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SYSTEMS AND PROCESSES FOR 
COMPUTER LOG ANALYSIS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claim priority to U.S. Provisional Patent 
Application 62/059,954, filed on Oct. 5, 2014, which is 
incorporated herein by reference. 

FIELD 

This disclosure relates to computer systems and, more 
specifically, to logging service requests in computer sys 
temS. 

BACKGROUND 

Computer systems are in an ever growing trend of becom 
ing more powerful and intelligent. With the increase of 
Internet connectivity, Software vendors today are aggregat 
ing computing resources to provide extremely powerful 
software services over the Internet—known as the "cloud 
computing model. The underlying software systems that 
power these internet services are distributed they run on a 
large number of networked computer servers that commu 
nicate and coordinate. For example, it is reported that 
Google uses hundreds of thousands of networked machines 
to provide its internet Services including search, Gmail, 
Google Doc, etc., and that Facebook also uses a similar 
number of machines to power its online social networking 
site. 

These distributed software systems are extremely com 
plex. For example, when a user accesses the internet service, 
a web server will first receive the request, and it may forward 
it to an application server which provides the actual service. 
The application server may further communicate with mul 
tiple storage servers on which the user data is located. Such 
setting can be commonly found in cloud vendors including 
Google, Facebook, etc., only that in practice there are many 
more types and quantities of servers (e.g., database servers, 
memory caches, etc.). 

Because of the complexity, it is also extremely challeng 
ing to understand and analyze the behavior and performance 
of Such systems. For example, if a user experiences slow 
responding time, finding the culprit in the hundreds of 
thousands of servers is like finding a needle in the haystack. 

Problems in known systems include performance moni 
toring and trouble-shooting, failure recovery, and optimiza 
tion. 

Regarding performance monitoring and trouble-shooting, 
the performance of software services, e.g., user response 
time, has significant business impact. For example, Ama 
zon.com has found that every 100 ms latency cost them 1% 
in sales, and Google has found an extra 0.5 seconds in search 
page generation time dropped traffic by 20%. Therefore it is 
important for software vendors to have tools to monitor 
performance, and analyze the root cause if performance is 
slow. 

Regarding failure recovery, production Software systems 
experience failures. For example, Google’s Gmail experi 
enced a 2-day outage in 2011, affecting hundreds of thou 
sands of users, and Amazon's EC2 service had an outage for 
over 4 days in 2011. Once a failure occurs, it is important for 
a vendor to understand system behavior and to infer the root 
cause in order to recover from the failure. 
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2 
Regarding optimization, Software companies today spend 

billions of dollars on infrastructure. For example, Google 
spent 2.35 billion dollars on infrastructures in the first 
quarter of 2014 alone. Understanding the behaviors of these 
systems can reveal opportunities to optimize their resource 
usage, which can have a significant financial impact. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The drawings illustrate, by way of example only, embodi 
ments of the present disclosure. 

FIG. 1 is a diagram of a networked computer system. 
FIG. 2 is a diagram of a log processing system according 

to the present invention. 
FIG. 3 is a diagram showing a process for generating a log 

model. 
FIG. 4 is an extract from an example Hadoop Distributed 

File System (HDFS) log. 
FIG. 5 is a diagram of logic underlying example log 

message output. 
FIG. 6 is a program code listing for an example class that 

processes an HDFS write request. 
FIG. 7 is a diagram showing an example request identifier 

analysis for the program code listing of FIG. 6. 
FIG. 8 is a diagram of a Directed Acyclic Graph (DAG) 

representation of log points. 
FIG. 9 is a diagram showing an example log model file. 
FIG. 10 is a diagram of the log processing engine. 
FIG. 11 is a flowchart of a log message grouping process. 
FIG. 12 is a diagram of example log messages added to 

the same group. 
FIG. 13 is a diagram showing example combining and 

reducing of log messages in an HDFS system. 
FIG. 14 is a diagram of a schema for the results database 

to store information of log messages in association with 
service requests. 

FIG. 15 is a chart of an example latency-over-time 
visualization. 

FIGS. 16-18, 20, 21, and 23 are tables of test results. 
FIGS. 19 and 22 are graphs of test results. 

DETAILED DESCRIPTION 

This disclosure provides techniques, such as systems and 
processes which may be termed profiling tools, for analyZ 
ing behavior and performance of distributed computer sys 
tems to mitigate or solve at least Some of the problems 
discussed above. 
The present invention provides for non-intrusive profiling 

aimed at analyzing and debugging the performance of 
distributed computer systems. Instrumentation and modifi 
cations to source code are not required. Rather, the tech 
niques discussed herein extract information related to log 
message output due to the course of normal system opera 
tion. Further, the disclosed techniques are capable of auto 
matically identifying service requests from logs and are 
capable of profiling the performance behavior of such 
requests. Specifically, the systems and processes discussed 
herein are capable of reconstructing how each service 
request is processed as it invokes methods, uses helper 
threads, and invokes remote services on other computers 
(nodes) of the system. The techniques are practical to 
implement, and are capable of diagnosing performance 
issues that existing Solutions are not able to resolve without 
instrumentation. 

FIG. 1 shows a networked computer system for use with 
the techniques discussed herein. A plurality of remote ter 
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minals 20 interact with a distributed computer system 22 via 
a network 24. The remote terminals 20 are devices such as 
desktop and laptop computers, Smartphones, tablet comput 
ers, and the like. The network 24 includes one or a combi 
nation of computer networks, such as a local-area network, 
a wide-area network, an intranet, a virtual private network, 
and the Internet. The distributed computer system 22 
includes a plurality of computers acting as different nodes 
and mutually communicating via the network 24. The com 
puters making up the distributed computer system 22 may be 
located across a large geographic area. The computers may 
be termed servers and may be configured with program code 
for different functionality to serve an overall purpose, such 
as data storage, a messaging service (e.g., email), a social 
network, a voice or teleconference service, a videoconfer 
ence service, image storage, and similar. 
One or more of the computers in the distributed computer 

system 22 is configured to receive service requests from one 
or more other computers of the system 22 and/or the remote 
terminals 20. Such service requests may include request for 
data or other elements fitting the overall purpose of the 
distributed computer system 22. One or more of the com 
puters in the distributed computer system 22 is configured to 
log service requests and data related thereto. A log stores log 
messages that specify any information or data determined to 
be relevant to the operation of the computer system 22. A log 
may be stored on the computer generating the log messages 
or log messages may be transmitted to another computer for 
storage. The number and types of computers storing logs is 
not limited. In one example, one or several computers have 
program code configured to output log messages. In another 
example, most or all of the computers output log messages. 
An analysis is performed on program code of the distrib 

uted computer system 22 to obtain a log model for use in 
interpreting and Stitching together dispersed and intertwined 
log messages of individual requests. It is not necessary to 
analyze all of the program code of the distributed computer 
system 22, but generally the more code analyzed, the better 
the results. FIG. 2 shows a log processing system 30 
configured to perform Such analysis, which may be termed 
a static analysis, in that the analysis need only be performed 
once for a given version of program code. 

