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Abstract
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2001

Variable bit-rate encoding of motion video has been shown to generate streams of consid-

erably smaller size than constant bit-rate encoding of equivalent quality. Therefore, efficient

support for bit-rate variability in continuous media servers has the potential to significantly re-

duce the requirements for disk storage space, disk bandwidth, server buffer space, and network

bandwidth. Nonetheless, such flexibility has been previously discouraged due to system design

complications and excessive expectations from technological progress.

In this thesis, we describe the design of a distributed media server architecture and the

implementation details of a prototype. Variable bit-rate streams are striped efficiently across

multiple disks with deterministic quality of service guarantees. In contrast to results of earlier

studies, the number of concurrent playbacks supported is shown to increase almost linearly with

the number of disks. Several factors contribute to this conclusion, including the performance

evaluation method and the resource management policies that we use. New approaches are

introduced for scheduling the playback requests and disk transfers, organizing the memory

buffers, allocating the storage space, and structuring the stream metadata. We justify several

of our decisions with comparative performance measurements using both synthetic benchmarks

and actual experiments with variable bit-rate streams.

High variability in stream resource requirements can lead to reduced utilization of system

resources. Previous smoothing techniques tried to address this problem by prefetching stream

data into buffer space of the client device. Thus, the maximum transfer bandwidth can be

reduced depending on the memory configuration of the individual client. Instead, we intro-

duce a new smoothing algorithm that can decrease the maximum required disk bandwidth by

prefetching stream data into server buffers. We show that the algorithm has optimal smoothing
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effect under the specified constraints, and can be successfully applied to streams striped across

either homogeneous or heterogeneous disks. Experiments with our prototype server demon-

strate considerable improvement in the disk bandwidth utilization, and the number of streams

supported at different system scales.
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Chapter 1

Introduction

1.1 Problem Context

Efficient spatial and temporal compression schemes, that reduce redundant information within

individual or between consecutive video frames, make practical the manipulation of digital

video with acceptable quality. Standard encoding specifications (e.g. Moving Pictures Experts

Group) facilitate widespread distribution and use of compressed video content in a range of

applications from studio post-production editing to home entertainment (e.g. Digital Versatile

Disks). Nevertheless, online access to video streams remains a challenging task. Predicted

advances in optical and wireless telecommunication technology are only expected to increase

the need for network servers with the capacity to support large numbers of users accessing

collections of stored digital video (Gilder 1997; Gray 2000).

Although video streams can optionally be encoded with constant bit rates, it has been

shown that equally acceptable quality can be achieved using variable bit-rate encoding at lower

average rates (Tan et al. 1991; Gringeri et al. 1998; Lakshman et al. 1998). Supporting bit-rate

variability can actually reduce the resource requirements in the entire path from the disks to

the client buffer. However, it also requires tight resource reservations over time which comes

at the cost of increased system complexity (Makaroff et al. 1997). For the sake of simplicity,

most existing video servers reserve resources according to the maximum bit rate required for

the retrieval of each stream. Therefore, it would be interesting to investigate alternative more

1
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efficient methods for supporting variable bit-rate streams, and to evaluate the potential benefits

that can be achieved in large scale systems.

Instead of storing an entire stream on a single disk, it is possible to distribute the data of

each stream across multiple disks. Thus, the utilization of the resources can be better balanced,

and also the system operation can become more reliable. Assuming that a media server supports

requests for several different streams, appropriate data distribution makes it possible to scale

the number of concurrent playbacks to the limit of the server resources. This can be achieved

independently of the particular streams being requested by the clients. It becomes possible by

retrieving different parts of each stream from different disks, thus restricting the degree of load

imbalance among them. Replication of data across different devices also allows tolerance of

hardware failures without interrupting the operation of the system.

Multiplexing the resource requests of concurrently served streams can lead to reduced aggre-

gate resource requirements in the system. In the case of supporting variable bit-rate streams,

additional performance improvement can be achieved by applying prefetching techniques. Peaks

in the required transfer bandwidth of individual streams can be removed if the data are trans-

ferred in advance of when they are actually required. Prefetched data are temporarily kept in

buffer memory, located in the path from the disks to the client, and the bandwidth utilization

of the disk and network links is improved.

Existing experience with streaming media and other related services suggests several quality

of service parameters related to the expectations of the users, in addition to the uninterrupted

stream decoding at the client. Whether accessing streams over the Internet or through privately

owned installations, the playback initiation latency should be predictable and limited. Also the

probability of a user request being rejected due to system overloads should be minimized.

Possible control operations ultimately should include the flexibility found in traditional video

playback devices (VCRs).

In web and other online services, service providers strive to maximize the utilization of

the available resources, and prefer reliable systems with minimal downtime and revenue loss.

Software for simplifying system management is expected to keep the system operation cost-

effective with minimal human intervention. Finally, it is advantageous to scale the system
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installation according to increasing user demands, and to be able to efficiently expand currently

available resources with new state-of-the-art hardware equipment.

1.2 Thesis Content

Our central goal in this thesis is to investigate the cost-effective support of variable bit-rate

streams in continuous media servers. We set as basic objective to maximize the sustained

number of stream playbacks, while keeping limited the waiting time of the users and the rejection

ratio of playback requests. In addition, we would like to allow the system size to scale efficiently

over time as service demand increases.

We present a high-level view of a distributed video server architecture. Then, we examine

several important issues from our experience with the design and implementation of a proto-

type system. The prototype supports admission control of playback requests, and striping of

variable bit-rate streams over multiple disks attached to a single computer node. We describe

design alternatives regarding the buffer and disk storage space contiguity, the structuring of

the metadata corresponding to each disk, and the scheduling of playback requests and disk

transfers. We use performance measurements with synthetic benchmarks and actual variable

bit rate MPEG-2 streams over SCSI disks in order to demonstrate the performance advantages

of our decisions.

Previous analytical and simulation studies have already demonstrated potential advantages

from striping variable bit-rate streams over multiple disks with statistical quality of service

guarantees. However, we are not aware of any actual implementation that demonstrates support

of the above features, especially with deterministic quality of service guarantees. As we see in

later chapters, designing for efficient access of variable bit-rate streams affects the structure of

the system in fundamental ways, and cannot be considered as an add-on feature that can be

included later.

Previous studies focusing on particular striping policies found that both disk load imbalance

and disk overhead cause the stream striping to be efficient only on disk arrays of limited size.

We experiment with several striping policies that differ in the amount and variability of the data
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stored on each disk. We show an almost linear scaling of the sustained number of supported

streams as a function of the number of disks. Our conclusions differ from earlier ones in part

due to the performance evaluation method that we use and the resource management policies

that we introduce. We also find differences in the striping policies to have a significant effect

to the throughput of the system.

Recent emergence of mass-produced specialized devices for data access applications means

that we cannot always assume abundant computing resources at the client side. In this thesis

we show that disk striping becomes more efficient with a priori knowledge of the retrieval

process. Optimizing for disk bandwidth is critical because disk bandwidth increases an order

of magnitude slower than network link bandwidth (Gray and Shenoy 2000). For all these

reasons, it is important to investigate stream data prefetching techniques that can improve disk

bandwidth utilization, depend on a known server configuration, and make minimal assumptions

about the client resources.

We introduce a stream smoothing algorithm that prefetches data into server buffers in or-

der to reduce peaks in the disk bandwidth requirements of individual streams. It accepts as

input a specification of the data amount that should be sent to the client over time. In or-

der to prevent excessive smoothing from exhausting the available buffer space, the smoothing

process is automatically adjusted according to the total resources available in the server con-

figuration. Server-based smoothing deals with disk bandwidth and does not alleviate potential

network utilization problems. Thus, its operation can be complemented with network smooth-

ing techniques. Such techniques prefetch stream data into client buffers, where sufficient client

buffer space can be assumed, in order to reduce peaks in both network and disk bandwidth

requirements.

Traditionally, load-balancing and reliability problems restricted the size of disk arrays across

which stream data could be striped efficiently. More recently, disk striping scalability of stream

data has been demonstrated for both constant and variable bit-rate streams (Bolosky et al.

1996; Anastasiadis et al. 2001a). In addition, fast technological improvements make attractive

the incremental expansion and support of heterogeneity in a system during load increases. In

the present study, we use our smoothing algorithm for striping variable bit-rate streams across

heterogeneous disks, treating bandwidth as the key disk resource that should be fully utilized.
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1.3 Contributions

The most important contributions of this thesis are the following:

• We demonstrate the feasibility of building media servers that efficiently support vari-

able bit-rate streams striped across multiple disks with deterministic quality of service

guarantees.

• We describe efficient policies for allocating the disk space, organizing the memory buffers,

structuring the stream metadata, and scheduling the playback requests and disk transfers.

• We introduce a general method for evaluating media server performance. Its flexible

definition makes it equally applicable to different system scales and stream characteristics.

It proved an indispensable tool for conducting our experiments and unifying our results.

• We formally describe previous and new disk striping policies for variable bit-rate streams.

We experimentally compare them and find significant performance differences, depending

on the variability and the amount of data stored on each disk. We show that the system

throughput increases almost linearly as a function of the numbers of disks.

• We introduce a new smoothing algorithm for variable bit-rate streams that uses buffer

space available at the server side. We show that it works correctly under the specified

assumptions.

• Application of the smoothing algorithm to MPEG-2 streams demonstrates significant per-

formance benefits when using homogeneous disks. A straightforward extension is shown

to achieve high disk bandwidth utilization over heterogeneous sets of disks as well.
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1.4 Organization

The remainder of this thesis is organized in the following way:

In Chapter 2, we review previous research related to building media server systems, striping

variable bit-rate streams across multiple disks, and smoothing stream transfers for improved

network and disk bandwidth utilization.

In Chapter 3, we describe the basic components of the distributed media server architecture

that we propose, define alternative disk striping policies for variable bit-rate streams, and

introduce a new disk space allocation technique.

In Chapter 4, we present the most important modules of our prototype and describe design

alternatives related to several resource management policies.

In Chapter 5, we specify the features of our experimentation platform, and the character-

istics of our stream workload. We also evaluate the effect that important parameters have on

the performance and the resource requirements of the system.

In Chapter 6, we investigate important parameters of the admission control process. We

compare the efficiency of different disk striping policies, and study the scalability of their

performance with respect to the number of disks.

In Chapter 7, we introduce the server smoothing algorithm, and evaluate its potential

benefit on homogeneous and heterogeneous disks. We demonstrate that it successfully balances

the load of the system across different rounds and disks, while keeping under control the buffer

space required.

In Chapter 8, we discuss system operation issues related to tolerating hardware component

failures, resequencing stream data at the client, restriping data after system upgrades, and

reducing the cost of admission control.

In Chapter 9, we summarize the basic conclusions of this thesis, and outline open issues

for further investigation.



Chapter 2

Related Research

A significant amount of research effort has been recently devoted to the design and development

of media streaming servers. However, most of the existing experimental and commercial systems

can only support constant bit-rate streams (Berson et al. 1994; Buddhikot and Parulkar 1995;

Bolosky et al. 1996; Ozden et al. 1996). Alternatively, they retrieve variable bit-rate streams

using peak-rate resource reservations that may reduce resource utilization, but not increase

server capacity (Martin et al. 1996; Shenoy et al. 1998). Another possibility is to support

variable bit-rate streams with statistical quality-of-service guarantees, that allow the system

to occasionally be overloaded and discard transferred data (Muntz et al. 1998). On the other

hand, the approach of retrieving variable bit-rate streams using constant bit rates cannot solve

the general efficiency problem either, due to arbitrarily large playback initiation latency or

client buffer space that it can require with higher quality streams (Sen et al. 1997).

In the rest of this chapter, we examine basic features of media server architectures that

have been proposed until now. We explain previous policies and comparative studies for strip-

ing variable bit-rate streams across multiple disks. We also outline earlier data prefetching

techniques for improving disk or network bandwidth utilization. Finally, we summarize past

efforts for obtaining balanced load when accessing data from disks with different performance

specifications.

7
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2.1 Media Server System Design

The Tiger fileserver is a distributed video server architecture that supports constant bit-rate

streams on commodity computer hardware (Bolosky et al. 1996). Stream data are striped

across multiple disks attached to different computer nodes. Data block replicas are declustered

on one or more disks in order to provide uninterrupted streaming operation even in the case

that disks or entire nodes fail. Data retrieval scheduling information is distributed among the

different nodes.

In the Fellini storage system by Martin et al. stream data are stored on multiple disks

(Martin et al. 1996). Accepted clients have to submit explicit requests over time for accessing

the retrieved data, according to the client-pull model. The resource reservation is based on the

worst case requirements of each stream. Careful data replication keeps the load balanced across

different disks even in the case of disk failures. Data caching with efficient page replacement is

implemented for minimizing disk accesses during sequential playback.

In the Continuous Media File Server proposed by Neufeld et al., detailed resource reser-

vation is done over time for each accepted stream (Neufeld et al. 1996). The experimental

study is limited to the case that an entire stream is stored on a single disk. Techniques of

data prefetching are considered for preventing system overloads and improving throughput.

Prematurely retrieved data are discarded when extra buffer space is required for admitting new

playback requests (Makaroff et al. 1997).

The Symphony multimedia file system by Shenoy et al. emphasizes integration on the same

platform of different data types with real-time or best-effort requirements (Shenoy et al. 1998).

In order to achieve that, appropriate methods are described for disk scheduling, failure recovery,

data placement and caching. Experimental evaluation shows good response time for text data

requests combined with real-time operation for video data requests.

The RIO storage system by Muntz et al. is designed to handle several different data types,

including video streams (Muntz et al. 1998). The admission control is based on statistical

estimation of the workload requirements, and the stream blocks are randomly distributed across

different disks. Stream data replication is shown to improve load balancing in the system. An
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early design of distributed data striping is described by Cabrera and Long (Cabrera and Long

1991). Their data striping and resource reservation policies do not take into account special

requirements of variable bit-rate streams though. In addition, striped data pass through an

intermediate node before being sent to the clients.

Keeping separate the metadata management of each disk relates in several ways to the

design of the backing store server for traditional data types by Birrel and Needham (Birrel

and Needham 1980). In describing the design of the Fast File System, McKusick et al. argue

that chaining together kernel buffers would allow accessing contiguous blocks in a single disk

transaction, and more than double the disk throughput (McKusick et al. 1984). At that time,

throughput was limited by processor speed though, and changes of the device drivers were also

necessary for adding this feature. We show later how contiguously allocated buffers can lead to

performance improvement in a media storage system.

In extent-based file systems, disk space is allocated in large, physically contiguous chunks,

called extents. Most I/O is done in units of an extent. Alternative versions of this approach

are possible that differ depending on whether users are exposed to the choice of the extent

size (McVoy and Kleiman 1991). Shenoy et al. proposed disk space allocation that supports

different block sizes for I/O transfers. A range of minimum and maximum block sizes must be

specified during file system creation (Shenoy et al. 1998). Another allocation scheme retrieved

a variable number of noncontiguous fixed-size blocks for each data request (Chang and Zakhor

1996). Separate disk-head movements were required for each individual block transfer, however.

2.2 Disk Striping of Stream Data

In a simulation study of constant rate streams, Paek et al. consider striping the stream data of

one round across different numbers of disks (Paek et al. 1995). They show that disk efficiency

is maximized when only one disk is accessed for a stream during each round, but at the cost of

reduced system responsiveness. The above conclusion also holds for streams with multi-layer

encoding, where subsets of a stream can be retrieved for lower resolution decoding. In a later

paper, they describe a technique for reducing server buffer requirements with variable bit-rate
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streams (Paek and Chang 1996).

Chang and Zakhor, in their study for multi-layer encoded streams, describe non-periodic

interleaving, where an entire stream is split into parts equal to the number of disks and each part

is stored on a separate disk (Chang and Zakhor 1994). They also describe periodic interleaving,

where stream data for a round are stored on a single disk that changes round-robin every

round. They find that although periodic interleaving does not improve the number of streams

supported, it can lead to better system responsiveness. In later work, they show that periodic

interleaving improves both the number of users and the system responsiveness when compared

to a striping scheme where stream data for a round are striped across a fixed number (greater

than one) of disks (Chang and Zakhor 1997). In a different study for variable bit-rate streams,

Chang and Zakhor suggest for future theoretical and experimental work the comparison of

periodic interleaving to what they call hybrid data placement, where fixed-size blocks of stream

data are placed round-robin across the disks (Chang and Zakhor 1996).

Shenoy and Vin study the fixed-size block striping of stream data, with both analytical

and simulation methods (Shenoy and Vin 1997). They basically investigate a tradeoff between

disk access overhead and load imbalance between disks. They find that as the number of

disks increases, the load imbalance across the disks becomes higher. They conclude that a

smaller block size should be chosen in order to compensate for the imbalance, but that leads

to higher disk actuator overhead. They claim that the number of supported streams increases

only sublinearly with the number of disks, and conclude that only disk arrays of limited size can

operate efficiently. From their paper it is not clear how the load of the system is determined,

and what process is assumed for the arrival of the client requests. Also, each individual block

access is assumed to incur an extra disk arm movement, which can lead to an overestimatation

of the disk overhead.

Reddy and Wijayaratne study the fixed-block striping technique called Constant Data

Length (CDL), and the Block-constrained Constant Time Length (BCTL) technique, where

stream data of each round are stored on a single disk (that changes round-robin every round) in

multiples of a fixed (possibly large) block size (Reddy and Wijayaratne 1999). They compare

the throughput of the two techniques using eight disks and conclude that the improvement of
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BCTL (at large block sizes) is insignificant, which is due to the particular block constraint they

assumed.

In a study of single disk systems storing constant bit-rate streams, Triantafillou and Hari-

zopoulos propose a technique called Group Periodic Multi-Round Prefetching, where multiple

rounds worth of data are retrieved in a single round (Triantafillou and Harizopoulos 1999).

