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Abstract 

Distributed Shared Memory, a high-level mechanism for interpro- 
cess communication in distributed systems, is receiving increased 
attention because of its perceived advantages over message pass- 
ing mechanisms. In this paper, we take an existing algorithm that 
implements Distributed Shared Memory due to  Li and extend i t  
to  a heterogeneous environment. We describe an implementation 
that runs on Sun and DEC Firefly multiprocessor workstations 
connected by Ethernet and study related implementation and 
performance issues. Based on measurements of the applications 
ported to  our system, we conclude that heterogeneous distributed 
shared memory is not only feasible, but can also be comparable 
in performance to  its homogeneous counterpart. 

1 Introduction 

Distributed shared memory (DSM) is a mechanism for interpro- 
cess communication in distributed systems. In the distributed 
shared memory model, processes running on separate hosts can 
access a shared address space through two basic operations: 

data = read( address 1; 
write( address, data ) ;  

Read returns the data  item referenced by address, and write sets 
the contents referenced by address t o  the value of data. The un- 
derlying distributed shared memory system provides its clients 
with a shared, coherent memory address space. Each client can 
access any memory location in the shared address space at any 
time and see values last written by any client. The primary ad- 
vantage of DSM is the simpler abstraction it provides to  the ap- 
plication programmer, making it the focus of recent study and 
implementation efforts [4, 6, 7, 9, 10, 11, 12, 13, 161. The abstrac- 
tion is one the programmer already understands well, since the 
access protocol is consistent with the way sequential applications 
access data. The communication mechanism is entirely hidden 
from the application writer so that the programmer need not be 
conscious of data  movement between processes and complex data  
structures can be passed by reference, requiring no packing and 
unpacking. 

In principle, the performance of applications that use DSM 
is expected to  be worse than if they use message passing directly, 
since message passing is a direct extension to  the underlying com- 
munication mechanism of the system, and since DSM is imple- 
mented as a separate layer between the application and a mes- 
sage passing system. However, several implementations of DSM 
algorithms have demonstrated that DSM can be competitive to  
message passing in terms of performance [4, 12, 71. In fact, for 
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some existing applications, we have found that DSM can result 
in superior performance. This is possible for two reasons. First, 
for many DSM algorithms, data  is moved between hosts in large 
blocks. Therefore, if the application exhibits a reasonable degree 
of locality in its data  accesses, communication overhead is amor- 
tized over multiple memory accesses, reducing overall communi- 
cation requirements. Second, many (distributed) parallel applica- 
tions execute in phases, where each compute phase is preceded by 
a data  exchange phase. The time needed for the data  exchange 
phase is often dictated by the throughput of existing communica- 
tion bottlenecks. In contrast, many DSM algorithms move data  
on demand as they are being accessed, eliminating the data  ex- 
change phase, spreading the communication load over a longer 
period of time, and allowing for a greater degree of concurrency. 

The most widely known algorithm for implementing DSM is 
due to  Li [ l l ] ,  which is well suited for a large class of algorithms 
[12]. In Li’s algorithm, the shared address space is partitioned into 
pages and copies of these pages are distributed among the proces- 
sors, following a multiple-reader/single-writer (MRSW) protocol: 
Pages that are marked read-only can be replicated and may reside 
in the memory of several hosts, but a page being written to  can 
reside only in the memory of one host. 

One advantage of Li’s algorithm is that it can easily be inte- 
grated into the virtual memory of the host operating system. If 
a shared memory page is held locally a t  a host, it can be mapped 
into the application’s virtual address space on that host and there- 
fore be accessed using normal machine instructions for accessing 
memory. An access to  a block not held locally triggers a page 
fault, passing control to  a fault handler. The fault handler then 
communicates with the remote hosts in order to  obtain a valid 
copy of the data  block before mapping it into the application’s ad- 
dress space. Whenever a data block is migrated away from a host, 
it is removed from any local address space it has been mapped 
into. Similarly, whenever a processor attempts to  write to  a page 
for which it does not have a local copy marked as writable, a page 
fault occurs and the local fault handler communicates with the 
other hosts (after having obtained a copy of the page, if necessary) 
t o  invalidate all other copies in the system, before marking the lo- 
cal copy as writable and allowing the faulted process to  continue. 
This protocol is similar to  the write-invalidate algorithms used for 
cache consistency in shared-memory multiprocessors, except that 
the basic unit is a page instead of a cache line. 

In this paper, we extend distributed shared memory to  a 
heterogeneous environment and study the related implementation 
and performance issues. Our primary motivation for this work is 
the fact that heterogeneity exists in many (if not most) comput- 
ing environments. Heterogeneity is usually unavoidable because a 
specific hardware and its software is often designed for a particu- 
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lar application domain. For example, supercomputers and multi- 
processors are good a t  compute-intensive applications, but often 
poor a t  user interfaces. Personal computers and workstations, 
on the other hand, usually have very good user interfaces. Het- 
erogeneous distributed shared memory is a mechanism by which 
the advantages of both systenis can be obtained in an integrated 
system, allowing applications to  exploit the best of both. 

