
Extending Distributed Shared Memory to
Heterogeneous Environments

Songnian Zhou Michael Stumm Tim McInerney
University of Toronto

Toronto, Canada M5S 1A4

Abstract

Distributed Shared Memory, a high-level mechanism for interpro-
cess communication in distributed systems, is receiving increased
attention because of its perceived advantages over message pass-
ing mechanisms. In this paper, we take an existing algorithm that
implements Distributed Shared Memory due to Li and extend i t
to a heterogeneous environment. We describe an implementation
that runs on Sun and DEC Firefly multiprocessor workstations
connected by Ethernet and study related implementation and
performance issues. Based on measurements of the applications
ported to our system, we conclude that heterogeneous distributed
shared memory is not only feasible, but can also be comparable
in performance to its homogeneous counterpart.

1 Introduction

Distributed shared memory (DSM) is a mechanism for interpro-
cess communication in distributed systems. In the distributed
shared memory model, processes running on separate hosts can
access a shared address space through two basic operations:

data = read(address 1;
write(address, data) ;

Read returns the data item referenced by address, and write sets
the contents referenced by address t o the value of data. The un-
derlying distributed shared memory system provides its clients
with a shared, coherent memory address space. Each client can
access any memory location in the shared address space at any
time and see values last written by any client. The primary ad-
vantage of DSM is the simpler abstraction it provides to the ap-
plication programmer, making it the focus of recent study and
implementation efforts [4, 6, 7, 9, 10, 11, 12, 13, 161. The abstrac-
tion is one the programmer already understands well, since the
access protocol is consistent with the way sequential applications
access data. The communication mechanism is entirely hidden
from the application writer so that the programmer need not be
conscious of data movement between processes and complex data
structures can be passed by reference, requiring no packing and
unpacking.

In principle, the performance of applications that use DSM
is expected to be worse than if they use message passing directly,
since message passing is a direct extension to the underlying com-
munication mechanism of the system, and since DSM is imple-
mented as a separate layer between the application and a mes-
sage passing system. However, several implementations of DSM
algorithms have demonstrated that DSM can be competitive to
message passing in terms of performance [4, 12, 71. In fact, for

~~2a7a-719o1oooo1oo3o~oi .oo o 1990 IEEE

some existing applications, we have found that DSM can result
in superior performance. This is possible for two reasons. First,
for many DSM algorithms, data is moved between hosts in large
blocks. Therefore, if the application exhibits a reasonable degree
of locality in its data accesses, communication overhead is amor-
tized over multiple memory accesses, reducing overall communi-
cation requirements. Second, many (distributed) parallel applica-
tions execute in phases, where each compute phase is preceded by
a data exchange phase. The time needed for the data exchange
phase is often dictated by the throughput of existing communica-
tion bottlenecks. In contrast, many DSM algorithms move data
on demand as they are being accessed, eliminating the data ex-
change phase, spreading the communication load over a longer
period of time, and allowing for a greater degree of concurrency.

The most widely known algorithm for implementing DSM is
due to Li [l l] , which is well suited for a large class of algorithms
[12]. In Li’s algorithm, the shared address space is partitioned into
pages and copies of these pages are distributed among the proces-
sors, following a multiple-reader/single-writer (MRSW) protocol:
Pages that are marked read-only can be replicated and may reside
in the memory of several hosts, but a page being written to can
reside only in the memory of one host.

One advantage of Li’s algorithm is that it can easily be inte-
grated into the virtual memory of the host operating system. If
a shared memory page is held locally a t a host, it can be mapped
into the application’s virtual address space on that host and there-
fore be accessed using normal machine instructions for accessing
memory. An access to a block not held locally triggers a page
fault, passing control to a fault handler. The fault handler then
communicates with the remote hosts in order to obtain a valid
copy of the data block before mapping it into the application’s ad-
dress space. Whenever a data block is migrated away from a host,
it is removed from any local address space it has been mapped
into. Similarly, whenever a processor attempts to write to a page
for which it does not have a local copy marked as writable, a page
fault occurs and the local fault handler communicates with the
other hosts (after having obtained a copy of the page, if necessary)
t o invalidate all other copies in the system, before marking the lo-
cal copy as writable and allowing the faulted process to continue.
This protocol is similar to the write-invalidate algorithms used for
cache consistency in shared-memory multiprocessors, except that
the basic unit is a page instead of a cache line.

In this paper, we extend distributed shared memory to a
heterogeneous environment and study the related implementation
and performance issues. Our primary motivation for this work is
the fact that heterogeneity exists in many (if not most) comput-
ing environments. Heterogeneity is usually unavoidable because a
specific hardware and its software is often designed for a particu-

30

lar application domain. For example, supercomputers and multi-
processors are good a t compute-intensive applications, but often
poor a t user interfaces. Personal computers and workstations,
on the other hand, usually have very good user interfaces. Het-
erogeneous distributed shared memory is a mechanism by which
the advantages of both systenis can be obtained in an integrated
system, allowing applications to exploit the best of both.

