a2 United States Patent

Soares et al.

US008701122B2

US 8,701,122 B2
Apr. 15,2014

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

METHOD AND SYSTEM FOR
EXCEPTION-LESS SYSTEM CALLS IN AN
OPERATING SYSTEM

Applicant: Quietus Systems Inc., Toronto (CA)

Livio Soares, New York, NY (US);
Michael Stumm, Toronto (CA)

Inventors:

Assignee: Quietus Systems Inc., Toronto, ON

(CA)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 13/633,025

Filed: Oct. 1, 2012

Prior Publication Data

US 2013/0275997 Al Oct. 17, 2013

Related U.S. Application Data

Provisional application No. 61/541,161, filed on Sep.
30, 2011, provisional application No. 61/541,164,
filed on Sep. 30, 2011.

Int. Cl1.

GO6F 3/00 (2006.01)

GO6F 9/46 (2006.01)

U.S. CL

USPC 719/312; 718/100; 718/102; 718/103

Field of Classification Search
CPC ... GO6F 11/1482; GOG6F 12/0808; GO6F 9/48;

GOG6F 11/2046; GOGF 11/1471; GOGF 9/544,
GOG6F 11/2028; GO6F 11/2097; GOGF 9/4812;
GOGF 9/4843; GOG6F 9/545

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,584,473 B2* 9/2009 Forinetal. 718/100
8,281,317 B1* 10/2012 Backensto et al. .. 719/312
2009/0320042 Al* 12/2009 Thelenetal. 719/312
2012/0144396 Al* 6/2012 Bohreretal. ... 718/103

* cited by examiner

Primary Examiner — Tuan Dao
(74) Attorney, Agent, or Firm — Robert P. Stratton

(57) ABSTRACT

A method and system is disclosed which can enhance the
performance of computer systems by altering the operation of
the operating system of those computer systems. The inven-
tion provides a system and method for making exception-less
system calls, decoupling the invocation and execution of sys-
tem calls, thus avoiding or reducing the direct and indirect
overheads associated with making a conventional exception-
based system call. The invention can be employed with single
core processor systems and with multi-core processor sys-
tems, both affording improved temporal execution locality
and the later also providing improved spatial execution local-
ity. The system and method can be employed in a wide range
of operating systems.

3 Claims, 4 Drawing Sheets

200
Create Shared Memory Space For A User
Mode Process

v

204

Define Set Of Entries For Exception-Less
System Calls In The Shared Memory Space

v

208
Create Syscall Thread In Kernel Space For
Each Entry In Shared Memory Space

>

P

A 4

212
A Syscali Thread Checks Entries For
Submitted Exception-Less System Calis And
Processes A Submitted Entry, Marking Its
Status Busy

Is Processing Of
Entry Blocked?

U.S. Patent Apr. 15,2014 Sheet 1 of 4 US 8,701,122 B2

100
Create A Shared Memory Space For A User
Mode Process

v

104

Define Set Of Entries For Exception-Less
System Calls In The Shared Memory Space

v
108
A Thread In The User Mode Process
Locates Free Entry In Shared Memory
Space
v
112
Thread Writes Relevant Data For System
Call Into The Free Entry and Marks Entry
Status As Submitted

v
116
Thread Checks Status Of Entry ol

N
124
Process Return Values And Mark Entry
Free
Fig. 1

U.S. Patent Apr. 15,2014 Sheet 2 of 4 US 8,701,122 B2

200

Create Shared Memory Space For A User
Mode Process

y

204

Define Set Of Entries For Exception-Less
System Calls In The Shared Memory Space

v

208

Create Syscall Thread In Kernel Space For
Each Entry In Shared Memory Space

® "l
212
A Syscall Thread Checks Entries For

Submitted Exception-Less System Calls And
Processes A Submitted Entry, Marking Its
Status Busy

Is Processing Of
Entry Blocked?

