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Abstract
Applications implementing cloud services, such as
HDFS, Hadoop YARN, Cassandra, and HBase, are
mostly built as distributed systems designed to scale. In
order to analyze and debug the performance of these sys-
tems effectively and efficiently, it is essential to under-
stand the performance behavior of service requests, both
in aggregate and individually.

lprof is a profiling tool that automatically reconstructs
the execution flow of each request in a distributed appli-
cation. In contrast to existing approaches that require in-
strumentation, lprof infers the request-flow entirely from
runtime logs and thus does not require any modifications
to source code. lprof first statically analyzes an applica-
tion’s binary code to infer how logs can be parsed so that
the dispersed and intertwined log entries can be stitched
together and associated to specific individual requests.

We validate lprof using the four widely used dis-
tributed services mentioned above. Our evaluation shows
lprof ’s precision in request extraction is 90%, and lprof
is helpful in diagnosing 65% of the sampled real-world
performance anomalies.

1 Introduction
Tools that analyze the performance behaviors of dis-
tributed systems are particularly useful; for example, they
can be used to make more efficient use of hardware re-
sources or to enhance the user experience. Optimiz-
ing performance can notably reduce data center costs for
large organizations, and it has been shown that user re-
sponse times have significant business impact [2].

In this paper, we present the design and implementa-
tion of lprof , a novel non-intrusive profiling tool aimed at
analyzing and debugging the performance of distributed
systems. lprof is novel in that (i) it does not require
instrumentation or modifications to source code, but in-
stead extracts information from the logs output during the
course of normal system operation, and (ii) it is capable
of automatically identifying, from the logs, each request
and profile its performance behavior. Specifically, lprof
is capable of reconstructing how each service request is
processed as it invokes methods, uses helper threads, and
invokes remote services on other nodes. We demonstrate
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that lprof is easy and practical to use, and that it is capable
of diagnosing performance issues that existing solutions
are not able to diagnose without instrumentation.

lprof outputs a database table with one line per request.
Each entry includes (i) the type of the request, (ii) the
starting and ending timestamps of the request, (iii) a list
of nodes the request traversed along with the starting and
ending timestamps at each node, and (iv) a list of the ma-
jor methods that were called while processing the request.
This table can be used to analyze the system’s perfor-
mance behavior; for example, it can be SQL-queried to
generate gprof -like output [16], to graphically display la-
tency trends over time for each type of service request, to
graphically display average/high/low latencies per node,
or to mine the data for anomalies. Section 2 provides a
detailed example of how lprof might be used in practice.

Three observations led us to our work on lprof .
First, existing tools to analyze and debug the perfor-
mance of distributed systems are limited. For example,
IT-level tools, such as Nagios [30], Zabbix [46], and
OpsView [33], capture OS and hardware counter statis-
tics, but do not relate them to higher-level operations
such as service requests. A number of existing pro-
filing tools rely on instrumentation; examples include
gprof [16] that profiles applications by sampling func-
tion invocation points; MagPie [3], Project 5 [1], and X-
Trace [14] that instrument the application as well as the
network stack to monitor network communication; and
commercial solutions such as Dapper [36], Boundary [5],
and NewRelic [31]. As these tools require modifications
to the software stack, the added performance overhead
can be problematic for systems deployed in production.
Recently, a number of tools applied machine learning
techniques to analyze logs [29, 42], primarily to identify
performance anomalies. Although such techniques can
be effective in detecting individual anomalies, they often
require separate correct and issue-laden runs, they do not
relate anomalies to higher-level operations, and they are
unable to detect slowdown creep.1

Our second observation is that performance analysis
and debugging are generally given low priority in most

1Slowdown creep is an issue encountered in organizations practicing
agile development and deployment: each software update might poten-
tially introduce some marginal additional performance overhead (e.g.,
<1%) that would not be noticeable in performance testing. However,
with many frequent software releases, these individual slowdowns can
add up to become significant over time.
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organizations. This makes having a suitable tool that is
easy and efficient to use more critical, and we find that
none of the existing tools fit the bill. Performance anal-
ysis and debugging are given low priority for a number
of reasons. Most developers prefer generating new func-
tionality or fixing functional bugs. This behavior is also
encouraged by aggressive release deadlines and company
incentive systems. Investigating potential performance
issues is frequently deferred because they can often eas-
ily be hidden by simply adding more hardware due to the
horizontal scalability of these systems. Moreover, un-
derstanding the performance behavior of these systems
is hard because the service is (i) distributed across many
nodes, (ii) composed of multiple sub-systems (e.g., front-
end, application, caching, and database services), and
(iii) implemented with many threads/processes running
with a high degree of concurrency.

