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STREAMING SERVER
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FIELD OF INVENTION

This invention relates to network servers and, in
particular, a streaming server that supports variable bit-rate
streams and has at least one of a stride-based storage device
space allocation scheme, stride-based method of striping
data across multiple storage devices, distributed
architecture, fault tolerant operation, and server-based
smoothing.

BACKGROUND OF THE INVENTION

Spatial and temporal compression have made practical the
storage and transfer of digital video streams with acceptable
quality. Standardization (for example, through the MPEG
specifications) has facilitated widespread distribution and
use of compressed video content in a range of applications
from studio post-production editing to home entertainment
(e.g. Digital Versatile Disks). Although media streams can
optionally be encoded at a constant bit rate, it has been
shown that equally acceptable quality can be achieved using
variable bit-rate encoding with average bit rates reduced by
40%.

As the installed network bandwidth increases, scalable
network servers are becoming the dominating bottleneck in
the wide deployment of broadband services. Therefore, the
potential scalability of network servers that support variable
bit-rate media streams is becoming a fundamental problem.
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System design complications coupled with excessive
expectations from technological progress previously dis-
couraged the development of media servers efficiently sup-
porting video streams with variable bit rates. Several media
server designs either i) support only constant bit-rate
streams, i1) make resource reservations assuming a fixed bit
rate for each stream, or iii) have only been demonstrated to
work with constant bit rate streams.

It is therefore an aspect of an object of the present
invention for providing a distributed continuous-media
server architecture, called Exedra, that efficiently supports
variable bit-rate streams and reduces the requirements for
storage device space, storage device bandwidth, buffer
space, and network bandwidth with respect to servers that
support only constant bit-rate streams.

Vast storage and bandwidth capacity requirements of even
compressed video streams make it necessary to stripe video
files across multiple storage devices. Assuming that a media
storage server serves requests for several different stream
files, appropriate striping makes it possible to scale the
number of supported streams to the limit of the server
resources, independent of the particular stream file being
requested by clients. This is possible by retrieving different
parts of each stream file from different storage devices, thus
restricting the degree of imbalance in utilization among the
storage devices.

However, it has been previously shown that both load
imbalance across disks and disk overhead is causing disk
striping of variable bit-rate streams to be efficient only on
disk arrays of limited size. Therefore, the scalability of
network servers that stripe variable bit-rate streams across
multiple storage devices is a fundamental problem.

It is an aspect of an object of the present invention for
providing a new storage device space allocation technique
and striping policies for variable bit-rate streams that
increase system throughput and improve scalability.

The Internet and online services introduce increasing
requirements for quality-of-service guarantees in order to
ensure that a failure does not result in denial of service for
clients. Hard drives or storage devices continue to be a major
source of failure. This is not surprising since disks are
essentially the only moving mechanical parts of computers.

It is therefore an aspect of an object of the present
invention for providing fault tolerance in storage device
arrays and clusters of computer nodes that support variable
bit-rate streams.

Variable bit-rate encoding of video streams can achieve
quality equivalent to constant bit-rate encoding while requir-
ing average bit rate that is lower by 40%. However, variable
bit-rate streams have high variability in their resource
requirements, which can lead to low utilization of storage
device and network bandwidth in the common case. This
occurs because the aggregate bandwidth requirements of
concurrently served streams can be significantly higher than
on average at particular time instances, and the admission
control process bases its decisions on peak aggregate
demand when considering new stream requests.

In order to improve resource utilization and the through-
put of the system, a number of smoothing techniques have
been proposed that can remove peaks in the required transfer
bandwidth of individual streams by appropriately prefetch-
ing stream data at times of lower bandwidth demand. To date
smoothing schemes always prefetched data into the client
buffers. Although such an approach can improve the utili-
zation of both storage device and network bandwidth, it is
dependent on the amount of buffer space available at the
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client. However, emergence of client devices with widely
different hardware configurations make it necessary to
reconsider such assumptions.

It is therefore an aspect of an object of the present
invention a smoothing method that uses buffer space avail-
able in the server and provides efficient striping of variable
bit-rate streams across either homogeneous or heteroge-
neous storage devices.

SUMMARY OF THE INVENTION

According to an aspect of the invention, there is provided
a method and system for accessing variable bit-rate streams
from one or a multitude of secondary storage devices. The
system provides that data for each stream are retrieved
according to a prespecified rate that may vary over time. The
space of each storage device is managed as a collection of
fixed-size chunks with length larger than a given minimum.
The data transfers occur in periods (or rounds) of fixed
duration. The data of each stream is distributed across a
multitude of storage devices in a way that only one storage
device is accessed for a stream during one or a multitude of
rounds. Detailed accounting is done for the access time of
the storage devices, the transmission time of the network
transfer devices, and the available memory space in the
system for each round. The space of each storage device is
managed independently from that of the others. The avail-
able memory is allocated contiguously in the virtual space
for each access of a storage device, and can be deallocated
in units smaller than the length of the original allocation.
When storage devices fail, data redundancy and extra
reserved device channel bandwidth guarantee uninterrupted
system operation.

According to a further aspect of the invention, there is
provided a server-based smoothing method that uses only
buffer space available at the server for smoothing storage
device data transfers. The smoothing method is also
extended to support striping of variable bit-rate streams
across heterogeneous storage devices. The present invention
maximizes the average number of users supported concur-
rently in continuous-media server systems by applying
smoothing techniques and combining them appropriately
with storage device striping and admission control policies.
In order to prevent excessive smoothing from exhausting the
available buffer space, data prefetching is done as long as the
proportion of server buffer required by each stream does not
exceed the corresponding proportion of the required storage
device bandwidth. Thus, the smoothing process is adjusted
automatically, according to the total memory and storage
device bandwidth available in the server.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described in detail with
reference to the accompanying drawings, in which like
numerals denote like parts, and in which

FIG. 1 is a block diagram of a distributed streaming server
in accordance with an embodiment of the present invention;

FIG. 2 is a logical representation of a stride-based allo-
cation of disk space on one disk of FIG. 1;

FIG. 3 is a graph of data requirements of twenty con-
secutive rounds one second each, in an MPEG-2 clip;

FIGS. 4(a) to (c) are graphs of data accesses for the clip
of FIG. 3 using alternative striping techniques over two
disks;

FIG. 5 is a graph of number of streams versus load under
Fixed-Grain Striping;
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FIG. 6 is a graph of a ratio of total number of rejected
streams over total number of accepted streams versus load
under Fixed-Grain Striping;

FIG. 7 is a graph of number of streams versus block size
Bf under Fixed-Grain Striping;

FIG. 8 is a graph of round disk time versus block size Bf
under Fixed-Grain Striping;

FIG. 9 is a graph of disk busy time per round versus
number of disks under Fixed-Grain Striping;

FIG. 10 is a graph of number of streams versus number of
disks under Fixed-Grain Striping;

FIG. 11 is a graph of number of streams versus load under
Variable Grain Striping;

FIG. 12 is a graph of a ratio of total number of rejected
streams over total number of accepted streams versus load
under Variable Grain Striping;

FIG. 13 is a graph of round disk access time versus
number of disks under Variable Grain Striping;

FIG. 14 is a graph of number of streams versus individual
stream types in both Fixed-Grain versus Variable-Grain
Striping;

FIG. 15 is a graph of round disk time in Simulated Disk
Mode;

FIG. 16 is a server-based system for smoothing of vari-
able bit-rate streams;

FIG. 17 is a functional block diagram of the distributed
media server of FIG. 1;

FIG. 18 is a block diagram of a circular vector of dispatch
queues that keep track of admitted streams yet to be acti-
vated; and

FIG. 19 is shown a block diagram of a fault-tolerant disk
array for a media server.