Fig. 2a

U.S. Patent Apr. 15,2014 Sheet 3 of 4 US 8,701,122 B2

218

Start Another Syscall Thread To
Process Another Submitted Entry Ana
Fut Blocked Syscall Thread To Sleep

Fig. 2b

U.S. Patent Apr. 15,2014 Sheet 4 of 4 US 8,701,122 B2

222

Process Requested System Call And
Write Return Values To Corresponding
Entry In Shared Memory Space And
Mark Entry Done

230
s Previously Blocked lfjeml’menCef
Syscall Thread No rlgf:\igrglyo
L Blocked?
Qger Blocked Blocked Thread

Fig. 2c

US 8,701,122 B2

1
METHOD AND SYSTEM FOR
EXCEPTION-LESS SYSTEM CALLS IN AN
OPERATING SYSTEM

RELATED APPLICATIONS

This application claims priority from U.S. provisional
patent application Ser. Nos. 61/541,161 and 61/541,164, each
filed Sep. 30, 2011, and the contents of each of these provi-
sional patent applications are included herein, in their
entirety, by reference.

FIELD OF THE INVENTION

The present invention relates to a system and method for
improving the performance of computer operating systems.
More specifically, the present invention relates to a system
and method for providing and performing exception-less sys-
tem calls in a computer operating system.

BACKGROUND OF THE INVENTION

Most modern computers, and especially general-purpose
computer systems, execute an operating system which man-
ages the computer’s resources and provides a set of common
services for application programs which are to be executed on
the computer. Operating systems typically act as an interme-
diary layer between application programs and the computer
resources, providing and managing services such as memory
allocation and input and output (I/O) functions, such as read-
ing and/or writing information to and from disc drives, or
their equivalent.

Most operating systems employ a security model which
features at least two modes in which the computer can oper-
ate. In the first mode, often referred to as “supervisor mode”
or “kernel mode”, the operating system has unrestricted
access to the hardware and other resources of the computer
system. Generally, only the operating system itself (or the
kernel portion of the operating system) executes in supervisor
mode. The second mode, often referred to as “protected
mode” or “user mode” is the mode in which user applications
and less important operating system components execute and
software being executed in user mode cannot directly access
the resources of the computer system such as the above-
mentioned I/0 and/or memory allocation functions.

Instead, when a user application requires access to 1/O or
other computer resources only available in kernel mode, the
user application makes a request for those resources to the
operating system. Such a request is typically referred to as a
“system call” and the operating system receives the system
call and attempts to fulfill the request.

When the operating system needs to perform tasks which
can only be performed in kernel mode, the mode of the
computer system must be switched from user mode to kernel
mode and, when the request has been fulfilled, the mode must
be switched back from kernel mode to user mode. These
switches, often referred to as “mode switches” or “context
switches”, are performed by the operating system executing a
special instruction which results in a processor “exception”
which allows the computer system to change from user mode
to kernel mode where the requested system call can be pro-
cessed and/or back again.

Operating systems which employ this security model have
been in widespread use for many years and are the presently
preferred method of implementing general-purpose (and
many special purpose) computer systems. However, prob-
lems exist with these systems. In particular, modern computer

10

15

20

25

30

35

40

45

50

55

60

65

2

systems are typically now superscalar which means that more
than one instruction can be executed by the processor in
parallel in different parts of the processor. Superscalar sys-
tems typically include a set of features such as instruction
pipelines, multi-level data and instruction caches, out of order
and/or predictive execution units, translation look aside buft-
ers, etc. which assist in achieving superscalar performance.

Modern superscalar systems now commonly also have
multiple processors (i.e.—cores”) further increasing the abil-
ity of the computer system to execute multiple instructions in
parallel. As used herein, the term “superscalar” is intended to
comprise computer systems which can execute more than one
instruction in parallel and includes both single core and multi-
core computer systems.

While superscalar computer systems provide significant
advantages, they do suffer from some problems. In particular,
many of the superscalar features of such systems require the
executing program to display locality of execution to benefit
from these features. Without locality of execution, features
such as caches, predictive execution units, etc. cannot provide
their advantages and the rate of instructions executed per
cycle by a superscalar computer system will drop signifi-
cantly without locality of execution.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a novel
system and method for providing and performing exception-
less system calls in a computer operating system which obvi-
ates or mitigates at least one disadvantage of the prior art.