As a practical research effort, we have implemented a hetero-
geneous distributed shared meI-rqry system that runs on a net-
work of SMI Sun workstations and DEC Firefly multiprocessors.
The heterogeneity of this distributed system poses a number of
challenges that need to be addressed, including different data rep-
resentations, page sizes, operating systems, etc. We discuss the
main issues and solutions of building a heterogeneous distributed
shared memory system and describe our implementation in Sec-
tion 2. Its measured performance is analyzed in Section 3.

Thread Mgmt:
- thread creation and

termination

- thread migration

- thread scheduling

2 Mermaid: A Prototype

2.1 System Overview

To study the implementation and performance issues of heteroge-
neous distributed shared memory, we have developed a prototype
system, called Mermaid. In general, the architecture, operating
system, and language environment on workstations and compute
servers may all be different. In order t o explore the difficult is-
sues arising from heterogeneity, we wanted to select machines that
are sufficiently different. Based on suitability and availability,
Sun/UNIX workstations and DEC’s experimental Firefly multi-
processors were chosen. Sun-3 workstations are based on M68020
CPU’s and run Sun’s version of the UNIX operating system. The
system programming language is C. On the other hand, the Fire-
fly, developed a t DEC’s System Research Center, is a small-scale
multiprocessor workstation based on DEC’s CVAX processors’
[18]. Each Firefly may have up to 7 processors sharing physical
memory. The operating system on Firefly is Topaz, with Modula
I I t being the system programming language.

The overall system architecture of Mermaid is similar to that
of the IVY system developed a t Yale [ll]. It consists of 1) a
thread management module, 2) a shared memory management
module, and 3) a remote operations module, as shown in Fig-
ure 1. The thread management module provides operations for
thread creation, termination, scheduling, as well as synchroniza-
tion primitives. The shared memory module is called to allocate
and deallocate shared memory, and to handle page faults. It uses
a page table for the shared address space to maintain data con-
sistency. The above two modules are supported by the remote
operations module, which implements a simple request-response
protocol for communication between the hosts.

We chose to implement Mermaid a t the user level, as a li-
brary package to be linked into application programs using DSM.
Although a kernel-level implementation would be more efficient,
the difference in performance is not expected to affect applica-
tions performance significantly, as evidenced by the low overhead
of Mermaid to be discussed in Section 3. More importantly, a
user level implementation has a number of advantages. First, it
is more flexible and easier to implement; experimentation may be
carried out without rebooting the hosts. Second, several DSM
packages can be provided to the applications on the same system.
Our analysis of the performance of applications using different
shared data algorithms revealed that the correct choice of algo-

‘More powerful machines would have been more appropriate to represent
compute servers, had they been available. However, for our purpose, Fireflies
are adequate machines to experiment with.

Shared Memory Mgmt:
- page t a b l e

management

- D S M a l l o c a t i o n

- page f a u l t handling

Remote Operations:
- request-response

- request-forward-reply

- broadcast-reply

I \

Kernel: I t
UDP/IP page f a u l t system c a l l t o

s i g n a l change VM page
a c c e s s r i g h t s

Figure 1: Structure of the Mermaid system

rithm was often dictated by the memory access behavior of the
application [16]. It is therefore desirable to provide multiple DSM
systems employing different algorithms for applications to choose
from. A user-level implementation makes this much easier. Fi-
nally, a user-level DSM system is more portable, although some
small changes to the operating system kernel are still needed.

For example, Mermaid requires kernel support for setting
the access permissions of memory pages from the user level, so
that a memory access fault is generated if a non-resident page is
accessed on a host. An new system call was added to Sun/UNIX
and Topaz for this purpose. A second change to the operating
system kernel was to allow user-level fault handlers t o be register
with the kernel so that they could be invoked on DSM page faults.
No other kernel changes were necessary.

The heterogeneous system base of Sun and Firefly systems
presented a number of problems in the implementation of Mer-
maid. We discuss them in the following subsections.

2.2 Basic Support

Communication Substrate Distributed shared memory typ-
ically operates in a request-response mode. For instance, when
a page fault occurs, the fault handler sends a page request to
the shared memory manager, which either supplies the page, or
forwards the request to the owner on another host. The most
suitable protocol for the remote operations module is therefore a
request-response protocol, with forwarding and multicast capabil-
ities. Multicast is used for write invalidation. All the interactions
between the memory and thread management modules on differ-
ent hosts can be supported by this protocol. We considered using
the remote procedure call facilities on Sun and Firefly. However,
they are incompatible’, and neither meets our requirements with
respect t o functionality (e.g., broadcast and forwarding) or per-
formance. For example, data marshaling and unmarshaling are
not needed, since the data being transferred (i.e. the pages) is not
structured and since data conversions are performed at a higher
level.

Being a higher level communications abstraction, distributed
shared memory requires the support of an underlying message
transport mechanism, which must be available on all of the ma-
chine types. The primary requirement of this mechanism is ef-

’They follow different design specifications, and the procedure call message
formats, data representations, etc. are all different.