DETAILED DESCRIPTION

Referring to the drawings and initially to FIG. 1, there is
illustrated a block diagram of a distributed streaming server
100 in accordance with an embodiment of the present
invention. The distributed streaming server 100 comprises
storage devices 110 for storing media stream data 114,
transfer nodes 120, admission control nodes 130, and a
schedule database 140 containing scheduling information.
The media stream data 114 are compressed, such as, accord-
ing to the MPEG-2 specification, with constant quality
quantization parameters and variable bit rates. Clients 150
with appropriate stream decoding capability send client/
playback requests 160 and receive stream data 114 via a
high-speed network 170. Alternate compression schemes as
is known in the art may also be used.

In the streaming server 100, the stream data 114 are
retrieved from the storage devices 110 and sent to the clients
150 through the Transfer Nodes 120. Both the admission
control nodes 130 and the transfer nodes 120 use of stream
scheduling information maintained in the Schedule Data-
base 140.

The streaming server 100 is operated using the server-
push model, but other models are possible. When a playback
session starts for a client 150, the server 100 periodically
sends data to the client 150 until either the end of the stream
is reached, or the client 150 explicitly requests suspension of
the playback. The server-push model reduces the control
traffic from the client to the server and facilitates resource
reservation at the server side, when compared to a client-pull
model. The data transfers occur in rounds of fixed duration
T,0uma 10 each round, an appropriate amount of data is



US 7,103,595 B2

5

retrieved from the storage devices 110 into a set of server
buffers 122 reserved for each active client 150.
Concurrently, data are sent from the server buffers 122 to the
client 150 through network interfaces 124. Round-based
operation is used in media servers in order to keep the
reservation of the resources and the scheduling-related
bookkeeping of the data transfers manageable.

Due to the large amount of network bandwidth required
for this kind of service, preferably the server 100 is con-
nected to a high-speed network 170 through a multitude of
network interfaces 124. The amount of stream data periodi-
cally sent to the clients 150 are determined by the decoding
frame rate of the stream and the resource management
policy of the server 100. A policy is to send to the client
during each round the amount of data that will be needed for
the decoding process of the next round; any other policy that
does not violate the timing requirements and buffering
constraints of the decoding client is also acceptable.

The stream data are stored across multiple storage devices
110, such as hard drives or disks, as shown in FIG. 1. Every
storage device 110 is connected to a particular Transfer
Node 120, through a Storage Interconnect 112, which is
either i) a standard I/O channel (for example, Small Com-
puter System Interface), ii) standard network storage equip-
ment (for example, Fibre-Channel), or iii) a general purpose
network (as with Network-Attached Secure Disks).
Alternately, part of the server functionality can be offloaded
to network-attached storage devices.

The Transfer Nodes 120 are computers responsible for
scheduling and initiating all data accesses from the attached
storage devices 110. Data arriving from the storage devices
110 are temporarily staged in the Server Buffer memory 122
of the Transfer Node 120 before being sent to the client 150
through the high-speed network 170. The bandwidth of the
system bus (such as the Peripheral Component Interconnect)
is the critical resource within each Transfer Node 120 that
essentially defines the number and the capacity of the
attached network or I/O channel interfaces.

Playback requests 160 arriving from the clients 150 are
initially directed to an Admission Control Node 130, where
it is determined whether enough resources exist to activate
the requested playback session either immediately or within
a few rounds. If a new playback request is accepted, com-
mands are sent to the Transfer Nodes 120 to begin the
appropriate data accesses and transfers. The computational
complexity of the general stream scheduling problem is
combinatorial in the number of streams considered for
activation and the number of reserved resources. As the
acceptable initiation latency is limited, a simple scheduling
approach with complexity linear with the number of rounds
of each stream and the number of reserved resources, is
used. The admission control nodes are distributed across
multiple processors as shown in FIG. 1, and concurrency
control issues that potentially arise are also taken into
account.

The Schedule Database 140 maintains information on the
amount of data that needs to be retrieved during each round
for each stream and on which storage devices this data is
stored. It also specifies the amount of buffer space required
and the amount of data sent to the client by the Transfer
Nodes 120 during each round. The scheduling information is
generated before the media stream is first stored and is used
for both admission control and for controlling data transfers
during playback. Since this information changes
infrequently, it is replicated to avoid potential bottlenecks.

Referring to FIG. 2, there is illustrated a logical repre-
sentation of a stride-based allocation of storage device space
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on one storage device of FIG. 1. In stride-based allocation,
storage device space is allocated in large, fixed-sized chunks
(i, 1+1, i+2, i+3, i+4, i+5) called strides 200, which are
chosen larger than the maximum stream request size per
storage device during a round. The stored streams are
accessed sequentially according to a predefined (albeit
variable) rate; therefore, the maximum amount of data
accessed from a storage device during a round for a stream
is known a priori. Stride-based allocation eliminates external
fragmentation, while internal fragmentation remains negli-
gible because of the large size of the streams, and because
a stride may contain data of more than one round as shown
in stride i+3 of FIG. 2. The contents of each stride are
tracked in a stream stride index 210.

When a stream is retrieved, only the requested amount of
data (one of Requests j, j+1, j+2, or j+3), and not the entire
stride 200, necessary for each round is fetched to memory at
a time. Since the size of a stream request per round never
exceeds the stride size, at most two partial stride accesses
(two seek and rotation delays) are required to serve the
request of a round on each storage device. Thus, the stride-
based allocation scheme sets an upper-bound on the esti-
mated storage device access overhead during retrieval. This
avoids an arbitrary number of actuator movements required
by prior allocation methods. This also keeps storage device
access head movements to a minimum. For example, while
i+3 stride 200 contains parts of Request j+1 and Request j+2,
and Request j+3, there is no Request that is stored over more
than two strides 200.

While storing the data of each storage device request
contiguously, on a disk for example, would reduce the
storage device overhead to a single seek and rotation delay
(instead of two at most), the overhead for storage manage-
ment (bookkeeping) of large highly utilized storage devices
could become significant. An advantage of the present
invention is the reduction of overhead for storage manage-
ment.

In the sequence definitions that follow, a zero value is
assumed outside the specified range.

In the server 100 with D functionally equivalent storage
devices, the stream Network Sequence, Sn, of length Ln
defines the amount of data, Sn[i], 1=<i=<Ln, that the server
100 sends to a particular client 150 during round i after its
playback starts. Similarly, the Buffer Sequence Sb of length
Lb=Ln+1 defines the server buffer 122 space, Sb(i), =<i=
<Lb, occupied by the stream data during round i. The
Storage Device Sequence Sd of length Ld=L.n defines the
total amount of data Sd(i), =<i=<[.d-1, retrieved from all the
storage devices 110 in round i for the client.

The data are stored on the storage devices 110 in strides
200. The stride size Bs is a multiple of the logical block size
Bl, which is a multiple of the physical sector size Bp of the
storage device. Both storage device transfer requests and
memory buffer reservations are specified in multiples of the
logical block size Bl. After taking into account logical block
quantization issues, the storage sequence Sd can be derived
from the network sequence Sn as follows: If

D SU+D

0= j=i
Ki() = | ————
® { B

specifies the cumulative number of blocks Bl retrieved
through round i, then

SAD=(E(D)-Ki-1))-B,.
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The Storage Device Striping Sequence Smd of length [L.d
determines the amount of data Smd(i,k), O=<i=<[d-1, that
are retrieved from the storage device 110k, O=<k=<D-1, in
round i. It is generated from the Storage Device Sequence
Sd, according to the striping policy used.