Instead, Biersack et al. introduce the Generalized Constant Data Length for single disk systems

storing variable bit-rate streams. With this scheme, the retrieval of a fixed amount of data is

completed in a fixed number of rounds (Biersack et al. 1996).

2.3 Smoothing of Variable Bit-Rate Streams

Salehi et al. describe a prefetching algorithm that minimizes the variability of network band-

width requirements of stored video streams during their playback (Salehi et al. 1996). The

algorithm is shown to have optimal smoothing effect assuming a fixed-size client buffer. It is

applied to individual streams with known data retrieval sequence. Experiments with concur-

rently served streams demonstrate improved network bandwidth utilization.

Feng and Rexford compare the previous algorithm with alternative techniques that minimize

the total number of network bandwidth increases or decreases (Feng and Rexford 1997). They

find interesting tradeoffs that would make the different approaches favorable depending on the

network architecture assumed. McManus and Ross introduce a general dynamic programming

methodology for applying several optimization objectives in scheduling network transfers of

stored video (McManus and Ross 1998). Zhao and Tripathi describe a class of algorithms

that minimize the maximum required network bandwidth, when multiplexing stream network

transfers to multiple clients (Zhao and Tripathi 1999).

Rexford et al. use prefetching of data at the client for smoothing live video streams (Rexford

et al. 2000). They consider the additional restriction that the stream resource requirements are

only known for a limited period instead of the entire playback period. Peak network bandwidth

is reduced when limited playback delay can be tolerated and moderate client buffer space is

available.
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Mansour et al. examine optimal tradeoffs between buffer space, playback delay and link

bandwidth for lossy smoothing of live video (Mansour et al. 2000). They consider online

algorithms for determining which part of the stream to drop when different data have different

importance during decoding. Sen et al. combine ideas from live video smoothing with caching

of file prefices for smoothing streams in network proxies (Sen et al. 1999). They assume that

proxy servers can have extra knowledge of quality of service parameters about the client not

usually available at the server.

Patterson et al. apply a cost-benefit analysis in order to control the disk access versus data

buffering tradeoff in general applications (Patterson et al. 1995). Applications can disclose

knowledge of future accesses, while the system estimates the relative values of caching and

prefetching disk blocks. A global algorithm is applied for maximizing the global usefulness of

every buffer. Experiments with executing several different applications show reduced elapsed

time and improved throughput.

Paek and Chang propose an approach that, given a set of streams, optimizes a “general

objective function” by allocating the appropriate maximum disk bandwidth and buffer space to

each stream (Paek and Chang 1996). They make online decisions without taking into account

constraints from data distribution across multiple disks.

Reddy and Wijayaratne have experimented with the effect of client-based smoothing on

alternative disk striping methods. They point out the need for also studying techniques of

prefetching data into server buffers in their future work (Reddy and Wijayaratne 1999). Other

proposed solutions for reducing the maximum needed bandwidth of a variable bit-rate stream

require that an arbitrary amount of data be retrieved in the server buffer before playback

initiation. This can lead to reduced system responsiveness, however (Biersack and Hamdi 1998;

Lee and Yeom 1999).

Sen at al. consider the case of transmitting variable bit-rate video using constant bit rate

(Sen et al. 1997). They describe an algorithm for computing the minimum required client buffer

size and the associated constant rate and playback initiation latency. They evaluate the actual

buffer space and latency requirements for reducing the transfer rate using MPEG-1 streams.

Although Kim et al. (Kim et al. 1999) outline some ideas on how to control the tradeoff be-
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tween buffer and disk bandwidth utilization in stored video streaming, they specify no concrete

algorithm for the problem. Their approach divides the stream into arbitrary length segments

according to an “empirical threshold” alpha. Prefetching is limited to within a segment, and it

is controlled by an “empirical threshold” beta. Their disk bandwidth definition ignores the disk

arm movement delays and the round duration, and their simulation study is limited to single

disk systems only.

2.4 Load Balancing across Heterogeneous Disks

Dan and Sitaram suggest that multiple heterogeneous storage devices may coexist in a video

server environment (Dan and Sitaram 1995). Considering the complexity of striping data across

all the devices, they propose clustering homogeneous devices into groups. Subsequently, they

describe a dynamic data placement policy to keep the bandwidth and storage space utilization

high. For that purpose, entire video objects are appropriately replicated depending on their

popularity.

Chou et al. also propose techniques for dynamic video object replication across different

groups of disks. Based on a mathematical model of user behavior, the system adapts to frequent

changes in user preferences for particular objects (Chou et al. 1999).

Santos and Muntz use randomized data replication techniques for load balancing of het-

erogeneous disk arrays, assuming that streams are striped across different disks (Santos and

Muntz 1998). Other studies try to achieve high utilization of heterogeneous disks by appropri-

ately grouping them and adjusting the amount of data stored on each of them (Zimmermann

and Ghandeharizadeh 1997; Wang and Du 1997). All these methods are applicable (or have

been demonstrated to work) only with constant bit-rate streams.



Chapter 3

Architectural Definitions

In the present chapter, we describe the media server architecture that we propose. In addition,

we define alternative policies for disk striping of stream data, and introduce a new disk space

allocation technique.

3.1 System Overview

We describe a distributed media server architecture that stores video streams on multiple disks.

The streams are compressed according to the MPEG-2 specification, or any other encoding

scheme that supports constant quality quantization parameters and variable bit rates. Clients

with appropriate stream decoding capability send playback requests and receive stream data

via a high-speed network, as shown in Fig. 3.1.

We assume that the system operates using the server-push model (Shenoy et al. 1995).

When a playback session starts, the server periodically sends data to the client until either

the end of the stream is reached, or the client explicitly requests suspension of the playback.

This is different from the client-pull model of traditional file servers, where each individual

data transfer is explicitly requested by the client. The server-push model reduces the control

traffic from the client to the server, and facilitates resource reservation at the server side, thus

ensuring timely transfer of the data to the client.

We also assume that data transfers occur in rounds of fixed duration Tround. In each

14
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Figure 3.1: Compressed video streams are stored across multiple disks of the media server. Multiple

clients can connect and start playback sessions via a high-speed network.

round an appropriate amount of data is retrieved from the disks into the server buffers for

each active client. Concurrently, data already residing in the server buffers are sent to the

client through the network interfaces. Round-based operation is used in media servers in order

to keep the reservation of the resources and the scheduling-related bookkeeping of the data

transfers manageable.

Disk transfer requests are submitted synchronously at the beginning of each round, and are

kept sorted according to the location of their initial block. By serving requests in this order

(according to a Circular SCAN policy), seek and rotation overhead during actual service is

reduced. The round-based operation can be considered as a special case of the more traditional

real-time operation with periodically scheduled tasks. The data transfers are the periodic tasks,

while the beginning and end of each round correspond to the starting time and deadline of the

tasks.

The large amount of network bandwidth required for this kind of service requires that the

server components be connected to the high-speed network through different network interfaces.

Transfer of data to the client essentially requires a multipoint-to-point network connection

between the multiple interfaces of the server and the one of the client. This is basically a

network signaling problem already reported by previous related studies (Bolosky et al. 1996).

The amount of stream data periodically sent to the client is determined by the decoding

frame rate of the stream and the resource management policy of the network. One reasonable

policy would send to the client during each round the amount of data that will be needed for
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Figure 3.2: In the Exedra media server architecture, stream data are retrieved from the disks and sent

to the clients through the Transfer Nodes. Both the admission control and the data transfers make use

of stream scheduling information maintained as a set of Schedule Descriptors.

the decoding process during the next round; any other policy that does not violate the timing

requirements and buffering constraints of the decoding client would also be acceptable. As we

shall see later, in some cases there are advantages to using policies other than this basic one.

3.2 The Exedra Media Server Architecture

In this section, we describe the basic features of the media storage server that we propose.1 The

design is based on standard off-the-self components for data storage and transfer, currently used

in server systems. One basic innovation of the design lies in the scalable resource management

of variable bit-rate streams, as is demonstrated in subsequent chapters.

1Exedra: architectural term meaning semicircular or rectangular niche (orig. Greek).
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3.2.1 Transfer Node

The stream data are stored across multiple disks. As shown in Figure 3.2, every disk is connected

to a particular Transfer Node, through the Storage Interconnect, which could be either i) a

standard I/O channel e.g. Small Computer System Interface, ii) standard network storage

equipment e.g. Fibre-Channel (Clark 1999), or iii) a general purpose network, as with Network-

Attached Secure Disks (Gibson et al. 1998). Recent research has demonstrated that it is possible

to offload file server functionality to network-attached disks (Gibson et al. 1998). Although

our design could be extended in a similar way, we leave the study of this issue for future work.

The Transfer Nodes are computers responsible for scheduling and initiating all data accesses

from the attached disks. Data arriving from the disks are temporarily staged in the Server

Buffer memory of the Transfer Node before being sent to the client through the High-Speed

Network. We assume that the system bus bandwidth is a critical resource within each Transfer

Node, which determines the number and capacity of attached network or I/O channel interfaces.

For example, the Peripheral Component Interconnect (PCI) is becoming the dominant system

bus architecture in both desktop and server systems. Current specifications can achieve burst

transfer rates between 132Mbytes/sec and 524Mbytes/sec depending on the clock rate (33 or

66MHz) and the data bus width (32 or 64 bits) (PCI Special Interest Group 1995). The

corresponding sustained rates can be as low as half of the maxima though, depending on how

the hardware implementation of the interfaces takes advantage of the burst transfer features of

the bus specification.

In addition, Asynchronous Transfer Mode (ATM) network equipment can be used for stream

data transfer with quality of service guarantees from the server to the clients (Bolosky et al.

1996). Although, the ATM network interfaces most commonly used today support 155Mbit/sec,

interfaces with transfer capacity 622Mbit/sec have become recently available for the 33/66MHz

PCI bus (FORE Systems, Inc. 1999).

3.2.2 Admission Control Node

Playback requests arriving from the clients are initially directed to an Admission Control Node,

where it is determined whether sufficient resources exist to activate the requested playback
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Figure 3.3: Stream schedule descriptor for a stream stored on system with multiple transfer nodes. For

each playback round, the number of disks accessed is specified, along with the identifier of each disk and the

corresponding amount of data that have to be transferred from each disk. In addition, the descriptor includes

the buffer space reserved on each node, and the amount of data that has to be sent to the client through each

network interface that is used in the current round.

session either immediately or within a few rounds. The computational complexity of the general

stream scheduling problem is combinatorial in the number of streams considered for activation,

their length, and the number of reserved resources (Garofalakis et al. 1998).

We make the practical assumption that the acceptable initiation latency is limited, and use

a simpler scheduling algorithm with complexity linear in the number of rounds of each stream

and the number of reserved resources. Depending on the expected load and the required detail

of resource reservation, the admission control process might still become a bottleneck. In that

case, the admission control could be distributed across multiple nodes as shown in Figure 3.2,

taking into account non-trivial concurrency control issues that arise.

If a new playback request is accepted, commands are sent to the Transfer Nodes to begin

the appropriate data accesses and transfers. We assume that local-area network technology

is sufficient for handling the moderate control traffic between Admission Control and Transfer

Nodes.
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3.2.3 Schedule Descriptors

In traditional storage systems, data access patterns are relatively hard to predict, making it

difficult to determine optimal disk striping parameters, customized to the needs of a constantly

changing workload and system configuration (Borosky et al. 1997). However, with read-only

sequential access being the common case in video streaming, it is possible to predict to some

extent the expected system load requirements during retrieval. Then appropriate disk striping

parameters can be determined a priori for the storage and retrieval of the data (Shenoy et al.

1995). In a later section, we see how different striping policies exploit this characteristic of

stored video streams.

The amount of stream data that needs to be retrieved during each round from each disk

is stored in a Schedule Descriptor (Figure 3.3). The descriptor also specifies the buffer space

required and the amount of data sent to the client by the Transfer Nodes during each round.

It is possible that two or more schedule descriptors with distinct requirements are available

for a stream. The scheduling information is generated before a stream is first stored and is

used for both admission control and for controlling data transfers during playback. Since this

information changes infrequently, it can be replicated to avoid potential bottlenecks.

3.3 Stride-Based Disk Space Allocation

In our experiments, we use a new form of disk space allocation, called stride-based allocation.

Thus, disk space is allocated in large, fixed-sized chunks called strides, which are chosen larger

than the maximum stream request size per disk during a round. Stored streams are accessed

sequentially according to a predefined (albeit variable) rate; therefore, the maximum amount of

data accessed from a disk during a round for a stream is known a priori. Stride-based allocation

eliminates external fragmentation, while internal fragmentation remains negligible because of

the large size of the streams, and because a stride may contain data of more than one round

(see Fig. 3.4).

Although stride-based allocation seems similar to extent-based (McVoy and Kleiman 1991)

and other allocation methods (Shenoy et al. 1998), one basic difference is that strides have



Chapter 3. Architectural Definitions 20

stream stride index

i i+1 i+2 i+3 i+4 i+5disk strides

Request j+2Request j+1Request j Request j+3

Figure 3.4: The stride-based allocation of disk space shown on one disk. A stream is stored in a

sequence of generally non-consecutive fixed-size strides with a stride possibly containing data of more

than one round. Sequential requests of one round are smaller than the stride size and thus require at

most two partial stride accesses.

fixed size. More importantly, when a stream is retrieved, only the requested amount of data

is fetched to memory, and not the entire stride, which is sequentially allocated on the disk

surfaces. Another advantage of stride-based allocation is that it sets an upper-bound on the

estimated disk access overhead during retrieval. Since the size of a stream request never exceeds

the stride size during a round, at most two partial stride accesses will be required to serve the

request of a stream on each disk in a round. This allows us to avoid the arbitrary number of

actuator movements required by previously proposed allocation methods (Chang and Zakhor

1996).

Arguably, storing the data of each disk request contiguously would further reduce the disk

overhead to a single seek and rotation delay, instead of two at most. Contiguous disk space

allocation was the favorite approach in file systems of early microcomputers. Due to external

fragmentation, it requires periodic compaction of the allocated disk space, which is a time-

consuming process. In our case, we assume that variable disk data transfers can be specified in

a granularity of a few tens of KBytes, while the total used disk storage space can reach hundreds

of GBytes. Therefore, the time and space cost involved in bookkeeping for contiguous disk space

allocation in highly utilized disks could become significant. With stride-based allocation we get

most of the benefits of contiguous allocation, while avoiding its extra overhead.

Stride padding could be used for storing a stream request on a single stride of a disk. This

would prevent spanning of a stream request across two strides, and would lead to one disk
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head movement at most for each stream request. However, stride padding would waste disk

storage space. Moreover, we don’t expect that this would improve the throughput of the system

significantly. Due to the large size of the disk requests, most of the busy time of each disk is

spent on useful data transfers rather than mechanical movement overhead. We quantitatively

investigate the efficiency of the stride-based allocation in the next chapter.

3.4 Reservation of Server Resources

We consider a system consisting of N network interfaces, D disks, and Q transfer nodes. It

is possible that two or more replicas are available for each stream file, with different resource

reservation sequences.

The stream Network Striping Sequence Smn of length Ln defines the amount of data,

Smn(i, u), 1 ≤ i ≤ Ln, 0 ≤ u ≤ N − 1, that the server sends through network interface u

to a particular client. The corresponding total amount of data that the server sends to the

client during round i is given by the Network Sequence Sn, with Sn(i) =
∑N−1

u=0 Smn(i, u). Sim-

ilarly, the stream Buffer Striping Sequence Smb of length Lb = Ln + 1 defines the server buffer

space of transfer node q, Smb(i, q), 0 ≤ i ≤ Lb, 0 ≤ q ≤ Q−1, occupied by a client during round

i. The total buffer space occupied by the client during round i is given by the Buffer Sequence

Sb, with Sb(i) =
∑Q−1

q=0 Smb(i, q). Buffer space is reserved for the time period starting when

data are read from the disk and ending when the corresponding network transfer has finished.

We assume that data are stored on the disks in strides. The stride size Bs is multiple of

the logical block size Bl, which is multiple of the physical sector size Bp of the disk. Both disk

transfer requests and memory buffer reservations are specified in multiples of the logical block

size Bl. After taking into account logical block quantization issues, the disk sequence Sd can

be derived from the network sequence Sn as follows: If

Kd(i) =

⌈∑
0≤j≤i Sn(j + 1)

Bl

⌉

specifies the cumulative number of blocks Bl retrieved through round i, then

Sd(i) = (Kd(i)−Kd(i− 1)) ·Bl.
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The Disk Striping Sequence Smd of length Ld determines the amount of data Smd(i, k), that

are retrieved from the disk k, 0 ≤ k ≤ D − 1, in round i, 0 ≤ i ≤ Ld − 1. It can be generated

from the Disk Sequence Sd, according to the striping policy used.

We assume that disk k has edge to edge seek time T k
fullseek, single track seek time T k

trackseek,

average rotation latency T k
avgrot, and minimum internal transmission rate Rk

disk. The stride-

based disk space allocation policy enforces an upper bound of at most two disk arm movements

per disk for each client per round. The total seek distance can also be limited using a CSCAN

(circular scan) disk scheduling policy. Let Mi be the number of active streams during round

i of the system operation. We assume that the playback of stream j, 1 ≤ j ≤ Mi, has been

initiated at round lj of system operation. Then, the total access time on disk k in round i of

the system operation will have an upper-bound of:

Tdisk(i, k) = 2T k
fullSeek + 2Mi · (T k

trackSeek + T k
avgrot) +

Mi∑
j=1

Sj
md(i− lj , k)/Rk

disk

(3.1)

where Sj
md is the disk striping sequence of client j. T k

fullSeek is counted twice due to the disk

arm movement from the CSCAN policy, while the factor two of the second term is due to

the stride-based method. The first term should be accounted for only once in the disk time

reservation structure of each disk. Then, each client j can be assumed to incur an additional

maximum access time of

T j
disk(i, k) = 2 · (T k

trackSeek + T k
avgRot) + Sj

md(i− lj , k)/Rk
disk

on disk k during round i, when Sj
md(i− lj , k) > 0, and zero otherwise.