31

ficiency, since the specific interface semantics and reliability fea-
tures needed by the thread and shared memory managers are
implemented in the remote operation module of Mermaid. Com-
paring the two transport protocols implemented on both the Sun
and Firefly systems, the stream oriented TCP/ IP and the ba-
sic, datagram-oriented UDP/IP, the latter is the obvious choice.
Unfortunately, only a subset of UDP's functionalities is imple-
mented on the Firefly: message fragmentation and reassembly is
not provided. This also makes the corresponding functionalities
on the Sun unusable when communicating with Firefly. Since
the message size used by Mermaid may be too large to fit in a
single packet (e.g. the size of a Sun VM page is 8 Kbytes), we
implemented fragmentation and reassembly a t the user level.

Thread Support Distributed shared memory provides for an
address space shared by several threads of execution, in a location-
independent manner. It is therefore important that a thread
mechanism be provided to the applications writers using DSM.
Being a relatively new facility, however, threads sharing a com-
mon address space are not supported by many of the older op-
erating systems, including Sun/UNIX. Mermaid therefore pro-
vides a thread module a t the user level on the Sun, supporting
thread creation, destruction, and suspension operations, and non-
preemptive thread scheduling. Threads may be created in an ap-
plication and later moved to other hosts. Alternatively, threads
may be created on remote hosts directly. Since all the threads on
a Sun host reside in a single address space, the suspension of one
thread by the operating system scheduler (e.g., for synchronous
I/O) makes other threads non-executable as well. This is typi-
cally not a problem, since parallel applications often allocate only
one thread on each host. For the Firefly, a system-level thread
package is available and is used directly by Mermaid.

Parallel executing threads need a way to synchronize. In
principle, this could be supported by atomic instructions on
shared memory locations. In practice, however, this would lead
to repeated movement of (large) DSM pages between the hosts
involved. We therefore implemented a separate distributed syn-
chronization facility that provides for P and V operations and
events more efficiently.

2.3 Data Conversion

When data is transferred from a host of one type to a host of
another type, then it must be converted before it is accessed on
the destination host. The unit of data that must be converted
is a page, but the conversion itself must be based on the types
of the data stored in the page. A simple example, depicted in
Figure 2, demonstrates this. In this figure, two data structures,
an integer and an array of four characters, are presented first in
big-endian order [5] and then in little-endian order. To convert
from big-endian to little-endian (or vice versa), the bytes of the
integer must be swapped, but not those of the character array.
This complicates one of the stated goals of distributed shared
memory, namely transparency. The conversion process cannot
simply be delegated to the DSM system because it is type specific
and because the DSM system does not a priori know how the
memory is being used. Hence, the application (which knows the
layout of its memory) must either (i) perform all data conversions
itself, or (ii) specify to the system the layout of each page. The
first option raises the question of how the user-level conversion
routine is called. The second option complicates the interface to
the DSM system and requires the DSM system to store the page
layout information for each page. Both options reduce the degree
of transparency of the distributed shared memory system.

Big-Endian:
i n t e g e r :

MSB I LSB

character arrav:

Little-Endian:
i n t e g e r :

MSB I LSB

character array:
"' r H , '0' ' J'

4 3 2 1

Figure 2: Big-Endian and Little-Endian Byte Ordering

Mermaid Conversion Mechanism The conversion mecha-
nism we use in Mermaid is relatively simple. First, we require
that a page contain data of one type only.3 Second, the appli-
cation programmer must provide the conversion routine for each
user-defined data type in the application. Finally, the appropriate
conversion routine is (automatically) invoked by the DSM system
whenever a conversion is necessary, i.e. after a transfer between
incompatible hosts.

To aid the programmer in achieving the first requirement, a
special memory allocating subroutine similar t o malloc is made
available that has an additional argument identifying the type of
data that will be stored in that part of memory. This subroutine
assigns the allocated memory to pages in such a way that a page
contains data of only one type.

The DSM page table entry also keeps additional informa-
tion identifying the type of data maintained in that page and
the amount of data allocated to the page. (the latter informa-
tion allows for obvious optimizations when only a portion of a
page is allocated, i.e. only that portion needs to be transferred
and converted.) To allow the DSM system to invoke the correct
routine, the application programmer must identify the conversion
routines by way of a global (static) table containing a pointer to
the appropriate routine for each page type.

The conversion routines are straightforward to write, given
conversion routines for the basic data types, such as characters,
integers, (single and double precision) floating point numbers. In
the case of compound data structures, the conversion routine calls
the appropriate conversion routine for each field. In the case of
arrays, the conversion routine of the array type is called repeat-
edly.

Some implementations of DSM will also need to convert
pointers a page when is converted. This is necessary if the memory
allocated to DSM does not occupy the same sequence of addresses
on each host type. To allow the application supplied conversion
routine to do this, the type conversion routines are called with an
additional argument containing the offset by which pointers must
be modified. For example, if the DSM starts a t virtual address
start1 on a host of one type and a t virtual address start2 on a
host of another type, then pointers that are valid on the first host
must be offset by (start2-start1) before they are valid on the
second host. The DSM system determines the value of this offset
during its initialization phase without application intervention. in
our implementation, pointer conversions are not necessary, since
the memory allocated to DSM starts a t the same address on each

3This need not be a basic type provided by the programming language,
but could be an application defined compound type.