With reference to FIG. 2, the log processing system 30 
includes a program code analysis engine 32, a log processing 
engine 34, a results database 36, and a visualization engine 
38. The log processing system 30 is configured to be 
executed by one or more computers, which can include one 
or more computers of the distributed computer system 22 
and/or other computers. 
The program code analysis engine 32 operates on existing 

program code 40 that is executable by the distributed 
computer system 22 to provide functionality to the system 
22. The program code analysis engine 32 processes the 
program code 40 to obtain a log model 42 that describes 
interrelations among log messages that can be generated by 
the program code 40 during normal operation of the program 
code 40. The generation, timing, and content of the log 
messages is outside the control of the log processing system 
30. In addition, the program code 40 is not modified by the 
log processing system 30. 
The program code analysis engine 32 is configured to 

perform an analysis on the existing program code 40. The 
analysis is configured to identify log output instructions 
present in the program code 40. The log output instructions 
are instructions configured to generate log messages 44 
related to service requests processed by the program code 
40. 
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4 
The program code analysis engine 32 is further configured 

to use the analysis to generate the log model 42. As will be 
discussed in more detail below, the log model 42 is repre 
sentative of causal relationships among service requests 
defined by the program code 40. The log model 42 can be 
transmitted from a computer executing the program code 
analysis engine 32 to one or more relevant computers 
(nodes) of the distributed computer system 22, Such as 
computers that generate logs. 

In the examples discussed herein, the program code 40 
includes bytecode, such as that used in Java. This is not 
limiting, and the program code 40 can alternatively or 
additionally include source code, binary code (e.g., X86 
binaries), intermediate code (e.g., Low Level Virtual 
Machine or LLVM code), and the like. 
The program code analysis engine 32 is configured to 

analyze each log printing (outputting) statement in the 
program code 40 to determine how to parse log messages 
and to identify variable values that are outputted by the log 
messages. Log outputting statements include file writing 
statements and the like. The term statement is used herein to 
refer to log output instructions. For purposes of this disclo 
Sure, the terms statement and instruction are interchangeable 
and any differences there-between in practical application 
are recognized by those of skill in the art. For example, 
statements may be known to refer to source code, while 
instructions may be known to refer to compiled code. 
However, this distinction is not relevant to the present 
invention. The term variable is used inclusively and may be 
taken to mean a variable, a field, or other element of data. To 
achieve this, the program code analysis engine 32 is con 
figured to extract identifiers whose values remain unchanged 
in each specific request by further analyzing the data-flow of 
these variable values. Such identifiers can help associate log 
messages to individual requests. Further, the program code 
analysis engine 32 is configured to capture temporal order 
ings between log printing statements because, in various 
systems, an identifier may not exist in log messages or may 
not be unique to a particular service request. The program 
code analysis engine 32 is further configured to identify 
control paths across different local and remote threads by 
inferring their communication relationships. Each of these 
techniques will be discussed in detail below. In addition, 
although the examples discussed herein may be described as 
using all of these techniques, each technique can be imple 
mented alone or in combination with any of the other 
techniques. 
The log processing engine 34 can be executed by a 

computer, such as one or more logging computers (nodes), 
of the distributed computer system 22 or by another com 
puter. 
The log processing engine 34 is configured to apply the 

log model 42 to a plurality of log messages 44 generated by 
execution of the program code 40 at the distributed com 
puter system 22. So as to assign log messages 44 to accu 
mulated groups for easier and more robust analysis of the 
system's response to service requests. The log processing 
engine 34 can be executed by a computer, Such as one or 
more logging computers (nodes), of the distributed com 
puter system 22 or by another computer. 
The log processing engine 34 can be implemented as a 

MapReduce job or by another parallel analysis framework or 
technique for processing and generating large data sets with 
a parallel, distributed algorithm on a cluster of computers. 
MapReduce is a known programming model and "MapRe 
duce: Simplified data processing on large clusters' by J. 
Dean and S. Ghemawat can be referenced. The log process 
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ing engine 34 processes log files of each relevant computer 
of the distributed computer system 22 in parallel using a map 
function to infer causal relationships among log messages. 
The log processing engine 34 is further configured to merge 
log sequences from locally communicating threads of the 
same process, before shuffling an intermediate result to 
reduce nodes that perform a reduce function. The log 
processing engine 34 then stores Such per-request perfor 
mance information in the results database 36. These pro 
cesses will be discussed in more detail below. 
The visualization engine 38 is configured to provide a 

graphical user interface to visualize the log analysis results 
contained in the results database 36. Users, via remote 
admin terminals or other computers, can connect to the 
visualization engine 38 to graphically examine the behavior 
of the distributed computer system 22, such as latency of 
requests, latency on each node, etc. These processes will be 
discussed in more detail below. 

FIG. 3 shows a program code analysis process 48 for 
analyzing program code 40 and generating the log model 42. 
The process 48 can be implemented at the program code 
analysis engine 32. The process 48 includes log-statement 
parsing 50, request identifier determination 52, temporal 
order determination 54, and thread communication relation 
ship determination 56. Each of the sub-processes 50-56 can 
be performed in parallel on the same program code 40 in one 
pass, taking into account that some output from request 
identifier determination 52 can be used as input to the 
temporal order determination 54 and the thread communi 
cation relationship determination 56 and that some output 
from the temporal order determination 54 can be used as 
input to the thread communication relationship determina 
tion 56. 

Log-statement parsing 50 includes identifying log print 
ing (output) statements in the program code 40 and parsing 
a log-string format and variables to obtain a signature of 
each log printing statement found in the program code 40. 
Log-statement parsing 50 includes generating an output 
string that is composed of string constants and variable 
values. The output string is represented by a regular expres 
sion (e.g., “Receiving block BP-(..*):blk (*) *), which is 
used during log analysis by the log processing engine 34 to 
map a log message to a set of log points in the program code 
40 that could have outputted Such a log message. A log point 
refers to a log printing (output) statement in the program 
code 40 and may include a log file write command or similar. 
In the examples discussed herein, log points are identified by 
invocations of a method (e.g., “info) of a class named 
“LOG”. Log-statement parsing 50 also includes identifying 
the variables whose values are contained in a log message. 