If Ru
net is the bandwidth available at network interface u, then the corresponding network

transmission time reserved for client j in round i becomes T j
net(i, u) = Sj

mn(i − lj , u)/Ru
net,

where Smn is the Network Striping Sequence of client j. The buffer space at transfer node q

reserved for client j in round i becomes Bj(i, q) = Sj
mb(i− lj , q), where Sb is the Buffer Striping

Sequence of client j.

The Disk, Network and Buffer Striping Sequence of each stream are available through the

corresponding schedule descriptor (Figure 3.3).



Chapter 3. Architectural Definitions 23

3.5 Definition of Striping Techniques

3.5.1 Fixed-Grain Striping

In the method called Fixed-Grain Striping, data are striped round-robin across the disks in

blocks of a fixed size Bf , a multiple of the logical block size Bl defined previously. During each

round a number of these blocks are accessed from each disk as needed. This is shown in Fig.

3.5.(a). We define as stripe any sequence of D consecutive blocks each of size Bf , with the first

block of the sequence stored on disk 0 of the array. The modD notation denotes the remainder

of the division by D, and the divD symbolizes the quotient of the division by D. We assume

that

Kf (i) = d
∑

0≤j≤i Sd(j)
Bf

e,

specifies the cumulative number of blocks Bf retrieved through round i for a specific client.

When Kf
divD(i)−Kf

divD(i− 1) = 0, all blocks accessed for the client during round i lie on the

same stripe of blocks. Then, the striping sequence Sf
md is equal to:

Sf
md(i, k) = Df

0 (i, k) ·Bf (3.2)

where

Df
0 (i, k) =




1, if Kf
modD(i− 1) < kmodD ≤ Kf

modD(i)

0, otherwise,

specifies the particular disks that need to be accessed at most once for the stream.

Respectively, when Kf
divD(i) − Kf

divD(i − 1) > 0, the blocks accessed for the client during

round i lie on more than one stripe. Then, the striping sequence becomes

Sf
md(i, k) = (Kf

divD(i)−Kf
divD(i− 1)− 1) ·Bf + Df

>0(i, k) ·Bf , (3.3)

where

Df
>0(i, k) =




2, if Kf
modD(i− 1) < kmodD ≤ Kf

modD(i)

1, if kmodD > max(Kf
modD(i− 1), Kf

modD(i) )

1, if kmodD ≤ min(Kf
modD(i− 1), Kf

modD(i))

0, otherwise.
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Figure 3.5: Access of stream data using alternative striping techniques over two disks. Figure (a) shows

the data requirements of twenty consecutive rounds in an MPEG-2 clip. With Fixed-Grain Striping, the

needed blocks of size Bf are retrieved round-robin from the two disks every round. In Variable-Grain

Striping, a different disk is accessed in each round, according to the byte requirements of the original

clip. In Group-Grain Striping with G=2, stream data worth of two rounds are accessed from a different

disk every two rounds.
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Intuitively, blocks in stripes that are fully accessed in round i are taken into account by the

first term in Eq. 3.3, while blocks of stripes partially accessed in round i are covered by the

second term.

3.5.2 Variable-Grain Striping

In the method that we call Variable-Grain Striping, the data retrieved during a round for

a client are always accessed from a single disk round-robin, as shown in Fig. 3.5.(b). The

corresponding striping sequence becomes:

Sv
md(i, k) = (Kv(i)−Kv(i− 1)) ·Bl

when i (mod D) = k, with

Kv(i) = d
∑

0≤j≤i Sd(j)
Bl

e.

Therefore, the Network Sequence through the Disk Sequence determines the particular single

disk accessed and the exact amount of data retrieved during each round.

3.5.3 Group-Grain Striping

Variable-Grain Striping is a special case (with G = 1) of a method that we call Group-Grain

Striping, where the amount of data required by a client over G rounds is retrieved every Gth

round from one disk that changes round-robin (see Fig. 3.5.(c), noting that the y-axis uses

a different scale). The parameter G, G ≥ 1, is called Group Size. The striping sequence for

Group-Grain Striping is equal to:

Sg
md(i, k) = (Kv(i + G− 1)−Kv(i− 1)) ·Bl

when i mod G = 0 AND (i div G) mod D = k, and Sg
md(i, k) = 0 otherwise.

As G increases, fewer disk accesses are required, which leads to reduced disk overhead. On

the other hand, the fixed round spacing between subsequent requests for a stream basically

divides the server into G virtual servers. The fixed group size G guarantees that two streams

started from the same disk at rounds i and j with i 6= j(mod G), do not have any disk transfers
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in a common round. This is different from increasing Bf in Fixed-Grain Striping, where accesses

from different streams can randomly collide on the same disk in the same round, resulting in

the system saturating with fewer streams. We show later in more detail how increasing G for

a particular round time is advantageous with future expected changes in disk technology.

Although aggregation of disk transfers could also be achieved with an appropriate increase of

round time, this could directly affect the responsiveness of the system by potentially increasing

the initiation latency of each playback. Longer round time also increases proportionally the

required buffer space.

3.6 Summary

In this chapter, we described the basic components of the Exedra distributed media server

architecture. We introduced the stride-based disk space allocation technique, and specified

the scheme that we use for reserving disk time, buffer space and network transfer time in our

system. Finally, we formally defined alternative methods for striping stream data over multiple

disks.



Chapter 4

Prototype Implementation

We have designed and built a media server prototype, in order to evaluate the resource require-

ments of alternative stream scheduling techniques. The modules are implemented in about

12,000 lines of C++/ Pthreads code on AIX4.1. The code can be linked to the University of

Michigan DiskSim disk simulation package (Ganger et al. 1999), which incorporates advanced

features of modern disks, such as on-disk cache and zones, for obtaining disk access time mea-

surements. Alternatively, hardware disks can be accessed directly through their raw interface

for full data transfers. The stream indexing metadata are stored in the Unix file system as

regular files, and during operation are kept in main memory.

The basic responsibilities of the media server include file naming, resource reservation,

admission control, logical to physical stream blocks address translation, buffer management, and

disk and network transfer scheduling (Figure 4.1). With appropriate configuration parameters,

the system can operate in several modes involving different levels of detail. In Admission

Control mode, the system receives playback requests, does admission control and resource

reservation, but no actual data transfers take place. In Simulated Disk mode, all the modules

become functional, and disk request processing takes place using the specified DiskSim disk

array (Ganger et al. 1999). In Full Operation mode, the system accesses hardware disks and

transfers data to clients.

27
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Figure 4.1: System modules in the Exedra prototype implementation.

4.1 Admission Control and Dispatching

The admission control module uses circular vectors of sufficient length to represent the allocated

disk time, network time, and buffer space, respectively. On system startup, the disk time

vectors are initialized to 2 ·TfullSeek, while the network time and buffer space are initially set to

zero. When a new stream request arrives, the admission control is performed by checking the

requirements of the stream against currently available resources. In particular, the total service

time of each disk in any round may not exceed the round duration, the total network service

time on each network interface may not exceed the round duration, and the total occupied

buffer space on each node may be no larger than the corresponding server buffer capacity.

If the admission control test is passed, then the resource sequences of the stream are added

to the corresponding system vectors managed by the module, and the stream is scheduled for

playback. In addition, notification records for the accepted request are inserted into dispatch

queues (generally residing on each transfer node) at the appropriate offset from the current
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Figure 4.2: A circular vector of dispatch queues keeps track of admitted streams yet to be activated. The

dispatch queue consists of notification records for activating the streams in the corresponding rounds.

round. When an upcoming round becomes current, the notification records are used for acti-

vating the stream and starting its data transfers (Figure 4.2).

4.2 Stream Scheduling

The stream management module is responsible for initiating all the buffer reservation, disk

transfer and network transfer requests for each active stream during each round. The schedule

descriptors provide the necessary information about the amount of data and the particular disks

that should be accessed for each stream. The required amount of buffer space is allocated, and

disk transfer requests are prepared specifying the buffer location, the stream file offset and the

length of the transfer. Each request is passed to the lower layers for the actual transfer to occur,

while a copy of the request (descriptor) is kept in a fifo queue, to be used for the corresponding

network transfers.

The buffer space of each disk transfer is allocated contiguously in the virtual memory, as

a sequence of fixed-size blocks. Appropriate control information attached to each individual

block is used for completion notification of the initiated data transfers. Subsequently, data can

be sent to each client through the network, and the corresponding buffer space can be released.

Although the buffer space is allocated in large chunks specified by the disk transfer requests,

it is deallocated in the granularity of individual buffer blocks. This provides the necessary

flexibility for keeping disk and network transfers relatively independent, a feature that we use

when prefetching data into the server memory.

There is also a partial stream playback service, that we use in the Admission Control mode

of the system. For this service, resources required by each active stream are reserved, without
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Figure 4.3: Pending disk transfers are gathered in a fifo queue before they complete and allow the corresponding

network transfers to begin.

any actual disk request processing taking place. Similarly, there is a partial recording service

that does all the necessary disk space allocation and metadata updating, without any actual

disk data transfer processing taking place. This has been used for expedited stream “recording”.

4.3 Metadata Management

Stream metadata management is organized in a layer above disk scheduling. It is responsible

for disk space allocation during stream recording, and for translating stream file offsets to

physical block locations during playback. The stream metadata are maintained as regular files

in the host file system of each transfer node, in the general case, while stream data are stored

separately on dedicated disks. The storage space of the data disks is organized in strides, with

a bitmap that has a separate bit for each stride. A single-level directory is used for mapping

the identifier of each recorded stream into a direct index of the corresponding allocated strides.

A separate directory of this form exists for each different disk.

When a stream is striped across multiple disks, a stream file is created on each data disk.

Each transfer request received by the metadata manager specifies the starting offset in the

corresponding stream file and the number of logical blocks to be accessed. With the help of the

stream index, each such request is translated to a sequence of contiguous disk transfers, each

specifying the starting physical block location and the number of blocks. From the stride-based

disk space allocation, it follows that each logical request will be translated into at most two

physical contiguous disk transfers.

The decision to create a separate metadata manager for each disk was basically motivated by



Chapter 4. Prototype Implementation 31

id id id id id
stream directory (per disk)

physical blocks

logical blocks

disk strides

stream index (per stream/disk)

Figure 4.4: Management of metadata within each disk.

our intention to experiment with general disk array organizations, including those consisting of

heterogeneous disks. Although handling of heterogeneous devices was less necessary in limited

size traditional storage systems, it might prove crucial for the incremental growth and economic

survival of large scalable media storage installations. In our prototype implementation, this

feature is fully implemented in a relatively straightforward way. However, this functionality

does not alleviate the need for developing striping policies that assure high utilization of the

server resources.

In order to keep system performance predictable and unbiased by particular disk geometry

features, we decided to exercise some control over the disk space allocation pattern. In partic-

ular, disk zoning could possibly lead to excessively optimistic or pessimistic data access delays,

if we mostly allocated the outer or inner cylinders of the disks. Similarly, contiguous allocation

could lead to lower than expected delays in some special cases (such as when streams are stored

on a single disk with a very large on-disk cache). However, low-level disk geometry is generally

not disclosed by the disk manufacturers, and the above features are not explicitly considered by

the system in any sophisticated way. Therefore, when we allocate strides for a stream within

each disk, we try to distribute them across all the zones of the disk.
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Figure 4.5: Sequence of steps during the disk service of I/O requests using dual-queue CSCAN.

4.4 Disk Scheduling

The disk management layer is responsible for passing data transfer requests to the disks, after

the necessary translation from logical stream offsets to physical block locations in the above

layers.

In the dual-queue CSCAN disk scheduling that we introduce, the operation of each disk

is managed by a separate pair of priority queues, called Request Queue and Service Queue,

respectively. The two queues, although structurally equivalent, play different roles during each

round. At the beginning of each round, data transfer requests for the current round are added

asynchronously into the request queue of each disk, where they are kept sorted in increasing

order of their starting sector location.

When all the requests have been gathered and the corresponding disk transfers of the previ-

ous round completed, the request queue of each disk is swapped with the corresponding service

queue (Figure 4.5). Subsequently, requests from the service queue are synchronously submitted

to the raw disk interface for the corresponding data transfers to occur. There is at most one

request pending within one disk at any time.

When swapping the two queues, the service queue becomes request queue and remains empty

until the beginning of the next round. Although a single priority queue for each disk would seem

sufficient, there is a rare (yet possible) case where the disk busy time in a round slightly exceeds

the round duration. Then, with a naive design using a single queue, new incoming requests

could postpone (potentially indefinitely) the service of requests from the previous round starting

at the innermost edge of a disk. Instead, the two-queue scheme prevents new requests from

getting service before those of the previous round complete, thus keeping the system operation

more stable.
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For the special case of simulated disks, no actual data transfers occur and the requests

are active only for disk access time estimation. Requests corresponding to different disks are

submitted, processed, and terminate concurrently at a simulated time granularity enforced by

the simulator. Whenever a disk request completes, the next request waiting to be served in the

current round is synchronously submitted, similar to the hardware disk case.

4.5 Buffer Management

The buffer management module keeps the server memory organized in fixed size blocks of Bl

bytes each, where Bl is the logical block size introduced earlier. The server memory is allocated

in groups of blocks contiguous in virtual memory. From experiments with raw interface disk

accesses, we found that non-contiguity of the memory buffers could penalize disk bandwidth

significantly in the AIX4.2 implementation. Although this might be attributed to the way that

scatter/gather features of the disk controller are used by the system, we found the allocation

contiguity easy to enforce.

For the allocation of buffer blocks we use a bitmap structure with an interface that can

support block group requests. Deallocations are allowed on a block basis, as opposed to entire

block groups obtained during allocation. This last feature increases independence between disk

accesses and network transfers.

In our design, we do not cache previously accessed data, as is done in traditional file and

database systems. Although related research has developed data caching algorithms for constant

rate streams, we found that similar support for variable bit rate streams would introduce

several complications, especially in the admission control process. Instead, we assume that

data transfers are done independently for each different playback (Bolosky et al. 1996).

Paging of buffer space is prevented by locking the corresponding pages in main memory.

Although several Unix versions (e.g. HP-UX, Irix, Solaris) and Linux make available for this

purpose the mlock system call, AIX does not. Instead, we exported the pinu kernel service

through a loadable kernel module, and used that.
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4.6 Schedule Management

The configuration input provides the basic parameters of each device that will be used. This

includes the disk and metadata file name, the maximum and track seek time, the average rota-

tion latency, and the minimum internal transfer rate. Other configuration parameters include

the available network bandwidth along with the server and client buffer space, as required by

the different policies.

The schedule management module is responsible for generating data transfer schedules,

where each schedule specifies the amount of data accessed from the disks, stored in server

buffer and transmitted over the network during each round. The schedule manager accepts as

input actual MPEG-2 Unix files (or their frame size traces), along with the prefetching and

striping scheme that should be used. The prefetching schemes can make use of the buffer space

that is available at the server or client side, depending on the policy. The striping schemes

specify the disks and the amount of data that should be accessed during each round.

4.7 Summary

In this chapter we described basic alternatives and decisions in our prototype implementation.

We introduced system design details regarding the admission control and dispatching of play-

back requests, and the structure of the disk metadata. We also explained our approach for

scheduling the disk transfers, organizing the buffers and allocating the disk storage space.



Chapter 5

Experimentation Environment and

Basic Parameters

In the present chapter, we introduce the hardware configuration that we used in our performance

measurements, and the set of streams that composed our benchmark. We define a novel method

for media server performance evaluation that can be easily applied to different system scales

and stream characteristics. In addition, we examine potential performance implications of the

round duration and the contiguity of the buffer or disk storage space. Finally, we evaluate the

effectiveness of our resource reservation scheme.

5.1 Experimentation Setup

Several of our experiments have been made using the system in Admission Control mode. We

also used the Full Operation mode for low-level performance measurements and for examining

the efficiency of our resource reservation scheme. The Simulated Disk mode allowed additional

configuration flexibility for validating results on homogeneous and heterogeneous disk arrays.

Our performance measurements in Full Operation mode were made on an IBM RS/6000

two-way SMP workstation with 233 MHz PowerPC processors running AIX4.2. The system

was configured with 256 MB physical memory, and a fast wide SCSI controller to which a single

2GB disk was attached, used for the system and paging partitions. The stream data are stored

35
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Seagate Cheetah ST-34501N/W

Data Bytes per Drive 4.55 GB Track to Track Seek(read/write) 0.98/1.24 msec

Average Sectors per Track 170 Maximum Seek(read/write) 18.2/19.2 msec

Data Cylinders 6,526 Average Rotational Latency 2.99 msec

Data Surfaces 8 Internal Transfer Rate

Zones 7 Inner Zone to Outer Zone Burst 122 to 177 Mbit/s

Buffer Size 0.5 MB Inner Zone to Outer Zone Sustained 11.3 to 16.8 MB/s

Table 5.1: Features of the SCSI disks used in our experiments.

on two 4.5GB Seagate Cheetah ST-34501W disks (Table 5.1) attached to a separate ultra wide

SCSI controller. One megabyte (megabit) is considered equal to 220 bytes (bits), except for the

measurement of transmission rates and disk storage capacities where it is assumed equal to 106

bytes (bits) instead (IBM 1994). Although storage capacity can take much larger values in the

latest models, the remaining performance numbers of the above two disks are typical of today’s

high-end drives.

