hardware can monitor the system to find
performance bottlenecks of a virtual machine running on a physical machine shared by

many other virtual machine instances. When a virtual machine is scheduled to run, it

CHAPTER 5. CONCLUDING REMARKS 115

inherits the residual state of virtual machines running previously on the same CPU. This
effect introduces additional noise to the performance measurements done through the
PMU. Also, concurrently running virtual machines interfere with each other on shared

resources such shared on-chip caches, memory bus, and 1/0 interconnect fabric.

Bibliography

[ABD*97]

|[ACD*96]

|AMD)]

|AMDO02|

[ANPO3]

[App]

J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Leung,
D. Sites, M. Vandervoorde, C. Waldspurger, and W. Weihl. Continuous
profiling: Where have all the cycles gone? In Proceedings of the 16th ACM
Symposium of Operating Systems Principles (SOSP), Saint Malo, France,
October 1997.

C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. TreadMarks: Shared memory computing on networks

of workstations. IEEE Computer, 29(2):18 28, February 1996.

AMD. AMDG64 architecture programmer’s manual volume 2: System pro-

gramming rev 3.11.

AMD. Athlon Processor X86 code optimization guide. AMD Inc., pages
235-243, 2002.

Christos Antonopoulos, Dimitrios S. Nikolopoulos, and Theodore S. Pap-
atheodorou. Schedulding algorithms with bus bandwidth considerations for
smps. In International Conference on Parallel Processing (ICPP), Taiwan,

October 2003.

Apple Computer Inc. Computer Hardware Understanding Development
(CHUD) tools. http://developer.apple.com/tools/performance/.

116

BIBLIOGRAPHY 117

[AV02]

[BH]

[BHOO]

[BHO4|

[BHO5]

[BMO4]

IBMKOL]

[Boc]

IBRSO05|

D. H. Ahn and J. S. Vetter. Scalable analysis techniques for microprocessor
performance counter metrics. In Proceedings of Conference on Supercom-

puting, Baltimore, MD, USA, November 2002.

Bryan Buck and Jeffrey Hollingsworth. Using hardware performance mon-

itors to isolate memory bottlenecks.

Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patch-
ing. Proc. of the International Journal of High Performance Computing

Applications, 14(4):317 329, Winter 2000.

Erik Berg and Erik Hagersten. StatCache: A probabilistic approach to
efficient and accurate data locality analysis. In In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software

ISPASS, Austin, TX, USA, March 2004.

Erik Berg and Erik Hagersten. Fast data-locality profiling of native execu-
tion. In In Proceedings of the ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, June 2005.

Sorav Bansal and Dharmendra S. Modha. CAR: Clock with adaptive re-
placement. In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), San Francisco, CA, USA, March 2004.

Angela Demke Brown, Todd C. Mowry, and Orran Krieger. Compiler-
based 1/0O prefetching for out-of-core applications. ACM Transactions on
Computer Systems, 19(2), 2001.

Bochs. The open source IA-32 emulation project.

http://bochs.sourceforge.net/.

David A. Bader, Usman Roshan, and Alexandros Stamatakis. Computa-
tional grand challenges in assembling the tree of life: Problems and so-
lutions. Proceedings of ACM/IEEE conference on Supercomputing (SC),

tutorial session, November 2005.

BIBLIOGRAPHY 118

|Cal06]

|CDSW03|

|CH81]

|Cha97]

C106]

|CMDANO6|

[CNMCO0]

Jim Callister. The future of hardware performance monitors. In Presenta-
tion at the 2nd Workshop on Functionality of Hardware Performance Mon-
itors, held at MICR(O-39, Orlando, FL, USA, December 2006.

Calin Cascaval, Evelyn Duesterwald, Peter F. Sweeney, and Robert W.
Wisniewski. Multiple page size modeling and optimization. In Proceedings
of the 14th International Conference on Parallel Architectures and Compi-

lation Techniques (PACT), Saint Louis, MS, USA, September 2005.