Each storage device 110 has edge to edge seek time
TfullSeek, single track seek time TtrackSeek, average rota-
tion latency TavgRot, and minimum internal transmission
rate Rdisk. The stride-based storage device space allocation
policy enforces an upper bound of at most two storage
device arm movements per storage device for each client per
round. The total seek distance is also limited using a CSCAN
storage device scheduling policy. Let Mi be the number of
active streams during round i of system operation. Where the
playback of stream j, 1=<j=<Mj, is initiated at round 1j of
system operation, then, the total access time on storage
device k in round i of the system operation has an upper-
bound of:

Taist (is &) = 2T uttseek + 2M; - (Trrackseek + TavgRot) +

M; .
D Snali =11 1)/ Raie
=1

where Smd’j is the storage device striping sequence of client
j. TfullSeek is counted twice due to the storage device arm
movement from the CSCAN policy, while the factor two of
the second term is due to the stride-based method. The first
term should be accounted for only once in the storage device
time reservation structure of each storage device. Then, each
client j 150 incurs an additional maximum access time of

Ty 002" (Tpacisoar* T, angot)+Smd<j(i_Zjl B)/R i

on storage device k during round i, when Smd”j(i-1j,k)>0,
and zero otherwise.

If Rnet is the total high-speed network bandwidth avail-
able to the server 100, then the corresponding network
transmission time reserved for client j 150 in round i
becomes T jnet(i)=Sn"j(i-1j)/Rnet, where Sn is the Network
Sequence of client j 150. The total server memory buffer
reserved for client j 150 in round i becomes B"j(1)=Sb"j(i-1)),
where Sb is the Buffer Sequence of client j 150. Although,
the above expressions for T jnet(i) and B"j(i) are sufficient
for the needs of the present embodiments, accounting for
available network bandwidth and buffer memory within
each individual Transfer Node may require them to be split
into appropriate sub-expressions.

The reservations of transfer time on each network inter-
face 124 and buffer space 122 on each transfer node 120 are
more straightforward, and are based on the Network Striping
Sequence and Buffer Striping Sequence, respectively.

In traditional storage systems, data access patterns are
relatively hard to predict, making it difficult to determine
optimal storage device striping parameters. However, with
read-only sequential access being the common case for
video/media streaming, it is possible to predict to some
degree the expected system load requirements during
retrieval, making it possible to determine appropriate stor-
age device striping parameters a priori for the storage and
retrieval of the data. The present invention includes exploit-
ing this characteristic of stored video/media streams.

Referring to FIG. 3, there is illustrated a graph of data
requirements of twenty consecutive rounds (one second
each), in an MPEG-2 clip. Referring to FIGS. 4(a) to (¢),
there are illustrated graphs of data accesses for the clip of
FIG. 3 using alternative striping techniques over two storage
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devices. With Fixed-Grain Striping, the needed blocks of
size Bf are retrieved round-robin from the two storage
devices every round. In Variable-Grain Striping, a different
storage device is accessed in each round, according to the
byte requirements of the original clip. In Group-Grain
Striping with G=2, stream data worth of two rounds are
accessed from a different storage device every two rounds.

With Fixed-Grain Striping, data are striped round-robin
across the storage devices in blocks of a fixed size Bf, a
multiple of the logical block size Bl defined previously.
During each round, the required number of blocks are
accessed from each storage device. An example of Fixed-
Grain Striping is shown in FIG. 4(a). In the definition below,
modD denotes the remainder of the division with D, and
divD denotes the integer quotient of the division with D. The
equation

D, Sald)

0= j=i
K () :{ ! 3

!

specifies the cumulative number of blocks Bf retrieved
through round i for a specific client. When

Kasurf (1)

K3/ (i=1)=0,
all blocks accessed for the client during round i lie on the
same stripe of blocks. Then, the striping sequence Smd"f is
equal to:

Sud 1,K)=D LK) B,

where

L, i Kfpapli= 1) < knodd = Kiioup (D)

Dl k)= {
0, otherwise,

specifies the particular storage devices that need to be
accessed at most once for the stream. When

Kdiva(i)_Kdiva i-1)>0,

the blocks accessed for the client during round i lie on more
than one stripe, and the striping sequence becomes

Smdf(ix k)=(Kdiva(i)_Kdiva i-1)-1)B+D. f(ixk)'Bfa
where
2, i Kagpli=1) < knoap < Khoqp(D)

L i kuoap > max(Kfyoup(i = 1. K ogp (D)

i Kiodp < Min(Kheqn (i = 1), Kfoap (D)

0, otherwise.

Dl k) =

—

The first term in the Equation accounts for blocks in stripes
fully accessed (i.e., all D blocks, where D is the number of
storage devices), while the second term accounts for blocks
of stripes partially accessed in round i (i.e., fewer than D
blocks).

With Variable-Grain Striping, the data retrieved during a
round for a client are always accessed from a single storage
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device round-robin, as shown in FIG. 4(b). The correspond-
ing striping sequence becomes:

Sa GR=K"()-K'(-1))B,,
when i mod D=k, with

D Sad)

O=j=i

Ki(i) = 5

and Smd"v(i,k)=0 when i mod D not equal k. Therefore, the
Storage Device Sequence determines the particular single
storage device accessed and the exact amount of data
retrieved during each round.

Variable-Grain Striping is a special case (with G=1) of a
method herein called Group-Grain Striping, where the
amount of data required by a client over G rounds is
retrieved every Gth round from one storage device that
changes round robin (see FIG. 4(c), noting that the y-axis
uses a different scale). The parameter G, G>=1, is called
Group Size. The striping sequence for Group-Grain Striping
is equal to:

S, 0,k)=(K"({+G-1)-K"(i-1))'B,;

when i mod G=0 AND (i div G) mod D=k, and Smd"g(i,k)=0
otherwise.

As G increases, the fewer storage device accesses lead to
reduced storage device overhead (although the access time
per request is increased). On the other hand, the fixed round
spacing between subsequent requests for a stream, basically
divides the server into G virtual servers. The fixed group size
G guarantees that two streams started from the same storage
device at rounds i and j with 1 not equal j (mod G), do not
have any storage device transfers in a common round. This
is different from increasing Bf in Fixed-Grain Striping,
where accesses from different streams can randomly coin-
cide on the same storage device in the same round, resulting
in the system saturating with fewer streams. Increasing G for
a particular round time is advantageous with future expected
changes in storage device technology.

Alternately, aggregation of storage device transfers can
also be achieved with an appropriate increase of round time.
However, this could directly affect the responsiveness of the
system by potentially increasing the initiation latency of
each playback. Longer round time would also increase the
required buffer space.

It will be understood by those skilled in the art that the
stride-based allocation scheme may be based on variable
sized strides rather than fixed sized where each of the strides
still satisfy the criteria of containing at least one round worth
of stream data.

Referring to FIG. 17, there is shown a functional block
diagram of the distributed media server of FIG. 1. The
architecture 1700 comprises admission control 1710 , dis-
patcher 1730, stream manager 1715, buffer manager 1720,
metadata managers 1725, storage device managers 1735,
and storage devices 1740 that store the media data.

The basic functions of the media server include file
naming, resource reservation, admission control, logical to
physical metadata mapping, buffer management, and storage
device and network transfer scheduling.

The admission control module 1710 uses circular vectors
of sufficient length to represent the allocated storage device
time, network time, and buffer space, respectively. On
system startup, all elements of storage device time vectors
are initialized to 2*TfullSeek, while the network time and
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buffer space vector elements are set to zero. When a new
stream request arrives, the admission control 1710 is per-
formed by checking the requirements of the stream against
currently available resources. In particular, the total service
time of each storage device 1740 in any round may not
exceed the round duration, the total network service time on
any network interface may not exceed the round duration,
and the total occupied buffer space on any transfer node may
be no larger than the corresponding server buffer capacity.

If the admission control test is passed, then the resource
sequences of the stream are added to the corresponding
system vectors managed by the module 1710, and the stream
is scheduled for playback. The dispatcher 1730 is respon-
sible for starting the playback at the appropriate round.

Referring to FIG. 18, there is shown a block diagram of
a circular vector of dispatch queues that keeps track of
admitted streams yet to be activated. Notification records for
the accepted request are inserted into dispatch queues at the
appropriate offset from the current round. When an upcom-
ing round becomes current, the notification records are used
for activating the stream and starting its data transfers.