Experiments in Admission Control and Simulated Disk modes also assume arrays of disks

with the above specification (with the exception of the heterogeneous disk case described in

more detail later). The logical block size Bl is set equal to 16 KB, while the physical sector

size Bp is 512 bytes. Unless otherwise stated, the stride size Bs in the disk space allocation is

2 MB. Depending on the case, a total space between 32 MB and 256 MB for every extra disk

is used for memory buffer, and is organized in fixed size blocks of 16 KB.

In our experiments, data retrieved from the disks are discarded (copied to the null device),

leaving protocol processing and contention for the network outside the scope of the present

study. However, from our experience with UDP/IP transfers on alternative configurations

with sufficient network bandwidth, we do not expect the network overhead to affect in any

fundamental way the results presented here. The round time is set equal to one second.

We used six different variable bit-rate MPEG-2 streams of 30 minutes duration each. Each

stream has 54,000 frames with a resolution of 720x480 and 24 bit color depth, 30 frames

per second frequency, and a IB2PB2PB2PB2PB2 15 frame Group of Pictures structure. The

encoding hardware that we use allows the generated bit rate to take values between 1Mbit/s
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Content Avg Bytes Max Bytes ρ(1) CoV

Type per rnd per rnd per rnd per rnd

Science Fiction 624,935 1,201,221 0.885 0.383

Music Clip 624,728 1,201,221 0.782 0.366

Action 624,194 1,201,221 0.734 0.245

Talk Show 624,729 1,201,221 0.705 0.234

Adventure 624,658 1,201,221 0.739 0.201

Documentary 625,062 625,786 0.060 0.028

Table 5.2: We used six MPEG-2 video streams of 30 minutes duration each. Both the autocorrelation and the

coefficient of variation shown in the last two columns change according to the content type.

and 9.6Mbit/s. Although the Main Profile Main Level MPEG-2 specification allows bit rates

up to 15Mbit/sec, there is a typical point of diminishing returns (no visual difference between

original and compressed video) at 9Mbit/sec. The digital versatile disk (DVD) specification

sets a maximum allowed MPEG-2 bit rate of 9.8Mbit/sec.

Statistical characteristics of the clips are given in Table 5.2, where the coefficients of vari-

ation of bytes per round lie between 0.028 and 0.383, depending on the content type. We

used the MPEG-2 decoder from the MPEG Software Simulation Group for stream frame size

identification (MPEG Software Simulation Group 1996). In our mixed basic benchmark, the

six different streams are submitted round-robin. Where necessary, experimental results from

individual stream types are also shown.

5.2 Performance Evaluation Method

Although media server architectures have been investigated for more than a decade, perfor-

mance parameters are usually evaluated in ad-hoc ways, and not according to generally accepted

methodologies. Important decisions about the interarrival process used, the stream schedul-

ing techniques employed, and several user-oriented constraints that keep the system operation

practical usually vary inconsistently across different related studies.

In general, we expect that a fair performance evaluation method:
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• demonstrates the capacity of the system for the performance parameters used,

• is applicable to different hardware configurations,

• is not biased towards any particular policies, and

• evaluates the expected practical operation of the system.

We assume that playback initiation requests arrive independently of one another, according

to a Poisson process. The system load can be controlled through the corresponding arrival rate

λ. If disk bandwidth is the bottleneck resource, we consider the perfectly efficient system that

incurs no disk overhead when accessing disk data. The streams have average data size Stot

bytes and the system consists of D disks with minimum transfer rate Rk
disk on disk k. Then,

the completion rate µ, expressed in streams per round, becomes:

µ =
∑D−1

k=0 Rk
disk · Tround

Stot
. (5.1)

Then the maximum arrival rate λ = λmax that can be handled by the system is equal to

the above service rate. This should create enough load to show the performance benefit of

arbitrarily efficient data striping policies. The system load ρ is equal to:

ρ =
λ

µ
≤ 1, (5.2)

where λ ≤ λmax = µ.

When a playback request arrives, it is checked whether adequate resources are available

for every round during playback. The test should consider the exact data transfers of the

requested playback for every round and also the corresponding available disk transfer time,

network transfer time and buffer space in the system. If the request cannot be initiated in the

next round, the test is repeated for successive rounds until the first future round is found, where

the requested playback can be started with guaranteed sufficiency of resources. We also tried

alternative scheduling techniques previously proposed, where request initiations are attempted

at fixed or random offsets from the current round (Reddy and Wijayaratne 1999). We did not

observe significant performance improvements from this approach. This is due to the Poisson

arrival process that we assume (as opposed to all requests arriving at the beginning (Reddy
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and Wijayaratne 1999), which naturally distributes transfers from different clients across the

disks of the array to different rounds.

We define as lookahead distance Hl the number of future rounds that are considered as

candidate rounds for initiating a stream playback. The number of rounds between the arrival

of a request and the beginning of the playback is equal to the playback initiation latency

experienced by the user. Playback requests not accepted are discarded rather than being kept

in a queue. Practically, a large lookahead distance leads to the possibility of a long potential

waiting time for the initiation of the playback. This latency cannot be unlimited in order for

the service to be acceptable by the users. On the other hand, setting the lookahead distance

too small can prevent the system from attaining full capacity. This system design tradefoff

between throughput and latency is investigated in more detail in the next chapter.

We set the basic lookahead distance Hbasic
l to be equal to the mean number of rounds between

request arrivals Hbasic
l = d 1

λe. Intuitively, setting Hl = Hbasic
l allows the system to consider

for admission control the number of upcoming rounds that will take (on average) for another

request to arrive. More generally, we define as lookahead factor Fl the fraction Fl = Hl

Hbasic
l

. All

the experiments presented in the thesis are repeated until the half-length of the 95% confidence

interval on the performance measure of interest lies within 5% of the estimated mean value.

Our basic performance objective is to maximize the average number of active playback sessions

that can be supported by the server.

The playback initiation latency that can be tolerated by users depends on the video stream-

ing application. For example, as the playback duration becomes longer, the maximum accept-

able latency may be larger. The maximum number of rounds considered for initiating a stream

is determined by the throughput of the system and the system load. The corresponding latency

can be made equal to an arbitrarily small integral number of rounds by using a configuration

with large enough system throughput, or operating the system at sufficiently low load. This

follows from the expression:

Hl = Fl ×Hbasic
l = 1× d 1

λ
e = d 1

ρ · λmax
e (5.3)

Here we assume lookahead factor Fl = 1, which is justified in the next chapter. In most practical
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situations, the rejection ratio should also be kept low, for example close to 1%. This can be

also achieved by operating the system at loads lower than the maximum 100%, as is shown in

the next chapter for different striping policies.

5.3 Summary of Differences from Previous Studies

Before studying the results from our experiments, it is worthwhile to summarize important

differences in our assumptions from those of previous related studies.

1. We assume that playback requests arrive according to a Poisson process, which closely

resembles system operation in practice. Instead, several previous studies made the worst

case assumption that all the arrivals occur at the beginning of the experiments (Salehi

et al. 1996; Shenoy and Vin 1997; Reddy and Wijayaratne 1999).

2. We adjust the system load according to the available resources in the system, which makes

comparison of different system configurations fair. Other studies assumed an infinite

number of requests (Shenoy and Vin 1997; Reddy and Wijayaratne 1999), or requests

arriving according to an arbitrarily specified rate (Makaroff et al. 1997; Douceur and

Bolosky 1999).

3. For the admission control process, we introduce a load-adjusted upper bound in the

number of future rounds considered for initiating a playback requests. This is a reasonable

compromise in limiting the playback initiation latency that a user has to tolerate, while

allowing most of the system capacity to be reached.

4. For each arriving request, we make an exhaustive search within the specified window of

rounds for a location where playback can be initiated, instead of considering only one

round.

5. In subsequent chapters, we also keep track of the rejection ratio of playback requests. We

make sure that it remains limited (around 20%), with the most efficient policies at highest

loads that we examine.
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Figure 5.1: Interesting effects of round length on system operation parameters. Although a longer round (a)

improves, up to a point, the average number of active streams, (b) it can also extend the stream initiation latency,

and (c) linearly increases the total buffer space required.

5.4 Study of Basic Parameters

We begin our experiments by evaluating the effect of the round length on the system operation.

We also study how disk throughput depends on the buffer organization. We investigate impli-

cations of the disk space allocation on the disk bandwidth utilization, and we compare resource

reservation statistics to actual utilization measurements.

5.4.1 Choosing the Right Round Length

We start with an investigation of how the round length affects the performance and the resource

requirements of the system. We use the Admission Control mode for our experiments, and

assume that the disk bandwidth forms the system bottleneck. A four-disk array is assumed,

with load ρ = 80%, lookahead factor Fl = 1 and Variable-Grain Striping. Experiments with

other parameter values led to similar conclusions.

Longer rounds increase the data size of the disk transfers and can improve the disk oper-

ation efficiency. There is a diminishing returns effect though, as shown in Figure 5.1(a). The

performance benefit from longer rounds depends on the ratio between useful transfer time and

mechanical overhead within each disk access. A round length of one second achieves most of
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Figure 5.2: a). When we use a separate disk transfer for each buffer block, disk throughput depends critically

on the block size. b) Grouping multiple block transfers into a single call by using readv() cuts by more than 50%

the achieved disk throughput. c) Invoking a single read() for each request keeps disk throughput consistently

high, independently of the buffer block size.

the system capacity, with current disk technology and stream data requirements.

In Figure 5.1(b), we measure the average initiation latency of accepted streams, and notice

that it increases almost linearly with rounds longer than one second. In fact, latency depends on

both the number and the length of the rounds tried during stream admission control. The plots

of Figure 5.1(b) indicate that system responsiveness can be controlled by limiting the round

length appropriately. From Figure 5.1(c), it also follows that the total buffer space required

increases linearly with longer rounds. This is a result of the proportional increase in the amount

of data retrieved from the disks during each round.

In conclusion, the choice of the round length is crucial for several aspects of the system

operation. A value of one second achieves high throughput, with reasonable initiation latency

and buffer requirements. This is also a typical value used in other studies, which facilitates the

comparison of our results with those of previous related research.
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5.4.2 Contiguity of Buffer Allocation

In this section, we examine how disk performance depends on the buffer allocation policy, using

a synthetic benchmark that we developed for that purpose. We measure the disk throughput

at different sizes of I/O requests and degrees of contiguity in the buffer space allocated for

each request. Disk requests of a specific size are initiated at different locations approximately

uniformly distributed across the disk space. Disk data are transferred to pinned memory,

organized in blocks of fixed size Bl, similar to our prototype.

In Figure 5.2(a), we depict the average throughput, when a separate read() call is invoked

for each buffer block corresponding to a request. We vary both the block size and the size of

the request. When the block size increases from 4KB to 64KB, disk throughput changes by a

factor of three across different request sizes. When the request size varies between 64 KB and

4 MB for a particular block size, the throughput increases by more than a factor of two.

In Figure 5.2(b) we repeat the previous measurements by using the readv() system call

instead. It takes as parameters the pointer to an array of address-length buffer descriptors,

along with the size of the array. In most systems, the array size is limited to a small number of

buffer descriptors (e.g. IOV MAX = 16 in AIX, Solaris). For each I/O request, the required

number of readv() calls is used, with the array entries initialized to the address and length of

each buffer block. Although we expected improved performance due to the increased amount of

information supplied with each readv() call to the host system, the measured throughput was

less than half of what we measured with read(). Proper explanation for this would probably

require internal knowledge of the AIX device drivers that we don’t have. An additional limit is

also imposed on the I/O performance due to the small value of the IOV MAX.

In Figure 5.2(c), we repeated the previous experiments by using only a single read() call

for each request, similarly to the way I/O requests are served in our prototype. This policy

requires contiguity at the virtual address space, without any control on the physical addresses of

the underlying pages. Still, it is remarkable how the sensitivity to the block size Bl disappears.

Note that the achieved performance is only slightly higher than that of figure 5.2(a) with large

blocks. However, the block size itself cannot be arbitrarily large; otherwise the benefit from

multiplexing requests of different sizes drops, which eventually reduces the number of accepted
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streams (see also Chapter 6). Since the average size of the disk transfers is about 625,000 bytes

in our MPEG-2 clips, from these experiments we can expect the disks to operate at average

throughput higher than 11 MB/s, which is consistent with the minimum sustained rate 11.3

MB/s advertised in the disk specification.

We conclude (for this system) that contiguity in the buffer space allows a relatively small

block size to be chosen that guarantees both high number of streams and efficient disk transfers.

This simplifies the performance tuning of the system. One disadvantage is the complexity

introduced by having to manage buffer ranges instead of fixed buffers. In addition, buffer space

external fragmentation requires a number of buffers to remain unused (no more than 10-15%

of the total buffer space, in our experience).

5.4.3 Contiguity of Disk Space Allocation

Arguably, disk access efficiency would improve if the disk space corresponding to each request

were allocated contiguously, requiring a single disk head movement instead of a maximum of two

incurred by stride-based allocation. We investigate this issue by measuring the disk bandwidth

utilization when retrieving streams allocated on a disk using different stride sizes, while still

keeping the stride size larger than the stream requests in a round (as per our original constraint).

As was explained before, the stream strides are approximately uniformly distributed across the

cylinders of the disks in order to prevent disk geometry biases.

Figure 5.3 shows the measured bandwidth utilization on a single disk configuration when

retrieving different streams. The achieved stream throughput is based on the resource reserva-

tions of Section 3.4, and remains the same across different stride sizes. The system load was set

equal to ρ = 80%, and the statistics were gathered over a period of 2,000 rounds after an initial

warmup of 500 rounds. One important observation from these plots is that disk utilization

drops as the stride size is increased from 2 MB to 16 MB. This is not surprising, since a larger

stride size reduces disk head movements, and improves disk efficiency overall.

However, Figure 5.3 shows that the total improvement in disk utilization does not exceed

2-3%. This percentage does not justify using larger strides, and increasing the unused stor-

age space at the last stride of each stream. More importantly, it indicates that stream disk

accesses are dominated by useful data transfers rather than mechanical overhead. Generally,
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Figure 5.3: Increasing the stride size from 2 MB to 16 MB reduces only marginally (2-3%) the disk bandwidth

utilization across different stream types. Therefore, the expected benefit from either large strides, or contiguous

disk space allocation, would be limited. A single-disk configuration was used with load ρ = 80%, lookahead

factor Fl = 1 and a degenerate version of Variable Grain Striping for one disk.

in an environment of multiple streams striped across several disks, the expected benefit from

contiguous disk space allocation would be limited. Reduction in disk actuator overhead as a

result of technology advances will only make this argument stronger.

5.4.4 Resource Reservation Efficiency

After the previous study of buffer and disk space allocation parameters, we fix the buffer block

size to Bl = 16KB and the stride size to Bs = 2MB. In a system with 2 disks and 64 MB buffer

memory, we compare the reserved and measured resource utilizations across different stream

types. We set the system load to 80%, use the Variable Grain Striping, and gather statistics

for a period of 2,000 rounds after a warmup of 500 rounds. Further increasing the load would

not increase the system utilization, unless stream smoothing were used as we show later. The

average number of active streams in the above measurement period was roughly between 20

and 25 depending on the stream type.

The measured busy time in most rounds was less than or within a few milliseconds of the

total disk time reserved. In only a small percentage of rounds (less than 1%) the discrepancy

would be higher, and this is hard to avoid completely, due to mechanical and other kinds of

unexpected overhead. However, all the discrepancies were limited enough to be hidden by
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Figure 5.4: In a two-disk configuration with load ρ = 80%, the measured disk utilization is balanced between

the two disks. On each disk, the reserved disk utilization bounds relatively tightly (is only higher by about 5%)

the measured disk utilization.

the client with an extra round added to the playback initiation latency. Other than that,

we got stable prolonged system operation at high loads without any observed problems. The

corresponding processor utilization hardly exceeded 5% on our SMP machine. (We expect the

processor utilization to be higher when network protocol processing is included.)

In Figure 5.4, we illustrate the fraction of the measurement period, during which each of the

two disks was busy, and the corresponding fraction of reserved time. We notice that the load is

equally balanced across the two disks. (This observation remained valid when striping streams

across larger disk arrays as well, which has important scalability implications.) In addition,

the reserved busy fraction does not exceed by more than 5% the corresponding measured.

This allows the admission control procedure to successfully offer quality of service guarantees,

without disk bandwidth underutilization.

The reservation of disk access time assumes that two disk head movements are required for

serving each stream request to a disk. In fact, a more accurate approximation of the required

number of seeks and rotations would take into account the ratio of the average stream request

size over the stride size. However, we prefer using the more pessimistic two head movements,
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because it allows tolerance of unpredictable mechanical delays. This makes the system operation

more stable, without significant waste of disk bandwidth.

Each of the buffer blocks allocated for a data transfer is marked busy at the beginning of

the round when the disk access occurs. It is not released until its last byte is sent over the

network, in some subsequent round. On the other hand, resource reservation during admission

control reserves the length of each buffer block for the entire duration of the rounds that it

spans. In the particular experimental setup used here, no network transfers occur, essentially

simulating an infinite bandwidth network. Fast network transfers allow early release of buffer

blocks at the beginning of the round of the last-byte network transfer. Slower network transfers

can delay block releases until the end of the round of the last-byte network transfer. In general,

depending on the speed of the network subsystem and the network scheduling policy, we expect

the measured buffer utilization to lie somewhere between the half and the total reserved buffer

space.

5.5 Summary

In this chapter, we described the hardware features of our experimentation platform and the

set of streams that we used in our measurements. In addition, we described our method for

evaluating the performance of media servers. We proceeded with a study of basic system

parameters that control the round length, the contiguity of the buffer space, the contiguity of

the disk storage space, and resource reservation efficiency.