As a practical research effort, we have implemented a hetero- 
geneous distributed shared meI-rqry system that runs on a net- 
work of SMI Sun workstations and DEC Firefly multiprocessors. 
The heterogeneity of this distributed system poses a number of 
challenges that need to  be addressed, including different data rep- 
resentations, page sizes, operating systems, etc. We discuss the 
main issues and solutions of building a heterogeneous distributed 
shared memory system and describe our implementation in Sec- 
tion 2. Its  measured performance is analyzed in Section 3. 

Thread Mgmt: 
- thread creation and 

termination 

- thread migration 

- thread scheduling 

2 Mermaid: A Prototype 

2.1 System Overview 

To study the implementation and performance issues of heteroge- 
neous distributed shared memory, we have developed a prototype 
system, called Mermaid. In general, the architecture, operating 
system, and language environment on workstations and compute 
servers may all be different. In order t o  explore the difficult is- 
sues arising from heterogeneity, we wanted to select machines that 
are sufficiently different. Based on suitability and availability, 
Sun/UNIX workstations and DEC’s experimental Firefly multi- 
processors were chosen. Sun-3 workstations are based on M68020 
CPU’s and run Sun’s version of the UNIX operating system. The 
system programming language is C. On the other hand, the Fire- 
fly, developed a t  DEC’s System Research Center, is a small-scale 
multiprocessor workstation based on DEC’s CVAX processors’ 
[18]. Each Firefly may have up to 7 processors sharing physical 
memory. The operating system on Firefly is Topaz, with Modula 
I I t  being the system programming language. 

The overall system architecture of Mermaid is similar to that 
of the IVY system developed a t  Yale [ll]. It consists of 1) a 
thread management module, 2) a shared memory management 
module, and 3) a remote operations module, as shown in Fig- 
ure 1. The thread management module provides operations for 
thread creation, termination, scheduling, as well as synchroniza- 
tion primitives. The shared memory module is called to  allocate 
and deallocate shared memory, and to handle page faults. It uses 
a page table for the shared address space to maintain data con- 
sistency. The above two modules are supported by the remote 
operations module, which implements a simple request-response 
protocol for communication between the hosts. 

We chose to  implement Mermaid a t  the user level, as a li- 
brary package to  be linked into application programs using DSM. 
Although a kernel-level implementation would be more efficient, 
the difference in performance is not expected to  affect applica- 
tions performance significantly, as evidenced by the low overhead 
of Mermaid to  be discussed in Section 3. More importantly, a 
user level implementation has a number of advantages. First, it 
is more flexible and easier to implement; experimentation may be 
carried out without rebooting the hosts. Second, several DSM 
packages can be provided to the applications on the same system. 
Our analysis of the performance of applications using different 
shared data algorithms revealed that the correct choice of algo- 

‘More powerful machines would have been more appropriate to represent 
compute servers, had they been available. However, for our purpose, Fireflies 
are adequate machines to experiment with. 

Shared Memory Mgmt: 
- page t a b l e  

management 

- D S M  a l l o c a t i o n  

- page f a u l t  handling 

Remote Operations: 
- request-response 

- request-forward-reply 

- broadcast-reply 

I \ 

Kernel: I t 
UDP/IP page f a u l t  system c a l l  t o  

s i g n a l  change VM page 
a c c e s s  r i g h t s  

Figure 1: Structure of the Mermaid system 

rithm was often dictated by the memory access behavior of the 
application [16]. It is therefore desirable to  provide multiple DSM 
systems employing different algorithms for applications to  choose 
from. A user-level implementation makes this much easier. Fi- 
nally, a user-level DSM system is more portable, although some 
small changes to  the operating system kernel are still needed. 

For example, Mermaid requires kernel support for setting 
the access permissions of memory pages from the user level, so 
that a memory access fault is generated if a non-resident page is 
accessed on a host. An new system call was added to Sun/UNIX 
and Topaz for this purpose. A second change to  the operating 
system kernel was to  allow user-level fault handlers t o  be register 
with the kernel so that they could be invoked on DSM page faults. 
No other kernel changes were necessary. 

The heterogeneous system base of Sun and Firefly systems 
presented a number of problems in the implementation of Mer- 
maid. We discuss them in the following subsections. 