The metadata manager 1725 for stream metadata man-
agement is organized in a layer above storage device sched-
uling. It is responsible for storage device space allocation
during stream recording, and for translating stream file
offsets to physical block locations during playback. The
stream metadata are maintained as regular files in the host
OS (of each transfer node, in the general case), while stream
data are stored separately on dedicated storage devices. The
storage space of the data storage devices 1740 is organized
in strides, with a bitmap that has a separate bit for each
stride. A single-level directory is used for mapping the
identifier of each recorded stream into a direct index of the
corresponding allocated strides. A separate directory of this
form exists for each storage device.

When a stream is striped across multiple storage devices,
a stream file is created on each data storage device. Each
transfer request received by the metadata manager 1725
specifies the starting offset in the corresponding stream file
and the number of logical blocks to be accessed. With the
stream index, each such request is translated to a sequence
of contiguous storage device transfers, each specifying the
starting physical block location and the number of blocks.
From the stride-based storage device space allocation, it
follows that each logical request will be translated into at
most two physical contiguous storage device transfers.

The provision of a separate metadata manager for each
storage device has an advantage of application to general
storage device array organization, including those consisting
of heterogeneous storage devices. Although the handling of
heterogeneous devices (for example disks of different sizes
from different manufacturers) may not be necessary in
limited size traditional storage systems, it might prove
crucial for the incremental growth and survivability of large
scalable media storage installations.

In order to keep system performance predictable and
unbiased from particular storage device geometry features,
some control is exercised on the storage device space
allocation pattern. In particular, storage device zoning could
possibly lead to excessively optimistic or pessimistic data
access delays, if most allocation were in the outer or inner
cylinders of the storage devices. Similarly, contiguous allo-
cation could lead to lower than expected delays in some
special cases (such as when streams are stored on a single
storage device with a very large on-storage device cache).
However, low-level storage device geometry is generally not
disclosed by the storage device manufacturers, therefore,
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strides for a stream within each storage device were allo-
cated to distribute them across all the zones of the storage
device.

The storage device manager 1735 for storage device
management layer is responsible to pass data transfer
requests to the storage devices 1740, after the necessary
translation from logical stream offsets to physical block
locations in the above layers.

In the dual-queue CSCAN storage device scheduling used
herein, the operation of each storage device is managed by
a separate pair of priority queues, called Request Queue and
Service Queue, respectively. The two queues, although
structurally equivalent, play different roles during each
round. At the beginning of each round, data transfer requests
for the current round are added asynchronously into the
request queue of each storage device, where they are kept
sorted in increasing order of their starting sector location.

When all the requests have been gathered (and the cor-
responding storage device transfers of the previous round
completed), the request queue of each storage device is
swapped with the corresponding service queue.
Subsequently, requests from the service queue are synchro-
nously submitted to the raw storage device interface for the
corresponding data transfers to occur. The two-queue
scheme prevents new requests from getting service before
those of the previous round complete. This keeps the system
operation more stable in the rare (yet possible) case that the
storage device busy time in a round slightly exceeds the
round duration.

When swapping the two queues, the service queue
becomes request queue and remains empty until the begin-
ning of the next round. Although a single priority queue for
each storage device would seem sufficient, there is a rare (yet
possible) case where the storage device busy time in a round
slightly exceeds the round duration. Then, with a naive
design using a single queue, new incoming requests could
postpone (potentially indefinitely) the service of requests
from the previous round starting at the innermost edge of a
storage device. Instead, the two-queue scheme prevents new
requests from getting service before those of the previous
round complete, thus keeping the system operation more
stable.

The buffer manager 1720 keeps the server memory
(system memory) organized in fixed size blocks of Bl bytes
each, where Bl is the logical block size introduced earlier.
Buffer space is allocated in groups of consecutive blocks.
From experiments with raw interface storage device
accesses, it was found that non-contiguity of the memory
buffers could penalize storage device bandwidth signifi-
cantly on some systems. Although this might be attributed to
the way that scatter/gather features of the storage device
controller are used by these systems, however, allocation
contiguity was easy to enforce.

For the allocation of buffer blocks, a bitmap structure was
used with an interface that supports block group requests.
Deallocations are allowed on a block by block basis, even
though entire block groups are acquired during allocation.
This last feature allows more aggressive deallocations. Pag-
ing of buffer space is prevented by locking the correspond-
ing pages in main memory.

The configuration input provides the basic parameters of
each device that is used. This includes the storage device and
metadata file name, the maximum and track seek time, the
average rotation latency, the minimum internal transfer rate.
Other configuration parameters include the available net-
work bandwidth along with the server and client buffer
space, as required by the different policies.
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The stream manager 1715 is responsible for generating
data transfer schedules, where each schedule specifies the
amount of data accessed from the storage devices, stored in
server buffer and transmitted over the network during each
round. The schedule manager accepts as input actual media
files (or their frame size traces), along with the prefetching
and striping scheme that can be used. The prefetching
schemes can make use of the buffer space that is available
at the server or client side, depending on the policy.

Assuming that playback initiation requests arrive inde-
pendently of one another, according to a Poisson process.
The system load can be controlled by setting the mean
arrival rate A of playback initiation requests. The maximum
possible service rate 1, expressed in streams per round for
streams of data size Stot bytes, is equal to u=D*Rstorage
device*Tround/Stot. Correspondingly, the system load p, is
equal to p=A/pu=<1, A=hmax=A. The definition of p is used
in this evaluation.

When a playback request arrives, the admission control
1710 module checks whether available resources exist for
every round during playback. The test considers the exact
data transfers of the requested playback for every round and
also the corresponding available storage device transfer
time, network transfer time and buffer space in the system.
If the request cannot be initiated in the next round, the test
is repeated for each round up to [ 1/A] rounds into the future,
until the first round is found, where the requested playback
can be started with guaranteed sufficiency of resources.
Checking [1/)] rounds into the future achieves most of the
potential system capacity. If not accepted, the request is
discarded rather than being kept in a queue.

Fault Tolerance for Media Servers

Referring to FIG. 19, there is shown a block diagram of
a fault tolerance storage device array for a media server. The
array 2000 is configured for single storage device failure and
comprises four disks 2010 to 2013 where content of each of
the disks is replicated across the other three disks. Each unit
of replication corresponds to data retrieved by a client
during one round of playback. Each storage device has
primary data for a stream and one backup replica of the
primary data is stored spread over the other storage devices.

The methods of replication include deterministic replica
placement and random replica placement. In deterministic
replica placement, data of a media file stored consecutively
on disk 2010 and retrieved during different playback rounds
are replicated round-robin across the other disks. The pri-
mary data of the other disks are replicated in a similar way.
In random replica placement, data of a media file stored
consecutively on disk 2010 and retrieved during different
playback rounds are replicated on randomly chosen disks
2011 to 2013 where data for each round is replicated on a
randomly disk chosen from disks 2011 to 2013. The primary
data of the other disks are replicated in a similar way.

An aspect of an objective is to allocate resources in such
a manner that service to accepted stream requests are not
interrupted during (single) storage device failures. Retriev-
ing backup replicas of data stored on a failed storage device
requires extra bandwidth to be reserved in advance across
the surviving storage devices. Thus, the array 2000 normally
operates below full capacity. Alternatively, when a storage
device fails and no extra bandwidth has been reserved,
service will become unavailable for a number of active users
with aggregate bandwidth requirements no less than the
transfer capacity of one storage device, assuming that data
have been replicated as described previously.