Chapter 6

Comparative Study of Disk Striping

In the present chapter, we examine the effects of the system load and the lookahead distance

parameters on the system performance, before deciding on particular values of these parameters

that we should use in the rest of our study. Subsequently, we compare the throughput and

scalability of alternative disk striping policies. We demonstrate that the number of streams

supported by the system scales linearly with the number of disks, while the striping policy

can affect significantly the system throughput. With reasonable technology projections, our

conclusions remain valid in the foreseeable future.

6.1 Study of Fixed-Grain Striping

We begin with a study of the Fixed-Grain Striping. An important feature of this method is the

ability to control the disk access efficiency through the choice of block size, Bf . As the block

size is increased, a larger part of each access is devoted to data transfer rather than mechanical

movement overhead. When a stream requests more than one block from a particular disk during

a round, a maximum of two contiguous accesses are sufficient with the stride-based disk space

allocation we used.

As shown in Figure 6.1, the number of active streams with sixteen disks and the mixed

workload increases linearly as the load, ρ, increases from 10% to 50%. At loads higher than

50%, the number of streams that can be supported no longer increases. Not surprisingly, the

48
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Figure 6.1: The sustained number of active streams with Fixed-Grain Striping flattens out at loads higher

than 50% using a block size Bf = 327, 680 with sixteen disks and the mixed workload. Changing the lookahead

factor Fl from 1 to 30 increases the number of streams by less than 5%.
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Figure 6.2: For Fixed-Grain Striping with Bf = 327, 680, sixteen disks and the mixed workload, the total

number of rejected streams over the total number of accepted during the measuring period. The ratio increases

linearly as the load exceeds 50%, and changes by less than 20% as the lookahead factor Fl is increased from 1 to

30.

additional load beyond 50% translates into a corresponding increase in the number of rejected

streams (Fig. 6.2). Since increasing the lookahead factor from 1 to 30 improves the number

of streams that can be supported only marginally, for the rest of our experiments we set the

lookahead factor Fl to 1.

This corresponds to a lookahead distance of less than 10 rounds, for a system of sixteen

disks operating at load ρ = 80%, and half-hour clips of about 1GByte each. The total disk

bandwidth available in the system is equal to 11, 300, 000×16 bytes/s. If we divide that by the
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Figure 6.3: The number of active streams with Fixed-Grain Striping at different values of Bf . At both load

values 40% and 80%, a maximum number of streams is achieved at Bf = 327, 680. The experiments have been

done over a range of Bf between 32, 768 and 1, 048, 576 at steps of 32, 768. Sixteen disks have been used with

the mixed workload.
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Figure 6.4: The maximum (Max Rsrv) and average (Avg Rsrv) disk access times reserved for a specific disk

(Disk 0) in each round during the measuring period. Also, the maximum difference (Avg Diff) is shown between

the reserved access times across all the disks in each round, averaged over the measuring period. Three different

block sizes are tried with sixteen disks and the mixed workload at load ρ = 80%.

average stream size 1.1 ·109 bytes, we get the maximum arrival rate that can be handled by the

system λmax = 0.164 streams/s. The corresponding lambda at load ρ = 80% becomes equal

to λ = ρ × λmax = 0.13 streams/s. Therefore, with Fl = 1, the lookahead distance is equal to

Hl = Fl ×Hbasic
l = d 1

λe = 8 rounds.

For load values ρ = 40% and ρ = 80%, we measure the number of active streams as the block

size increases from Bf = 32KB to Bf = 1, 024KB bytes at steps of 32 KB. As can be seen from
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Figure 6.5: As the number of disks takes values 8, 16 and 32, the maximum and average reserved access

time for disk 0 (these values are respectively similar for the rest of the disks) remain almost the same. This is

despite the corresponding increase in the maximum difference between reserved access times across the disks.

The Fixed-Grain Striping policy is used on sixteen disks with mixed workload at load 80%.

Fig. 6.3, at load 80% the number of streams increases until Bf becomes approximately equal

to 320KB. With larger block sizes it drops. A similar behavior is noticed at 40%, although the

variation in the number of streams is much smaller across different block sizes.

The Admission Control mode that is used for the above experiments allows also gathering

of statistics on system resources reserved during the admission control process. In particular,

Fig. 6.4 depicts the maximum and average access time Tdisk(i, k) reserved during the measuring

period 3, 000 ≤ i < 9, 000 for a particular disk (k = 0). A sixteen disk configuration is used with

load ρ = 80%. While the maximum time remains close to 100% across different block sizes, the

average time drops from about 90% at Bf = 32KB to less than 50% at Bf = 1, 024KB.

With the round time set to 1 sec, the average time (normalized by the round time) corre-

sponds to the expected disk utilization and varies depending on the number of disks accessed for

a stream every round. Part of it is actuator overhead and decreases as the block size becomes

larger. On the other hand, the maximum difference in reserved access times among different

disks in a round (Avg Diff in Fig. 6.4) increases on average from almost zero to above 60%

with increasing block size Bf .

Conclusions similar to the above affect the choice of the block size that maximizes the

number of streams, and confirm results from previous studies (Shenoy and Vin 1997). However,
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Figure 6.6: The sustained number of streams is measured using the Fixed-Grain Striping policy with a block

size Bf that maximizes the number of streams. At load ρ = 80%, the streams increase almost linearly from 39

to 550 as the number of disks increases from 4 to 64. For ρ = 40%, there is a corresponding increase from 30

to 505. With Variable-Grain Striping instead, the number of streams increases from 48 to 786 at ρ = 80%, and

from 30 to 530 at ρ = 40%.

we also found that the average reserved time (shown in Fig. 6.4 only for disk 0) remains

about the same (within 2%) across a disk array. Thus, the access load, on average, is equally

distributed across the disks, despite variations from round to round. Furthermore, as the

number of disks increases, the average time drops only slightly from 69% with 8 disks to 67%

with 16 and 66% with 32 disks (Fig. 6.5). This implies that the useful capacity of the system

increases almost linearly as more disks are added.

We repeated the above measurements varying the number of disks from 4 to 64 (Fig. 6.6).

The block size Bf , that maximized the number of streams, was found to remain at Bf = 320KB.

At 80% load, the number of streams that could be supported increased from 39 with 4 disks to

144 with 16 disks and 550 with 64 disks. This is within 9-14% of what perfectly linear scalability

would achieve. With the load at 40%, the number of streams increased from 30 with 4 disks to

505 with 64 disk, thus reflecting the improved capacity of the system with increased number of

disks at low loads. At load ρ = 40%, we see a slightly superlinear increase of about 4%, which is

less than the relative statistical error γ = 5% that we allowed in our experiments. One possible

explanation for this behavior is the statistical error, which was higher at low loads and small
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Figure 6.7: The sustained number of active streams with Variable-Grain Striping flattens out at loads higher

than 70%. Changing the lookahead factor Fl from 1 to 30 increases the number of streams less than 5%. Sixteen

disks are used with the mixed workload.

number of disks. Another possible reason is the increased statistical benefit of multiplexing

requests from a larger number of streams across a larger number of disks.

6.2 Comparison with Variable-Grain Striping

In the previous section, we studied the behavior of Fixed-Grain Striping. We found that with the

mixed workload the number of streams is maximized at Bf = 320KB across different number

of disks and system load values. In the present section, we study Variable-Grain Striping with

respect to scalability. This is done for first time to the best of our knowledge (Anastasiadis

et al. 2001a).

In Fig. 6.7, we show the performance of Variable-Grain Striping on sixteen disks as the load

increases from 10% to 100%. The number of streams grows linearly as the load increases up to

70%. This is significantly higher than the 50% load, where Fixed-Grain Striping flattened out

(Fig. 6.1). Loads higher than 70% with Variable-Grain Striping only increase the number of

rejected streams as shown in Fig. 6.8. As before, a lookahead factor value of Fl = 1 attains

more than 95% of the system throughput, and that is the value that we will use.

In Figure 6.9, we depict the reserved disk access time per round. As the number of disks

increases, the average reserved time increases from 83% with 8 disks, to 84% with 16 disks, and

85% with 32 disks. We also measured the maximum number of sustained streams from 4 to 64
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Figure 6.8: The total rejected streams over the total accepted during the measuring period. The ratio increases

linearly as the load exceeds the 70% value, and changes by no more than 10%, as the lookahead factor Fl varies

between 1 and 30. Sixteen disks are used with the mixed workload.
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Figure 6.9: As the number of disks takes values 8, 16 and 32, the maximum and average reserved access

time in Disk 0 (the values are respectively similar for the rest of the disks) remain almost the same. This is

despite the corresponding increase in the maximum difference between reserved access times across the disks.

The Variable-Grain Striping policy is used on sixteen disks with the mixed workload at load 80%.

disks (Fig. 6.6). At a load of 80%, the number of streams increases from 48 with 4 disks, to

203 with 16 disks and 786 with 64 disks. Thus, as the number of disks increases, the number

of streams remains within 3% of what perfectly linear scalability would achieve. In addition,

the advantage of Variable-Grain Striping over Fixed-Grain Striping increases from 23% with 4

disks to 43% with 64 disks. To the best of our knowledge, this is the first scalability analysis

of the Variable-Grain Striping policy.

A straightforward way of calculating the maximum theoretical capacity of the system is to

divide the total disk bandwidth of the server by the average transfer bandwidth required by
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Figure 6.10: The advantage of Variable-Grain Striping over Fixed-Grain Striping varies among 38% in Science

Fiction, 46% in Music Clip, 43% in Action, 49% in the Talk Show, 50% in the Adventure, and 11% in the

Documentary. The block size shown for Fixed-Grain Striping was found to maximize the number of streams,

over a range of block sizes between 32 KB and 1,024 KB with step of 32 KB. The load was always set equal to

80%.

a stream. It should be made clear that this is not a very tight upper bound since it ignores

both the disk access overhead and the transfer size variability of variable bit-rate streams. The

actual disk bandwidth utilization that more reallistically represents the efficiency of the system

is measured using simulated disks in the next section. Possible approaches for improving it

are investigated in the next chapter. Disk bandwidth utilization measurements with hardware

disks have been presented previously (Chapter 5).

From table 5.1 the transfer bandwidth of an individual disk can be taken equal to 11.3MB/s,

while from Table 5.2 the average transfer bandwidth of a stream is equal to 0.624MB/s. There-

fore the maximum capacity of the server cannot exceed 18 concurrent streams with one disk, 72

streams with 4 disks and 1158 streams with 64 disks. By dividing the measured throughout of

the system with the maximum capacity that we calculated, we find that Fixed-Grain Striping

does not achieve more than 44% of the maximum capacity with 64 disks, while Variable-Grain

Striping gets close to 68%. They are both less than 100% due to transfer size variabilities in

the streams and the simplifications in the calculation of the upper bound.

In Fig. 6.10, we consider individual stream types in more detail. As the content type changes
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Figure 6.11: The reserved disk time statistics (Disk 0) are no more than 8% higher than the measured access

time statistics using the detailed Seagate Cheetah ST34501N model of Ganger et al (ρ = 80%).

from Science Fiction to Documentary and the variation in data transfers correspondingly drops,

the block size needs to be larger in order to maximize the performance of Fixed-Grain Striping.

However, the performance remains about the same for the five stream types, and increases only

with the Documentary stream. In contrast, Variable-Grain Striping manages to transform even

minor decreases in data transfer variation into improved performance. Overall, Variable-Grain

Striping maintains an advantage over Fixed-Grain Striping between 11% and 50%.

The explanation for the performance advantage of Variable-Grain Striping over Fixed-Grain

Striping is two-fold. First, Variable-Grain Striping achieves disk access efficiency by accessing

only one disk for a stream during each round. Second, by allowing variability in the data

request sizes of different streams, there is a multiplexing effect that can hide disk access delay

peaks from individual streams. Although improved disk access efficiency can also be achieved

by using Fixed-Grain Striping with large blocks, it will not be as efficient as Variable-Grain

Striping because the multiplexing benefit is lacking.

6.3 Validation in Simulated Disk Mode

In order to keep the computation time reasonable, the previous experiments were conducted

with our system in Admission Control mode, where playback requests arrive leading to cor-

responding resource reservations, but without actual time measurement of the individual disk
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transfers. In the present section, we compare the statistics of the disk time resource reservations

with the statistics gathered over the access times of all individual data transfers involved, using

the DiskSim representation of the Seagate Cheetah disk (Ganger et al. 1999). A two-disk array

model is used with each disk attached to a separate 20MB/sec SCSI bus, and no contention

assumed on the host system bus connecting the two SCSI buses. The statistics are gathered

during 6,000 rounds after a warmup period of 3,000 rounds, as before. The mixed workload

is used with average number of active streams 21 and 23 for Fixed-Grain and Variable-Grain

Striping, respectively, corresponding to 80% load.

As can be seen from Fig. 6.11, in both the average and maximum case, the reserved disk

time is no more than 8% higher than the corresponding measurements using the detailed disk

model of Ganger et al. The difference can be attributed to the fact that the reservation assumes

a minimum disk transfer rate and ignores on-disk caching. Practically, the achieved accuracy in

the predicted disk access times during resource reservation is adequate. In fact, any extra disk

geometry information that would be required to improve it is not readily available in commercial

disk drives (Worthington et al. 1995).

6.4 Effect of Technology Trends

To project disk technology improvements for the foreseeable future, we extend compound growth

rates from the past linearly into the future (Table 6.1). In particular, we assume 30% increase

in internal disk transfer rate per year, and 23% decrease in seek distance (Ng 1998). The full

seek time depends linearly on seek distance, so the decrease is also 23%. However, we assumed

decrease of 12% per year for the track seek time, which is dependent on the square root of the

seek distance (among other factors more complex to project including settle time). Finally, we

assume a rotation speed increase of 12% per year (Ruemmler and Wilkes 1994). We presume

that stream types and sizes will remain the same. This is a conservative projection, ignoring

potential demand for higher resolution and more content rich streams.

In our experiments so far, we compared Fixed-Grain Striping to Variable-Grain Striping,

which is a special case of Group-Grain Striping at G = 1. With current disk technology,
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Figure 6.12: With reasonable technology projections, two years into the future Group-Grain Striping (general-

ized Variable-Grain Striping) maintains an advantage of 35% over Fixed-Grain Striping (from 41% today). The

corresponding benefit in five years is no less than 29%. The shown values of Bf and G were found to maximize

the throughput of the two policies respectively.

Disk Parameter Today 2 Years 5 Years

Min Transfer Rate (MB/sec) 11.3 19.10 41.92

Max Seek Time (msec) 18.2 10.74 4.91

Track Seek Time (msec) 0.98 0.76 0.51

Avg Rotation Latency (msec) 2.99 2.38 1.70

Table 6.1: Projection of disk parameter changes in two and five years into the future.

having G = 1 maximizes the number of streams. But as the disk access time drops, we found it

beneficial to increase G, so that G rounds worth of stream data are transferred in a single round.

This essentially reduces the amount of time spent on disk head overhead during each round,

without negatively affecting the initiation latency or the buffer requirements of the streams, as

increase of the round length would do (see Section 5.4.1).

Specifically, when using the mixed workload, we found that two years into the future, the

number of streams that could be supported with Group-Grain policy at G = 2 increases by

35% when compared to Fixed-Grain Striping. Five years into the future, the corresponding

benefit of Group Grain Striping at G = 3 remains at 29%. Thus, under reasonable assumptions

about technological improvements, there are significant performance improvements when using

Group-Grain Striping instead of Fixed-Grain Striping.
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6.5 Summary

In this chapter, we demonstrated that the supported number of streams scaled almost linearly

as the number of disks increased with Fixed-Grain Striping. The disk striping scalability is far-

ther improved with Variable-Grain Striping, which outperforms Fixed-Grain Striping by 41%

for mixed stream workload and up to 50% for individual stream types on sixteen disks. With a

reasonable technological projection based on previous trends, we also show a significant advan-

tage of Group-Grain Striping (generalized Variable-Grain Striping) over Fixed-Grain Striping

two and five years into the future.



Chapter 7

Performance Study of Server-Based

Smoothing

In this chapter, we introduce a stream smoothing algorithm that for its operation relies only

on the buffer space available at the server side. The algorithm accepts as input a specification

of the data amount that should be sent to the client over time. In order to prevent excessive

smoothing from exhausting the available buffer space, data prefetching is applied as long as the

proportion of server buffer required by each stream does not exceed the corresponding decreased

proportion of the required disk bandwidth. Thus, the smoothing process is adjusted according

to the total resources available in the server configuration.

7.1 The Server Smoothing Algorithm

7.1.1 Outline

Previous studies have pointed out the potentially low disk utilization and system throughput

achieved when retrieving variable bit-rate streams, and the need for appropriately prefetching

data into the server buffers (Makaroff et al. 1997; Reddy and Wijayaratne 1999). A similar

utilization problem was also studied in the context of network links carrying variable bit-rate

streams, where it was proposed to smooth bit-rate peaks along a stream by prefetching data

into client buffers (Feng and Rexford 1997; Salehi et al. 1996). It was shown that such an

60
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approach can improve bandwidth utilization in both disks and network links, but is dependent

on the memory configuration of individual clients.

The low utilization problem occurs because the aggregate bandwidth requirements of con-

currently served streams can be significantly higher at particular time instances than on average,

due to variability. However, the admission control process bases its decisions on peak aggregate

demand when considering new stream requests. Of course, the problem would disappear if the

resource requirements from different streams were constant over time. Smoothing techniques

attempt to achieve a similar effect using data prefetching. Thus, the maximum resource re-

quirements become equal to (or close to) the average, and the number of accepted streams is

maximized.