Our third observation is that distributed systems imple-
menting internet services tend to output a lot of log state-
ments rich with useful information during their normal
execution, even at the default verbosity.2 Developers add
numerous log output statements to allow for failure di-
agnosis and reproduction, and these statements are rarely
removed [45]. This is evidenced by the fact that 81%
of all statically found threads in HDFS, Hadoop Yarn,
Cassandra, and HBase contains log printing statements
of default verbosity in non-exception-handling code, and
by the fact that Facebook has accumulated petabytes of
log data [13]. In this paper we show that the information
in the logs is sufficiently rich to allow the recovering of
the inherent structure of the dispersed and intermingled
log output messages, thus enabling useful performance
profilers like lprof .

Extracting the per-request performance information
from logs is non-trivial. The challenges include: (i) the
log output messages typically consist of unstructured
free-form text, (ii) the logs are distributed across the
nodes of the system with each node containing the lo-
cally produced output, (iii) the log output messages from
multiple requests and threads are intertwined within each
log file, and (iv) the size of the log files is large.

To interpret and stitch together the dispersed and in-
tertwined log messages of each individual request, lprof
first performs static analysis on the system’s bytecode. It
analyzes each log printing statement to understand how
to parse each output message and identifies the variable
values that are output by the message. By further ana-
lyzing the data-flow of these variable values, static anal-
ysis extracts identifiers whose values remain unchanged

2This is in contrast to single-component servers that tend to limit log
output [44]. Distributed systems typically output many log messages,
in part because these systems are difficult to functionally debug, and in
part because distributed systems, being horizontally scalable, are less
sensitive to latency caused by the attendant I/O.

in each specific request. Such identifiers can help asso-
ciate log messages to individual requests. Since in prac-
tice an identifier may not exist in log messages or may
not be not unique to each request, static analysis further
captures the temporal relationships between log printing
statements. Finally, static analysis identifies control paths
across different local and remote threads. The informa-
tion obtained from static analysis is then used by lprof ’s
parallel log processing component, which is implemented
as a MapReduce [12] job.

The design of lprof has the following attributes:
• Non-intrusive: It does not modify any part of the exist-

ing production software stack. This makes it suitable
for profiling production systems.

• In-situ and scalable analysis: The Map function in
lprof ’s MapReduce log processing job first stitches to-
gether the printed log messages from the same request
on the same node where the logs are stored, which re-
quires only one linear scan of each log file. Only sum-
mary information from the log file and only from re-
quests that traverse multiple nodes is sent over the net-
work in the shuffling phase to the reduce function. This
avoids sending the logs over the network to a central-
ized location to perform the analysis, which is unreal-
istic in real-world clusters [27].

• Compact representation allowing historical analysis:
lprof stores the extracted information related to each
request in a compact form so that it can be retained per-
manently. This allows historical analysis where current
performance behavior can be compared to the behavior
at a previous point of time (which is needed to detect
slowdown creep).

• Loss-tolerant: lprof ’s analysis is not sensitive to the
loss of data. If the logs of a few nodes are not avail-
able, lprof simply discards their input. At worst, this
leads to some inaccuracies for the requests involving
those nodes, but won’t affect the analysis of requests
not involving those nodes.
This paper makes the following contributions. First,

we show that the standard logs of many systems con-
tain sufficient information to be able to extract the perfor-
mance behavior of any service-level request. Section 2
gives a detailed example of the type of information that is
possible to extract from the logs and how this information
can be used to diagnose and debug performance issues.
Secondly, we describe the design and implementation of
lprof . Section 3 provides a high-level overview, while
Sections 4 and 5 describe details of lprof ’s static anal-
ysis and how the logs are processed. Finally, Section 6
evaluates the techniques presented in this paper. We val-
idated lprof using four widely-used distributed systems:
HDFS, Hadoop YARN, Cassandra, and HBase. We show
that lprof performs and scales well, and that it is able to
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Request type start timestamp end timestamp

nodes traversed 
log sequence ID

writeBlock 2014-04-21 

05:32:45,103

2014-04-21 

05:32:47,826

172.31.9.26 05:32:45,103 05:32:47,826
172.31.9.28 05:32:45,847 05:32:47,567
172.31.9.12 05:32:46,680 05:32:47,130

41

IP start time. end time.