Richard W. Carr and John L. Hennessy. WSCLOCK: a simple and effective
algorithm for virtual memory management. In Proceedings of the eighth

ACM symposium on Operating systems principles, (SOSP), Pacific Grove,
CA, USA, 1981.

John Chapin. A fresh look at memory hierarchy management. In Proceed-
ings of the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI),
page 130, 1997.

David Christie and Anoop lyer. Performance monitoring features in AMD
Barcelona. In Presentation at the Workshop on Functionality of Hardware
Performance Monitors, held at MICRO-39, Orlando, FL, USA, December
2006.

Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and
Dimitrios S. Nikolopoulos. Online power-performance adaptation of multi-
threaded programs using event-based prediction. In Proceedings of the 20th
ACM International Conference on Supercomputing (ICS), pages 157-166,
Queensland, Australia, June 2006.

Jongmoo Choi, Sam H. Noh, Sang Lyul Min, and Yookun Cho. Towards
application /file-level characterization of block references: a case for fine-
grained buffer management. In Proceedings of the 2000 ACM SIGMET-
RICS International Conference on Measurement and Modeling of Computer

Systems, June 2000.

BIBLIOGRAPHY 119

|CSLO4]

ICTO03)|

[DCDO3]

[DHW]

[DLM*03]

[EEKS06]

[FBHNO3a|

Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic
instrumentation of production systems. In Proceedings of the USENIX An-
nual Technical Conference, General Track, Boston, MA, USA, June 2004.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, Inc., 2003.

E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and pre-
dicting program behavior and its variability. In Proceedings of 12th Inter-
national Conference on Parallel Architecture and Compiliation Techniques

(PACT), New Orleans, LA, USA, December 2003.

J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Z. Chrysos.
ProfileMe: Hardware support for instruction-level profiling on out-of-order
processors. In Proceedings of the 30th International Symposium on Microar-

chitecture (MICRO), Research Triangle Park, NC, USA, December.

J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, H. You, and
M. Zhou. Experiences and lessons learned with a portable interface to hard-
ware performance counters. In Proceedings of Workshop Parallel and Dis-
tributed Systems: Testing and Debugging (PATDAT), joint with the 19th In-
ternational Parallel and Distributed Processing Symposium (IPDPS), Niece,
France, April 2003.

Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A
performance counter architecture for computing accurate CPI components.
In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), San Jose, CA,
USA, October 2006.

B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn. Slack: Maximizing
performance under technological constraints. In Proceedings of the 30th

International Symposium on Computer Architecture (ISCA), San Diego,
CA, USA, June 2003.

BIBLIOGRAPHY 120

[FBHNO3b|

|GBHO4]|

1GC97|

[HC92

[HP03]|

[IBMa|

[IBMb]

[IBMO6|

11|

B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn. Using interaction
costs for microarchitectural bottleneck analysis. In Proceedings of the 36th
International Symposium on Microarchitecture (MICRQO), San Diego, CA,
USA, December 2003.

Ghris Gniady, Ali R. Butt, and Y. Charlie Hu. Program-counter-base pat-
tern classification in buffer caching. In Proceedings of the 6th Symposium on

Operating System Design and Implementation(OSDI), San Francisco, CA,
USA, December 2004.

Gideon Glass and Pei Cao. Adaptive page replacement based on memory
reference behavior. In Proceedings of ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, Seattle,

WA, USA, June 1997.

Kieran Harty and David R. Cheriton. Application-controlled physical mem-
ory using external page-cache management. In Proceedings of the 5th Inter-

national Conference on Architectural support for Programming Languages

and Operating Systems (ASPLOS), Boston, MA, USA, October 1992,

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Los Altos, CA, 2003.

IBM Corporation. K42 research Operating System.
http:/ /www.research.ibm.com/k42.

IBM Corporation. The POWER4 processor introduction and tuning guide.
http:/ /www.redbooks.ibm.com /pubs/pdfs/redbooks /sq247041.pdf.