32

host type. 2.4 Page Sizes

The unit of da ta managed and transferred by DSM is a da ta block,
which we call a DSM page. In a homogeneous DSM system, a
DSM page has usually the same size as a native virtual memory
(VM) page, so that the MMU hardware can be used to trigger
a DSM page fault. Although a multiple of the native VM page
size could be used for DSM pages, this might increase conflicts in
da ta accesses from different hosts.

The situation becomes more complicated when multiple ar-
chitectures with different page sizes are involved. We may use
the largest VM page size for DSM pages. Since VM page sizes
are most likely powers of 2, multiple smaller VM pages fit ex-
actly in one DSM page; hence, they can be treated as a group
on page faults. The potential drawback of such a largest page
size algorithm is that more data than necessary may be moved
between hosts with smaller VM page sizes. In severe cases, page
thrashing may occur, when data items in the same DSM page
are being updated by multiple hosts a t the same time, causing
large numbers of page transfers among the hosts without much
progress in the execution of the application. While page thrashing
may occur with any DSM page size, i t is more likely with larger
DSM page sizes, as different regions in the same page may be up-
dated by threads on different hosts, causing page transfers that
are not necessary with smaller pages. Such data access patterns
are referred to as false sharing, and is a frequent cause of page
thrashing.

One way to reduce da ta contention is to use the smallest VM
page size for the DSM pages. We call the corresponding algorithm
the smallest page size algorithm. If a page fault occurs on a host
with a larger page size, multiple DSM pages will be moved to
fill that (large) page. The actual algorithm must differentiate
between many cases depending on the type of page fault (read or
write), the page sizes of the requesting and the owner hosts, and
how the page is currently being shared (what type of hosts have
read/write accesses).

Typically, if page thrashing does not occur, more DSM page
faults occur on hosts with small VM page sizes, resulting in more
fault handling overhead and (small) page transfers. Although in-
termediate sizes are possible, the above two algorithms represent
the two extremes of the page size algorithms. We have imple-
mented both algorithms in Mermaid, and the performance com-
parison between them will be discussed in Section 3.3.

Convers ion O v e r h e a d We have found the performance im-
pact of page-based data conversion to be not very significant com-
pared to the other overheads of DSM. (See Section 3.1.) Conver-
sion is necessary only when a page is migrated between hosts of
diflemnt types, and the cost of converting a page is small com-
pared to the overall cost of page migration. The number of nec-
essary conversions can be kept t o a minimum by transferring a
page from a host of the same type whenever possible.

In general, the conversion process itself is simple. Character
strings do not need to be converted. The conversion of integers
is a matter of proper byte swapping. Conversion of (single and
double precision) floating point numbers may be somewhat more
complicated. For example, the IEEE format supports unnormal-
ized numbers and special cases, such as infinity and NAN'S, which
are not supported by the Vax. These cases can be detected with
two additional comparison operations. The positions and lengths
of the exponent and matissa fields may be different (such is the
case with IEEE and VAX), requiring bit manipulation operations.

L imi ta t ions The da ta conversion problem is complex and our
solution is not entirely general, although our experience indicates
that it is sufficient for many practical applications. We believe our
solution is similar in complexity to the solution used by existing
heterogeneous RPC schemes [17]. However, our solution does
have a number of limitations. First, a memory page may contain
data of only one type. Our memory allocator does this for the
programmer, but it may lead to increased memory usage due to
fragmentation, which in turn can lead to increased paging activity.
At the same time, however, i t also can reduce thrashing because
the probability of page access contention is reduced.

Second, the size of each data type must be the same on each
host, and the order of the fields within compound structures must
be the same on each host. If this were not the case, then the
mapping between pages on the two hosts would not be one-to-
one; That is, i t may not be possible for a structure to fit on a
page in i ts entirety after the conversion or, conversely, some da ta
from the following page may be needed in order t o complete the
conversion of the current page. Hence, the compilers used on the
different host types must be compatible to some extent.

Third, entire pages are converted even though only a small
portion of a page may be accessed before it is transferred away.
As mentioned above, however, we have found that the cost of the
page translation to be small compared to the overall migration
cost. A page-based DSM system performs poorly with this type
of access behavior in both the homogeneous and heterogeneous
case.

Fourth, our conversion process is not entirely transparent
because uses are required to supply the conversion routines for
user-defined data types and a table specifying the mapping of data
types to conversion routines. It is possible, however, t o generate
these automatically using a preprocessor on the user program.
This is something we are currently looking in to.

Finally, floating point numbers can lose precision when they
are converted. Since an application does not have direct control
over how many times a page is migrated between hosts of different
types and hence converted, the numerical accuracy of results may
become questionable. In general, however, we do not consider
this to be a problem for many environments; for example, in an
environment consisting of workstations and computation servers,
data is typically transferred once to the computation servers and
then transferred back again a t the end of the computation.