The load that is normally handled by a failed storage
device is equally divided among the D-1 surviving storage
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devices. Thus, tolerating one storage device failure requires
that extra bandwidth be reserved on each storage device
equal to 1/(D-1) the bandwidth capacity of one storage
device. In order to achieve this, the access time of the
backup replicas stored on one storage device are accumu-
lated separately for every storage device that stores the
corresponding primary data. When a storage device fails, the
extra access load incurred on every surviving storage device
is approximately known. In fact, the additional access time
that has to be reserved on a storage device in each round is
equal to the maximum time required for retrieving backup
replicas for another storage device that has failed as shown
by adder 2020 of FIG. 19.

For each storage device, D separate vectors indexed by
round number are maintained. One of the vectors accumu-
lates access delays for retrieving primary data. The remain-
ing D-1 vectors accumulate access delays for retrieving
backup replicas that correspond to primary data stored on
each of the other D-1 storage devices. Thus, in each round,
the sum of the primary data access time and the maximum
of the backup data access times is reserved on each storage
device. This method is herein referred to as Minimum
Reservation.

The minimum reservation scheme requires maintaining
the number of vectors equal to the square of the number of
storage devices. Each vector is accessed in a circular fashion
and has minimum length equal to that of the longest stream
expressed in numbers of rounds. When using large storage
device arrays, this might raise concerns regarding the com-
putational and memory requirements involved. In practice,
the reduction in unused bandwidth is diminishing as the
number of storage devices increases beyond sixteen.
Therefore, it makes sense to apply the data replication within
storage device groups of limited size, when the storage
device array size becomes larger. This keeps the bookkeep-
ing overhead limited and preserves the scalability of this
method when stream data are striped across large storage
device arrays.

It will be understood by those skilled in the art that the
Minimum Reservation method may be applied to different
computer nodes when primary data of each computer node
is replicated across other computer nodes. Thus, when one
node goes down, the primary data from all its storage
devices is still accessible through replicas available on the
other computer nodes. In servers consisting of multiple
nodes, failure of an entire node can be handled gracefully, by
keeping each storage device of a node in a separate storage
device group and limiting the replication within each group.
When a node fails, inaccessible data for each of its storage
devices can be retrieved using replicas available on other
storage devices of the corresponding groups

It will be understood by those skilled in the art that the

Minimum Reservation method may also be applied for
handling multiple storage device failures which only
requires storing multiple backup replicas, and making band-
width reservations for more than one failed storage device
accordingly.
Server-Based Smoothing Referring to FIG. 16, there is
provided a system 1600 for server-based smoothing of
variable bit-rate streams. The system 1600 comprises a
server 1610 having storage devices 1620 for storing stream
data, server buffers 1630 for buffering the content prior to
transmission, and network interfaces 1640 for interfacing to
a network 1650; and clients 1660 to receive the data over
client network interfaces 1670 where client buffers 1680
buffers the data before decoding by decoders 1690.

The system 1600 operates according to a server-push
model such that when a playback session starts, the server

20

25

30

35

40

45

50

55

60

65

14

1610 periodically sends data to the client 1660 until either
the end of the stream is reached, or the client 1660 explicitly
requests suspension of the playback. Data transfers occur in
rounds of fixed duration Tround. In each round, an appro-
priate amount of data is retrieved from the storage devices
1620 into a set of server buffers 1630 reserved for each
active client. Concurrently, data are sent from the server
buffers 1630 to the client 1640 over the network 1650.

The amount of stream data periodically sent to the client
1660 is determined by the decoding frame rate of the stream
and the resource management policy of the server-based
system 1600. A policy is to set to send to the client 1660
during each round the amount of data that is needed for the
decoding process at the client in the next round; any other
policy that does not violate the timing requirements and
buffering constraints of the decoding client would be also
acceptable.

The streams are compressed according to the MPEG-2
specification, or any other encoding scheme that supports
constant quality quantization parameters and variable bit
rates. The stream data are stored across the multiple storage
devices 1620.

Playback requests arriving from the clients 1660 are
initially directed to an admission control module 1615,
where it is determined whether enough resources exist to
activate the requested playback session either immediately
or within a limited number of rounds. The admission control
module maintains a schedule (scheduling information) on
how much data needs to be accessed from each storage
device of the storage devices 1620 in any given round, the
amount of server buffer space required from the server
buffers 1630, and how much data needs to be transferred to
the client 1660.

This scheduling information for each of the stream files is
generated when the media stream is first stored and is
generated by scheduling to prefetch stream data so that
storage device bandwidth peaks are smoothed out. By
smoothing out the peaks, a greater number of streams may
be accessed from a set of storage devices at any one time.

One crucial issue with storage device prefetching is how
to maintain an appropriate balance between storage device
bandwidth and server buffer space usage. Too aggressive
prefetching can limit the number of concurrent streams that
can be supported because of excessive server buffer usage.

In accordance with an embodiment of the present
invention, there is provided a stream scheduling procedure
that specifies for each stream both the variable server buffer
and storage device bandwidth requirements over time. A
storage device block b originally scheduled for round i is
prefetched in a previous round j only if: 1) the storage device
bandwidth requirement in round j with the prefetched block
does not exceed the original storage device bandwidth
requirement of round 1, and ii) the proportion of server buffer
required in each of the rounds j up to i-1 after prefetching
block b does not exceed the proportion of storage device
bandwidth required in round i without b.

The first condition is necessary in order for the prefetch-
ing to have a smoothing effect on the storage device band-
width requirements over time. The second condition is a
heuristic that is applied in order to prevent exhaustion of the
server buffer. Both conditions are applied to individual
streams, and to multiple streams concurrently.

Thus, the stream smoothing method prefetches data into
server buffers, and has several important advantages: ability
to support clients with minimal memory resources (such as
inexpensive mass-produced specialized devices) and still
benefit from smoothing, optimizing for storage device band-
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width that is estimated to increase at rates an order of
magnitude slower than network link bandwidth, reduced
complexity in admission control processing by not having to
support a separate transfer schedule for each individual
client type, and reduced stream replication with storage
device striping policies that are based on a specified client
configuration and retrieval sequence.

A “smoothness™ criterion that is based on Majorization
Theory is used. For any x=(x1, . . . ,xn) in R”, let the square
bracket subscripts denote the elements of x in decreasing
order x[1]>=?>=x[n]. For x,y in R”, x is majorized by y, x<y,
if:

Then, consider x smoother than y, if x<y. Finally, we call a
vector X in R” majorization-minimal if there is no other
vector z in R” such that z<x.

In accordance with another embodiment of the present
invention, there is provided a method that, given a stream
network sequence Sn and a target server configuration,
generates a smoothed storage device sequence Sd. The
generated storage device sequence is majorization-minimal
under the specified constraints. The generated storage device
sequence is subsequently transformed into a striping
sequence Sm according to some storage device striping
method, such as the Variable-Grain Striping.

The storage device time reservation for a disk transfer of
X bytes is approximately equal to:

T X)=2(T paerseert LavgRo *X/R gisie

Definition 1: Let the Disk Time Proportion of X bytes,
Pd(X), be the fraction of the round time Tround that the
disk time reservation Tdisk(X) occupies: Pd(X)=Tdisk
(X)/Tround. Further let the Buffer Space Proportion of X
bytes, Pb(X), be the fraction of the buffer space for each
disk, Bdisk, (Bdisk is the total server buffer divided by the
number of disks D) that X bytes occupy in a round:
Pb(X)=X/Bdisk. Then, the Maximum Resource Propor-
tion in round i, is the maximum of the corresponding disk
time and buffer space proportions in that round: {\small
max(Pd(Sd(i)),Pb(Sb(i))).

The above utilization definitions refer to resource reser-
vations within a round. However, for conciseness of the
following presentation, the words Round and Reserved are
dropped and are refer to as Disk Utilization, Buffer Utili-
zation and Maximum Utilization, respectively.