Here, we consider smoothing out disk bandwidth peaks by prefetching stream data into

server buffers. One crucial issue with disk data prefetching is how to maintain an appropriate

balance between disk bandwidth and server buffer space usage. Too aggressive prefetching

can limit the number of concurrent streams that can be supported because of excessive server

buffer usage Makaroff et al. 1997. Existing client-based smoothing algorithms do not have this

problem, due to their implicit assumption of a fixed available client buffer size. The client buffer

space need not be multiplexed among different streams as is the case when buffering is done

at the server. Server-side prefetching addresses disk bandwidth and not network utilization.

However, our scheme accepts as input a specification of the quantity of data that should be sent

to the client over time. Thus, its operation can be complemented with client-based smoothing

techniques for cases where clients have sufficient buffer resources.

We propose a stream scheduling procedure that specifies for each stream both the variable

server buffer and disk bandwidth requirements over time. A disk block b originally scheduled

for round i may be prefetched in a previous round j only if: i) the disk bandwidth requirement

in round j with the prefetched block does not exceed the original disk bandwidth requirement

of round i, and ii) the fraction of server buffer required in each of the rounds j up to i−1, after

prefetching block b, may not exceed the fraction of disk bandwidth required in round i without

b. The first condition is necessary in order for the prefetching to have a smoothing effect on

the disk bandwidth requirements over time. The second condition is a heuristic that we apply
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in order to prevent exhaustion of the server buffer. Both conditions are applied to individual

streams, and we experimentally study their effect when serving multiple streams concurrently.

Knowing the data amount that needs to be retrieved from the disks during stream playback is

important information that can be used during stream storage. Appropriate striping methods

that take advantage of this information have been previously shown to achieve significantly

increased system throughput with respect to striping methods of fixed-size block (Anastasiadis

et al. 2001a). On the other hand, a retrieval sequence that is fixed a priori might ignore the

exact resource tradeoffs that occur during system operation, when different stream playbacks

are multiplexed. We evaluate later in detail the resource utilizations that are achieved with our

approach of using the retrieval sequence to determine the striping method.

7.1.2 Limitations of Previous Approaches

For several reasons, previous client-based smoothing algorithms are inadequate for solving the

server-based smoothing problem:

1. Unlike network transfer delays, disk access delays include mechanical movement overhead

and cannot be accurately expressed in terms of bit rates only.

2. The prefetching constraints that we use span resources of different types and measures

(e.g. access delays, data amounts) and it is difficult to describe them using data amounts

only. This is not a problem when the only constraint is the total buffer space available at

the client.

3. Our constraints are complex and can only be conveniently expressed as inequalities con-

tinuously evaluated during the execution of the algorithm. There is no obvious way to

represent them as fixed vectors initialized at the beginning of the algorithm.

Instead, we introduce a new smoothing algorithm that is more general than previous ones, and

gives more flexibility and expressibility in representing the required optimization conditions.
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7.1.3 Basic Definitions

We use a “smoothness” criterion that is based on Majorization Theory (Salehi et al. 1996;

Marshall and Olkin 1979). For any x = (x1, . . . , xn) ∈ Rn, let the square bracket subscripts

denote the elements of x in decreasing order x[1] ≥ · · · ≥ x[n]. For x,y ∈ Rn, x is majorized by

y, x ≺ y, if:

k∑
i=1

x[i] ≤
k∑

i=1

y[i], k = 1, · · · , n− 1

and

n∑
i=1

x[i] =
n∑

i=1

y[i].

Then, we consider x smoother than y, if x ≺ y. Finally, we call a vector x ∈ Rn majorization-

minimal if there is no other vector z ∈ Rn such that z ≺ x.

From section 3.4, the disk time reservation for a disk transfer of X bytes is equal to:

Tdisk(X) = 2 · (TtrackSeek + Tavgrot) + X/Rdisk.

Before further explaining the algorithm, we introduce some definitions. Bdisk is the total server

buffer divided by the number of disks D. We assume that all buffers are equally accessible by

all the disks attached to each server node.

Definition 1 We define the Disk Time Proportion of X bytes, as the fraction of the round

time Tround that the disk time reservation Tdisk(X) occupies: Pd(X) = Tdisk(X)/Tround. We

define the Buffer Space Proportion of X bytes as the fraction of the Bdisk buffer space that

X bytes occupy in a round: Pb(X) = X/Bdisk. The Maximum Resource Proportion in round

i, is the maximum of the corresponding disk time and buffer space proportions in that round

max(Pd(Sd(i)), Pb(Sb(i))).

Definition 2 We define the Deadline Round for each block, as the latest round at which the

block can be accessed from the disk without incurring a real-time violation at the network

transfer. Then, with respect to a specific block, all rounds before the deadline round are

considered Candidate Rounds, and all those actually chosen for prefetching are called Prefetch

Rounds. All the rounds between the deadline and a prefetch round are called Shift Rounds.
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0. proc serverSmoothing

1. input : Ln, Sn[] ( =0 outside [1..Ld] ), Bl

2. output : Ld, Sd[], Lb, Sb[]

3. begin

4. blockQuantize(Ln, Sn[], Bl) (* see Figure 7.2 *)

5. for trnd : 0..Ln-1

6. if ( Pbuf (Sb(trnd)) < Pdsk(Sd(trnd)) )

7. repeat

8. tmin := trnd

9. Pmin := max( Pdsk(Sd(trnd)), Pbuf (Sb(trnd)) )

10. tprv := trnd − 1, prefFailed := false

11. while ( prefFailed = false AND tprv >= 0 )

12. Pprf = max( Pdsk(Sd(tprv) + Bl),

13. Pbuf (Sb(tprv) + Bl) )

14. Pshf = max( Pdsk(Sd(tprv)),

15. Pbuf (Sb(tprv) + Bl) )

16. (*check for max proportion decrease*)

17. if (Pprf < Pmin)

18. tmin = tprv, Pmin = Pprf

19. else if (Pmin < Pshf )

20. prefFailed := true

21. end-if

22. tprv := tprv − 1

23. end-while

24. if (tmin < trnd) (* update vectors *)

25. Sd(tmin) := Sd(tmin) + Bl,

26. Sb(tmin) := Sb(tmin) + Bl

27. for tprv := tmin + 1 .. trnd − 1

28. Sb(tprv) := Sb(tprv) + Bl

29. end-for

30. Sd(trnd) := Sd(trnd) − Bl

31. end-if

32. until (tmin >= trnd) (*prefetch search failed*)

33. end-if

34. end-for

35. end

Figure 7.1: The Server Smoothing algorithm generates majorization minimal disk sequence with the

disk bandwidth proportion bounding above the corresponding server buffer proportion.
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0. proc blockQuantize

1. input : Ln, Sn[] ( =0 outside [1..Ln] ), Bl

2. output : Ld, Sd[], Lb, Sb[]

3. begin

4. Sd[] := 0, Sb[] := 0

5. Ld := Ln, Lb := Ln + 1

6. totSn := 0

7. for trnd : 0..Ln

8. prvSn := totSn, totSn := totSn + Sn(trnd + 1)

9. (* we use function ceil() for the d e operation *)

10. Sd(trnd) := Bl · ( ceil(totSn/Bl)− ceil(prvSn/Bl) )

11. Sb(trnd) := Sb(trnd − 1) + Sd(trnd) - Sn(trnd − 1)

12. end-for

13. end

Figure 7.2: The blockQuantize procedure quantizes the disk transfers with respect to the logical block

size Bl.

The above definitions only affect the number of blocks accessed in each round, since stream

block accesses are done sequentially during playback.

Definition 3 We define as Maximum-Proportion Constraint, the requirement that the maxi-

mum resource proportion of the deadline round is no less than the maximum resource proportion

of the corresponding (if any) prefetch and shift rounds.

7.1.4 The Algorithm

In the rest of this section we describe an algorithm that receives as input a stream network

sequence Sn (and some particular server configuration), and generates as output a smoothed

disk sequence Sd. We show that the generated disk sequence is majorization-minimal under

the specified constraints. The generated disk sequence can be subsequently transformed into

a striping sequence Smd according to some disk striping method, such as the Variable-Grain

Striping.

The Server Smoothing algorithm of Figure 7.1 initially invokes the blockQuantize proce-

dure (see Figure 7.2) in order to generate disk and buffer sequences with disk data transfers
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quantized with respect to the logical block Bl. Network transfers are specified in byte gran-

ularity for increased flexibility (if necessary, they could be quantized too). Then, rounds of

the generated sequences are visited in increasing order starting from round zero. For every

logical block of the current round, previous rounds are searched linearly in decreasing order for

possible block prefetching. The search completes successfully when logical block prefetching

can reduce the maximum resource proportion of the current round to values higher than those

of the prefetch and shift rounds. This implies that the disk sequence can be smoothed out

without incurring buffer utilization peaks exceeding the disk utilization of the current round.

Otherwise, the block prefetching operation will not have any positive smoothing effect and the

search fails. Below, we show that the algorithm works correctly.

Lemma 1 The Server Smoothing algorithm chooses the prefetch round for each block in a

way that satisfies the following properties: i) no network transfer timing violation occurs, ii)

no maximum-proportion constraint violation occurs, iii) it has the lowest possible disk time

proportion, and iv) it is closest to the deadline round. Property (iii) prevails when in conflict

with property (iv).

Proof: The property (i) comes from lines 10-11,22 of the algorithm, which limit the range of

prefetching rounds to those preceding the current one. The property (ii) is due to lines 17,19,

which ensure that the maximum resource proportion of the deadline round is no less than that

of the prefetch and shift rounds respectively. The candidate round with minimal disk time

proportion (iii) is kept track of through variable Pmin in line 18. Finally, the closeness to the

deadline (iv) is controlled by the descending loop at line 22, and the strict inequality in line 17.

¤

Definition 4 If b1 ≥ · · · ≥ bn are integers and bi > bj , then the transformation b′i = bi − 1,

b′j = bj + 1, b′k = bk, for all k 6= i, j is called a transfer from i to j. 1

Lemma 2 (Muirhead 1903) If α1, . . . , αn, b1, . . . , bn are integers and α ≺ b, then α can be

derived from b by successive applications of a finite number of transfers.

1The term transfer that we borrow from the original definition (rfmu03), should not be confused with regular
data transfers.
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Proof: See Marshall and Olkin 1979, pg. 135.¤

In the presentation that follows transfer units correspond to logical blocks of size Bl as opposed

to individual bytes.

Lemma 3 The Server Smoothing algorithm produces disk sequence that satisfies the properties

of Lemma 1, and has no transfer that would violate them.

Proof: The algorithm is “greedy” and we will use induction on the network sequence length

Ln. The generated disk sequence trivially satisfies the lemma claim at Ln = 1, with round 0

to access the data from disk and round 1 to send the data over the network. We assume that

at Ln = k the claim is valid. We show that it is also valid for Ln = k + 1. Let us assume that

we get the sequence of the k first disk accesses 0 . . . k − 1 to satisfy the lemma claim, before

starting dealing with the disk access of round k. Due to the property (i) of Lemma 1, it is not

possible to schedule in round k, block accesses from the previous rounds. Therefore, the only

acceptable transfer of blocks that remains is moving blocks of the round k to previous rounds.

An exhaustive search is done in the while-loop of the lines 11-23 of the algorithm. Each of

the previous rounds is visited, and a record is kept of the earliest round that can prefetch a

block with minimal total disk time proportion from property (iii). Property (ii) guarantees no

violation of the maximum-proportion constraint. The above search is repeated by the repeat-

loop of lines 7-32 until no more transfers of logical blocks belonging to round k are possible.

(The decision to choose prefetch rounds closest to the deadline round, from property (iv), leads

to buffer occupancy minimization.) ¤

Theorem: 1 The Server Smoothing algorithm generates majorization-minimal disk sequence

that satisfies the properties of Lemma 1.

Proof: From Lemma 3, the disk sequence generated by the Server Smoothing algorithm

satisfies the properties of Lemma 1 and has no transfer that would not violate them. Then, from

Lemma 2, there is no other sequence that satisfies the properties of Lemma 1 and is majorized

by the disk sequence generated by the Server Smoothing algorithm. If such a sequence existed,

additional block transfers would be acceptable.¤
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Figure 7.3: Example of applying the Server Smoothing algorithm. We depict the disk time and buffer space

proportion in the system (a) before, and (b) after applying Server Smoothing. The maximum disk time proportion

drops from 11.5% to 8.7%, while the maximum buffer space proportion increases from less than 1% to 8.7%. The

Seagate ST34501 disk parameters are assumed and server buffer of 256MB per disk.

The computational complexity of the Server Smoothing algorithm is O(

∑Ln

i=1
Sn(i)

Bl
L2

n), where

Sn is the input network sequence and Ln is its length. Although it may be possible to reduce this

complexity, practically the execution completes in tens of seconds in our experiments on 133MHz

RISC processors with Bl = 16, 384, Ln = 1, 800 and
∑Ln

i=1 Sn(i) = 1.12 · 109. Since the schedule

generation is done off-line, the above execution time is acceptable. The higher computational

complexity with respect to O(Ln) of network smoothing algorithms (Salehi et al. 1996) is the

extra cost for avoiding the “hardwired” fixed client buffer constraint. The Server Smoothing

algorithm can generate majorization-minimal disk sequence with several buffer constraints,

including the fixed buffer of network smoothing algorithms as a special case.
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Figure 7.4: With the mixed workload and Variable-Grain Striping (with/without Server Smoothing), the

sustained number of active streams increases almost linearly with the number of disks. Although at system

load 50% all the submitted streams are accepted, at load 90% Server Smoothing increases the number of active

streams by about 10%. This benefit is maintained across different numbers of disks.

7.2 Study of Homogeneous Disks

We start with a study of disk arrays consisting of functionally equivalent disks. In Figure 7.3,

we depict the disk time and buffer space proportions in each round for a particular stream.

Without smoothing, the occupied buffer space is the minimum necessary for data staging dur-

ing disk and network transfers. With Server Smoothing, data are prefetched into the server

buffer according to the maximum-proportion constraint. This keeps the maximum buffer space

proportion constrained above by the maximum disk time proportion (8.7% in this example).

In Figure 7.4 we can see the sustained number of active streams achieved at different sys-

tem loads and array configurations of size from 4 to 64 disks using the mixed workload. In

all the cases shown, the stream data have been striped according to the Variable-Grain Strip-

ing method. The Server-Smoothed plots show the performance benefit of applying the Server

Smoothing algorithm assuming 256MB of available server buffer space for each extra disk (we

try later other server buffer sizes). Although at moderate load ρ = 50% plain Variable-Grain

Striping allows all stream requests to be accepted, at a higher load ρ = 90% the Server Smooth-

ing can improve throughput by over 10%. The corresponding rejection rate (not shown) is 25%
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Figure 7.5: The advantage of Server Smoothing when applied to Variable Grain Striping can exceed 15%

(Action) depending on the stream type. The load was set to 90% on sixteen disks and 256MB per disk were

assumed.

with Server Smoothing, and 41% with plain Variable Grain Striping, at 90% load. With 64

disks, the Server Smoothing algorithm achieves 875 concurrently supported streams at 90%

load. This is about 75% of the maximum theoretical capacity of the system, as defined in the

previous chapter.

From results for individual stream types in Figure 7.5, we find that the benefit of Server

Smoothing depends on the variability of data transfers across different rounds. Thus, although

smoothing adds no benefit for streams with negligible variability (Documentary), as variation

becomes higher, the increase in the number of streams can exceed 15% (Action).

In Figure 7.6, we show the average disk time Tdisk(i, k) that was reserved on a particular

disk (k = 0) during the measurement period 3, 000 ≤ i < 9, 000. While in most stream types the

average disk time hardly exceeds 80% of the round time with plain Variable-Grain Striping, it

consistently approaches 90% and in several cases exceeds 93% (Action, Music Clip, Talk Show)

when Server Smoothing is applied. This is remarkably high when compared to the 96% average

time corresponding to Documentary with inherently very low variability of data transfer sizes

across different rounds. The reason that we do not achieve reservation of disk busy time equal

to the entire round duration (100%), is due to the large size of the individual disk transfer

requests that cannot fit in the remaining fraction of the round duration. Another reason is that



Chapter 7. Performance Study of Server-Based Smoothing 71

0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 R
ou

nd
 T

im
e 

( s
ec

 )

Disk Time Requirements

Science Fiction

M
usic Clip

Action

Talk Show

Adventure

Documentary

Variable Grain Server Smoothed

16 Disks

Figure 7.6: With sixteen disks and 90% system load, the average disk time reserved each round increases from

less than 80% to over 90% with Server Smoothing and server buffer 256MB per disk. Although the disk time

shown corresponds to one of the disks (Disk 0) it was similar (within 2%) across the disks of the array.
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Figure 7.7: With buffer space (per disk) set to 64MB, more than half of the total benefit of Server Smoothing

can be achieved (see also Figure 7.5). Increasing the buffer space to 256MB further improves the number of

streams in Science Fiction and Action types although at a diminishing degree.

transfer size variability is not completely eliminated, when smoothing is applied under buffer

constraints.

Statistics gathered across the different stream workloads showed that the average occupied

proportion of the available buffer space was about 50%, and the maximum hardly exceeded 60%

at 90% load. Although in individually smoothed streams the buffer space requirement is allowed

to reach that of disk bandwidth (in terms of proportions), the aggregate buffer space requirement
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turns out to be lower. This is a result of the way resource requirements of individual streams are

multiplexed during system operation. The original constraint of preventing excessive prefetching

from overflowing the available buffer space is still satisfied. Further increasing the aggregate

buffer demand, without the buffer becoming a potential bottleneck in the system, would require

incorporating into the algorithm information about the way stream requests are multiplexed.