3 Performance Evaluation

Implementing distributed shared memory in a heterogeneous en-
vironment can bring performance benefits to applications, but i t
may also incur increased overhead. On the one hand, it is now pos-
sible t o develop and start parallel applications on workstations,
and be able to use the computing resources on more powerful ma-
chines by moving threads to them. On the other hand, the cost
of doing message fragmentation and reassembly a t the user level,
of handling multiple VM page sizes, and of data conversions may
offset the performance gains of parallel execution.

We have performed a number of measurement experiments
on our prototype Mermaid system in order to study the impacts of
heterogeneity on the performance of distributed shared memory
systems. All measurements were performed on Sun3/60 work-
stations and Fireflies. The measured hosts were idle during the
experiments, except for the activities being studied. The results
we observed were very stable (except for the page thrashing cases
to be discussed in Section 3.3), For all cases, the lowest values are
reported.

33

+
Write 2.04 6.70

from
Sun
Firefly
page size

Table 1: Costs of page fault handling (ms).

18 27 5.1 7.6
25 33 7.3 6.7

8 KB 1 KB

to)I Sun I Firefly 11 Sun I Firefly

Table 2: Cost of transferring a page (ms).

3.1 Overhead Assessment

Compared to physical shared memory, distributed shared mem-
ory has a number of additional overheads. In a user-level imple-
mentation, the access rights of the DSM pages have to be set,
and DSM page faults have to be passed to the user level. Since
data is no longer physically shared, DSM pages need to be moved
between hosts upon page faults, typically over a slow, bit-serial
network, such as the Ethernet. The allocation of shared memory
and thread synchronization and scheduling also introduce over-
head, but they are relatively small compared to other overheads.
Finally, for heterogeneous systems, the costs of data conversions
and the page size algorithm might be significant.

The basic costs of handling a page fault are shown in Table 1.
Included are the invocation of the user-level handler, the DSM
page table processing, and the request message transmission time.
The values of a few milliseconds are considered to be quite small.
The costs on the Fireflies are higher, due to the higher user-level
message processing cost and the locking of data structures, which
is necessary in shared memory multiprocessors.

Table 2 shows the costs of transferring 8 KB and 1 KB pages
between hosts. The higher cost when the Firefly is involved is
partially due to user level message fragmentation and reassem-
bly processing. The costs for 8 KB transfers are only about three
times that of 1 KB transfers. This is due to the fixed costs of mes-
sage transport. Hence, in the absence of page thrashing, larger
DSM pages incur fewer page faults and lower data transfer over-
head

For heterogeneous shared memory, the cost of data conver-
sion must be considered. We measured the costs of converting a
page of integers, shorts, or floating point numbers (single and dou-
ble precision) on a Firefly (See Table 3). For integers and shorts,
only byte swapping is needed, whereas for floating point numbers,
extra checks for extreme values in the IEEE representation (e.g.,
underflow, negative zero, NAN) are also necessary. In all of the
cases, the conversion costs are only a fraction of the page transfer
costs. We also measured the conversion costs of user-defined data

8 KB page 1 KB page

short
float 21.6 2.7
double 28.9 3.6

Table 3: Costs of data conversions (ms).

R = Requester host; M = Manager host; 0 = Page Owner
R/M: Requestor and Manager are on the same host.

Table 4: End-to-end page fault delays for 8 KB pages (ms).

structures, and found them to be comparable to the above. For
example, converting an 8 KB page containing records of three in-
tegers, 3 floats, and 4 shorts took 19.6 milliseconds on a Sun3/60.

To consider the combined effects of the above overhead costs,
we show the end-to-end page fault delays for different types of
hosts under different scenarios in Table 4. (In this implementa-
tion, each page has a fixed manager that can identify the owner
and the copy set of the page. A request t o transfer a page is always
passed by the manager.) The cost for (integer) data conversion is
included when the two hosts (Requestor and Owner) are of differ-
ent types. The measurements are based on the largest page size
algorithm, hence the values are for 8 KB pages only. The costs
for read and write page faults were found to be very similar. The
DSM page fault delay is comparable to that of a VM page fault
involving a disk seek. The costs of page faults involving both Sun
and Firefly are very comparable to the homogeneous cases. As
with traditional VM, if the DSM fault rate is not excessive, the
application’s performance under distributed shared memory may
be close to that under physical shared memory.

3.2 Evaluation of Applications Performance

While the above cost measurements are useful in assessing the per-
formance penalty of distributed shared memory, the most direct
measure of DSM performance is the execution times of applica-
tions. One of the applications we implemented on Mermaid is a
parallel version of matrix multiplication (MM) in which the com-
putation of the rows in the result matrix is performed by a number
of threads running simultaneously, each on a separate processor.
The result matrix is write-shared among the threads, whereas the
two argument matrices are read-shared only, hence can be repli-
cated. At the end of the computation, pieces of the result matrix
are transferred (implicitly) to the master thread, which creates
and coordinates the activities of the slave threads, but performs
no multiplication itself. We used 256 x 256 integer matrices for
our measurements. Had floating point matrices been used (which
would be the case in numerical applications), the amount of par-
allelizable computation would increase, so the relative overheads
would be lower, and the speedup would be better.