Log-statement parsing 50 identifies log points in the 
program code 40. For each log point, a regular expression is 
generated. The regular expression matches the outputted log 
message. Log-statement parsing 50 also identifies the vari 
ables whose values appear in the log output. Log-statement 
parsing 50 is configured to parse out individual fields by 
recursively tracing an objects string output method (e.g., 
toString() in Java) and the methods that manipulate related 
objects (e.g., StringBuilder objects in Java) until an object of 
a primitive type is reached. 

FIG. 6 shows example program code 40 is processed by 
the program code analysis process 48 to generate the log 
model 42. An example log statement, at line 14 in FIG. 6, 
can be parsed into the regular expression “Receiving block 
(*)', where the wildcard “.*” matches to the value of 
“block', which is the identifier of the object that contains 
variable information to be logged. Concerning variables, 
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6 
individual fields are parsed, which handles the example 
situation where “pool ID' and “blockID can be taken as 
request identifiers, whereas “generationStamp' is modified 
during request processing and cannot be considered a 
request identifier. 

For the example log point mentioned above (line 14), a 
signature generated by log-statement parsing 50 in the form 
of a regular expression is: 

Receiving block (..*):blk (\d--) (\d--) 

The three wildcard components (i.e., “..* and “\d') will 
be mapped to fields “blockpoolID”, “block.block.blockID, 
and “block.block.generationStamp' of the block object, 
respectively, as shown in FIG. 5. 

Log-statement parsing 50 is also configured to analyze 
dataflow of any string object used at a log point. For 
example, the string “myString at the log point of line 26 in 
the example code of FIG. 6 is a string object initialized 
earlier in the code. Log-statement parsing 50 analyzes the 
dataflow of the string object to identify the precise value of 
“myString. 

Log-statement parsing 50 is also configured to account for 
class inheritance and late binding, which are features of 
many programming languages such as Java. For example, 
when a class and its Superclass both provide the same 
method (e.g., a toString() method), the particular method 
that gets invoked during execution is resolved only at 
runtime depending on the actual type of the object. Log 
statement parsing 50 is configured to analyze the methods of 
both classes and generate two regular expressions for the 
one log point. During log analysis, if both regular expres 
Sions match a log message, the log processing engine 34 is 
configured to use the one log message with the more precise 
match, i.e., the regular expression with a longer constant 
pattern. 

Request identifier determination 52 includes analyzing 
dataflow of the variables to determine which variables are 
modified. Variables determined to be not modified are con 
sidered to be request identifiers. Request identifiers are used 
to separate messages from different requests. That is, two log 
messages with different request identifiers (i.e., different 
variables or sets of variables that are not modified) are 
considered to belong to different requests. However, the 
converse is not true: two messages with the same request 
identifier value may belong to different requests. Request 
identifier determination 52 includes identifying top-level 
methods. 

Request identifier determination 52 analyzes one method 
at a time and stores the result as the Summary of that method. 
The methods are analyzed in bottom-up order along the 
call-graph and when a call instruction is encountered, the 
summary of the target method is used. This alleviates the 
need to store an intermediate representation of the entire 
program in memory. 

Request identifier determination 52 uses dataflow analysis 
to infer request identifiers by analyzing inter-procedural 
dataflow of any logged variables. For each method M, two 
sets of variables are assembled in a Summary, namely, (i) the 
request identifier candidate (RIC) set, which contains vari 
ables whose values are output to a log and not modified by 
the method M or its callees, and (ii) the modified variable 
(MV) set which contains variables whose values are modi 
fied. For each method M, the sub-process initializes both 
sets to be empty. The Sub-process then analyzes each 
instruction in method M. When a log point is encountered, 
the variables whose values are printed (as identified previ 
ously) are added to the RIC set. If an instruction modifies a 
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variable V, the variable v is added to the MV set and removed 
from the RIC set. If the instruction is a call instruction, the 
process merges the RIC and MV sets of the target method 
into the corresponding sets of the current method, and then, 
for each variable v in the MV set, the process removes the 
instruction from the RIC set if it contains the variable v. 
As an example, consider the following code Snippet from 

the example writeBlock() method: 
LOG.info(“Receiving+block); 

block.setGenerationStamp(latest); 

The setGenerationStamp() method modifies the “genera 
tionStamp' field in the “block' class. In bottom-up order, the 
request identifier determination 52 first analyzes the setGen 
erationStamp() method and adds “generationStamp' to its 
MV set. Later, when request identifier determination 52 
analyzes the writeBlock() method, it removes “generation 
Stamp' from its RIC set because “generationStamp' is in the 
MV set of the setGenerationStamp() method. 

With reference to an example Hadoop Distributed File 
System (HDFS) log extract, shown in FIG. 4, request 
identifiers are shown in bold (e.g., “BP-9 . . . 9:blk 5 . . . 
7 1032). In this example, both of the “read” and the “write 
1” requests have same the block ID (“1032). Note that 
timestamps of the log messages are omitted for sake of 
clarity. 

FIG. 5 shows logic underlying output of example log 
message containing the string “BP-9...9:blk 5... 7 1032 
shown in FIG. 4. This string might be considered a potential 
request identifier. This string contains the values of three 
variables, as shown in FIG. 5, namely, “pool ID, “blockID, 
and generationStamp'. Only the Substring containing 
“poolID' and “blockID is suitable as a request identifier for 
an example writeBlock() method, shown in FIG. 6, because 
the “generationStamp' variable can have different values 
while processing the same request, as exemplified by the 
“write 2’ request in FIG. 4. 

Request identifier determination 52 infers which log 
points belong to the processing of the same request. Top 
level methods are identified by analyzing when identifiers 
are modified. The term top-level method refers to the first 
method of any thread dedicated to the processing of a single 
type of request. For example, in FIG. 6, the writeBlock.( ) 
method and the run() method of the “PacketResponder 
class are top-level methods. However, the run() method of 
the “DataXceiver” class is not a top-level method because it 
processes multiple types of request. Generally, a method M 
is log point p’s top-level method if method M is a top-level 
method and log point p is reachable from M. 