We investigated this issue by allowing the buffer requirement of individual streams to exceed

the corresponding disk bandwidth requirement (in terms of proportions) by a specific percentage

(10%, 20% and 50%). As expected, this increased accordingly the aggregate buffer space

utilization. The number of accepted streams did not increase significantly though, and remained

within 1-2% of what we report here. Allowing the stream buffer requirements to increase further,

would only reduce the number of accepted streams due to shortage of server buffer space.

In order to explain intuitively the low sensitivity of the smoothing effect to the available

buffer space, we should look at the shape of the disk bandwidth and server buffer profiles in

Figure 7.3. We notice that server smoothing generates a disk bandwidth profile consisting of flat

areas, and a server buffer profile consisting of triangular peaks. Multiplexing of buffer profiles

corresponding to different (or time-shifted) stream requests can hide such peaks. As a result

the aggregate buffer requirements are lower than the sum of those of the individual streams.

On the other hand, superimposing disk bandwidth profiles of different (or time-shifted) stream

requests leads to aggregate requirements that are the sum of the requirements of individual

streams. Due to the particular shape of the disk bandwidth profiles, further reduction of the

maximum disk bandwidth requires significant increase in the maximum available buffer space

(as shown in Figure 7.7). In other words, the peaks of the buffer will need to move considerably

higher in order to keep in memory any additional prefetched blocks. This explains the relative

insensitivity of the system throughput to small variations in the upper bound of the buffer

space allowed to be used by individual streams.

In addition, we can conclude from Figure 7.7 that more than half of the Server Smoothing

benefit is achieved with server buffer size as low as 64MB per disk. We still find our assumption

of 256MB server memory (per disk) in the smoothing process to be reasonable though. The

additional performance benefit from extra memory is sustained across different system sizes as
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Figure 7.8: Example of stream Server Smoothing, in disk array configuration with Seagate and HP disks in

alternating order. The much lower bandwidth of the older HP disk model leads to disk time proportion exceeding

40% in some of the rounds. When Server Smoothing is applied, disk transfers are appropriately adjusted to

smooth out the peaks and keep the maximum reservation below 13%. At the same time, the maximum server

buffer proportion is constrained to never exceed the maximum disk time proportion.

has been shown in Figure 7.4, at a purchase and administration cost of server memory that is

only fraction of what is required for high-end disk drives.

7.3 Study of Heterogeneous Disks

It has traditionally been assumed that disk arrays consist of homogeneous disks, presumably

in order to keep the system complexity manageable. With the scalability of stream striping

demonstrated recently (Bolosky et al. 1996; Anastasiadis et al. 2001a) and the sequential access

of stored video making things somewhat simpler, it is interesting to investigate the possibility

of combining different disk types for incrementally creating larger disk arrays. With fast disk

technology advances, newer disk models are expected to achieve higher transfer rates and larger

storage capacities.

The expected ratio between disk capacity and bandwidth increases and disk accesses are
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HP-C3323

Data Bytes per Drive 1,052,491,776 Track to Track Seek < 2.5 msec

Data Sectors per Track 72 to 120 Maximum Seek 22 msec

Data Cylinders 2910 Rotational Latency 5.56 msec +/- 0.5%

Data Surfaces 7 Internal Transfer Rate

Zones 8 Inner to Outer Zone Burst 4.0 to 6.6 Mbytes

Buffer Size 512 Kbytes Inner to Outer Zone Sustained 2.8 to 4.7 Mbytes

Table 7.1: Features of the HP SCSI disk that is included in the experiments for heterogeneous environments.
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Figure 7.9: With the mixed workload and plain Variable-Grain Striping, the sustained number of active streams

remains the same as the load is raised from 50% to 90%. Instead, when Variable-Grain Striping is combined

with Server Smoothing the number of streams increases by a factor of 2 at 50% and more than a factor of 3 at

90% load, when compared to that achieved by plain Variable-Grain Striping. Server buffer space of 256MB per

disk has been assumed.

expected to become more significant over time (Gray and Shenoy 2000). In this section, we

study the case of striping stream data across heterogeneous disk arrays, with the objective of

maximizing the number of active streams by increasing the disk bandwidth utilization across

all the disks. This might lead to suboptimal storage capacity utilization, which, we assume, is

affordable given the current technology trends.

In our experiments, we assume disk arrays consisting of Seagate (Table 5.1) and older HP

disks in alternating order. The features of the HP disks are shown in Table 7.1. We note a
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Figure 7.10: Applying Server Smoothing on different stream types, can lead to an increase in the number of

streams by more than a factor of 3 at 90% load and server buffer 256MB per disk.

striking difference in the minimum internal transfer rate, which is 2.8MB/sec for the HP disks,

one fourth as much as the 11.3MB/sec of the Seagate disks. Such a difference only makes more

challenging the balancing of the system load. Although the experiments in this section assume

equal number of disks belonging to different disk types, we also tried other ratios in the number

of disk types with similar results.

We combined these particular models in the heterogeneous configuration because the cor-

responding simulation models are available in the DiskSim package for our validation (Section

7.4). The high bandwidth utilization achieved across the different disks means that when N

slow disks of bandwidth Rslow
disk are combined with N fast disks of bandwidth Rfast

disk they can

replace a number of fast disks equal to:

N + N × Rslow
disk

Rfast
disk

. (7.1)

In Figure 7.8(a) we depict an example of a stream striped across an heterogeneous disk

array. The lower transfer rate of the HP disks creates peaks of disk time proportion that can

exceed 40%. In order to alleviate this problem, we extend the Server Smoothing algorithm

to handle heterogeneous disks. In particular, we redefine the disk time Tdisk(X) and the disk

time proportion function Pd(X) to accept a second disk type argument k that specifies the

particular disk parameters to be used Pd(X, k) = Tdisk(X,k)
Tround

. During the operation of the Server
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Figure 7.11: The two leftmost bars of each stream type, show the average reserved disk time for the Seagate

(STN) and HP (HPC) disks, assuming plain Variable Grain Striping and 90% load. The lower transfer bandwidth

of the HP disk creates a bottleneck keeping the reserved disk time of the Seagate disk to less than 25% of the

round time. As is shown by the two rightmost bars though, with Server Smoothing both disk types attain average

disk time close to 90% of the round time.

Smoothing algorithm, the disk type k assumed in each round i can be derived using a simple

rule, such as k = i(mod D), where D is the total number of the disks. Finally, if Rk
disk is the

minimum internal transfer rate of disk k, the service rate definition of Equation 5.1 becomes:

µ = (Tround ·
∑D−1

k=0 Rk
disk)/Stot.

We applied the extended Server Smoothing algorithm to the stream example of Figure

7.8(a). The generated transfer sequence shown in Figure 7.8(b) had the buffer space proportion

bounded by the disk time proportion, as before. In addition the maximum disk time propor-

tion dropped from over 40% to less than 13%, after the transfer sizes across different rounds

were appropriately adjusted according to the available disk bandwidth. From Figure 7.3, the

corresponding maximum disk time proportion was about 8.7% in the homogeneous disk case.

Hence, in the heterogeneous case, the fact that half of the disks have much lower disk bandwidth

creates only moderately higher disk time demand after smoothing is applied.

In Figure 7.9, we can compare the performance of plain Variable-Grain Striping to that of

Variable-Grain Striping with Server Smoothing in a range of heterogeneous disks from 4 to 64.

Although the number of streams always increases almost linearly with the number of disks,
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Figure 7.12: With the server buffer (per disk) set to 64MB, most of the benefit of Server Smoothing can be

attained (see also Figure 7.10). Increasing the server buffer from 64MB to 256MB increases only marginally (less

than 5%) the sustained number of active streams.

Server Smoothing can achieve an advantage that exceeds a factor of 2 and 3 respectively at

loads 50% and 90%. The reason is that the limited disk bandwidth of the HP disks, prevents

the Seagate disks from attaining high bandwidth utilization without appropriate adjustment

of the disk transfers. A similar behavior is also demonstrated across different stream types in

Figure 7.10. With plain Variable-Grain Striping, the number of supported streams on sixteen

disks hardly exceeds 50; when Server Smoothing is added the number of streams gets close to

140.

In Figure 7.11, we depict the average time that the Seagate and HP disks are expected to be

busy respectively during each round. We show the statistics for the first two disks only, since

the statistics for the rest of the disks were respectively similar. As we see, the average time

that the Seagate disks are expected to be busy is less than 25% of the round time with plain

Variable-Grain Striping. The reason is the low bandwidth of the HP disks, whose corresponding

average time varies between 50% and 80%; it cannot get higher due to the relatively large data

requirements of the individual streams. When Server Smoothing is applied, a high average

reserved disk time that gets close to 90% is achieved across all the disks of the disk array. This

becomes possible with appropriate data prefetching that distributes data accesses across the

disks according to the bandwidth that they can support.

In the previous experiments we set the server buffer to 256MB per disk. However, as we can
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Figure 7.13: In an array of four disks, Seagate (STN) and HP (HPC) models are used in alternating order.

The average and maximum reserved and measured time is shown for the first two disks of the array with the

mixed workload at 90% load. On the STN disks, the reserved statistics are no more than 8% higher than the

measured. On the HPC disk, the corresponding difference can get up to 20%. The measurements have been

done using the detailed disk simulation models by Ganger et al.

see from Figure 7.12, 64MB per disk are enough to get most of the benefit of Server Smoothing

for the particular streams included in our benchmark.

7.4 Validation in Simulated Disk Mode

In order to keep the computation time reasonable, the previous experiments were conducted

with our system in Admission Control mode, where playback requests arrive leading to cor-

responding resource reservations, but without actual time measurement of the individual disk

transfers. In the present section, we compare the statistics of the disk time reservations with

the statistics gathered over the access times of all individual data transfers involved, using the

DiskSim representation of the Seagate ST-34501 and HP C3323A disks (Ganger et al. 1999). A

four-disk array model is used with the disk types in alternating order. Each disk is presumed to

be attached to a separate 20MB/sec SCSI bus, and no contention is assumed on the host system

bus connecting the SCSI buses. The statistics are gathered during 6,000 rounds after a warmup

period of 3,000 rounds, as before. The mixed workload is used with average number of active
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streams 9.74 for plain Variable-Grain Striping and 33.87 for Server-Smoothed Variable-Grain

Striping, respectively, corresponding to 90% load.

As can be seen from Figure 7.13, in both the average and maximum case, the reserved disk

time is no more than 8% higher than the corresponding measurements on the Seagate disk

model by Ganger et al. (Ganger et al. 1999). This gap can be attributed to the fact that

our disk time reservation assumes a minimum disk transfer rate and ignores on-disk caching.

The corresponding gap for the HP disks gets close to 15% with plain striping and 20% with

Server Smoothing. Possible reasons for the larger discrepancy of the HP disks are the increased

on-disk cache locality due to the smaller disk capacity, and the higher probability that only one

head movement is required with the smaller data transfers (smoothed case).

Practically, the achieved accuracy in the disk time predicted by the resource reservation is

adequate. In fact, to improve these estimates, it would probably be necessary to have extra

disk geometry information that is not readily available in commercial disk drives (Worthington

et al. 1995).

7.5 Summary

In this chapter, we introduced the Server Smoothing algorithm for variable bit-rate streams that

uses prefetching into the server buffers for smoothing out disk data transfers. Experimentation

with both homogeneous and heterogeneous disk arrays demonstrated that the average reserved

disk access time can exceed 90% of the round time across the different disks. A significant

benefit in the number of streams was sustained across different sizes of disk arrays that we

examined.



Chapter 8

Remaining System Operation Issues

In the present chapter, we discuss several issues related to the system operation. These include

the procedure of video stream acquisition and alternative approaches for tolerating disk and

node failures. In addition, we introduce techniques for resequencing data packets received by

the client, possible ways for reorganizing data during system expansion, and ideas for reducing

the computational cost of admission control. The treatment of these problems is by no means

exhaustive, and we leave for future work any further investigation and experimentation related

to them.

8.1 Acquiring Video Streams

Storage of media content into a network server is a basic operation that has to take place

before the actual playback service becomes possible. Service providers are expected to receive

the digital material either through a network connection, or recorded on some storage media

(e.g. tape or optical disc). For access flexibility, the media files can be temporarily transferred

to single hard disks attached to computer nodes, called here Source Nodes. In general, the

source nodes are different from the server components described previously.

Before striping the media files, the decoder corresponding to each media format has to

be used in order to identify the size of the individual media units (sound samples or video

frames) along each file. This information determines the data transfer requirements in each

80
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Figure 8.1: Stream data are temporarily staged in a source node disk. After the schedule descriptor

generation, transfers occur into the system disks through the transfer nodes.

round during playback. It can be transformed into an actual schedule descriptor according

to the target server configuration, the minimal client hardware supported, and the striping or

smoothing policy used. During recording, the schedule descriptor specifies the amount of data

that should be stored on each disk.

After the schedule descriptor becomes available, a recording request can be submitted to

the admission control module that will allow stream data transfer from the source node to the

transfer nodes of the server (Figure 8.1). Before recording starts, the required disk, network

and buffer resources have to be reserved in order for the system operation to proceed without

interruption. Depending on the resources that are available, stream recording can be done

faster, slower or at the same speed as the corresponding playback.

One challenge in the media recording process is time synchronization between the source

node and the transfer nodes. In order for the transfer schedule to be met, a specified amount of

data should be sent from the source node to each transfer node in each round. We can assume

that the mechanism used for synchronizing the transfer nodes can be extended to include the

source node. The time synchronization problem has been studied extensively during the last

decades in distributed systems, and several solutions are available that have been demonstrated

to achieve time accuracy within a few milliseconds between different computers (Mills 1991).
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8.2 Data Replication for Reliability

Despite recent improvements in the reliability of storage devices and computer systems, commer-

cial server installations are still expected to experience device failures due to the large number

of components that they involve. In fact, although the Mean Time To Failure of a modern disk

is estimated to be MTTFdisk = 1, 000, 000 hours, a practical combination of D = 256 such

devices reduces the corresponding MTTFarray to (Patterson et al. 1988):

MTTFarray =
MTTFdisk

D
= 162 days, (8.1)

when failure independence is assumed between different disks. The general problem of disk

array reliability has been studied extensively during the previous decade in the context of both

traditional database workloads and constant bit-rate streams (Holland and Gibson 1991; Chen

et al. 1994; Berson et al. 1995; Ozden et al. 1996; Gafsi and Biersack 2000). However, the

potential of improved performance that is introduced by variable bit-rate streams, makes it

interesting to consider any additional complications involved in that case for providing fault-

tolerant operation.

When designing data replication techniques for reliability, one basic objective is to minimize

the extra computation, storage and bandwidth requirements during normal and failed operation,

in comparison to the nonredundant case. If a device fails, the system load that would be

normally served by that device should be equally divided across the remaining components of

the system. We begin our study by considering one faulty disk, before we proceed with the

more general case of failures on entire transfer nodes or multiple disks.

8.2.1 Mirroring-Based Schemes

In the data replication technique called Mirroring, the data of each disk are replicated on one

or more different disks. When one disk fails, the corresponding data remains available by

retrieving replica data from the rest of the disks. The required storage space is roughly double

and the needed bandwidth from each disk at most twice that of the nonredundant case.

In traditional storage systems, the data are striped in fixed-size blocks across multiple disks.

The replica of each block can be stored in its entirety on a different disk, which requires only
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Figure 8.2: Stream data of different rounds stored on one disk are replicated round-robin across the rest

of the system. In the case that this disk fails, the corresponding load is expected to be fairly handled

by the surviving disks.

one access in the case of failure and minimizes the disk transfer overhead. The alternative of

declustering a data block replica across multiple disks can potentially better balance the extra

disk access load, but incurs the additional overhead of multiple transfers in the case of a disk

failure.

In principle, the above data replication approach can also be applied with variable bit-rate

streams striped across multiple disks, when a fixed block is used as with Fixed-Grain Striping.

Extra complications might be introduced with Variable-Grain (and Group-Grain) Striping,

where the amount of data stored on each disk varies according to the request size in each

round. However, we have already demonstrated that the long-term load is equally balanced

across the system regardless of which of the three striping policies is actually used.

One way to ensure that the load-balancing property remains valid even with a failed disk

would be to replicate the round requests of one disk round-robin across the rest of the disks

(Figure 8.2). With the detailed resource reservation that we use, this also implies that on average

the total extra bandwidth required for tolerating a disk failure is equal to the bandwidth of the

failed disk. This is because, in the case of the disk failure, the respective access load will be

equally distributed across the surviving disks (Fig. 8.2).

The above feature of detailed resource reservation is an important advantage with respect
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to worst case resource reservation schemes that normally have to keep unused up to half of the

total bandwidth of each disk (Gafsi and Biersack 2000). Declustering data replicas of a disk

on a subset of the remaining disks addresses only partially this issue, while incurring the extra

cost of multiple accesses for a stream in each round when a disk fails (Bolosky et al. 1996).

Although we expect that replicating stream requests from a disk in their entirety on different

disks should keep the system load balanced, it would be interesting to experimentally investigate

that and compare it against the data declustering approach.

8.2.2 Parity-Based Schemes

Data replication techniques based on parity have also been previously proposed in order to trade

extra disk bandwidth or memory buffer for reduced storage space requirements. Since, with

current technology, disk storage space is considered the cheapest of the three resources above,

it has been recently suggested that mirroring rather than parity should become the preferable

data replication technique for tolerating disk failures (Gray and Shenoy 2000). This argument

becomes even stronger for the case of I/O-bound workloads, such as those handled by media

servers.

In addition, implementation of parity-based data restoration in a distributed architecture

requires additional data traffic among the transfer nodes. This can introduce significant extra

complexity and resource requirements in terms of network bandwidth and buffer space that has

to be reserved, and actually utilized in the case of failure (Bolosky et al. 1996). For all the

above reasons, we decided not to consider parity-based techniques any further here.