Figure 1: One row of the request table constructed by lprof containing information related to one request. The “node traversed”
column family [7] contains the IP address, the starting and ending timestamp on each node this request traversed. In this case, the
HDFS writeBlock request traverses three nodes. The “log sequence ID” column contains a hash value that can be used to index
into another table containing the sequence of log printing statements executed by this request.
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Figure 2: lprof ’s analysis on HDFS’ performance.

attribute 90% of all log messages to the correct requests.
We discuss the limitations of lprof in Section 7 and close
with related work and concluding remarks.

2 Motivating Example
To illustrate how lprof ’s request flow analysis might be
used in practice, we selected a performance issue re-
ported by a (real) user [20] and reproduced the anomaly
on a 25-node cluster.

In this example, an HDFS user suspects that the sys-
tem has become slow after a software upgrade. Applying
lprof to analyze the logs of the cluster produces a request
table as shown in Figure 1. The user can perform vari-
ous queries on this table. For example, she can examine
trends in request latencies for various request types over
time, or she can count the number of times each request
type is processed during a time interval. Figures 2 (a)
and (b) show how lprof visualizes these results.3

Figure 2 (a) clearly shows an anomaly with writeBlock
requests at around 23:42. A sudden increase in write-
Block’s latency is clearly visible while the latencies of

3We envision that lprof is run periodically to process the log mes-
sages generated since its previous run, appending the new entries to the
table and keeping them forever to enable historical analysis and debug
problems like performance creep. If space is a concern, then instead
of generating one table entry per request, lprof can generate one table
entry per time interval and request type, each containing attendant sta-
tistical information (e.g., count, average/high/low timestamps, etc.).

the other requests remain unchanged. The user might sus-
pect this latency increase is caused by a few nodes that are
“stragglers” due to an unbalanced workload or a network
problem. To determine whether this is the case, the user
compares the latencies of each writeBlock request after
23:42 across the different nodes. This is shown in Fig-
ure 2 (c), which suggests no individual node is abnormal.

The user might then want to compare a few single re-
quests before and after 23:42. This can be done by select-
ing corresponding rows from the database and compar-
ing the per-node latency between an anomalous request
and a healthy one. Figure 2 (d) visualizes the latency
incurred on different nodes for two write requests: one
before 23:42 (healthy) and the other after (anomalous).
The figure shows that for both requests, latency is high-
est on the first node and lowest on the third node. HDFS
has each block replicated on three data nodes (DNs), and
each writeBlock request is processed as a pipeline across
the three DNs: DN1 updates the local replica, sends it to
DN2, and only returns to the user after DN2’s response
is received. Therefore the latency of DN2 includes the
latency on DN3 plus the network communication time
between DN2 and DN3.

The figure also shows that the latency of one request is
clearly higher than the latency of the second request on
the first two DNs. This leads to the hypothesis that code
changes are responsible for the latency increase. The
HDFS cluster was indeed upgraded between the servic-
ing of the two requests (from version 2.0.0 to 2.0.2). The
log sequence identifier is then used to identify the code
path taken by both requests, and a diff on the two ver-
sions of the source code reveals that an extra socket write
between DNs was introduced in version 2.0.2. The HDFS
developers later fixed this performance issue by combin-
ing both socket writes into one [20].