2.2 Basic Support 

Communication Substrate Distributed shared memory typ- 
ically operates in a request-response mode. For instance, when 
a page fault occurs, the fault handler sends a page request to 
the shared memory manager, which either supplies the page, or 
forwards the request to the owner on another host. The most 
suitable protocol for the remote operations module is therefore a 
request-response protocol, with forwarding and multicast capabil- 
ities. Multicast is used for write invalidation. All the interactions 
between the memory and thread management modules on differ- 
ent hosts can be supported by this protocol. We considered using 
the remote procedure call facilities on Sun and Firefly. However, 
they are incompatible’, and neither meets our requirements with 
respect t o  functionality (e.g., broadcast and forwarding) or per- 
formance. For example, data marshaling and unmarshaling are 
not needed, since the data being transferred (i.e. the pages) is not 
structured and since data conversions are performed at a higher 
level. 

Being a higher level communications abstraction, distributed 
shared memory requires the support of an underlying message 
transport mechanism, which must be available on all of the ma- 
chine types. The primary requirement of this mechanism is ef- 

’They follow different design specifications, and the procedure call message 
formats, data representations, etc. are all different. 
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ficiency, since the specific interface semantics and reliability fea- 
tures needed by the thread and shared memory managers are 
implemented in the remote operation module of Mermaid. Com- 
paring the two transport protocols implemented on both the Sun 
and Firefly systems, the stream oriented TCP/ IP  and the ba- 
sic, datagram-oriented UDP/IP, the latter is the obvious choice. 
Unfortunately, only a subset of UDP's functionalities is imple- 
mented on the Firefly: message fragmentation and reassembly is 
not provided. This also makes the corresponding functionalities 
on the Sun unusable when communicating with Firefly. Since 
the message size used by Mermaid may be too large to  fit in a 
single packet (e.g. the size of a Sun VM page is 8 Kbytes), we 
implemented fragmentation and reassembly a t  the user level. 

Thread Support Distributed shared memory provides for an 
address space shared by several threads of execution, in a location- 
independent manner. It is therefore important that a thread 
mechanism be provided to  the applications writers using DSM. 
Being a relatively new facility, however, threads sharing a com- 
mon address space are not supported by many of the older op- 
erating systems, including Sun/UNIX. Mermaid therefore pro- 
vides a thread module a t  the user level on the Sun, supporting 
thread creation, destruction, and suspension operations, and non- 
preemptive thread scheduling. Threads may be created in an ap- 
plication and later moved to other hosts. Alternatively, threads 
may be created on remote hosts directly. Since all the threads on 
a Sun host reside in a single address space, the suspension of one 
thread by the operating system scheduler (e.g., for synchronous 
I/O) makes other threads non-executable as well. This is typi- 
cally not a problem, since parallel applications often allocate only 
one thread on each host. For the Firefly, a system-level thread 
package is available and is used directly by Mermaid. 

Parallel executing threads need a way to  synchronize. In 
principle, this could be supported by atomic instructions on 
shared memory locations. In practice, however, this would lead 
to  repeated movement of (large) DSM pages between the hosts 
involved. We therefore implemented a separate distributed syn- 
chronization facility that provides for P and V operations and 
events more efficiently. 

2.3 Data Conversion 

When data  is transferred from a host of one type to  a host of 
another type, then it must be converted before it is accessed on 
the destination host. The unit of data  that must be converted 
is a page, but the conversion itself must be based on the types 
of the data  stored in the page. A simple example, depicted in 
Figure 2, demonstrates this. In this figure, two data  structures, 
an integer and an array of four characters, are presented first in 
big-endian order [5 ]  and then in little-endian order. To convert 
from big-endian to  little-endian (or vice versa), the bytes of the 
integer must be swapped, but not those of the character array. 
This complicates one of the stated goals of distributed shared 
memory, namely transparency. The conversion process cannot 
simply be delegated to  the DSM system because it is type specific 
and because the DSM system does not a priori know how the 
memory is being used. Hence, the application (which knows the 
layout of its memory) must either (i) perform all data  conversions 
itself, or (ii) specify to  the system the layout of each page. The 
first option raises the question of how the user-level conversion 
routine is called. The second option complicates the interface to  
the DSM system and requires the DSM system to  store the page 
layout information for each page. Both options reduce the degree 
of transparency of the distributed shared memory system. 

Big-Endian: 
i n t e g e r :  

MSB I LSB 

character arrav: 

Little-Endian: 
i n t e g e r :  

MSB I LSB 

character  array: 
"' r H ,  '0' ' J' 

4 3 2 1 

Figure 2: Big-Endian and Little-Endian Byte Ordering 

Mermaid Conversion Mechanism The conversion mecha- 
nism we use in Mermaid is relatively simple. First, we require 
that a page contain data  of one type only.3 Second, the appli- 
cation programmer must provide the conversion routine for each 
user-defined data  type in the application. Finally, the appropriate 
conversion routine is (automatically) invoked by the DSM system 
whenever a conversion is necessary, i.e. after a transfer between 
incompatible hosts. 

To aid the programmer in achieving the first requirement, a 
special memory allocating subroutine similar t o  malloc is made 
available that has an additional argument identifying the type of 
data  that will be stored in that part of memory. This subroutine 
assigns the allocated memory to  pages in such a way that a page 
contains data  of only one type. 