IBM Corporation. IBM PowerPC 970FX risc
microprocessor user’s manual. hitp:/ /www-

3.ibm.com /chips/techlib /techlib.nsf/producs/PowerPC 970 and_970FX Microprocess
2006.

[llimine. An open—source data mining toolset. http://illimine.cs.uiuc.edu/.

BIBLIOGRAPHY 121

[Inta|

[Intb|

1JCZ05]

[1G99|

[TMF99]

[1594]

11202

[Kag06]|

[Kei06]

Intel Corporation. Intel Itanium 2 reference manual for software devel-
opment and optimization. http://www.intel.com/design/itanium2/ manu-

als/251110.htm.

Intel Corporation. VTune performance analyzers.

http:/ /www.intel.com/software /products/vtune.

Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-Pro: an effective
improvement of the clock replacement. In Proceedings of the Usenixz Tech-

nical Conference (USENIX’05), Anaheim, CA, USA, April 2005.

Doug Joseph and Dirk Grunwald. Prefetching using markov predictors.
IEEE Transactions on Computers, 48(2):121 133, 1999.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264 323, 1999.

Theodore Johnson and Dennis Shasha. 2Q: a low overhead high perfor-
mance buffer management replacement algorithm. In Proceedings of the
Twentieth International Conference on Very Large Databases (VLDB), San-
tiago, Chile, September 1994.

Song Jiang and Xiaodong Zhang. LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache performance. SIG-

METRICS Performance Evaluation Review, 30(1), 2002.

Michael Kagan. Infiniband hardware performance monitoring future and
visions. In Presentation at the 2nd Workshop on Functionality of Hardware

Performance Monitors, held at MICRO-39, Orlando, FL, December 2006.

Jeffery Keil. GPU performance analysis: A developer’s perspective. In Pre-
sentation at the 2nd Workshop on Functionality of Hardware Performance

Monitors, held at MICRO-39, Orlando, FL, December 2006.

BIBLIOGRAPHY 122

[KHWO1]|

[KMCO02]

[KS04]

[LAO3]

ILCF+03]

[Lem96]

[May01]

[MC05]

Yul H. Kim, Mark D. Hill, and David A. Wood. Implementing stack sim-
ulation for highly-associative memories. In Proceedings of the 1991 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems, San Diego, CA, USA, May 1991.

Scott F. Kaplan, Lyle A. McGeoch, and Megan F. Cole. Adaptive caching
for demand prepaging. In Proceedings of the 3rd International Symposium

on Memory Management (ISMM), Berlin, Germany, June 2002.

Tejas Karkhanis and James E. Smith. Modeling superscalar processors. In

Proceedings of the 31th International Symposium on Computer Architecture

(ISCA), Munchen, Germany, June 2004.

Chris Lattner and Vikram Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In Proceedings
of the 2005 ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI), Chicago, IL, USA, June 2005.

Jiwei Lu, Howard Chen, Rao Fu, Wei-Chung Hsu, Bobbie Othmer, Pen-
Chung Yew, and Dong-Yuan Chen. The performance of runtime data cache
prefetching in a dynamic optimization system. In Proceedings of the 36th
annual IEEE/ACM International Symposium on Microarchitecture, Wash-
ington, DC, USA, 2003.

G. Lemieux. Hardware performance monitoring in multiprocessors. Mas-

ter’s thesis, University of Toronto, 1996.

John M. May. MPX: Software for multiplexing hardware performance coun-

ters in multithreaded systems. In Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS), San Francisco, CA, USA,
April 2001.

Wiplove Mathur and Jeanine Cook. Improved estimation for software mul-

tiplexing of performance counters. In Proceedings of the 13th Interna-

BIBLIOGRAPHY 123

[Mer06|

[IMGST70]

[MMO3]

IMMdS05|

IMOH96]

[MrB]|

[MyS]

[NAS]

tional Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Atlanta, GA, USA, September
2005.

Alex Mericas. IBM Cell hardware performance monitoring and what’s hard

about multi-threading. In Presentation at the Workshop on Functionality
of Hardware Performance Monitors, held at MICRO-39, Orlando, FL, De-
cember 2006.