Figure 2 (b) shows another performance anomaly: the
number of verifyBlock requests is suspiciously high. Fur-
ther queries on the request database suggest that before
the upgrade, verifyBlock requests appear once every 5
seconds on every datanode, generating a lot of log mes-
sages, while after the upgrade, they appear only rarely.
Interestingly, we noticed this accidentally in our experi-
ments. Clearly lprof is useful in detecting and diagnosing
this case as well.
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1. Log format-string and variable parsing

2. Request entry and identifier analysis

4. Communication pair analysis 

3. Temporal order analysis

Figure 5: Overall architecture of lprof

 1 class DataXceiver implements Runnable { 

 2   public void run() { 

 3     do { //handle one request per iteration 

 4       switch (readOpCode()) { 

 5       case WRITE_BLOCK: // a write request  

 7         writeBlock(proto.getBlock(), ..); break;

 8       case READ_BLOCK: // a read request

 9         readBlock(proto.getBlock(), ..); break;

10       } //proto.getBlock: deserialize the request

11     } while (!socket.isClosed()); 

12   } 

13   void writeBlock(ExtendedBlock block..) { 

14     LOG.info("Receiving block " + block); 

15     sender.writeBlock(block,..); //send to next DN 

16     responder = new PacketResponder(block,..); 

17     responder.start(); // create a thread that 

18   }                    // handles the acks

19 } 

20 /* PacketResponder handles the ack responses */ 

21 class PacketResponder implements Runnable { 

22   public void run() { 

23     ack.readField(downstream); //read ack 

24     LOG.info("Received block " + block); 

25     replyAck(upstream); //send an ack to upstream 

26     LOG.info(myString + " terminating"); 

27   } 

28 }

Figure 3: Code snippet from HDFS that handles write request.

1 HDFS_READ, blockid: BP-9..9:blk_5..7_1032

2 Receiving block BP-9..9:blk_5..7_1032

3 Received block BP-9..9:blk_5..7_1032

4 Receiving block BP-9..9:blk_4..8_2313

5 PacketResponder: BP-9..9:blk_5..7_1032 terminating

6 opWriteBlock BP-9..9:blk_4..8_2314 received exception

write 1

write 2

read

Figure 4: Part of an HDFS log. Request identifiers are shown
in bold. Note that the timestamp of each message is not shown.

3 Overview of lprof

In this Section, before describing lprof ’s design, we first
discuss the challenges involved in stitching log messages
together that were output when processing a single re-
quest. For example, consider how HDFS processes a
write request as shown in Figure 3. On each datanode,
a DataXceiver thread uses a while loop to process
each incoming request. If the op-code is WRITE_BLOCK,
then writeBlock() is invoked at line 7. At line 15,
writeBlock() sends a replication request to the next

downstream datanode. At line 16 - 17, a new thread as-
sociated with PacketResponder is created to receive
the response from the downstream datanode so that it can
send its response upstream. Hence, this code might out-
put log messages as shown in Figure 4. These six log
messages alone illustrate two challenges encountered:

1. The log messages produced when processing a sin-
gle writeBlock request may come from multiple
threads, and multiple requests may be processed
concurrently. As a result, the log output messages
from different requests will be intertwined.

2. The log messages do not contain an identifying sub-
string that is unique to a request. For example, block
ID “BP-9..9:blk_5..7” can be used to separate mes-
sages from different requests that do not operate
on the same block, but cannot be used to separate
the messages of the read and the first write request
because they operate on the same block. Unfortu-
nately, identifiers unique to a request rarely exist in
real-world logs. In Section 7, we further discuss how
lprof could be simplified if there were a unique re-
quest identifier in every log message.

To address these challenges lprof first uses static analysis
to gather information from the code that will help map
each log message to the processing of a specific request,
and help establish an order on the log messages mapped
to the request. In a second phase, lprof processes the logs
using the information obtained from the static analysis
phase; it does this as a MapReduce job.

We now briefly give a brief overview of lprof ’s static
analysis and log processing, depicted in Figure 5.

3.1 Static Analysis

lprof ’s static analysis gathers information in four steps.

(1) Parsing the log string format and variables obtains
the signature of each log printing statement found in the
code. An output string is composed of string constants
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and variable values. It is represented by a regular expres-
sion (e.g., “Receiving block BP-(.*):blk_(.*)_.*”), which
is used during the log analysis phase to map a log mes-
sage to a set of log points in the code that could have
output the log message. We use the term log point in
this paper to refer to a log printing statement in the code.
This step also identifies the variables whose values are
contained in the log message.