Another application we converted to run under Mermaid is
a program that detects flaws in printed circuit boards (PCB).
Two digital images (front- and back-lit) of a PCB are taken by
a camera, digitized, and then stored as large matrices. The soft-
ware then checks all the geometric features on the board, such as
conductors, wire holes, and spacing between them. If design rule
voilations are found, they are high-lighted in red in a third image,
which is displayed on a color workstation, so that a human deci-
sion may be made as to whether this PCB has to be discarded.
The amount of computation involved in the rule checking is sub-
stantial: on a Sun3/60, it takes about five minutes to process a 2
cm x 16 cm area. A suitable computing environment for on-line
PCB inspection is a workstation with bit-mapped display, coupled
with compute servers on which the checking software runs in par-

34

Response
tune
(sec) Distributed

Physical 50 -

0 0
1 2 3 4

Number of threads

Figure 3: Response times of matrix multiplication when executed
on one or multiule Fireflies.

allel. We therefore used Mermaid as a prototype of such systems.
Our version of the PCB software has a master thread that runs
on a Sun, divides the area into stripes, and creates threads on the
Fireflies t o check them '. The raw and processed images, as well
as data structures containing the design rules, the flaw statistics,
etc, are allocated in the DSM space, and are converted properly
when transferred between the Sun master and the Firefly slave
threads. For our measurements, an area of 2 cm x 16 cm is used.

Overhead of DSM initialization and thread operations: We
compared the execution times of MM and PCB using a sequential
implementation to those using DSM with a single slave thread and
found the difference to be close to zero on both the Sun and the
Firefly; hence, we conclude that the overheads of shared memory
allocation, thread creation and synchronization are very low.

Physical vs. distributed shared memory: Since the Firefly is a
multiprocessor, we are able to compare the performance of phys-
ical shared memory to that of distributed shared memory. The
same number of slave threads are either allocated to the processors
on the same Firefly or t o multiple Fireflies, with one thread on
each, and the master thread on yet another Firefly. The response
times for both cases are shown in Figure 3. The slightly higher
execution times for the multiple Firefly case are mainly due to the
cost of transferring pages between the machines. For multiplica-
tion of large matrices, performance penalty of distributed memory
is minimal. More generally, the penalty depends on the costs of
data distribution and replication and the costs of data consistency
The former is determined by the underlying communication and
data conversion costs, whereas the latter also depends on the ap-
plications' data access behaviors.

Heterogeneous us. homogeneous shared memory: To assess
the effect of heterogeneity, we measured the response times of
matrix multiplication with a number of threads running on Fire-
flies, and the master thread running on a Sun3/60. This is a
representative configuration of heterogeneous distributed shared
memory that takes advantages of both the user-friendly program-
ming environment on a workstation, and the computing power
of the background server hosts. Compared to the similar case in
which the slave and the master threads run on Fireflies, very little
performance degradation is observed. In the first case, pages of
the matrices are moved from the Sun to the Fireflies and the re-
sult matrix is then moved back to the Sun after the computation;

'Small overlaps of the stripes are necessary so that features on the borders
are checked properly.

_....' 3 Fireflies
1 1 /

1 3 5 7 9 1 1 1 3 1 5

Number of threads
Figure 4: Matrix mult. with master on Sun and slaves on one or
more Fireflies.

all data movements are accompanied by integer conversions. No
data conversion is needed for the homogeneous case.

Scalability of heterogeneous shared memory: The scalability
of heterogeneous distributed shared memory, in the case of MM
and PCB applications, is shown in Figures 4 and 5 . One to four
Fireflies are used, and the numbers of threads allocated to each
are approximately balanced. For MM, performance improvements
are observed as more and more threads are added, up to 14. Be-
yond that point, the communication overheads begins to becomes
more significant. For PCB, there are two additional limitations
to speedup: First, the amount of computation for each stripe is
unbalanced; hence the larger threads determine the overall re-
sponse time. Had we used a PCB area of greater height (e.g.,
10 cm instead of 2 cm), multiple stripes of the board could have
been assigned to the threads in an interleaved fashion to balance
the work. Second, the overlaps of the areas represent extra com-
putation, which grows as more threads are used. Despite these
limitations, very good speedup (up to 7 using 10 threads) were
still observed. Instead of taking six minutes on a Sun, the check-
ing can be completed in 44 seconds on three Fireflies.

It is interesting to note that physical shared memory is
treated as a special case of distributed shared memory in Mer-
maid; the two types of memory are fully integrated throughout
the heterogeneous system base, and the performance potential of
such a system is fully explored (in the sense that physical shared
memory is used if present and distributed shared memory is used
otherwise). The feasibility and performance potential of hetero-
geneous DSM systems are clearly demonstrated by these experi-
ments.