R. L. Mattson, J. Gecsei, D. Slutz, and 1. Traiger. Evaluation techniques
and storage hierarchies. IBM Systems Journal, 9(2):78-117, 1970.

Nimrod Megiddo and Dharmendra S. Modha. ARC: A self-tuning, low
overhead replacement cache. In Proceedings of the 2nd USENIX Conference
on File and Storage Technologies (FAST), San Francisco, CA, USA, March
2003.

Jaydeep Marathe, Frank Mueller, and Bronis de Supinski. A hybrid hard-
ware/software approach to efficiently determine cache coherence bottle-

necks. In Proceedings of the 19th International Conference on Supercom-

puting (I1CS’05), Cambridge, MA, USA, June 2005.

Margaret Martonosi, David Ofelt, and Mark Heinrich. Integrating perfor-
mance monitoring and communication in parallel computers. In In Proceed-
ings of the ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, May 1996.

MrBayes. Bayesian inference of phylogeny. http://mrbayes. csit.fsu.edu.

MySQL. Open source database. http://www.mysql.com.

NASA Advanced Supercomputing. NAS Parallel Benchmarks.
http:/ /www.nas.nasa.gov/Software/NPB/.

BIBLIOGRAPHY 124

INZ|

[OPr]

[PCL]

[QPO6]

IRUB|

ISDS00]

ISHC*04]

[SKT+]

ISKW03|

|(SP]

[Spr02]

Lisa Noordergraaf and Robert Zak. SMP system interconnect instrumen-

tation for performance analysis.
OProfile. A system profiler for Linux. http://oprofile.sourceforge.net/.

PCL. The Performance Counter Library: A common interface to ac-

cess hardware performance counters on microprocessors. http://www. fz-

juelich.de/zam/PCL/ doc/pcl/pel.html.

Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to partition shared
caches. In Proceedings of the 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 423 432, Washington, DC,
USA, 2006.

RUBIS. Objectweb open source middleware. http://rubis.objectweb.org.

Ashley Saulsbury, Fredrik Dahlgren, and Per Stenstrom. Recency-based
TLB preloading. In Proceedings of the 27th International Symposium on
Computer Architecture (ISCA), Vancouver, Canada, 2000.

P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove,
and M. Hind. Using hardware performance monitors to understand the be-

havior of Java applications. In Proceedings of 3rd Virtual Machine Research

and Technology Symposium (VM), May 2004.
B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner.

Yannis Smaragdakis, Scott Kaplan, and Paul Wilson. The EELRU adaptive
replacement algorithm. Performance FEvaluation, 53(2):93-123, 2003.

Standard Performance Evaluation Corporation (SPEC). Spec c¢pu2000.
hitp:/ /www.spec.org/cpu2000.

Brinkley Sprunt. Pentium 4 performance monitoring features. IEEE Micro,

22(4):72-82, July/August 2002.

BIBLIOGRAPHY 125

[Stal

[TAS07]

[THa]

|THb|

ITMO4

[TTCO2]

[TTGY5]

[VMTOO05]

[Vol|

Standard Performance Evaluation Corporation (SPEC). SPECjbb2000.
http:/ /www.spec.orq/jbb2000.

David Tam, Reza Azimi, and Michael Stumm. Thread clustering: Sharing-
aware scheduling on smp-cmp-smt multiprocessors. In Proceedings of the

second EuroSys Conference (EuroSys’07), Lisbon, Portugal, March 2007.

Mustafa M. Tikir and Jeffrey Hollingsworth. Data centric cache measure-

ment on the Intel Itanium 2 processor.

Mustafa M. Tikir and Jeffrey Hollingsworth. Using hardware counters to

automatically improve memory performance.

A. Tamches and B. Miller. Fine-grained dynamic instrumentation of com-
modity operating system kernels. In Proceedings of the Symposium on
Programming Languages Design and Implemenation (PLDI), Orlando, FL,
USA, June 1994.