(2) Request identifier and request entry analysis are
used to analyze the dataflow of the variables to determine
which ones are modified. Those that are not modified are
recognized as request identifiers. Request identifiers are
used to separate messages from different requests; that
is, two log messages with different request identifiers are
guaranteed to belong to different requests. However, the
converse is not true: two messages with the same identi-
fier value may still belong to different requests (e.g., both
of the “read” and the “write 1” requests in Figure 4 have
same the block ID).

Identifying request identifiers without domain
expertise can be challenging. Consider “BP-
9..9:blk_5..7_1032” in Figure 4 that might be considered
as a potential identifier. This string contains the values of
three variables as shown in Figure 6: poolID, blockID,
and generationStamp. Only the substring containing
poolID and blockID is suitable as a request identifier
for writeBlock, because generationStamp can have
different values while processing the same request (as
exemplified by the “write 2” request in Figure 4).

To infer which log points belong to the processing of
the same request, top-level methods are also identified
by analyzing when identifiers are modified. We use the
term top-level method to refer to the first method of any
thread dedicated to the processing of a single type of
request. For example, in Figure 3 writeBlock() and
PacketResponder.run() are top-level methods, but
DataXceiver.run() is not because it processes mul-
tiple types of requests. We say that method M is log point
p’s top-level method if M is a top-level method and p is
reachable from M.

If lprof can identify readBlock() and
writeBlock() as being two top-level methods for
different types of requests, it can separate messages
printed by readBlock() from the ones printed by
writeBlock() even if they have the same identifier
value. We identify the top-level methods by processing
each method in the call-graph in bottom-up order: if
a method M modifies many variables that have been
recognized as request identifiers in its callee M’, then M’
is recognized as a top-level method. The intuition behind
this design is that programmers naturally log request
identifiers to help debugging, and the modification of a
frequently logged but rarely modified variable is likely
not part of the processing of a specific request.

ExtendedBlock.toString()

poolID + ":" + block -> Block.toString()

getBlockName()+ getGenStamp()"_" +

1032

"blk_"+ generationStampblockID

BP-989716475039 : blk_ 520373207 _

block ->

Figure 6: How “BP-9..9:blk_5..7_1032” is printed.

(3) Temporal order analysis is needed because there
may not exist an ID unique to each request. For example,
by inferring that line 26 is executed after line 24 in Fig-
ure 3, lprof can conclude that when two messages appear
in the following order: “... terminating” and “Received
block...”, they cannot be from the same request even if
they have the same block ID.

(4) Communication pair analysis is used to identify
threads that communicate with each other. Log messages
output by two threads that communicate could potentially
be from processing of the same request. Such commu-
nication could occur through cooperative threads in the
same process, or via sockets or RPCs across the network.

3.2 Distributed Log Analysis

The log analysis phase attributes each log message to a
request, which is implemented using a MapReduce job.
The map function groups together all log messages that
were output by the same thread while processing the same
request. A log message is added to a group if (i) it has the
same top-level method, (ii) the request identifiers do not
conflict, and (iii) the corresponding log point matches the
temporal sequence in the control flow.

The reduce function merges groups if they represent
log messages that were output by different threads when
processing the same request. Two groups are merged if
(i) the two associated threads could communicate, and
(ii) the request identifiers do not conflict.

4 Static Analysis

lprof ’s static analysis works on Java bytecode. Each of
the four steps in lprof ’s static analysis is implemented
as one analysis pass on the bytecode of the target sys-
tem. We use the Chord static analysis framework [9]. For
convenience, we explain lprof using examples in source
code. All the information shown in the examples can be
inferred from Java bytecode.

4.1 Parsing Log Printing Statements

This first step identifies every log point in the program.
For each log point, lprof (i) generates a regular expres-
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sion that matches the output log message, and (ii) identi-
fies the variables whose values appear in the log output.

lprof identifies log points by searching for call in-
structions whose target method has the name fatal,

error, warn, info, debug, or trace. This iden-
tifies all the logging calls if the system uses log4j [25]
or SLF4J [37], two commonly used logging libraries that
are used by the systems we evaluated.