Definition 2: The Deadline Round for a block is the latest
round at which the block can be accessed from the storage
device without incurring a real-time violation at the
network transfer. Then, with respect to a specific block, all
rounds before the deadline round are considered Candi-
date Rounds and the one actually chosen for prefetching
is called the Prefetch Round. All the rounds between the
deadline and a prefetch round are called Shift Rounds.
These definitions only affect the number of blocks
accessed in each round, since stream block accesses are
done sequentially during playback.

Definition 3: The Maximum-Proportion Constraint is
defined as the requirement that the maximum resource
proportion of the deadline round is no less than the
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maximum resource proportion of the corresponding (if
any) prefetch and shift rounds.
The Server Smoothing method is as follows:

. proc serverSmoothing

0
1. input : Sal] ( =0 outside [1..L4] ), B,
2. output : Ld> Sdll: Ly, sl
3. begin
4. blockQuantize(L,, S,[], B,) (* see App. B *)
5. fort,g:0.L,-1
6 i ( Prous(Su(tema)) < PaaSaltma)) )
7 repeat
8. trmin = tind
9. Proin = max( Pua(Saltema))s Pru(Sp(tena)) )
10. tory = tma = 1, prefFailed := false
11. while (prefFailed = false AND t,,, >=0)
12. Ppre = max( Paa(Saltyr) + By,
13. PLue(Su(trn) + By)
14. Pope = max( Pya(Salton)),
15. Pr,eSbit,,) + By)
16. (*check for max proportion decrease*)
17. B (P < P
18. tnins = Lprvs Prnin = Ppat
19. else if (P, < Payp
20. prefFailed := true
21. end-if
22, fory = fory = 1
23. end-while
24, if (tm < tma) (* update vectors *)
25. Sltmin) = Saltmin) + B,
26. Se(toi) = Spltm) + By
27. FOr £y 1= g + 1 o g — 1
28. Sltpr) = Spltor) + By
29. end-for
30. Saltena) = Saltena) —
31. end-if
32. until (tp, >= t,g) (*prefetch search failed*)
33. end-if
34.  end-for
35. end

This method initially invokes the blockQuantize proce-
dure

The BlockQuantize Procedure

0. MblockQuantlze
1. input : Sal] (=0 outside [1..L,] ), B,
2. output : Ld> Sdll: Ly, Sull
3. begin

4. 8]:=0,8]]:=0
5

6

7

8

o

Ly=L,L,=L,+1
totSn = 0
fort,q:0.L,

prvSn := totSn, totSn := totSn + S, (t,nq + 1)

9. (* to use function ceil() for the [] operation *)
Saltma) = By - ( ceil(totSn/By) — ceil(prvSn/B,) )
Sy(tina) = Spltea = 1) + Syltma) = Spltma = 1)

end-for

13. end

that generates storage device and buffer sequences with data
transfer sizes that are integral multiples of the logical block
Bl. Network transfers are specified in byte granularity for
increased flexibility (if necessary, they could be quantized
t00). Then, rounds of the generated sequences are visited in
increasing order starting from round zero. For every logical
block to be retrieved from the storage device in the currently
visited round, previous rounds are examined linearly in
decreasing order towards round zero for potential prefetch-
ing of the block. Each such search completes successfully
when a prefetch round is found such that the maximum
resource proportion of the current round decreases while
remaining higher than those of the prefetch and shift rounds.
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This implies that the storage sequence can be smoothed
out without incurring buffer space proportion peaks exceed-
ing the storage device time proportion of the current round.
Otherwise, the block prefetching operation will not have any
positive smoothing effect overall, and the corresponding
search fails.

It has traditionally been assumed that storage device
arrays consist of homogeneous storage devices (for example
identical disks from the same manufacturer), presumably in
order to keep the system complexity manageable. With the
scalability of stream striping demonstrated and the sequen-
tial access of stored video making things somewhat simpler,
systems with different storage devices types may be pro-
vided that may be scaled incrementally with the newest
storage device technology. Newer storage device models
typically achieve higher transfer rates and have larger stor-
age capacities.

The objective is to maximize the number of active streams
by increasing the storage device bandwidth utilization across
all the storage devices. This might lead to suboptimal
storage capacity utilization, assuming it is affordable given
the current technology trends. In order to maximize the
storage device bandwidth utilization, the Server Smoothing
method is extended to handle heterogeneous storage
devices. In particular, the disk time Tdisk(X) and the disk
time proportion function P_ d(X) was redefined to accept a
second disk type argument k that specifies the particular disk
parameters to be used P_ d(X, k)=Tdisk(X,k)/Tround. Dur-
ing the operation of the Server Smoothing method, the disk
type k assumed in each round i can be derived using a simple
rule, such as k=i(mod D), where D is the total number of the
disks.

The above disclosure generally describes the present
invention. A more complete understanding can be obtained
by reference to the following specific Examples. These
Examples are described solely for purposes of illustration
and are not intended to limit the scope of the invention.
Changes in form and substitution of equivalents are con-
templated as circumstances may suggest or render expedi-
ent. Although specific terms have been employed herein,
such terms are intended in a descriptive sense and not for
purposes of limitation.

EXAMPLES

The examples are described for the purposes of illustra-
tion and are not intended to limit the scope of the invention.
A Media Server System

A media server system or stream server system was built
in order to evaluate the resource requirements of the differ-
ent striping techniques. The modules were implemented in
about 17,000 lines of C++/Pthreads code on AIX4.1, and ran
on a single node. The code was linked either to the Univer-
sity of Michigan DiskSim disk simulation package, which
incorporated advanced features of modern disks such as
on-disk cache and zones for simulated disk access time
measurements, or to hardware disks through their raw device
interfaces. The indexing metadata were stored as regular
Unix files, and during operation were kept in main memory.
The MPEG-2 decoder from the MPEG Software Simulation
Group was used for stream frame size identification.

The basic responsibilities of the media server included file
naming, resource reservation, admission control, logical to
physical metadata mapping, buffer management, and disk
and network transfer scheduling.

With appropriate configuration parameters, the system
operated at different levels of detail. In Admission Control
mode, the system receives playback requests, does admis-
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sion control and resource reservation but no actual data
transfers take place. In Simulated Disk mode, all the mod-
ules are functional, and disk request processing takes place
using the specified DiskSim disk array.

The system was primarily used in Admission Control
mode (except for our validation study, where the system was
used in Simulated Disk mode). The Admission Control
module used circular vectors of sufficient length to represent
the allocated time of each disk, the network time, and the
buffer space respectively. On system startup, the disk time
vectors are initialized to 2-TfullSeek, while the network time
and buffer space are initially set to zero. When a new stream
request arrived, admission control is performed by checking
against current available resources. In particular, the total
service time of each disk in any round may not exceed the
round duration, and the total network service time may also
not exceed the round duration, while the total occupied
buffer space may be no longer than the server buffer capac-
ity. If the admission control test was passed, the resource
sequences of the stream are added to the corresponding
vectors of the module, and the stream is scheduled for
playback.

Performance Evaluation Method

The playback initiation requests arrived independently of
one another, according to a Poisson process. The system
load was controlled through the mean arrival rate A of
playback initiation requests. Assuming that disk transfers
form the bottleneck resource, in a perfectly efficient system
there is no disk overhead involved in accessing disk data.
Then, the maximum arrival rate A was chosen to equal Amax
of playback initiation requests, that corresponds to system
load 100%, to be equal to the mean service rate with which
stream playbacks would complete in that perfectly efficient
system. This makes it possible to show the performance
benefit of arbitrarily efficient data striping policies.
Subsequently, the mean service rate |1, expressed in streams
per round, for streams of data size Stot bytes becomes:
pu=D-Rdisk-Tround/Stot. Correspondingly, the system load
p, was set equal to: p=A/u=<1, where A=<Amax=|L.