3.3 Effect of page size algorithms and page thrash-
ing

To assess the effects of page thrashing due to data contention
among threads, and to study the relationship between page size
and thrashing, we conducted a number of experiments using two
different implementations of matrix multiplication. The first,
MM1, assigns large groups of rows of the result matrix to each
thread5, the second assigns rows to threads in a round-robin fash-
ion (MM2). MM2 is expected to have more data contention on
its DSM pages and is intended to represent the class of applica-
tions with such characteristics. By using matrix multiplication

5 M M l is the implementation of MM being used so far

35

300

Speedup

9 -

7-

5 -

3 -

1 3 5 7 9 11

Number of threads

Figure 5: PCB with master on Sun and slaves on one or more
Fireflies.

2 5 o i ,

200

Small page size

2 4 6 8 10 12 14 16

Number of threads

Figure 6: Response times of MM1 using large (small) page size
algorithms.

for both, we are able to eliminate other factors affecting the per-
formance of parallel applications, such as scalability and the size
of da ta sets.

Effects of page size algorithms: Figure 6 compares the perfor-
mance of MM1 using the large page size algorithm to that using
small page size algorithm. There is some definite degradation in
performance due to increased number of page faults on the Fire-
flies, throughout the range of the number of processors.

Effects of locality - small page size algorithm: Since MM2
divides the result matrix into rows for the slave threads (1 KB,
or 256 integers each), and since the small page size algorithm also
operates on 1 KB pages, we expected the degradation of MM2
over MM1 using this algorithm to be small, which is the case, as
shown in Figure 7.

Thrashing: The most likely case for thrashing is MM2 with
the large page size algorithm, where an 8 KB page is shared by up
to 8 threads on a number of Fireflies. We ran MM2 with various
numbers of threads running on two or three Fireflies. The cor-
responding execution times we observed fluctuated greatly, even
between consecutive runs with the same setting. Speedup rel-
ative to the sequential case was rarely observed, and execution
times up to 10 times of that of the sequential case were measured.
Examining detailed statistics of the numbers of page faults and

Response
time
(sec)

250

200

150

100

50

0 I I I I f I
2 4 6 8 10 12

Number of threads

Figure 7: Response times of MM1 and MM2 using the small page
size algorithm.

transfers revealed tha t a very large number of pages were trans-
ferred between the Fireflies. The performance degradation and
unpredictable fluctuations are clearly due to page thrashing.

From the above experiments, i t may be concluded that, if
the locality in the application’s data accesses is very good, larger
DSM page sizes generate less overhead and better performance.
If there are substantial data interferences, however, performance
may degrade greatly using large pages, and small page sizes are
more likely to provide stable performance.

4 Related Work
Efforts in accommodating heterogeneity in distributed computer
systems have been the focus of research for some time; see [15]
for an overview. Most often, heterogeneity is accommodated by
standardizing a system-wide file system interface or by standard-
izing communication protocols, including remote procedure call
protocols. For example, an early effort in accommodating hetero-
geneity was the NSW project [8], which provided a standard set
of tools for a standard file system on different operating systems.
hlore recent examples of file systems for heterogeneous environ-
ments include Sun’s NFS [17], the Athena project a t MIT [2]
and the Andrew project a t Carnegie-Mellon University [14]. The
Heterogeneous Computer Systems project a t the University of
Washington [3], Sun [17] and Apollo [l] have all developed re-
mote procedure call packages that allow communication between
hosts of different types.

Initial efforts to provide distributed shared memory for
loosely-coupled distributed systems are due to Cheriton [4] and
Li [ll]. Li’s algorithm is probably one of the most studied dis-
tributed shared memory algorithms [9, 7, 121. Forin et.al.[7] de-
signed and implemented a shared memory facility for heteroge-
neous environments; however, they assume a homogeneous oper-
ating system base (MACH) from the outset.

5 Concluding Remarks

Our research motivation for extending distributed shared mem-
ory to accommodate heterogeneity stems mainly from two obser-
vations. First, most networked computing environments are be-
coming more and more heterogeneous due to the increased special-
ization of computing machines; workstations are employed mainly
for their user interfaces, while powerful, parallel systems serve as

36

compute servers. Second, as a mechanism for interprocess com-
munication in homogeneous systems, distributed shared memory
has a number of advantages over its message passing counterparts
such as RPC; in particular, it provides clients with a more trans-
parent interface and programming environment for distributed
and parallel applications. It is therefore interesting to consider
heterogeneous DSM in an attempt to translate as many of these
advantages to heterogeneous systems as possible.

In this paper, we discussed the main issues and solutions
of building a distributed shared memory system on a network
of heterogeneous machines. As a practical research effort, we
have designed and implemented a DSM system, Mermaid, for a
network of Sun workstations and Firefly multiprocessors, and we
ported several applications to this system. In doing so, we were
also able to gain insight into distributed shared memory systems
in general.

We conclude that heterogeneous distributed shared memory
is indeed feasible. iFrom a performance point of view, we showed
that the execution times of (at least some) applications running
on Mermaid are comparable to those running on a homogeneous
DShl system, because the cost of data conversion does not sub-
stantially increase the overall cost of paging across the network.
Moreover, we were able to easily integrate our distributed shared
memory system into the physical shared memory system on the
Firefly, allowing the programmer to exploit both physical and dis-
tributed shared memory using one and the same mechanism.