8.2.3 Node and Multiple Disk Failures

In a practical setting consisting of multiple transfer nodes, it is possible that a transfer node

fails. By grouping transfer nodes into independent clusters and replicating appropriately entire

stream files across them, it is possible to tolerate failures of individual clusters. However, such

an approach introduces all the related problems of tracking user preferences and replicating

appropriately different streams.

An alternative solution that avoids the stream replication problem gathers all the transfer
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Figure 8.3: Different disks from each node belong to different groups. When a transfer node goes down,

data from all its disks can still be restored from replicas available within each group.

nodes in a single cluster. However, the different disks of each transfer node are mapped into

different groups (Figure 8.3). Replicas of data from each disk are placed only on disks of the

same group. Within each disk group, mirroring-based schemes can be applied, as described

before. Even when an entire node fails, data from each missing disk can still be restored by

using replicas from their corresponding disk groups. A similar technique is already used in

existing video servers for constant rate streams (Bolosky et al. 1996; Gafsi and Biersack 2000).

The previous argument remains valid when multiple disks belonging to different transfer

nodes fail, provided that each failed disk is member of a different disk group. We now consider

the more general case of multiple disk failures occurring in the same disk group. The mean

time to failure of a disk array (or disk group) that can tolerate only one failed disk is estimated

to be equal to (Patterson et al. 1988):

MTTFmirroredArray =
(MTTFdisk)2

D(D − 1)MTTRdisk
= 1, 748 years (8.2)

with D = 256 and Mean Time To Repair MTTR = 1 hour. In other words, the probability

that a second disk fails in a disk group before a previously failed disk is replaced is negligible,

assuming that failures occur independently of each other. Therefore, we do not consider this

case any further here.
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8.3 Reordering of Packets Received at the Client

In the system design described in the previous chapters, the network transfer schedule of each

stream is allowed to be different from the disk transfer schedule, provided that basic constraints

are met for timely data decoding at the client. This decision essentially permits different

transmission policies to be applied to the two transfer media, according to the corresponding

resource availability and economics of each of them. It is enabled by the server buffer memory

within each transfer node, where data can be staged when they are retrieved from the disks

earlier than needed.

One complication that the above flexibility introduces is the possibility that, during a round,

the data arriving to a client may originate from multiple transfer nodes. Then, the datagrams

from the different transfer nodes potentially arrive at a client in an order that is different from

the stream data sequence. Note that this problem is distinct from the case that datagram

fragments arrive out of order when fragmentation and reassembly take place at the IP level.1

The datagram fragments themselves are put in the right order automatically by the network

protocol code at the receiving side.

There is a case that stream data are striped across the disks according to their rate of

decoding, without any disk transfer smoothing. Then, the above issue can be completely

avoided by quantizing the network transfers with respect to the logical block size Bl. This

process transforms the network schedule to an exact shifted version of the disk transfer schedule.

However, when disk transfer smoothing is applied, the above simplification is no longer ef-

fective, and it is expected that the data required in a round by some client will be staged in the

buffers of multiple transfer nodes. In that case, each individual datagram can be tagged with

some sequence number that is unique within the duration of each stream. The sequence num-

bers are determined during the schedule generation process, and are stored with the schedule

descriptor of each stream.

When network datagrams are received out of order at the client, there is only a minimal

overhead for resequencing them given the sequence numbers attached to each of them. A

1A simple transport protocol such as UDP/IP is considered adequate for the requirements of stream data
network transfers.
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Figure 8.4: Individual datagrams corresponding to each client are assigned sequence numbers that are

unique within each stream. Packets arriving to a client out of order can be resequenced according to the

attached sequence numbers, which are decided offline during the schedule descriptor generation.

possible implementation keeps the arriving datagrams in the right order using a linked list

(Figure 8.4). This partially replicates the IP datagram fragment resequencing code (Comer

and Stevens 1995). Only minor modifications are required in the stream data decoder to read

bits from multiple buffers instead of a single one.

Although in the previous discussion we assumed that datagram resequencing takes place at

the client, a similar functionality could be located in a proxy between the client and the server.

Such an approach would keep the client software simpler.

8.4 Data Reorganization for System Upgrades

Basic objective in online data reorganization is the ability to dynamically change the placement

of data across multiple storage devices, according to the expected access frequency of the data,

and the performance characteristics of the available storage devices (Borosky et al. 1997). Tra-

ditionally, the problem has been examined extensively in the context of transaction processing

workloads in database systems. It has also been studied in media servers storing constant rate
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Figure 8.5: Stream data can be restriped either a) through an external node, or b) directly across the different

devices. The actual data transfers are controlled by the transfer nodes to which the disks are virtually or

physically attached.

streams (Dan and Sitaram 1995; Wolf et al. 1995; Dan et al. 1995; Bolosky et al. 1997).

In this section, we deal with the more specific case that variable bit rate streams need to

be restriped across multiple disks. Such a need can arise due to either extra disks and transfer

nodes added to a media server, or existing disks being upgraded. These modifications are

alternative ways for increasing the storage space or improving the throughput of the system.

We assume that the amount of data stored on each disk is appropriately determined offline

using techniques similar to the smoothing algorithm introduced in the previous chapter. Our

focus here is on the mechanisms of the actual data movement that is necessary during stream

restriping.

The flexibility of adding extra devices without interrupting the operation of the system

depends significantly on the interconnect technology that attaches the disks to the transfer

nodes. Virtual assignment of disks to hosts through storage-area or general-purpose networks

makes it easier to change the storage topology, when compared to fixed, physical attachment of

disks to specific hosts through a local I/O bus. Virtual attachment permits the placement of new

disks in arbitrary order with respect to currently installed disks, which can facilitate balancing

the access load among them in a heterogeneous environment. After the new disks have been
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physically added to a server, new schedule descriptors can also be generated for already stored

streams taking into account the new hardware configuration parameters. Finally, physical data

transfers have to take place in order for the new schedule descriptors to become effective.

During the normal recording/playback operation, all the transfer nodes are connected

through the high speed network to a particular external node, for the actual data transfers

to occur. However, in the case of stream restriping, each transfer node should be able to

exchange data directly with any other transfer node.

One possibility for resolving the above extra complication is to temporarily transfer a stream

file to a single disk attached to an external node, using the protocol already used for sending

data to clients (Figure 8.5(a)). Subsequently, a new stream replica can be recorded using the

new schedule descriptor, in a way similar to that used for the original storage of the streams

on the system. The advantage of this approach is its simplicity. Connections are established

from the external temporary node to all the transfer nodes, as with regular clients. A possible

drawback is the extra resources that are required by the external nodes.

Alternatively, it is possible to restripe the stream data across the new hardware configuration

directly from the already stored stream files (Figure 8.5(b)). This means that each transfer node

can exchange datagrams directly with any other transfer node, in order for the playback and

recording to take place. A mechanism for achieving a similar function on distributed servers

for constant rate streams has previously been described (Bolosky et al. 1997). One difference

from that work is that in our system the exact new disk block locations of the stream data

are selected online by the metadata managers, instead of being determined centrally before the

recording. Our approach can reduce significantly the preprocessing overhead actually required

for the data reorganization.

Other issues that have to be considered when implementing a direct restriping approach, is

the expansion of the schedule descriptor of each stream to allow specifying multiple recipients

(transfer nodes) of the transmitted data, as opposed to a single one (client). The data transfer

itself involves playback and recording sessions working concurrently for each restriped stream.

Its duration depends on the available bandwidth that can be devoted to the system management

and could be different from that involved in stream playback.
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8.5 Reducing the Cost of Admission Control

The storage descriptor corresponding to a stream file and system configuration pair is stored in

one or more nodes (schedule nodes) separately from the stream data. It specifies the amount

of data that should be retrieved from a single disk (with Variable-Grain Striping), the amount

of data that should be sent from one or more nodes through their network interfaces to the

client, and the buffer space that is required on each transfer node. Although this detailed

specification is necessary for initiating the actual data transfers, the admission control test

could be based on summarized versions of the above information. For example, the admission

control process could be accelerated significantly, if instead of using data amounts transferred

in a single round, it is based on the maximum amount of data required over a number of rounds.

However, summarized information can reduce the accuracy of the resource reservations, as well.

In addition, some portions of the admission tests could be streamlined. We could assume

that the striping policy guarantees the memory buffer never to become a bottleneck. This

follows from the trivial memory requirements in the unsmoothed case, and the memory buffer

constraint of the Server Smoothing algorithm. Also, the data sent to a particular client during

a round should originate from a limited number of transfer nodes. This number cannot exceed

two nodes in the unsmoothed case, while in the smoothed case it can be derived from the

ratio between the size of the maximum network transfer and the average disk transfer. In

addition, only one disk is accessed per round per stream. Therefore, the computation cost of

admission control becomes bounded and independent of the total number of disks or transfer

nodes. This observation further improves the scalability properties of the system architecture

that we propose.

8.6 Summary

In this chapter, we explained the sequence of steps that is required during stream recording.

Then, we discussed the extra complications that have to be handled for tolerating hardware

component failures in network servers for variable bit rate streams. Subsequently, we considered

the issue of network packets sent from multiple nodes and arriving out of order at a client
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during a round. Then, we described potential schemes for restriping stream data as a result of

upgrades in the hardware configuration of a system. Finally, we argued that practically the cost

of admission control for a stream can be independent of the server size and the total amount

of resources involved.



Chapter 9

Conclusions and Future Work

9.1 Contributions

It is our thesis that building scalable and efficient media servers is feasible. In the present study

we focus on the support of variable bit-rate video streams, because they have been shown to

reduce resource requirements when compared to constant bit-rate streams of equivalent quality.

We examine and experiment with storage management issues using a prototype system that we

built.

In the Exedra media server architecture that we propose, continuous stream playback is

guaranteed through deterministic reservation of resources. The probability of overloads and

data losses within the server is minimized by keeping detailed account for the buffer space and

the disk or network transfer delays corresponding to each accepted stream over time. Quality

of service guarantees are offered, while keeping the utilization of the server resources high.

Using the stride-based disk space allocation scheme, the disk transfer sizes corresponding to

each stream can change over time at a configurable granularity. The estimated head movement

overhead is kept bounded, while internal and external fragmentation issues are handled in an

efficient way.

Separating the admission control from playback dispatching allows increased flexibility in

delaying playback initiations after stream requests are admitted into the system. The dispatch-

ing functionality can be distributed across the different transfer nodes, thus reducing resource

92



Chapter 9. Conclusions and Future Work 93

requirements in the admission control nodes.

The metadata management is handled by a different module for each disk. This simplifies

significantly the system structure, and enables the system to operate with heterogeneous disks.

The Circular Scan disk scheduling policy is adapted to the round-based operation of the system.

The use of two different priority queues for each disk increased system resilience to round length

overloads during disk transfers.

Memory buffers are allocated contiguously in virtual memory for each request, which keeps

the disk transfer bandwidth high, and simplifies the performance tuning complexity of the

system. Aggressive deallocation of individual buffers is permitted for improved buffer space

utilization.

We describe a method for performance evaluation of media servers, that can be applied

to servers supporting streams with different requirements, and servers with different trans-

fer capacities. We define several parameters of the system, and study their effect on system

throughput and rejection ratio, as system load changes. In our experiments we make sure that

most of the system capacity is reached, while keeping the playback initiation time and the

request rejection ratio acceptably low.

We formally specify the Fixed-Grain and Variable-Grain Striping policies. We also intro-

duce the Group-Grain Striping policy, as a generalized version of Variable-Grain Striping. In

experiments that we do with MPEG-2 streams, we demonstrate an almost linear increase in

the supported number of concurrent users, as the number of disks increases. This property of

almost linear striping scalability remains valid across the different striping policies.

Variable-Grain Striping is shown to outperform Fixed-Grain Striping by 38-50% for stream

types with reasonable variability, on sixteen disks. With projection based on previous trends

in disk technology, we find a significant advantage of Group-Grain Striping over Fixed-Grain

Striping two and five years into the future.

Proliferation of client devices with varying hardware configurations motivates the develop-

ment of resource management policies that make minimal assumptions about the available client

resources. We introduce the Server Smoothing algorithm for variable bit rate streams, that uses

prefetching into the server buffers for smoothing out disk data transfers. Experimentation with
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homogeneous disk arrays and moderate server buffer space shows that Server Smoothing can

achieve 12-15% increase in the number of streams supported by the server, for streams types

with reasonable variability. This benefit is sustained across different sizes of disk arrays that

we examined.

It is also important to consider the efficient operation of a server with heterogeneous disks

because this allows server installations to be incrementally expanded using the most advanced

and cost-effective storage devices as the system load increases. We used our Server Smoothing

algorithm for striping variable bit rate streams across arrays of heterogeneous disks.

We demonstrate that, when plain disk striping is used, disks with lower transfer rates

prevent the system from reaching high utilization. Instead, when Server Smoothing is applied,

the average reserved disk access time can get as high as 90% of the round time across the

different disks. The corresponding benefit in the number of streams accepted by the server

exceeded a factor of three for the particular disk array configuration that we used.

In a separate chapter, we outlined a way for replicating data in order to tolerate disk and

node failures. We described a method for resequencing data packets arriving out of order at

the client. We briefly examined the problem of dynamic data reorganization. We also argued

that the computational requirements for the admission control test of each stream could be

independent of the server size.

9.2 Issues for further investigation

There are several problems that will probably require further investigation in the future. One

of them is examination of the engineering issues involved in building media servers for variable

bit rate streams using multiple computer nodes. When a playback request is accepted, network

connections are established between each transfer node and the client. Also, each transfer node

is appropriately prepared for starting data transfers to the client. The actual disk accesses

occur only after a latency period passes that is determined by the admission control algorithm.

During playback, it should be possible to pause or completely terminate one stream playback.

This implies that appropriate commands are sent to all the transfer nodes, and are handled in
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a timely fashion.

Additionally, it would be worthwhile to make an experimental comparative study of alter-

native fault-tolerance techniques, that are based on data replication. Questions that could be

investigated are related to the buffer space and disk bandwidth that each approach requires in

normal and failed operation. Balancing the system load across the entire system, even when

some devices fail, remains critical for utilizing efficiently the resources. Declustering the replica

of a stream disk request across multiple disks distributes the load of a failed disk on multiple

other disks, but also reduces the I/O efficiency.

The detailed representation of stream resource requirements that was assumed introduces

the need for a study related to the computational cost of admission control. In the previous

chapter, we claimed that the cost of the admission control test for a stream can be independent

of the actual size of the system, and the number of resources that it comprises. This is a question

that could be verified experimentally. More importantly, the number of admission control tests

that should be handled per time unit increases linearly with the system capacity. It is possible

that the corresponding computational cost for each stream drops, as the system size increases.

The reason has to do with the maximum number of initiating rounds that should be considered

for each stream before it is rejected (Chapter 7). However, there is still an open question of

developing techniques for admission control in large servers and studying their scalability.

In the past, video encoding methods have been developed that allow representation of a

stream in multiple layers. Depending on the network capacity and the hardware capabilities

of the client, a different number of layers can be retrieved and transmitted. A larger number

of layers corresponds to better video quality. Therefore, it would be interesting to adapt the

storage methods described in this thesis to handle multi-layer encoded streams as well. We

expect that alternative ways of grouping and storing the data corresponding to each layer in

each round can have a significant effect in the system structure and the disk access efficiency.

In addition to normal playback, existing media servers usually allow playback initiation at

arbitrary positions of a stream or access in fast-forward and rewind modes. Arbitrary position

initiation is not straighforward for variable bit rate streams with detailed resource reservation.

Complications arise that are related to time-shifting the resource reservations, while keeping the



Chapter 9. Conclusions and Future Work 96

latency and bandwidth requirements minimal. Fast-forward and rewind modes can be achieved

by access to alternate video files that, when decoded, provide the illusion of the above functions.

Therefore, they can also be reduced to the previous problem of arbitrary position inititiaton.

Expected improvements in the processing power available on disks, has recently motivated

research on how to make secure and efficient data transfers directly from the disks to the client.

Although this approach has been mostly focused on general-purpose file systems, similar ideas

could also be applied on media server environments. In some sense, this is equivalent to having

multiple transfer nodes with only one disk attached to each of them. Depending on the actual

assumptions that can be made about the capabilities of each disk, research is required for

determining the best way of spliting the media server functionality among the disks, the server

nodes and the client.



Appendix A

Summary of Symbols

Symbol Description

Bp Disk sector size

Bl Logical block size

Bs Stride block size

Bf Block size in Fixed-Grain Striping

G Group size in Group-Grain Striping

Ln Network sequence length

Sn(i) Network sequence

Sn(i, u) Network striping sequence

Lb Buffer sequence length

Sm(i) Buffer sequence

Smb(i, q) Buffer striping sequence

Ld Disk sequence length

Sd(i) Disk sequence

Smd(i, k) Disk striping sequence

Mi Active streams in system round i

Tround Round length

continued on next page
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continued from previous page

Symbol Description

TfullSeek Maximum seek time

TtrackSeek Track-to-track seek time

TavgRot Average rotation latency

Rdisk Minimum internal disk transfer rate

Ru
net Transfer rate at network interface u

T j
net(i, u) Reserved time on network interface u in round i for client j

Bj(i, q) Reserved buffer space on node q in round i for client j

T j
disk(i, k) Reserved time on disk k in round i for client j

Tdisk(i, k) Total reserved time on disk k in round i

µ Stream service rate

λ Stream arrival rate

ρ System load

Hl Lookahead distance

Hbasic
l Basic lookahead distance

Fl Lookahead factor

Pd(X) Disk time proportion

Pb(X) Buffer space proportion
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