E.S. Tune, D. M. Tullsen, and B. Calder. Quantifying instruction criticality.
In Proceedings of the 11th International Conference on Parallel Architecture
and Compilation Techniques (PACT), Charlottesvill, VA, USA, September
2002.

J. Torrellas, A. Tucker, and A. Gupta. Evaluating the performance of cache-
affinity scheduling in shared-memory multiprocessors. Journal of Parallel

and Distributed Computing, 24(2):139-151, 1995.

D. Villa, M. Meswani, P. Teller, and B. Olszewski. Profiling memory sub-
system performance in an advanced POWER virtualization environment.
In Proceedings of the Workshop on Operating System Interference on High
Performance Applications, Saint Louis, MS, USA, September 2005.

VolanoMark. Volano LLC, San Francisco.

http: //www.volano.com/benchmarks. html.

BIBLIOGRAPHY 126

[Wal02|

[WLLB97|

[WOT*95]

[WRO03]

[WSS+04]

[YBKMO6]

[ZAKB*05]

C. Waldspurger. Memory resource management in vimware esx server. In
Proceedings of the Fifth Symposium on Operating Systems Design and Im-
plementation (OSDI), Boston, MA, USA, December 2002.

Harvey J. Wassermann, Olaf M. Lubeck, Yong Luo, and Federico Bassetti.
Performance evaluation of the SGI Origin2000: a memory-centric character-
ization of lanl asci applications. In Proceedings of ACM/IEEE Conference
on Supercomputing (SC), San Jose, CA, USA, November 1997.

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 programs: characterization and
methodological considerations. SIGARCH Computer Architecture News,
23(2):24 36, 1995.

Robert W. Wisniewski and Bryan Rosenburg. Efficient, unified, and scal-
able performance monitoring for multiprocessor operating systems. In Proc.
of the Supercomputing Conference (SC), Phoenix, AZ, USA, November
2003.

R. W. Wisniewski, P. F. Sweeney, K. Sudeep, M. Hauswirth, E. Duester-
wald, C. Cascaval, and R. Azimi. Performance and environment monitor-
ing for whole system characterization and optimization. In Proc. of the 2nd

IBM Watson Conference on Interaction between Architecture, Circuits, and

Compilers (PAC), Yorktown Heights, NY, USA, October 2004.

Ting Yang, Emery D. Berger, Scott F. Kaplan, and J. Eliot B. Moss.
CRAMM: Virtual memory support for garbage-collected applications. In

Proceedings of the Symposium on Operating System Design and Implemen-

tation (OSDI), Seattle, WA, USA, November 2006.

Yun Zhang, Faisal N. Abu-Khzam, Nicole E. Baldwin, Elissa J. Chesler,
Michael A. Langston, and Nagiza F. Samatova. Genome-scale computa-

tional approaches to memory-intensive applications in systems biology. In

BIBLIOGRAPHY 127

|ZLF+04]

[ZPST04]

|ZQLTO04]

[ZvBB05]

Proceedings of the ACM/IEEE conference on Supercomputing (SC), Wash-
ington, WA, USA, November 2005.

Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Samuel
Midkiff, and Josep Torrellas. AccMon: Automatically detecting memory-
related bugs via program counter-based invariants. In Proeceedings of the
37th International Symposium on Microarchitecture (MICRO), Portland,
OG, USA, December 2004.

Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,
Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page miss ratio
curve for memory management. In Proceedings of the 11th International
Conference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS), Boston, MA, USA, November 2004.

Pin Zhou, Feng Qin, Wei Liu, and Josep Torrellas. iWatcher: Efficient
architecture support for software debugging. In Proceedings of the 31st In-
ternational Symposium on Computer Architecture (ISCA), Munchen, Ger-
many, June 2004.

Feng Zhou, Rob von Behren, and Eric Brewer. AMP: Program context
specific buffer caching. In Proceedings of the USENIX Technical Conference
(USENIX’05), Anaheim, CA, USA, April 2005.