One of the main advantages of distributed shared memory is
the high degree of transparency it provides of the underlying com-
munication structure. However, as in homogeneous distributed
shared memory, performance transparency cannot be achieved
completely in all cases, because of the need to transfer data over
a bit-serial network, and the interactions between the data ac-
cess patterns of the application and the DSM algorithm used. In
the heterogeneous case, we also find it more difficult to achieve
functional transparency, mainly because of different data repre-
sentations. Our scheme requires the user to specify the data type
when allocating data in the DSM space, and to compose conver-
sion routines for user-defined data types using system-provided
routines for the basic types. We claim that for the application
programmer, this added complexity is no larger than that re-
quired for many existing heterogeneous RPC systems. We are
currently working on automatic generation of the conversion rou-
tines at compile time, which appears t o be feasible.

Our measured performance results also corroborate the re-
sults of other researchers in that distributed shared memory can
be competitive to the direct use of message passing, a t least for a
reasonably large class of applications. In some cases, they actu-
ally outperform their message passing counterparts, even though
the shared memory system is implemented in a layer on top of
a message passing system. However, we demonstrated that the
size of a DSM page can have an important effect on performance;
too large a DSM page size is more likely to cause page thrashing,
severely affecting performance.

Acknowledgements

References
[l] Network Computing Systems Reference Manual. Technical

report, Apollo Computer Inc., Chelmsford, Mass., 1987.
[2] E. Balkovich, S. Lerman, and R.P. Parmelee. Computing in

Higher Education: The Athena Experience. Communications
of the ACM, 28(11):1214-1224, 1985.

[3] B.N. Bershad, D.T. Ching, E.D. Lazowska, H.Sanislo, and
M. Schwartz. A Remote Procedure Call Facility for Inter-
connecting Heterogeneous Computer Systems. ZEEE Trans-
actions on Software Engineering, SE-13(8):880-894, 1987.

[4] D.R. Cheriton. Preliminary Thoughts on Problem-Oriented
Shared Memory: A Decentralized Approach to Distributed
Systems. ACM Operating Systems Review, 19(4), October
1985.

[5] D. Cohen. On Holy Wars and a Plea for Peace. IEEE Com-
puter, 14(lo), 1981.

[6] B.D. Fleisch. Distributed Shared Memory in a Loosely Cou-
pled Distributed System. In P m . ACM SZGCOMM '87
Workshop, 1987.

[7] A. Forin, J . Barrera, M. Young, and R. Rashid. Design, Im-
plementation, and Performance Evaluation of a Distributed
Shared Memory Server for Mach. In Proc. 1988 Winter
USENZX Conf., January 1989.

[8] D.P. Geller. The National Software Works: Access to Dis-
tributed Files and Tools. In P m . ACM National Conference,
pages 39-43, October 1977.

An Analysis of Distributed
Shared Memory Algorithms. In Proc. 9th Zntl. Conf. on Dist.
Comp. Sys., June 1989.

[lo] 0. Krieger and M. Stumm. An Optimistic Apoproach for
Consistent Replicated Data for Mulitcomputers. In Proc.
1990 HZCSS, 1990.

[l l] K. Li. Shared Virtual Memory on Loosely Coupled Multipro-
cessors. PhD thesis, Yale University Department of Com-
puter Science, 1986.

[12] K. Li. IVY: Shared Virtual Memory System for Parallel Com-
puting. In Proc. Zntl. conf. on Parallel Computing, 1988.

[13] K. Li and P. Hudak. Memory Coherence in Shared Virtual
Memory Systems. In Proceedings of the Fifth ACMSZGACT-
SIGOPS Symposium on Principles of Distributed Computing,
1986.

[14] J.H. Moris, M. Satyanarayanan, D.S.H. Rosenthal M.11. Con-
ner, J.H. Howard, and F.D. Smith. Andrew: A distributed
Personal Computing Environment. Communications of the

[15] D. Notkin, N . Hutchinson, J . Sanislo, and M. Schwartz. Het-
erogeneous Computing Environments: Report on the ACM
SIGOPS LVorkshop on Accommodating Heterogeneity. Com-
munications of the ACM, 30(2):142-162, February 1987.

[16] M. Stumm and S. Zhou. Algorithms Implementing Dis-
tributed Shared Memory. ZEEE Computer, 23(5), May 1989.

[17] Networking on the Sun Workstation. Technical report, Sun
Microsystems Inc., Mt. View California, 1985.

[18] C.P. Thacker, L.C. Stewart, and E.H. Satterthwaite. Fire-
fly: A Multiprocessor Workstation. ZEEE Transactions on
Computers, 37(8):909-920, August 1988.

[9] R.E. Kessler and M. Livny.

ACM, 29(3):184-201, 1986.

We are grateful t o Kai Li who participated in the initial phases
of this project and contributed to some of the software. David
Wortman participated in many of the discussions on the design
and implementation of Mermaid. Adrian Yip performed an initial
portihg of the PCB software to Marmaid.

37

	Text18: Appeared in Proceedings of the 10th Intl. IEEE Conference on Distributed Computing Systems, Paris, France, May-June 1990, pp. 30-37.