Request identifier determination 52 identifies top-level 
methods by processing each method of a call-graph in 
bottom-up order. That is, if a method M modifies many 
variables that have been recognized as request identifiers in 
its callee method M', then method M is recognized as a 
top-level method. It is contemplated that programmers often 
log request identifiers to help debugging, and the modifica 
tion of a frequently logged but rarely modified variable is 
likely not part of the processing of a specific request. Hence, 
the request identifier determination 52 can be configured to 
take advantage of this to identify top-level methods. 

With reference to the schematic example request identifier 
analysis shown in FIG. 7, request identifier determination 52 
would identify the example readBlock() and writeBlock() 
methods as being two top-level methods for different types 
of requests. Hence, log messages output by the read 
Block() method would be separated from log messages 
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8 
outputted by the writeBlock() method, even if such log 
messages have the same request identifier value. 

In general, top-level methods are identified by tracking 
the propagation of variables in the RIC set and using the 
following heuristic when traversing the call-graph in a 
bottom-up manner: if, when moving from a method M to its 
caller method M', many request identifier candidates are 
suddenly removed, then it is likely that method M is a 
top-level method. Specifically, the number of times each 
request identifier candidate appears in a log point in each 
method is counted and this counter is accumulated along the 
call-graph in a bottom-up manner. Whenever this count 
decreases from method M to its caller M', it can be deter 
mined that method M is a top-level method. This takes 
advantage of the tendency of developers to often include 
identifiers in their log printing statements, and modifications 
to these identifiers are contemplated to be likely outside the 
top-level method. 

With reference to the schematic example request identifier 
analysis shown in FIG. 7, both the writeBlock() method and 
the readBlock() method accumulate a large count of request 
identifiers, which drops to zero in the run ( ) method. 
Accordingly, request identifier determination 52 determines 
that the writeBlock() and readBlock() methods are top 
level methods instead of the run() method. Note that, 
although the count of the “generationStamp' variable 
decreases when the analysis moves from the setGeneration 
Stamp() method to the writeBlock() method, the determi 
nation 52 does not determine that the setGeneration 
Stamp ( ) method is a top-level method because the accu 
mulated count of all request identifiers is still increasing 
from the setGenerationStamp ( ) method to the write 
Block() method. 
When analyzing the writeBlock() method, the RIC set 

obtained from its callee receiveBlock() method is merged 
into its own set, so that the cumulative count of “poolID' 
and “blockID is increased to eight. Four of this count 
comes from the receiveBlock() method and the remaining 
four comes from the log points in the writeBlock() method. 
Since “generationStamp' is in the setGenerationStamp( ) 
methods MV set, it is removed from the writeBlock.( ) 
method’s RIC set. 

Request identifier determination 52 stops at the root of the 
call-graph, which is either a thread entry method (i.e., a 
run() method in Java) or main(). However, a thread entry 
method may not be the entry of a service request. With 
reference to the HDFS example shown in FIG. 6, the 
“DataXceiver thread uses a while loop to handle read and 
write requests. Thus, it is advantageous that the request 
identifier determination 52 can identify the writeBlock.( ) 
and readBlock( ) methods as the top-level methods, as 
opposed to the run() method. 

Temporal order determination 54 creates temporal asso 
ciations or dissociations among log output statements. Tem 
poral order determination 54 performs a line-by-line analy 
sis of methods to determine the logical expected order of log 
statements resulting from a request as well as impossible 
orders of log statements for a request. For instance, with 
reference to the example of FIG. 6, temporal order deter 
mination 54 would determine that when two messages 
appear in the following order: “ ... terminating and 
“Received block . . . . they cannot be from the same request 
even if they have the same block identifier because line 26 
is executed after line 24. Temporal order determination 54 is 
advantageous because there may not be an identifier unique 
to each request. 
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Temporal order determination 54 is configured to generate 
a Directed Acyclic Graph (DAG) for each top-level method 
(as identified by the request identifier determination 52) 
from the methods call graph and control-flow graph (CFG). 
This DAG contains each log point reachable from the 
top-level method and is used to help attribute log messages 
to top-level methods. Temporal order determination 54 
implements several conditions to advantageously avoid hav 
ing to attempt to infer the precise order in which instructions 
will execute. 
As a first condition, only nodes that contain log printing 

statements are represented in the DAG. As a second condi 
tion, all nodes involved in a strongly connected component 
(e.g., caused by loops) are folded into one node. Multiple log 
points may be assigned to a single node in the DAG. In a 
third condition, if there is a strongly connected component 
due to recursive calls, then those nodes are also folded into 
one. Finally, as a fourth condition, unchecked exceptions are 
ignored, since unchecked exceptions will terminate execu 
tion. Checked exceptions are captured by the CFG and are 
included in the DAG. 
As an example, FIG. 8 shows the DAG generated from a 

code snippet. The asterisk (*) next to the log points “log 
2 and "log 3’ indicates that these log points may appear 
Zero or more times. Ordering of the log points is not 
maintained for nodes with multiple log points. The DAG 
advantageously captures the starting and ending log points 
of a request, which is beneficial in that it is a common 
practice for developers to print a message at the beginning 
of each request and/or right before the request terminates. 

Thread communication relationship determination 56 is 
configured to identify threads that communicate with each 
other. Log messages outputted by two threads that commu 
nicate may result from processing of the same request, and 
thread communication relationship determination 56 can be 
used to associate log statements that generate Such log 
messages. It is contemplated that this kind of thread com 
munication can occur through cooperative threads in the 
same process, or via Sockets or remote procedure calls 
(RPCs) across a network. 

Output of the communication relationship determination 
56 includes a tuple for each pair of threads in communica 
tion, such as: 

(top-level method 1, top-level method 2, communi 
cation type, set of request identifier pairs) 

where one end of the communication is reachable from 
top-level method 1 and the other end is reachable from 
top-level method 2. “Communication type' is selected as 
one of local, RPC, or socket, where “local' is used when two 
threads running in the same process communicate. A request 
identifier pair captures the transfer of request identifier 
values from the source to the destination. The pair identifies 
the variables containing the data values at Source and 
destination. 