According to a first aspect of the present invention, there is
provided a non-transitory computer readable medium having
instructions stored thereon for a system of performing excep-
tion-less system calls on a computer system executing an
operating system having a user mode and a kernel mode, the
operating system executing at least one user application,
comprising: instructions for creating a shared memory space
between the at least one user application executing in user
mode and the operating system executing in kernel mode;
instructions for the user application to place a request for at
least one system call into the shared memory space; instruc-
tions for the operating system, in kernel mode, to check the
shared memory space from time to time to identify system
calls requested by the at least one user application; instruc-
tions for the operating system to perform at least one identi-
fied system call for the at least one user application and to
indicate completion of the at least one identified system call to
the at least one user application via the shared memory space;
and instructions for the at least one user application to check
the shared memory space from time to time to determine
when the at least one system call has been completed.

Preferably, the non-transitory computer readable medium
further includes instructions to have the operating system
perform the at least one requested system call on a temporally
scheduled basis or, where the computer system includes at
least two processor cores, further including instructions to
have the operating system select at least one of the at least two
processor cores and to cause the system calls to be preferen-
tially performed on the selected at least one processor core.

According to another aspect of the present invention, there
is provided a computer-implemented method of performing
exception-less system calls on a computer system executing
an operating system having a user mode and a kernel mode,
the operating system executing at least one user application,
the method comprising the steps of: for each at least one user
application, creating a shared memory space between the user
application and the operating system; in the shared memory

US 8,701,122 B2

3

space of each at least one user application, creating a system
call entry for each of at least one exception-less system call;
instantiating a system call thread in the operating system
kernel for each system call entry in each shared memory
space; allowing the at least one user application to set the
contents of the at least one system call entry to request the
performance of a system call by the operating system and to
set the status of that system call entry appropriately; causing
a system call thread executing in the kernel space of the
operating system to check the status of at least one system call
entry in the shared memory space to identify a requested
exception-less system call waiting to be performed and to
execute the system call requested by that system call entry
and to update the corresponding status of that system call
entry; and causing the at least one user application to check
the status of the system call entries in the shared memory
space to determine when a corresponding exception-less sys-
tem call has been completed.

The present invention teaches a method and system which
can enhance the performance of computer systems by altering
the operation of the operating system of those computer sys-
tems. The invention provides a system and method for mak-
ing exception-less system calls, thus avoiding or reducing the
direct and indirect overheads associated with making an
exception-based system call. In tests, significant improve-
ments in overall performance of a computer system have been
achieved.

The present invention improves the performance of user
applications executing on a computer system executing an
operating system by decoupling the execution of system calls
from the invocation of system calls, thus improving execution
locality within the computer system.

The invention can be employed with single core processor
computer systems and with multi-core processor computer
systems, both affording improved temporal execution local-
ity and the later also providing improved spatial execution
locality. The system and method can be employed in a wide
range of operating systems.

Other features and advantages of the present invention are
described more fully below.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now
be described, by way of example only, with reference to the
attached Figures, wherein:

FIG. 1 shows a flowchart of the method of a user space
process making an exception-less system call; and

FIGS. 2a, 26 and 2¢ show a flowchart of the method of
kernel space processing of exception-less system calls in one
operating system environment.

DETAILED DESCRIPTION OF THE INVENTION

The present inventors have determined that, during a con-
text switch between user mode and kernel mode, or vice
versa, the contents of caches, buffers, pipelines and other
superscalar optimization features are “polluted” (i.e.—their
contents and/or state invalidated) by the context switch as
locality of execution is lost.

In tests, the present inventors have found that a significant
drop in the instruction per cycle (IPC) rate of a computer
system occurs when a system call is made. This drop is both
due to the direct overhead associated with saving the contents
of system registers and performing the context switch and to
the indirect overhead associated with the resulting pollution
of'superscalar features. In fact, in tests by the inventors, it was

10

15

20

25

30

35

40

45

50

55

60

65

4

found that the performance degradation from indirect over-
head was significantly larger than that resulting from the
direct overhead.

Accordingly, to reduce the degradation of the performance
of superscalar computer systems which results from context
switches in prior art operating systems, the present inventors
have developed an exception-less system call system and
method.

Inconventional operating systems, a system call is made by
writing necessary values to appropriate system registers and
having the processor execute a special instruction that results
in a processor exception. The processor exception results in
the user-mode instruction pipeline being flushed, the saving
of a predefined set of register values onto the kernel stack,
changing the processor domain from user mode to kernel
mode and redirecting execution to the registered exception
handler. As part of this process, superscalar features like the
L1 data and instruction caches, translation look-aside buffers,
branch prediction tables, prefetch buffers and larger unified
caches (i.e—L2 and L.3) have user mode data overwritten
with kernel mode data and are thus polluted and execution
locality is lost.