Another important decision had to do with the admission
control process. When a playback request arrived, it is
checked to determine if available resources existed for every
round during playback. The test considered the exact data
transfers of the requested playback for every round and also
the corresponding available disk transfer time, network
transfer time and buffer space in the system. If the next
round failed this test, it is repeated until the first future round
is found, where the requested playback can be started with
guaranteed sufficiency of resources.

The lookahead distance HIl was defined as the number of
future rounds that are considered as candidate rounds for
initiating the stream for each request before it is rejected.
Playback requests not accepted were turned away rather than
being kept in a queue. Practically, a large lookahead distance
allowed a long potential waiting time for the initiation of the
playback. It cannot be unlimited in order for the service to
be acceptable by the users. On the other hand, setting the
lookahead distance too small can prevent the system from
reaching full capacity.

The basic lookahead distance Hl basic was set to be equal
to the mean number of rounds between request arrivals
Hl'basic=1/). Setting Hl=Hl"basic allows the system to
consider for admission control the number of upcoming
rounds that will take (on average) for another request to
arrive. More generally, a lookahead factor F1 is defined as
the fraction Fl=HI/HI basic.

As the basic performance metric, the expected number of
active playback sessions that can be supported by the server
was chosen. The objective was to make this number as high
as possible.
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Setup

Six different VBR MPEG-2 streams of 30 minutes dura-
tion each were used. Each stream had 54,000 frames with a
resolution of 720x480 and 24 bit color depth, 30 frames per
second frequency, and a IB*PB*PB*PB*PB? 15 frame Group
of Pictures structure. The encoding hardware that was used
allowed the generated bit rate to take values between 1 Mbps
and 9.6 Mbps. Although the MPEG-2 specification allows
bit rates up to 15 Mbit/sec, there is a typical point of
diminishing returns (no visual difference between original
and compressed video) at 9 Mbit/sec. The DVD specifica-
tion sets a maximum allowed MPEG-2 bit rate of 9.8
Mbit/sec. Statistical characteristics of the clips are given in
Table 1, where the coefficients of variation (CoV) lie
between 0.028 and 0.383, depending on the content type. In
the mixed basic benchmark, the six different streams were
submitted in a round-robin fashion. Where necessary, the
results from individual stream types are also shown.

TABLE 1

Content Avg Bytes Max Bytes CoV
Type per rnd per rnd per rnd
Science Fiction 624935 1201221 0.383
Music Clip 624728 1201221 0.366
Action 624194 1201221 0.245
Talk Show 624729 1201221 0.234
Adventure 624658 1201221 0.201
Documentary 625062 625786 0.028

For the measurements, Seagate Cheetah ST-34501 SCSI
disks were assumed, with the features shown in Table 2.
Except for the storage capacity, which can reach 73GB in the
latest models, the rest of the performance numbers are
typical of today’s high-end drives. The logical block size Bl
was set to 16,384 bytes, while the physical sector size Bp
was equal to 512 bytes. The stride size Bs in the disk space
allocation was set to 1,572,864 bytes. The server memory
was organized in buffers of fixed size Bl=16,384 bytes each,
with a total space of 64 MB for every extra disk. The

available network bandwidth was assumed to be infinite.
TABLE 2
Seagate Cheetah ST-34501
Data Bytes per Drive 4.55 GByte
Average Sectors per Track 170
Data Cylinders 6,526
Data Surfaces 8
Zones 7
Buffer Size 0.5 MByte

Track to Track Seek
(read/write)

Maximum Seek (read/write)
Average Rotational Latency
Internal Transfer Rate

0.98/1.24 msec
18.2/19.2 msec

2.99 msec

122 to 177 Mbits
11.3 to 16.8 MByte

Inner Zone to Outer Zone Burst
Inner Zone to Outer Zone Sustained

The round time was set equal to one second. A warm up
period of 3,000 rounds was used and calculated the average
number of active streams from round 3,000 to round 9,000.
The measurements were repeated until the half-length of the
95% confidence interval was within 5% of the estimated
mean value of the active streams.

Example on Fixed-Grain Striping

In respect of Fixed-Grain Striping, an important feature of
this method is the ability to control the disk access efficiency
through the choice of block size Bf. As the block size is
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increased, a larger part of each access is devoted to data
transfer rather than mechanical movement overhead. When
a stream requests more than one block from a particular disk
during a round, a maximum of two contiguous accesses is
sufficient with the stride-based disk space allocation used.

Referring to FIG. 5, there is shown a graph of number of
streams versus load under Fixed-Grain Striping where the
number of active streams with sixteen disks and the mixed
workload increases linearly as the load, p, increases from
10% to 50%. At loads higher than 50%, the number of
streams that can be supported no longer increases. Since
increasing the lookahead factor (F1) from 1 to 30 improves
the number of streams that can be supported only
marginally, for the rest of the experiments, the lookahead
factor F1 was set to 1. This corresponds to a lookahead
distance of less than 10 rounds, for a system of sixteen disks
operating at load p=80%, and half-hour clips of 1 GByte
each.

Referring to FIG. 6, there is shown a graph of a ratio of
total number of rejected streams over total number of
accepted streams versus load under Fixed-Grain Striping
where the additional load beyond 50% translates into a
corresponding increase in the number of rejected streams.

Referring to FIG. 7, there is shown a graph of number of
streams versus block size Bf under Fixed-Grain Striping.
For load values p=40% and p=80%, the number of active
streams were measured as the block size increased from
Bf=32,768 to Bf=1,048,576 bytes at steps of 32,768. As can
be seen from FIG. 7, at load 80% the number of streams
initially increases until Bf becomes equal to 327,680 and
then drops. A similar behavior is noticed at 40%, although
the variation in the number of streams is much smaller
across different block sizes.

The Admission Control mode that was used for the above
experiments allowed the gathering of statistics on system
resources reserved for each round during the admission
control process.

Referring to FIG. 8, there is shown a graph of round disk
time versus block size Bf under Fixed-Grain Striping. In
particular, FIG. 8 depicts the maximum and average access
time Tdisk(i,k) that was reserved during the measurement
period 3,000=<i<9,000 for a particular disk (k=0) in a
sixteen disk configuration with load p=80%. While the
maximum time remains close to 100% across different block
sizes, the average time drops from about 90% at Bf=32,768
to less than 50% at Bf=1,048,576.

With the round time set to 1 sec, the average time
(normalized by the round time) corresponds to the expected
disk utilization and varies depending on the number of disks
accessed for a stream every round. Part of it was actuator
overhead and decreased as the block size becomes larger. On
the other hand, the maximum difference in reserved access
times in a round (Avg Diff in FIG. 8) increased on average
from almost zero to above 60%, with increasing block size
Bf. This could be another reason for the decrease in the
average reserved time for larger block sizes.

It was also found that the average reserved time (shown
in FIG. 8 only for Disk 0) remains about the same (typically
within 2%) across a disk array. Thus, the access load, on
average, was equally distributed across the disks, despite
variations from round to round.

Referring to FIG. 9, there is shown a graph of round disk
time versus number of disks under Fixed-Grain Striping. As
the number of disks increases, the average time drops only
slightly from 69% with 8 disks to 67% with 16 and 66% with
32 disks. It is anticipated that the capacity of the system will
increase almost linearly as more disks are added.
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Referring to FIG. 10, there is shown a graph of number of
streams versus number of disks under Fixed-Grain Striping.
The measurements were repeated varying the number of
disks from 4 to 64. The block size Bf, that maximized the
number of streams, was found to remain at Bf=327,680. At
80% load, the number of streams that could be supported
increased from 39.17 with 4 disks to 143.57 with 16 disks
and 550.23 with 64 disks. This is within 9-14% of what
perfectly linear scalability should achieve. With the load at
40%, the number of streams increased from 30.31 with 4
disks to 504.79 with 64 disk, thus reflecting the improved
capacity of the system with increased number of disks at low
loads.

With Fixed-Grain Striping, the mixed workload the num-
ber of streams is maximized at Bf=327,680 across different
number of disks and system load values.