The DSM page table entry also keeps additional informa- 
tion identifying the type of data  maintained in that page and 
the amount of data  allocated to  the page. (the latter informa- 
tion allows for obvious optimizations when only a portion of a 
page is allocated, i.e. only that portion needs to  be transferred 
and converted.) To allow the DSM system to  invoke the correct 
routine, the application programmer must identify the conversion 
routines by way of a global (static) table containing a pointer to  
the appropriate routine for each page type. 

The conversion routines are straightforward to  write, given 
conversion routines for the basic data  types, such as characters, 
integers, (single and double precision) floating point numbers. In 
the case of compound data  structures, the conversion routine calls 
the appropriate conversion routine for each field. In the case of 
arrays, the conversion routine of the array type is called repeat- 
edly. 

Some implementations of DSM will also need to convert 
pointers a page when is converted. This is necessary if the memory 
allocated to  DSM does not occupy the same sequence of addresses 
on each host type. To allow the application supplied conversion 
routine to  do this, the type conversion routines are called with an 
additional argument containing the offset by which pointers must 
be modified. For example, if the DSM starts a t  virtual address 
start1 on a host of one type and a t  virtual address start2 on a 
host of another type, then pointers that are valid on the first host 
must be offset by (start2-start1) before they are valid on the 
second host. The DSM system determines the value of this offset 
during its initialization phase without application intervention. in 
our implementation, pointer conversions are not necessary, since 
the memory allocated to  DSM starts a t  the same address on each 

3This need not be a basic type provided by the programming language, 
but could be an application defined compound type. 
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host type. 2.4 Page Sizes 

The unit of da ta  managed and transferred by DSM is a da ta  block, 
which we call a DSM page. In a homogeneous DSM system, a 
DSM page has usually the same size as a native virtual memory 
(VM) page, so that the MMU hardware can be used to  trigger 
a DSM page fault. Although a multiple of the native VM page 
size could be used for DSM pages, this might increase conflicts in 
da ta  accesses from different hosts. 

The situation becomes more complicated when multiple ar- 
chitectures with different page sizes are involved. We may use 
the largest VM page size for DSM pages. Since VM page sizes 
are most likely powers of 2, multiple smaller VM pages fit ex- 
actly in one DSM page; hence, they can be treated as a group 
on page faults. The potential drawback of such a largest page 
size algorithm is that  more data than necessary may be moved 
between hosts with smaller VM page sizes. In severe cases, page 
thrashing may occur, when data items in the same DSM page 
are being updated by multiple hosts a t  the same time, causing 
large numbers of page transfers among the hosts without much 
progress in the execution of the application. While page thrashing 
may occur with any DSM page size, i t  is more likely with larger 
DSM page sizes, as different regions in the same page may be up- 
dated by threads on different hosts, causing page transfers that 
are not necessary with smaller pages. Such data access patterns 
are referred to  as false sharing, and is a frequent cause of page 
thrashing. 

One way to reduce da ta  contention is to use the smallest VM 
page size for the DSM pages. We call the corresponding algorithm 
the smallest page size algorithm. If a page fault occurs on a host 
with a larger page size, multiple DSM pages will be moved to 
fill that  (large) page. The actual algorithm must differentiate 
between many cases depending on the type of page fault (read or 
write), the page sizes of the requesting and the owner hosts, and 
how the page is currently being shared (what type of hosts have 
read/write accesses). 

Typically, if page thrashing does not occur, more DSM page 
faults occur on hosts with small VM page sizes, resulting in more 
fault handling overhead and (small) page transfers. Although in- 
termediate sizes are possible, the above two algorithms represent 
the two extremes of the page size algorithms. We have imple- 
mented both algorithms in Mermaid, and the performance com- 
parison between them will be discussed in Section 3.3.  

Convers ion  O v e r h e a d  We have found the performance im- 
pact of page-based data conversion to  be not very significant com- 
pared to  the other overheads of DSM. (See Section 3.1.) Conver- 
sion is necessary only when a page is migrated between hosts of 
diflemnt types, and the cost of converting a page is small com- 
pared to  the overall cost of page migration. The number of nec- 
essary conversions can be kept t o  a minimum by transferring a 
page from a host of the same type whenever possible. 

In general, the conversion process itself is simple. Character 
strings do not need to  be converted. The conversion of integers 
is a matter of proper byte swapping. Conversion of (single and 
double precision) floating point numbers may be somewhat more 
complicated. For example, the IEEE format supports unnormal- 
ized numbers and special cases, such as infinity and NAN'S, which 
are not supported by the Vax. These cases can be detected with 
two additional comparison operations. The positions and lengths 
of the exponent and matissa fields may be different (such is the 
case with IEEE and VAX), requiring bit manipulation operations. 