Thread communication relationship determination 56 is 
configured to detect two types of local thread communica 
tions: (i) thread creation and (ii) shared memory reads and 
writes. Detecting thread creation is readily done in program 
code that has a well-defined thread creation mechanism, 
Such as Java. If an instruction r. start() is reachable from a 
top-level method, where r is an object of class C that extends 
the “Thread class or implements the “Runnable' interface 
and where C.run ( ) is another top-level method, then a 
communication pair can be determined to be identified. 
Thread communication relationship determination 56 also 
determines the dataflow of request identifiers, as they are 
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10 
mostly passed through the constructor of the target thread 
object. In addition to explicit thread creation, if two instruc 
tions reachable from two top-level methods (i) access a 
shared object, and (ii) one of them reads and the other writes 
to the shared object, then a communication pair is identified. 

With reference to the example HDFS program code of 
FIG. 6, the thread communication relationship determina 
tion 56 generates the following example tuple: 

(writeBlock, PacketResponderrun, local, <DataX 
ceiver.block.poolID, PacketResponder.block. 
poolID>, . . . ) 

indicating that the writeBlock() method can communicate 
with the PacketResponder class via local thread creation, 
and indicating that “poolID is the request identifier used on 
both ends for the data value passed between the threads. 

For threads that communicate via a network, the fact that 
sender and receive communicate on the same protocol is 
used instead of pairing socket reads and writes. This advan 
tageously avoids unnecessarily connecting together top 
level methods that do not communicate. Specifically, the 
thread communication relationship determination 56 pairs 
top-level methods containing pairs of invoke instructions 
whose target methods are the serialization and deserializa 
tion methods from the same class, respectively. It is con 
templated that developers often use third-party data-serial 
ization libraries, such as Google Protocol Buffers. The 
thread communication relationship determination 56 can 
thus be configured to recognize standardized serialization/ 
deserialization Application Programming Interfaces (APIs). 
The thread communication relationship determination 56 is 
also configured to parse the Google Protocol Buffer's pro 
tocol annotation file to identify the RPC pairs, where each 
RPC is explicitly declared. Regarding addressing Cassandra, 
another data-serialization library, an annotation to pair C. Se 
rialize() with C.deserialize() for any class C is sufficient to 
correctly pair communicating top-level methods. 
The thread communication relationship determination 56 

can be further configured with two additional techniques to 
improve accuracy of log Stitching. First, a thread will be 
included in a communication pair, even when the thread 
does not contain any log point (which means it does not 
contain any top-level method), as long as the thread com 
municates with a top-level method. In Java implementations, 
Such a threads run() method is used as the communication 
end point. This is advantageous because grouping log mes 
sages can be performed for Such a thread, which may serve 
as a link connecting two communicating top-level methods, 
despite the thread not contain any log points. 

Second, the number of times a top-level method can occur 
in a communication pair can be determined. For example, a 
communication pair “(M1, M2*, local, . . . ), where M2 is 
followed by an asterisk, means that method M1 can com 
municate with multiple instances of method M2 in the same 
request. Log analysis performed by the log processing 
engine 34 can use this property to further determine whether 
messages from multiple instances of method M2 can be 
stitched into the same request. This is because, if the 
communication point to method M2 is within a loop in 
method M1's CFG, then method M2 can be executed 
multiple times. 
The program code analysis process 48 of FIG. 3, includ 

ing log-statement parsing 50, request identifier determina 
tion 52, temporal order determination 54, and thread com 
munication relationship determination 56, specifically 
configures a computer to analyze program code 40 to 
generate a log model capable of being used to Stitch together 
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future log messages output due to the processing of a single 
request by the program code 40. 

For example, considering the example HDFS program 
code in FIG. 6, write requests are processed on each data 
node (e.g., a computer of the distributed system 22) by a 
“DataXceiver thread that uses a while loop to process each 
incoming request. A “WRITE BLOCK op-code invokes 
the writeBlock() method (at line 7), which sends a repli 
cation request to the next downstream data node (line 15). A 
new thread associated with the PacketResponder() method 
is created (line 16-17) to receive the response from the 
downstream data node, so that a response can be sent 
upstream. Execution of this program code can result in log 
messages as shown in FIG. 4. These six example log 
messages illustrate two advantages of the present invention. 
First, log messages produced when processing a single 
request to the writeBlock() method may come from multiple 
threads, and multiple requests may be processed concur 
rently. The program code analysis process 48 of FIG. 3 is 
configured to construct a log model that can be used to 
organize intertwined log messages resulting from different 
requests. Second, the log model is configured to account for 
log messages that do not contain an identifying Substring 
that is unique to a request, which are contemplated to be 
most log messages encountered. For example, while block 
identifier “BP-9 . . . 9:blk 5 ... 7 in FIG. 4 can be used to 
distinguish log messages from different requests that do not 
operate on the same block, it cannot be used to distinguish 
log messages of the read request (“read') and the first write 
request (“write 1”) because they operate on the same block. 
The present invention distinguishes log messages using 
more than merely log message string text. 
The log model 42 generated by the program code analysis 

process 48 of FIG. 3 includes a file, or other data structure, 
that encodes the log message outputting behavior of the 
program code as executable on the distributed computer 
system 22. FIG.9 schematically illustrates a snippet of a log 
model file 70 for the example of HDFS. The log model file 
70 includes four segments 72-78. A top-level method seg 
ment 72 is generated by the request identifier determination 
52 and lists tuples identifying a name of the top-level 
method 80, an index into the DAG representation of the log 
points 82, and a list of request identifiers 84. A DAG 
segment 74 is generated by the temporal order determination 
54 and describes the DAG for each top-level method. The 
format of the DAG description is shown schematically for 
illustrative purposes, and any format can be used. A log 
point regular expression segment 76 is generated by the 
log-statement parsing 50 and contains a regular expression 
for each log point and an identifier for each wildcard in the 
regular expression. A communication pair segment 78 is 
generated by the thread communication relationship deter 
mination 56 and lists tuples that identify the communication 
points along with the identifiers for the data being commu 
nicated. 
The program code analysis process 48 can be configured 

to generate one or more indexes and to include the indexes 
in the log model file 70, so as to increase the speed of log 
analysis performed by the log processing engine 34. 
Examples of Such indexes include an index of regular 
expressions (to speed the matching of each log message to 
its log point) and an index mapping log points to top-level 
methods. 
The log model file 70 is transmitted to each computer 

whose log is to be analyzed in the distributed computer 
system 22. 
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FIG. 10 shows a diagram of the log processing engine 34 

and the results database 36. 
The log processing engine 34 includes mappers 102 and 