Example of Variable Grain Striping

Referring to FIG. 11, there is shown a graph of number of
streams versus load under Variable Grain Striping. As
shown, the performance of Variable-Grain Striping on six-
teen disks is shown as the load increases from 10% to 100%.
The number of streams grows linearly as the load increases
up to 70%. This is significantly higher than the 50% load,
where Fixed-Grain Striping flattened out (FIG. 5). As
before, a lookahead factor value of Fl=1 attains more than
95% of the system throughput, and that is the value that is
used.

Referring to FIG. 12, there is shown a graph of a ratio of
total number of rejected streams over total number of
accepted streams versus load under Variable Grain Striping.
As shown, only loads higher than 70% with Variable Grain
Striping increases the number of rejected streams.

Referring to FIG. 13, there is shown a graph of round disk
access time versus number of disks under Variable Grain
Striping. As the number of disks increases, the average
reserved time increases from 83% with 8 disks, to 84% with
16 disks, and 85% with 32 disks. The maximum number of
sustained streams with 4 to 64 disks was also measured. At
a load of 80%, the number of streams increases from 48.11
with 4 disks, to 202.69 with 16 disks and 786.05 with 64
disks. Thus, as the number of disks increases, the number of
streams remains within 3% of what perfectly linear scal-
ability should achieve. In addition, the advantage of
Variable-Grain Striping over Fixed-Grain Striping increases
from 23% with 4 disks to 43% with 64 disks.

Referring to FIG. 14, there is shown a graph of number of
streams versus individual stream types in both Fixed-Grain
versus Variable-Grain Striping. As the content type changes
from Science Fiction to Documentary and the variation in
data transfers correspondingly drops, the block size has to be
larger in order to maximize the performance of Fixed-Grain
Striping. However, the performance remains about the same
for the five stream types, and increases only with the
Documentary stream. In contrast, Variable-Grain Striping
manages to transform even minor decreases in data transfer
variation into improved performance. Overall, Variable-
Grain Striping maintains an advantage over Fixed-Grain
Striping between 11 % and 50%.

Validation is Simulated Disk Mode

In order to keep the computation time reasonable, the
previous work were conducted with the system in Admission
Control mode, where playback requests arrive leading to
corresponding resource reservations, but without actual time
measurement of the individual disk transfers. The statistics
of the disk time resource reservations is compared with the
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statistics gathered over the access times of all individual data
transfers involved, using the DiskSim representation of the
Seagate Cheetah ST-34501 disk. A two-disk array model is
used with each disk attached to a separate 20 MB/sec SCSI
bus, and no contention assumed on the host system bus
connecting the two SCSI buses. The statistics are gathered
during 6,000 rounds after a warmup period of 3,000 rounds,
as before. The mixed workload is used with average number
of active streams 21.23 and 23.27 for Fixed-Grain and
Variable-Grain Striping, respectively, corresponding to 80%
load.

Referring to FIG. 15, there is shown a graph of round disk
time in Simulated Disk Mode. As can be seen from FIG. 15,
in both the average and maximum case, the reserved disk
time is no more than 8% higher than the corresponding
measurements using the DiskSim. The difference can be
attributed to the fact that the reservation assumes a minimum
disk transfer rate and ignores on-disk caching.

Effect of Technology Improvements

To project disk technology improvements for the foresee-
able future, the compound growth rates from the past are
extended linearly into the future (Table 3). In particular, a
30% increase in internal disk transfer rate per year, and 23%
decrease in seek distance is used. The full seek time depends
linearly on seek distance, so the decrease is also 23%.
However, a decrease of 12% per year for the track seek time
is also assumed, which is dependent on the square root of the
seek distance (among other factors more complex to project
including settle time). Finally, a rotation speed increase of
12% per year is assumed. The stream types and sizes
remaining the same.

TABLE 3

Projection of disk parameter changes in two and five vears into the future.

Disk Parameter Today 2 Years 5 Years
Min Transfer Rate (MB/sec) 11.3 19.10 41.92
Max Seek Time (msec) 18.2 10.74 491
Track Seek Time (msec) 0.98 0.76 0.51
Avg Rotation Latency (msec) 2.99 2.38 1.70

The above compared Fixed-Grain Striping to Variable-
Grain Striping, which is a special case of Group-Grain
Striping at G=1. With current disk technology, having G=1
maximizes the number of streams. But as the disk access
time drops, it is beneficial to increase G, so that G rounds
worth of stream data are transferred in a single round.
Specifically, when using the mixed workload, it is antici-
pated that two years into the future, the number of streams
that could be supported with Group-Grain policy at G=2
increases by 35% when compared to Fixed-Grain Striping.
Five years into the future, the corresponding benefit of
Group Grain Striping at G=3 remains at 29%. Thus, under
reasonable technological improvements, there are signifi-
cant performance improvements when using Group-Grain
Striping instead of Fixed-Grain Striping.

Although preferred embodiments of the invention have
been described herein, it will be understood by those skilled
in the art that variations may be made thereto without
departing from the scope of the invention. While this inven-
tion has focused on the striping problem for the common
case of sequential playback of video, it will be understood
by those skilled in the art that variations beyond the play-
back of video, such as, the download of a file or any other
material or any stream data, may be made thereto without
departing from the scope of the invention.

Although preferred embodiments of the invention have
been described herein, it will be understood by those skilled
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in the art that variations may be made thereto without
departing from the scope of the invention or the appended
claims.

What is claimed is:

1. A method of storage device space management for
storing stream data on storage devices of a streaming server
where stream data transfers occur in rounds of fixed
duration, comprising

dividing the stream data into segments of stream data

where each of the segments comprises an amount of
stream data retrieved from the storage space of one
storage device in response to one retrieval request;

allocating storage space of the storage devices in strides
where each of the strides comprises a contiguous chunk
of storage space and that each of the strides is sized for
storing at least one segment; and

storing the segments in the strides.

2. The method of claim 1, wherein the strides are of a
predetermined fixed size.

3. The method of claim 1, wherein the strides are of
variable sizes.

4. The method of claim 1, wherein stream data is
on the disks using fixed-grain striping.

5. The method of claim 2, wherein stream data is
on the disks using fixed-grain striping.

6. The method of claim 3, wherein stream data is
on the storage devices using fixed-grain striping.

7. The method of claim 1, wherein stream data is
on the storage devices using group-grain striping.

8. The method of claim 2, wherein stream data is
on the storage devices using group-grain striping.

9. The method of claim 3, wherein stream data is
on the storage devices using group-grain striping.

10. An array of storage devices for a streaming server
having storage space management for storing stream data,
where stream data transfers occur in rounds of fixed
duration, the storage device space management comprising
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dividing the stream data into segments of stream data
where each of the segments comprises an amount of
stream data retrieved from the storage space of one
storage device in response to one retrieval request;

allocating storage space of the storage devices in strides
where each of the strides comprises a contiguous chunk
of storage space and that each of the strides is sized for
storing at least one segment; and

storing the segments in the strides

wherein at least one segment of stream data is retrieved

for transfer during one of the rounds.

11. The storage device space management of claim 10,
wherein the strides are of a predetermined fixed size.

12. The storage device space management of claim 10,
wherein the strides are of variable sizes.

13. The storage device space management of claim 10,
wherein stream data is stored on the storage devices using
fixed-grain striping.

14. The storage device space management of claim 11,
wherein stream data is stored on the storage devices using
fixed-grain striping.

15. The storage device space management of claim 12,
wherein stream data is stored on the storage devices using
fixed-grain striping.

16. The storage device space management of claim 10,
wherein stream data is stored on the storage devices using
group-grain striping.

17. The storage device space management of claim 11,
wherein stream data is stored on the storage devices using
group-grain striping.

18. The storage device space management of claim 12,
wherein stream data is stored on the storage devices using
group-grain striping.