L imi ta t ions  The da ta  conversion problem is complex and our 
solution is not entirely general, although our experience indicates 
that  it is sufficient for many practical applications. We believe our 
solution is similar in complexity to  the solution used by existing 
heterogeneous RPC schemes [17]. However, our solution does 
have a number of limitations. First, a memory page may contain 
data of only one type. Our memory allocator does this for the 
programmer, but it may lead to  increased memory usage due to  
fragmentation, which in turn can lead to increased paging activity. 
At the same time, however, i t  also can reduce thrashing because 
the probability of page access contention is reduced. 

Second, the size of each data type must be the same on each 
host, and the order of the fields within compound structures must 
be the same on each host. If this were not the case, then the 
mapping between pages on the two hosts would not be one-to- 
one; That is, i t  may not be possible for a structure to fit on a 
page in i ts  entirety after the conversion or, conversely, some da ta  
from the following page may be needed in order t o  complete the 
conversion of the current page. Hence, the compilers used on the 
different host types must be compatible to  some extent. 

Third, entire pages are converted even though only a small 
portion of a page may be accessed before it is transferred away. 
As mentioned above, however, we have found that the cost of the 
page translation to be small compared to  the overall migration 
cost. A page-based DSM system performs poorly with this type 
of access behavior in both the homogeneous and heterogeneous 
case. 

Fourth, our conversion process is not entirely transparent 
because uses are required to  supply the conversion routines for 
user-defined data types and a table specifying the mapping of data 
types to conversion routines. It is possible, however, t o  generate 
these automatically using a preprocessor on the user program. 
This is something we are currently looking in to. 

Finally, floating point numbers can lose precision when they 
are converted. Since an application does not have direct control 
over how many times a page is migrated between hosts of different 
types and hence converted, the numerical accuracy of results may 
become questionable. In general, however, we do not consider 
this to be a problem for many environments; for example, in an 
environment consisting of workstations and computation servers, 
data is typically transferred once to the computation servers and 
then transferred back again a t  the end of the computation. 

3 Performance Evaluation 

Implementing distributed shared memory in a heterogeneous en- 
vironment can bring performance benefits to applications, but i t  
may also incur increased overhead. On the one hand, it is now pos- 
sible t o  develop and start parallel applications on workstations, 
and be able to  use the computing resources on more powerful ma- 
chines by moving threads to them. On the other hand, the cost 
of doing message fragmentation and reassembly a t  the user level, 
of handling multiple VM page sizes, and of data conversions may 
offset the performance gains of parallel execution. 

We have performed a number of measurement experiments 
on our prototype Mermaid system in order to study the impacts of 
heterogeneity on the performance of distributed shared memory 
systems. All measurements were performed on Sun3/60 work- 
stations and Fireflies. The measured hosts were idle during the 
experiments, except for the activities being studied. The results 
we observed were very stable (except for the page thrashing cases 
to  be discussed in Section 3.3),  For all cases, the lowest values are 
reported. 
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+ 
Write 2.04 6.70 

from 
Sun 
Firefly 
page size 

Table 1: Costs of page fault handling (ms). 

18 27 5.1 7.6 
25 33 7.3 6.7 

8 KB 1 KB 

to  )I Sun I Firefly 11 Sun I Firefly 

Table 2: Cost of transferring a page (ms). 

3.1 Overhead Assessment 

Compared to  physical shared memory, distributed shared mem- 
ory has a number of additional overheads. In a user-level imple- 
mentation, the access rights of the DSM pages have to  be set, 
and DSM page faults have to  be passed to  the user level. Since 
data  is no longer physically shared, DSM pages need to  be moved 
between hosts upon page faults, typically over a slow, bit-serial 
network, such as the Ethernet. The allocation of shared memory 
and thread synchronization and scheduling also introduce over- 
head, but they are relatively small compared to  other overheads. 
Finally, for heterogeneous systems, the costs of data  conversions 
and the page size algorithm might be significant. 

The basic costs of handling a page fault are shown in Table 1. 
Included are the invocation of the user-level handler, the DSM 
page table processing, and the request message transmission time. 
The values of a few milliseconds are considered to  be quite small. 
The costs on the Fireflies are higher, due to  the higher user-level 
message processing cost and the locking of data  structures, which 
is necessary in shared memory multiprocessors. 

Table 2 shows the costs of transferring 8 KB and 1 KB pages 
between hosts. The higher cost when the Firefly is involved is 
partially due to  user level message fragmentation and reassem- 
bly processing. The costs for 8 KB transfers are only about three 
times that of 1 KB transfers. This is due to  the fixed costs of mes- 
sage transport. Hence, in the absence of page thrashing, larger 
DSM pages incur fewer page faults and lower data  transfer over- 
head 

For heterogeneous shared memory, the cost of data  conver- 
sion must be considered. We measured the costs of converting a 
page of integers, shorts, or floating point numbers (single and dou- 
ble precision) on a Firefly (See Table 3). For integers and shorts, 
only byte swapping is needed, whereas for floating point numbers, 
extra checks for extreme values in the IEEE representation (e.g., 
underflow, negative zero, NAN) are also necessary. In all of the 
cases, the conversion costs are only a fraction of the page transfer 
costs. We also measured the conversion costs of user-defined data  

8 KB page 1 KB page 

short 
float 21.6 2.7 
double 28.9 3.6 

Table 3: Costs of data  conversions (ms). 