combiners 104 executed at various nodes (computers) 100 of 
the distributed computer system 22. Each node 100 stores a 
copy of the log model 42, or otherwise has access to the log 
model 42, generated as discussed above. The log processing 
engine 34 further includes reducer nodes (computers) 110 
configured to execute reducers 112. Output of the reducer 
nodes 110 is transmitted to and stored at the results database 
36. Each reducer node 110 stores a copy of the log model 42, 
or otherwise has access to the log model 42, generated as 
discussed above. The mappers 102, combiners 104, and 
reducers 112 include program code configured to perform 
the processes discussed below when executed by the respec 
tive nodes 100 and reducer nodes 102. The log processing 
engine 34 accordingly implements a MapReduce job, 
although this is not limiting and other implementations for 
the log processing engine 34 are within the scope of the 
present invention. 
The mappers 102 and reducers 112 use a common data 

structure, termed a request accumulator (RA), for gathering 
information related to the same service request. Each RA 
entry contains: (i) a vector of top-level methods that are 
grouped into this RA; (ii) the value of each request identifier; 
(iii) a vector of log point sequences, where each sequence 
comes from one top-level method; and (iv) a list of nodes 
traversed, with the earliest and latest timestamp. The map 
pers 102 and reducers 112 are configured to iteratively 
accumulate the information of log messages from the same 
service request into such RA entries. Output generated by 
the mappers 102 and reducers 112 has the form of one RA 
entry per service request, where the one RA entry contains 
the information Summarized from all log messages deter 
mined to be related to that service request. 

Each mapper 102 implements a map process that is 
executed on a node 100 to process local log files generated 
by or otherwise stored on that node 100. Each node 100 has 
one mapper 102, and the mappers 102 execute their map 
processes in parallel. Each mapper 102 is configured to Scan 
the relevant log file linearly and parse each log message in 
the log file to identify any log points and request identifiers. 
Identifying log points and request identifiers can include 
using regular expression matching. In addition, each mapper 
102 can be configured to heuristically process timestamps 
associated with log messages. 

In this embodiment, each mapper 102 is configured to add 
a parsed log message to an existing RA entry according to 
a log message grouping process 120 shown in FIG. 11. 
At Step 122, the log model 42 and log to be processed are 

obtained. The process 120 then iterates through all log 
messages in the log, via step 124. The current log message 
is parsed, at Step 126, and then checked against conditions 
in steps 128-132 obtained from the log model 42. The 
conditions in steps 128-132 evaluate the information in the 
log message against information for each RA entry. Steps 
128-132 are performed to compare the current log entry to 
all existing RA entries, via step 140, until all conditions are 
met. Steps 128-132 can be performed in any order. 
At step 128, it is determined whether the top-level meth 

ods of the parsed log message and the existing RA entry 
match. When no match is found in any of the RA entries, a 
new RA entry is created and initialized, at step 134. Initial 
ization of an RA entry includes associating the relevant 
information of the log message that triggered the creation of 
the RA entry with the RA entry. The current log message is 
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then assigned to the new RA entry at step 136 and the 
process repeats for the next log message, if any. 

At step 130, it is determined whether request identifier 
values of the parsed log message and the existing RA entry 
under consideration do not conflict. That is, if the request 
identifier values are different to those in the RA entry under 
consideration, then this is determined to be a conflict and the 
process considers the next RA entry, if any. If it turns out that 
the request identifier values are different to those in all RA 
entries, then the process creates a new RA entry and assigns 
the current log message to the new RA entry, at steps 134 
and 136. 

At step 132, it is determined whether the log point of the 
parsed log message matches the temporal sequence in the 
control flow as represented by the DAG of the RA entry. If 
no such match is determined for any or the RA entries, then 
the process creates a new RA entry and assigns the current 
log message to that entry, at steps 134 and 136. 

If the conditions of steps 128-132 are met, then the current 
log message is added to the RA entry under consideration, 
at step 138. 

In other words, a log message is added to an existing RA 
entry if and only if: (i) the top-level methods of the parsed 
log message and the existing RA entry match, (ii) the 
identifier values of the parsed log message and the existing 
RA entry do not conflict, and (iii) the log point of the parsed 
log message matches the temporal sequence in the control 
flow as represented by the DAG of the RA entry. 
As a result, each RA entry outputted by the mappers 102 

contains exactly one top-level method. In other embodi 
ments, the above requirements can be relaxed as long as any 
resulting potential ambiguity in the resulting data can be 
tolerated. 

In view of that above, it is noted that a sequence of log 
messages can advantageously be added to the same RA entry 
even when each log message contains the values of a 
different subset of request identifiers. FIG. 12 shows an 
example of such. The five log messages in this figure can all 
be grouped into a same RA entry even though four of the log 
messages contain the values of a Subset of the request 
identifiers, and one of the log messages does not contain the 
value of any request identifier and instead is captured using 
the DAG. 

With reference back to FIG. 10, each combiner 104 is 
configured to compare pairs of RA entries with reference to 
the log model 42 and to combine a pair of RA entries into 
one RA entry if there exists a communication pair between 
the two top-level methods in the pair of RA entries and if the 
request identifier values do not conflict. In addition, the 
combiner 104 is configured to not combine RA entries if the 
difference between their timestamps is larger than a con 
figurable threshold. This is advantageous because two RA 
entries may have the same top-level methods and request 
identifies, but may represent the processing of different 
service requests (e.g., two writeBlock operations on the 
same block). An example threshold value is one minute, 
although various values can be selected based on the specific 
networking environment. For instance, in an unstable net 
work environment with frequent congestion, it may be 
advantageous to set this threshold to a longer value. 

Each combiner 104 is configured to then assign a shuffle 
key to each RA entry and transmit each RA entry to a 
particular reducer node 110 based on the assigned shuffle 
key. The same shuffle key is assigned to all RA entries that 
are to be grouped together. The combiners 104 are config 
ured to assign shuffle keys based on communication pairs to 
achieve this grouping. Specifically, communication pairs, as 
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14 
indicated in the log model 42 are referenced, so that if there 
is a communication pair connecting two top-level methods 
A and B, then the methods A and B are joined together into 
a connected component (CC). The combiners 104 iteratively 
merge additional top-level methods into a CC as long as 
Such methods communicate with any of the top-level meth 
ods assigned to this CC. As a result, all of the top-level 
methods in a CC are those that can mutually communicate, 
and their RA entries are assigned the same shuffle key. The 
combiners 104 do not transmit raw log messages over the 
network, at this time, although this does not exclude sending 
raw log messages at a later time. Rather, the combiners 
locally group log messages and assign shuffle keys, which 
can improve the efficiency (e.g., network bandwidth) of the 
generation and collection of log information. 