Returning from kernel mode, after the exception has been
handled, the results of the system call are written to defined
registers, the saved user mode register values are pulled from
the stack and the domain is switched from kernel mode to user
mode.

The loss of execution locality which results from this pro-
cess is significant and, in tests conducted by the inventors, the
IPC rate of the computer system upon return from a system
call was significantly lower than the IPC rate prior to making
the system call and many thousands of cycles were required to
re-achieve the pre-system call IPC rate.

To reduce the loss of execution locality resulting from
system calls, the present inventors have developed what they
refer to as an exception-less system call. In fact, the present
inventors have developed two approaches to an exception-
less system call: the first being the batching of system calls;
and the second, for multi-core systems, being core special-
ization. As will be apparent, the exception-less system call of
the present invention can employ either or both of these
approaches, as desired.

With the batching of system calls, the execution of one or
more system calls is delayed and then those delayed system
calls are subsequently executed as a batch. Thus, instead of
performing a separate context switch for each system call, a
context switch is only incurred once for the set of system calls
and this improves temporal locality of execution.

For multi-core systems, an exception-less system call can
be scheduled for execution on a core different from the core
on which the system call was invoked, thus providing
improved spatial locality and reducing indirect overheads.

In a current embodiment of the present invention, the inter-
face for the exception-less system call is one or more memory
pages that are shared between user and kernel spaces. These
pages, referred to herein as syscall pages, are organized to
contain exception-less system call entries, each entry contain-
ing space for the request status (i.e. “free”, “submitted”,
“busy”, “cancel”, “done”, etc), a system call number, argu-
ments and return values.

While the description herein employs the term “thread”
when referring to executing processes within the computer
system, itis intended that the term “thread” notbe a limitation
to the scope of the invention and that “thread” should be read
to also encompass other execution units (i.e—processes,
tasks, etc.) which are available in operating systems with

US 8,701,122 B2

5

architectures and/or operating modalities that offer such
execution units either instead of, or in addition to, threads.

To make an exception-less system call, a user space thread
locates a free entry in the syscall pages, by checking the value
of the status field, and populates that free entry with the
necessary and appropriate values required for the particular
system call using regular store instructions. Once the syscall
entry has been populated, the user space thread marks the
status of that entry to “submitted” and the user space thread
can then continue executing without interruption.

The user space thread then later checks the status of the
exception-less system call by reading the status information
in the corresponding entry in the syscall pages until the status
is “done”. When done, the user thread can appropriately
process any return values and will mark the status of the entry
in the syscall page as “free” to allow the entry space to be
reused. The user space thread can then continue its execution
again.

As will be apparent, none of these operations (storing
values in the syscall pages or reading the results from the
syscall pages) causes an exception to be raised, hence the term
exception-less system call.

While the above-discussion refers to syscall pages, the
present invention is not so limited and any shared memory
space can be used with the present invention to pass excep-
tion-less system call entries between user mode and kernel
mode, as will occur to those of skill in the art.

Unlike exception based system calls, an exception-less
system call does not create an explicit notification to the
kernel that a call has been made, nor is an execution stack
provided. Instead, with the present invention a kernel thread,
referred to herein as a “syscall thread”, executes in kernel
mode for each process executing on the computer system
which employs exception-less system calls.

Syscall threads execute to, according to a schedule: iden-
tify and pull waiting exception-less system call requests from
the syscall pages or other shared memory structure; to appro-
priately execute those calls on behalf of the requesting user-
mode thread; to place any return values in the corresponding
syscall page entry; and to update appropriately its status in the
corresponding syscall page entry.

In a specific embodiment of the present invention imple-
mented in Linux and subject to the Linux thread blocking
architecture/model, a syscall thread is created for each entry
in the syscall, or other shared memory, for each process
employing exception-less system calls. Despite creating mul-
tiple syscall threads, only one syscall thread is active per user
application and core (in multi-core computer systems) at any
given time. If the system call does not block, all execution is
performed by the one syscall thread while the remaining
syscall threads sleep on a work queue. However, if the execu-
tion of the requested exception-less system call is blocked (by
resource contention, etc.), immediately before the syscall
thread is put to sleep, the next syscall thread on the work
queue is awoken and starts executing the next system call.
When the resources required by the first syscall thread (now
sleeping) become free, it is awakened and resumes its execu-
tion.