R = Requester host; M = Manager host; 0 = Page Owner 
R/M: Requestor and Manager are on the same host. 

Table 4: End-to-end page fault delays for 8 KB pages (ms). 

structures, and found them to  be comparable to  the above. For 
example, converting an 8 KB page containing records of three in- 
tegers, 3 floats, and 4 shorts took 19.6 milliseconds on a Sun3/60. 

To consider the combined effects of the above overhead costs, 
we show the end-to-end page fault delays for different types of 
hosts under different scenarios in Table 4. (In this implementa- 
tion, each page has a fixed manager that can identify the owner 
and the copy set of the page. A request t o  transfer a page is always 
passed by the manager.) The cost for (integer) data  conversion is 
included when the two hosts (Requestor and Owner) are of differ- 
ent types. The measurements are based on the largest page size 
algorithm, hence the values are for 8 KB pages only. The costs 
for read and write page faults were found to  be very similar. The 
DSM page fault delay is comparable to  that of a VM page fault 
involving a disk seek. The costs of page faults involving both Sun 
and Firefly are very comparable to  the homogeneous cases. As 
with traditional VM, if the DSM fault rate is not excessive, the 
application’s performance under distributed shared memory may 
be close to that under physical shared memory. 

3.2 Evaluation of Applications Performance 

While the above cost measurements are useful in assessing the per- 
formance penalty of distributed shared memory, the most direct 
measure of DSM performance is the execution times of applica- 
tions. One of the applications we implemented on Mermaid is a 
parallel version of matrix multiplication (MM) in which the com- 
putation of the rows in the result matrix is performed by a number 
of threads running simultaneously, each on a separate processor. 
The result matrix is write-shared among the threads, whereas the 
two argument matrices are read-shared only, hence can be repli- 
cated. At the end of the computation, pieces of the result matrix 
are transferred (implicitly) to  the master thread, which creates 
and coordinates the activities of the slave threads, but performs 
no multiplication itself. We used 256 x 256 integer matrices for 
our measurements. Had floating point matrices been used (which 
would be the case in numerical applications), the amount of par- 
allelizable computation would increase, so the relative overheads 
would be lower, and the speedup would be better. 

Another application we converted to  run under Mermaid is 
a program that detects flaws in printed circuit boards (PCB). 
Two digital images (front- and back-lit) of a PCB are taken by 
a camera, digitized, and then stored as large matrices. The soft- 
ware then checks all the geometric features on the board, such as 
conductors, wire holes, and spacing between them. If design rule 
voilations are found, they are high-lighted in red in a third image, 
which is displayed on a color workstation, so that a human deci- 
sion may be made as to  whether this PCB has to  be discarded. 
The amount of computation involved in the rule checking is sub- 
stantial: on a Sun3/60, it takes about five minutes to  process a 2 
cm x 16 cm area. A suitable computing environment for on-line 
PCB inspection is a workstation with bit-mapped display, coupled 
with compute servers on which the checking software runs in par- 

34 



Response 
tune 
(sec) Distributed 

Physical 50 - 

0 0  
1 2 3 4 

Number of threads 

Figure 3: Response times of matrix multiplication when executed 
on one or multiule Fireflies. 

allel. We therefore used Mermaid as a prototype of such systems. 
Our version of the PCB software has a master thread that  runs 
on a Sun, divides the area into stripes, and creates threads on the 
Fireflies t o  check them '. The raw and processed images, as well 
as data  structures containing the design rules, the flaw statistics, 
etc, are allocated in the DSM space, and are converted properly 
when transferred between the Sun master and the Firefly slave 
threads. For our measurements, an area of 2 cm x 16 cm is used. 

Overhead of DSM initialization and thread operations: We 
compared the execution times of MM and PCB using a sequential 
implementation to  those using DSM with a single slave thread and 
found the difference to  be close to  zero on both the Sun and the 
Firefly; hence, we conclude that the overheads of shared memory 
allocation, thread creation and synchronization are very low. 