This shuffling process performed by the combiners 104 
can further include two additional steps, so as to mitigate 
potential assignment of a small number of shuffle keys and 
thus a poor distribution. First, if all of the communicating 
top-level methods are determined to have common request 
identifiers, the combiners 104 are configured to use the 
identifier values to further differentiate shuffle keys. Second, 
if it is determined that an RA entry cannot possibly com 
municate with any other RA entry through network com 
munication, the RA entry is directly output into the results 
database 36. 

Each reducer 112 is configured in the same way as a 
combiner 104 and performs the same processes that the 
combiner 104 first performs at a local level. 

FIG. 13 shows an example of how the RA entries of log 
messages in an HDFS writeBlock request are grouped 
together. In this example, RA entries combine nine log 
messages from six threads on three nodes belonging to a 
single HDFS write request. As shown, after the mappers 102 
generate RA entries “req.acc.1' and req.acc.2 on node “1”. 
the combiners 104 group these RA entries into an RA entry 
“req.acc.3’ because the log model 42 indicates that the 
writeBlock() and PacketResponder-run() methods belong to 
the same communication pair and that their request identifier 
values match. Node '2' and node '3' execute the mappers 
102 and combiners 104 in parallel to generate RA entries 
“req.acc.4” and “req.acc.5”. The same shuffle keys are 
assigned to RA entries “req.acc.3”, “req.acc.4, and 
“req.acc.5”. The reducers 112 further group RA entries 
“req.acc.3”, “req.acc.4, and “req.acc.5” into a final RA 
entry “req.acc.6”. 

FIG. 14 is a diagram of a schema for the results database 
36. Information from each RA entry generated by the log 
processing engine 34 is stored the results database 36 
according to this schema. 
The database schema contains the following fields: (i) 

request type, which identifies the top-level method with the 
earliest time stamp; (ii) starting and ending time stamps, 
which are the MAX and MIN in all the timestamps of each 
node; (iii) nodes traversed and the time stamps on each node, 
which are taken directly from the RA entry; and (iv) log 
sequence ID (LID), which is a hash value of the log 
sequence vector field in the RA entry. In the example shown 
in FIG. 14, the vector of the log sequence of a writeBlock 
request is: 

“LP1), LP1), LP1), LP2,LP3), LP2,LP3), LP2, 
LP3). 

In this vector, each element is a log sequence from a 
top-level method (e.g., “ILP1’ is from top-level method 
writeBlock( ) and “LP2,LP3' is from the PacketRe 
sponder run() method). Note that the LID captures the 
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unique type and number of log messages, their order within 
a thread, as well as the number of threads. 

With reference back to FIG. 1, the visualization engine 38 
can be configured to use the results database 36 to output 
information related to the performance and behaviour of the 
distributed computer system 22. For example, the visualiza 
tion engine 38 can be configured to query the results 
database 36 to generate output for graphical display of 
latency trends over time for each type of service request, for 
graphical display of average, high, and low latencies per 
node, and for mining of log data for anomalies. 
The visualization engine 38 can be implemented as a web 

application that is accessible to admin terminals associated 
with the distributed computer system 22. A JavaScript 
charting library, such as Highcharts, can be used. The web 
application can be configured to output request latency over 
time; request count and count trend over time, and average 
latency per node. FIG. 15 shows an example latency-over 
time visualization. 

Tests were conducted on a log processing system 30 as 
described above. The tests are discussed below and should 
not be taken as limiting. 
The system 30 was evaluated on four, off-the-shelf dis 

tributed systems: HDFS, Yarn, Cassandra, and HBase. 
Workloads were run on each system on a 200 EC2 node 
cluster for over 24 hours with the default logging verbosity 
level. Default verbosity is used to evaluate the system 30 in 
settings closest to the real-world. HDFS, Cassandra, and 
YARN used INFO as the default verbosity, and HBase used 
DEBUG. A timestamp was attached to each message using 
the default configuration in all of these systems. 

For HDFS and Yarn, HiBench was used to run a variety 
of MapReduce jobs, including both real-world applications 
(e.g., indexing, pagerank, classification and clustering) and 
synthetic applications (e.g., wordcount, sort, terasort). 
Together they processed 2.7 TB of data. For Cassandra and 
HBase, the YCSB benchmark was used. In total, the four 
systems produced over 82 million log messages. The results 
are summarized in FIG. 16. 

FIG. 17 shows the results of static analysis tests per 
formed by the system 30. In the columns indicated with an 
asterisk, only the log points that were under the default 
verbosity level and not printed in exception handler, indi 
cating they are printed by default under normal conditions, 
were counted. On average, 81% of the statically inferred 
threads contain at least one log point that would print under 
normal conditions, and there were an average of 20 Such log 
points reachable from the top-level methods inferred from 
the threads that contain at least one log point. This suggests 
that logging is prevalent. In addition, 66% of the log points 
contain at least one request identifier, which can be used to 
separate log messages from different requests. This also 
Suggests that the log processing system 30 has to rely on the 
generated DAG to group the remaining 34% log points. The 
static analysis test took less than 2 minutes to run and 868 
MB of memory for each system. Each of the log sequence 
IDs (LID) generated by the system 30 were manually 
verified. It is noteworthy that only 784 different LIDs were 
extracted out of a total of 62 million request instances. 

FIG. 18 shows the request attribution accuracy of the log 
processing system 30 as tested. A log sequence A was 
considered correct if and only if (i) all its log points indeed 
belong to this request, and (ii) there is no other log sequence 
B that should have been merged with the log sequence A. All 
of the log messages belonging to a correct log sequence were 
classified as “correct”. If log sequences A and B should have 
been merged but were not then the messages in both 
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sequence A and B were classified as “incomplete'. If a log 
message in sequence A does not belong to sequence Athen 
all the messages in sequence A were classified as “incor 
rect’. The “failed' column counts the log messages that 
were not attributed to any request. 

FIG. 19 shows a chart of a cumulative distribution func 
tion on the number of log messages per unique request, i.e., 
the one with the same log sequence ID. In each system, over 
44% of the request types, when being processed, print more 
than one message. Most of the requests printing only one 
message are systems internal maintenance operations. For 
Cassandra, the number of nodes each streaming session 
traverses varies greatly, resulting in a large number of 
unique log sequences (it eventually reaches 100% with 1484 
log messages, which is not shown in the figure). 