Suitable modifications and alternatives to this blocking
mechanism will be apparent to those of skill in the art and,
depending upon the architecture and models employed by the
target operating system, may vary significantly from that
described above for the Linux model.

As should now be apparent, a great deal of flexibility is
available in scheduling the execution of system calls by
syscall threads. As mentioned above, syscall threads can be
scheduled to execute on one or more selected cores in a

10

15

20

25

30

35

40

45

50

55

60

65

6

multi-core system, typically the selected core is different
from the core on which the requesting user thread is execut-
ing, to improve spatial locality. Similarly, syscall threads can
be scheduled to execute at a variety of times and/or after
specified events, including at: pre-selected time intervals; or
when user space threads are unable to make further progress
without execution of waiting systems calls; or combinations
of these intervals and timings; etc.

As will be apparent, if desired these scheduling methods
can be combined to improve both temporal and spatial execu-
tion locality.

In a present single core embodiment of the present inven-
tion on the Linux system (kernel version 2.6.33), if no block-
ing occurs, the executing syscall thread processes all system
calls, in sequence before switching back to user mode. If a
system call is blocked, the executing syscall thread awakens
another syscall thread which will begin processing the
remaining system calls awaiting processing, again executing
all remaining non blocked system calls, or if blocked, awak-
ening another syscall thread, etc. All pending system calls are
either finished, or blocked, with at least one system call hav-
ing been completed, before the computer system is returned
to user mode.

In a present multi-core embodiment of the present inven-
tion on the Linux system, the execution of syscall threads is
biased to a subset of the available cores, the subset either
being dynamically specified in accordance with the workload
of'the computer system or, in a simpler case, being statically
defined. Execution of syscall threads is preferentially
assigned to one of the subset of cores which is not presently
executing a syscall thread to enhance spatial execution local-
ity.

As should be apparent to those of skill in the art, the
implementation of exception-less system calls in accordance
with the present invention can be achieved in addition to prior
art exception-based system call mechanisms. In fact, it is
contemplated that such a coexistence of system call mecha-
nisms will be the norm as start up and initialization of many
computer operating systems will require exception-based
system calls. Further, avoiding the pollution of superscalar
features by some system calls will not be of concern.

FIG. 1 shows a flowchart explaining the method of a user
space process making an exception-less system call. The
method starts at step 100 wherein a shared memory space,
such as the above-described syscall pages, is created for the
process executing in user mode space. The creation of this
shared memory space can be achieved in a wide variety of
manners, as will occur to those of skill in the art, and will
depend upon the particular operating system on which the
present invention is implemented. The shared memory space
can be proactively created at the time of creation of the
process, or can be subsequently created the first time the
process wishes to make an exception-less system call.

At step 104, a set of entries of data structures necessary for
making an exception-less system call and providing return
values is created in the share memory space and each of these
entries includes a status field which is initialized to indicate
that the entry is free.

When a thread in the user mode process needs to make an
exception-less system call, the thread locates an entry in the
shared memory space whose status is indicated as being
“free”, as shown at step 108.

Next, at step 112 the thread writes the relevant data
required to make the desired system call into the entry iden-
tified at step 108 and changes the status of that entry to
“submitted”.

US 8,701,122 B2

7

The thread can then continue execution but also checks,
from time to time, the status of the entry as indicated at step
116. When the status of the entry is “done”, as indicated at
step 120, the method continues to step 124 wherein the thread
processes any return values from the exception-less system
call and makes the entry in the shared memory as again being
free and then the thread continues its execution.

FIGS. 2a, 2b and 2¢ show a flowchart explaining the
method of kernel space processing of exception-less system
calls in a Linux operating system environment or other envi-
ronment having a similar thread blocking architecture.

The method commences at step 200 where the operating
system creates a shared memory space for a process executing
in user mode. As will be apparent, this step corresponds to,
and is the same as, step 100 in FIG. 1. Next, at step 204, a set
of entries of data structures necessary for making an excep-
tion-less system call and providing return values is created in
the share memory space and each of these entries includes a
status field which is initialized to indicate that the entry is
“free”. This step corresponds to, and is the same as, step 104
in FIG. 1.