Physical vs. distributed shared memory: Since the Firefly is a 
multiprocessor, we are able to  compare the performance of phys- 
ical shared memory to  that of distributed shared memory. The 
same number of slave threads are either allocated to  the processors 
on the same Firefly or t o  multiple Fireflies, with one thread on 
each, and the master thread on yet another Firefly. The response 
times for both cases are shown in Figure 3. The slightly higher 
execution times for the multiple Firefly case are mainly due to  the 
cost of transferring pages between the machines. For multiplica- 
tion of large matrices, performance penalty of distributed memory 
is minimal. More generally, the penalty depends on the costs of 
data  distribution and replication and the costs of data  consistency 
The former is determined by the underlying communication and 
data  conversion costs, whereas the latter also depends on the ap- 
plications' data  access behaviors. 

Heterogeneous us. homogeneous shared memory: To assess 
the effect of heterogeneity, we measured the response times of 
matrix multiplication with a number of threads running on Fire- 
flies, and the master thread running on a Sun3/60. This is a 
representative configuration of heterogeneous distributed shared 
memory that takes advantages of both the user-friendly program- 
ming environment on a workstation, and the computing power 
of the background server hosts. Compared to  the similar case in 
which the slave and the master threads run on Fireflies, very little 
performance degradation is observed. In the first case, pages of 
the matrices are moved from the Sun to  the Fireflies and the re- 
sult matrix is then moved back to  the Sun after the computation; 

'Small overlaps of the stripes are necessary so that features on the borders 
are checked properly. 

_....' 3 Fireflies 
1 1  / 

1 3  5 7 9 1 1 1 3 1 5  

Number of threads 
Figure 4: Matrix mult. with master on Sun and slaves on one or 
more Fireflies. 

all data  movements are accompanied by integer conversions. No 
data  conversion is needed for the homogeneous case. 

Scalability of heterogeneous shared memory: The scalability 
of heterogeneous distributed shared memory, in the case of MM 
and PCB applications, is shown in Figures 4 and 5 .  One to  four 
Fireflies are used, and the numbers of threads allocated to  each 
are approximately balanced. For MM, performance improvements 
are observed as more and more threads are added, up to 14. Be- 
yond that point, the communication overheads begins to  becomes 
more significant. For PCB, there are two additional limitations 
to  speedup: First, the amount of computation for each stripe is 
unbalanced; hence the larger threads determine the overall re- 
sponse time. Had we used a PCB area of greater height (e.g., 
10 cm instead of 2 cm), multiple stripes of the board could have 
been assigned to  the threads in an interleaved fashion to  balance 
the work. Second, the overlaps of the areas represent extra com- 
putation, which grows as more threads are used. Despite these 
limitations, very good speedup (up to  7 using 10 threads) were 
still observed. Instead of taking six minutes on a Sun, the check- 
ing can be completed in 44 seconds on three Fireflies. 

It is interesting to  note that physical shared memory is 
treated as a special case of distributed shared memory in Mer- 
maid; the two types of memory are fully integrated throughout 
the heterogeneous system base, and the performance potential of 
such a system is fully explored (in the sense that  physical shared 
memory is used if present and distributed shared memory is used 
otherwise). The feasibility and performance potential of hetero- 
geneous DSM systems are clearly demonstrated by these experi- 
ments. 

3.3 Effect of page size algorithms and page thrash- 
ing 

To assess the effects of page thrashing due to  data  contention 
among threads, and to  study the relationship between page size 
and thrashing, we conducted a number of experiments using two 
different implementations of matrix multiplication. The first, 
MM1, assigns large groups of rows of the result matrix to  each 
thread5, the second assigns rows to  threads in a round-robin fash- 
ion (MM2). MM2 is expected to  have more data  contention on 
its DSM pages and is intended to  represent the class of applica- 
tions with such characteristics. By using matrix multiplication 

5 M M l  is the implementation of MM being used so far 
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Figure 5: PCB with master on Sun and slaves on one or more 
Fireflies. 
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Figure 6: Response times of MM1 using large (small) page size 
algorithms. 

for both, we are able to eliminate other factors affecting the per- 
formance of parallel applications, such as scalability and the size 
of da ta  sets. 

Effects of page size algorithms: Figure 6 compares the perfor- 
mance of MM1 using the large page size algorithm to  that using 
small page size algorithm. There is some definite degradation in 
performance due to increased number of page faults on the Fire- 
flies, throughout the range of the number of processors. 

Effects of locality - small page size algorithm: Since MM2 
divides the result matrix into rows for the slave threads (1  KB, 
or 256 integers each), and since the small page size algorithm also 
operates on 1 KB pages, we expected the degradation of MM2 
over MM1 using this algorithm to  be small, which is the case, as 
shown in Figure 7. 

Thrashing: The most likely case for thrashing is MM2 with 
the large page size algorithm, where an 8 KB page is shared by up 
to 8 threads on a number of Fireflies. We ran MM2 with various 
numbers of threads running on two or three Fireflies. The cor- 
responding execution times we observed fluctuated greatly, even 
between consecutive runs with the same setting. Speedup rel- 
ative to the sequential case was rarely observed, and execution 
times up to  10 times of that of the sequential case were measured. 
Examining detailed statistics of the numbers of page faults and 
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Figure 7: Response times of MM1 and MM2 using the small page 
size algorithm. 

transfers revealed tha t  a very large number of pages were trans- 
ferred between the Fireflies. The performance degradation and 
unpredictable fluctuations are clearly due to page thrashing. 