In further tests, 23 user-reported real-world performance 
anomalies were randomly selected from Bugzilla databases 
associated with the systems tested. Bugs were reproduced 
each one to obtain logs, and the effectiveness of the log 
processing system 30 was tested, with results Summarized in 
FIG. 20. 

FIG. 21 shows features of the system that were found 
helpful in debugging real-world performance anomalies 
tested. 
The mapping and combining processes discussed above 

ran on each EC2 node, and the reduce process ran on a single 
server with 24 2.2 GHz Intel Xeon cores and 32 GB of 
RAM. FIG. 22 shows the size of intermediate result. On 
average, after the mapping and combining processes, the 
intermediate result size is only 7.3% of the size of the raw 
log. This is the size of data that has to be shuffled over the 
network for the reduce function. After the reducing process, 
the final output size is 4.8% of the size of the raw log. FIG. 
23 shows the time and memory used by the system 30 under 
test. The mapping and combining processes finished in less 
than six minutes for every system exception for Yarn, which 
took 14 minutes. Over 80% of the time is spent on log 
parsing. When a message can match multiple regular expres 
sions, it was observed to take much more time than those 
that match uniquely. The memory footprint for map and 
combine is less than 3.3 GB in all cases. The reducing 
process took no more than 21 seconds for HDFS, Cassandra, 
and HBase, but took 19 minutes for Yarn. However, the 
tested reducing process was not parallelized, as it would be 
in real-world usage. 

Advantages of the present invention have been discussed 
above. For example, the invention is non-intrusive, in that no 
modification is required to any part of the existing produc 
tion software stack of a distributed computer system under 
analysis. This makes the invention Suitable for profiling 
production systems. The invention is also capable of in-situ 
and scalable analysis, in that much of the processing is 
performed on the same node (computer) where the logs are 
stored. Further, only one linear scan of each log file is 
needed. This can avoid sending the logs over a network to 
a centralized location to perform analysis, which may be 
unrealistic in real-world clusters. In addition, the present 
invention provides a compact representation allowing his 
torical analysis. Extracted log information is stored in rela 
tion to each request in a compact form, so that it can be 
retained for a longer time. This allows historical analysis 
where current performance behavior can be compared to the 
behavior at a previous point of time, which may be useful to 
detect slowdown creep. The invention is also loss-tolerant, 
insofar as original log data can be lost after it has been 
processed. Further, if the logs of a few nodes are not 
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available, their input can simply be discarded without affect 
ing the analysis of requests not involving those nodes. 

While the foregoing provides certain non-limiting 
example embodiments, it should be understood that combi 
nations, Subsets, and variations of the foregoing are con 
templated. The monopoly Sought is defined by the claims. 
What is claimed is: 
1. A process for performing computer log analysis, the 

process comprising: 
performing an analysis on existing program code that is 

executable on one or more computers forming part of 
a distributed computer system, the analysis identifying 
log output instructions present in the program code, the 
log output instructions being configured to generate log 
messages related to service requests processed by the 
program code: 

generating a log model using the analysis, the log model 
being representative of causal relationships among ser 
Vice requests defined by the program code; 

applying the log model to a plurality of log messages 
generated by execution of the program code to add log 
messages of the plurality of log messages into one or 
more groups; and 

applying of the log model at a plurality of nodes of the 
distributed computer system, the plurality of nodes 
being connected by a network, at least two nodes of the 
plurality of nodes combining groups of log messages 
locally without transmitting the log messages over the 
network before assigning shuffle keys to the groups of 
log messages and transmitting the groups of log mes 
Sages over the network to one or more nodes of the 
plurality of nodes based on the assigned shuffle keys, 
the one or more nodes further combining received 
groups of log messages. 

2. The process of claim 1, wherein generating the log 
model comprises identifying a log output statement in the 
program code and parsing the log output statement to 
determine a format of the log output statement and any 
variable referenced by the log output statement to generate 
a signature of the log output statement. 

3. The process of claim 2, further comprising using a 
value of a variable referenced by the log output statement to 
generate the signature for the log output statement. 

4. The process of claim 3, storing in the signature of the 
log output statement as a regular expression. 

5. The process of claim 1, wherein generating the log 
model comprises analyzing dataflow of variables of the 
program code and storing in the log model one or more 
indications of one or more variables not modified by a 
particular service as a request identifier of the particular 
service request. 

6. The process of claim 5, wherein generating the log 
model comprises identifying a top-level method in the 
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program code as a first method of any thread dedicated to the 
processing of a single type of Service request and storing an 
identifier of the top-level method in the log model. 

7. The process of claim 6, further comprising determining 
that the particular service request is processed by the top 
level method and storing in the log model the request 
identifier of the particular service request in association with 
the identifier of the top-level method. 

8. The process of claim 1, wherein generating the log 
model comprises identifying log output statements in the 
program code and generating indications of temporal asso 
ciations or dissociations among the log output statements. 

9. The process of claim 1, wherein generating the log 
model comprises identifying log output statements in the 
program code, identifying threads that contain the log output 
statements, determining which pairs of the threads commu 
nicate with each other, and storing an indication of any 
determined communicating pairs of threads in the log 
model. 

10. The process of claim 9, wherein determining which 
pairs of the threads communicate with each other comprises 
detecting thread creation. 

11. The process of claim 9, wherein determining which 
pairs of the threads communicate with each other comprises 
determining whether two instructions reachable from two 
top-level methods operate on a shared object, wherein each 
of the two top-level methods is a first method of any thread 
dedicated to the processing of a single type of service 
request. 

12. The process of claim 11, wherein applying the log 
model comprises adding a particular log message to a 
particular group on a condition that the particular log 
message shares a common top-level method with the group. 

13. The process of claim 12, wherein the adding is further 
based on a condition that one or more request identifiers of 
the particular log message are not different from one or more 
request identifiers of the group. 

14. The process of claim 13, wherein the one or more 
request identifiers of the particular log message and the one 
or more request identifiers of the group are indicative of 
variables in the program code that are not modified during 
processing of a service request. 

15. The process of claim 12, wherein the adding is further 
based on a condition that a log point of the particular log 
message matches a temporal sequence in a control flow of 
the program code. 

16. The process of claim 12, further comprising storing 
the log model at a logging computer of the distributed 
computer system, the logging computer performing the 
applying of the log model. 
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