Next, at step 208, a syscall thread, or other suitable execu-
tion unit, is created in the operating system kernel space for
each entry created in step 204 in the shared memory space. As
discussed above, the creation of this multiplicity of syscall
threads is desired when dealing with the Linux thread block-
ing architecture and may not be desired or required under
other operating systems and the present invention is not lim-
ited to use with such a thread blocking architecture.

Atstep 212, asyscall thread checks the entries in the shared
memory to locate an entry with a status of “submitted” and
commences processing of the system call requested in that
entry, updating its status to “busy”.

At step 216, the syscall thread determines if processing of
the requested system call is blocked and, if it is, the method
continues at step 218.

Atstep 218, another syscall thread is started by the blocked
syscall thread which his then put to sleep. The newly started
syscall thread checks for entries in the shared memory space
with a status of “submitted” and begins processing the entry.
The method then returns to step 216.

If at step 216, the processing of the requested system call is
not blocked, the method continues at step 22 where process-
ing of the requested system call is completed. The syscall
thread writes any return values from the system call to the
corresponding entry in the shared memory and marks the
status of that entry as “completed”.

At step 226 the method checks to see if any previously
blocked syscall thread is no longer blocked. If such an
unblocked thread exists, the method proceeds to step 230
wherein execution of that thread is recommenced and the
method returns to step 222.

If, at step 226, no previously block syscall thread exists, or
any such blocked syscall thread remains blocked, processing
returns to step 212.

As will be apparent, the method of FIGS. 24, 25 and 2¢ can
be easily modified by those of skill in the art for operating
systems with resource contention architectures which differ
from the Linux thread blocking architecture described herein.

As will also be apparent, the method of FIGS. 2a, 25 and 2¢
does not explicitly show the scheduling of syscall threads. As
discussed above, a variety of scheduling approaches can be
employed with the present invention including those which
enhance temporal execution locality and, in multi-core com-
puter systems, those which enhance spatial execution local-

ity.

20

35

40

45

50

55

8

As should now be apparent, the present invention provides
a method and system which can enhance the performance of
computer systems by altering the operation of the operating
system of those computer systems. The invention provides a
system and method for making exception-less system calls,
thus avoiding or reducing the direct and indirect overheads
associated with making an exception-based system call. In
test environments, significant improvements in overall per-
formance of a computer system have been achieved.

The present invention improves the performance of user
applications executing on a computer system executing an
operating system by decoupling the execution of system calls
from the invocation of system calls, thus improving execution
locality within the computer system.

The invention can be employed with single core processor
computer systems and with multi-core processor computer
systems, both affording improved temporal execution local-
ity and the later also providing improved spatial execution
locality. The system and method can be employed in a wide
range of operating systems.

The above-described embodiments of the invention are
intended to be examples of the present invention and alter-
ations and modifications may be effected thereto, by those of
skill in the art, without departing from the scope of the inven-
tion which is defined solely by the claims appended hereto.

We claim:

1. A computer-implemented method of performing excep-
tion-less system calls on a computer system executing an
operating system having a user mode and a kernel mode, the
operating system executing at least one user application, the
method comprising the steps of:

creating a shared memory space between the user applica-

tion and the operating system for each at least one user
application;

in the shared memory space of each at least one user appli-

cation, creating a system call entry for each of at least
one exception-less system call;

instantiating a system call thread in the operating system

kernel for each system call entry in each shared memory
space;
allowing the at least one user application to set the contents
of the at least one system call entry to request the per-
formance of a system call by the operating system and to
set the status of that system call entry appropriately;

causing a system call thread executing in the kernel space
of the operating system to check the status of at least one
system call entry in the shared memory space to identify
a requested exception-less system call waiting to be
performed and to execute the system call requested by
that system call entry and to update the corresponding
status of that system call entry; and

causing the at least one user application to check the status

of the system call entries in the shared memory space to
determine when a corresponding exception-less system
call has been completed.

2. The computer-implemented method of claim 1 wherein
the operating system checks the status of the at least one
system call entry on a temporally scheduled basis.

3. The computer-implemented method of claim 1 wherein
the operating system selects one of at least two available
processor cores and a system call requested by a system call
entry is executed upon the selected one processor core.

#* #* #* #* #*