From the above experiments, i t  may be concluded that,  if 
the locality in the application’s data accesses is very good, larger 
DSM page sizes generate less overhead and better performance. 
If there are substantial data interferences, however, performance 
may degrade greatly using large pages, and small page sizes are 
more likely to  provide stable performance. 

4 Related Work 
Efforts in accommodating heterogeneity in distributed computer 
systems have been the focus of research for some time; see [15] 
for an overview. Most often, heterogeneity is accommodated by 
standardizing a system-wide file system interface or by standard- 
izing communication protocols, including remote procedure call 
protocols. For example, an early effort in accommodating hetero- 
geneity was the NSW project [8], which provided a standard set 
of tools for a standard file system on different operating systems. 
hlore recent examples of file systems for heterogeneous environ- 
ments include Sun’s NFS [17], the Athena project a t  MIT [2] 
and the Andrew project a t  Carnegie-Mellon University [14]. The 
Heterogeneous Computer Systems project a t  the University of 
Washington [3], Sun [17] and Apollo [l] have all developed re- 
mote procedure call packages that allow communication between 
hosts of different types. 

Initial efforts to provide distributed shared memory for 
loosely-coupled distributed systems are due to  Cheriton [4] and 
Li [ll]. Li’s algorithm is probably one of the most studied dis- 
tributed shared memory algorithms [9, 7, 121. Forin et.al.[7] de- 
signed and implemented a shared memory facility for heteroge- 
neous environments; however, they assume a homogeneous oper- 
ating system base (MACH) from the outset. 

5 Concluding Remarks 

Our research motivation for extending distributed shared mem- 
ory to  accommodate heterogeneity stems mainly from two obser- 
vations. First, most networked computing environments are be- 
coming more and more heterogeneous due to  the increased special- 
ization of computing machines; workstations are employed mainly 
for their user interfaces, while powerful, parallel systems serve as 
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compute servers. Second, as a mechanism for interprocess com- 
munication in homogeneous systems, distributed shared memory 
has a number of advantages over its message passing counterparts 
such as RPC; in particular, it provides clients with a more trans- 
parent interface and programming environment for distributed 
and parallel applications. It is therefore interesting to  consider 
heterogeneous DSM in an attempt to  translate as many of these 
advantages to  heterogeneous systems as possible. 

In this paper, we discussed the main issues and solutions 
of building a distributed shared memory system on a network 
of heterogeneous machines. As a practical research effort, we 
have designed and implemented a DSM system, Mermaid, for a 
network of Sun workstations and Firefly multiprocessors, and we 
ported several applications to  this system. In doing so, we were 
also able to  gain insight into distributed shared memory systems 
in general. 

We conclude that heterogeneous distributed shared memory 
is indeed feasible. iFrom a performance point of view, we showed 
that the execution times of (at least some) applications running 
on Mermaid are comparable to  those running on a homogeneous 
DShl system, because the cost of data  conversion does not sub- 
stantially increase the overall cost of paging across the network. 
Moreover, we were able to  easily integrate our distributed shared 
memory system into the physical shared memory system on the 
Firefly, allowing the programmer to  exploit both physical and dis- 
tributed shared memory using one and the same mechanism. 

One of the main advantages of distributed shared memory is 
the high degree of transparency it provides of the underlying com- 
munication structure. However, as in homogeneous distributed 
shared memory, performance transparency cannot be achieved 
completely in all cases, because of the need to  transfer data  over 
a bit-serial network, and the interactions between the data  ac- 
cess patterns of the application and the DSM algorithm used. In 
the heterogeneous case, we also find it more difficult to  achieve 
functional transparency, mainly because of different data  repre- 
sentations. Our scheme requires the user to  specify the data  type 
when allocating data  in the DSM space, and to  compose conver- 
sion routines for user-defined data  types using system-provided 
routines for the basic types. We claim that for the application 
programmer, this added complexity is no larger than that re- 
quired for many existing heterogeneous RPC systems. We are 
currently working on automatic generation of the conversion rou- 
tines at compile time, which appears t o  be feasible. 

Our measured performance results also corroborate the re- 
sults of other researchers in that distributed shared memory can 
be competitive to  the direct use of message passing, a t  least for a 
reasonably large class of applications. In some cases, they actu- 
ally outperform their message passing counterparts, even though 
the shared memory system is implemented in a layer on top of 
a message passing system. However, we demonstrated that the 
size of a DSM page can have an important effect on performance; 
too large a DSM page size is more likely to  cause page thrashing, 
severely affecting performance. 
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