To parse the format string of a log point into a regu-
lar expression, we use techniques similar to those used
by two previous tools [42, 43]. We summarize the chal-
lenges we faced in implementing a log parser on real-
world systems.

On the surface, parsing line 14 in Figure 3 into the reg-
ular expression “Receiving block (.*)”, where the wild-
card matches to the value of block, is straightforward.
However, identifying the variables whose values are out-
put at the log point is more challenging. In Java, the ob-
ject’s value is printed by calling its toString() method.
Figure 6 shows how the value of block is eventually
printed. In this case, lprof has to parse out the indi-
vidual fields because only poolID and blockID are re-
quest identifiers, whereas generationStamp is modi-
fied during request processing. To do this, lprof recur-
sively traces the object’s toString() method and the
methods that manipulate StringBuilder objects until
it reaches an object of a primitive type.

For the HDFS log point above, the regular expression
identified by lprof will be:

“Receiving block (.*):blk_(\d+)_(\d+)”.

The three wildcard components will be mapped
to block.poolID, block.block.blockID, and
block.block.generationStamp, respectively.

lprof also needs to analyze the data-flow of any string
object used at a log point. For example, mystring at line
26 in Figure 3 is a String object initialized earlier in the
code. lprof analyzes its data-flow to identify the precise
value of mystring.

Class inheritance and late binding in Java creates an-
other challenge. For example, when a class and its su-
per class both provide a toString() method, which one
gets invoked is resolved only at runtime depending on
the actual type of the object. To address this, lprof ana-
lyzes both classes’ toString() methods, and generates
two regular expressions for the one log point. During log
analysis, if both regular expressions match a log message,
lprof will use the one with the more precise match, i.e.,
the regular expression with a longer constant pattern.

4.2 Identifying Request Identifiers
This step identifies (i) request identifiers and (ii) top-level
methods. We implement the inter-procedural analysis as

DataXceiver.run()

writeBlock()

receiveBlock() 

RIC: {poolID:8, blockID:8} count: 16

RIC: {poolID:4,blockID:4,genStamp:4} count: 12

MV: { }

RIC: { }, count: 0    MV: {poolID, blockID}

setGenerationStamp() 
RIC: { } count: 0

MV: {genStamp}

readBlock()

RIC: {poolID:7,blockID:7,

        genStamp:7} count: 21

Figure 7: Request identifier analysis for the HDFS ex-
ample of Figure 3. When analyzing writeBlock(),
the request identifier candidate set (RIC) from its callee
receiveBlock() is merged into its own set, so the cumu-
lative count of poolID and blockID is increased to 8, 4
comes from receiveBlock() and 4 comes from the log
points in writeBlock(). Since generationStamp is in
setGenerationStamp()’s modified variable set (MV), it
is removed from writeBlock()’s RIC set.

summary-based analysis [35]. It analyzes one method
at a time and stores the result as the summary of that
method. The methods are analyzed in bottom-up order
along the call-graph and when a call instruction is en-
countered, the summary of the target method is used. Not
being summary-based would require lprof to store the in-
termediate representation of the entire program in mem-
ory, which would cause it to run out of memory.
Data-flow analysis for request identifiers: lprof infers
request identifiers by analyzing the inter-procedural data-
flow of the logged variables. For each method M, lprof
assembles two sets of variables as its summary: (i) the
request identifier candidate set (RIC), which contains the
variables whose values are output to a log and not mod-
ified by M or its callees, and (ii) the modified variable
set (MV) which contains the variables whose values are
modified. For each method M, lprof first initializes both
sets to be empty. It then analyzes each instruction in M.
When it encounters a log point, the variables whose val-
ues are printed (as identified by the previous step) are
added to the RIC set. If an instruction modifies a vari-
able v, v is added to the MV set and removed from the
RIC set. If the instruction is a call instruction, lprof first
merges the RIC and MV sets of the target method into
the corresponding sets of the current method, and then,
for each variable v in the MV set, lprof removes it from
the RIC set if it contains v.

As an example, consider the following code snippet
from writeBlock():

1 LOG.info("Receiving " + block);
2 block.setGenerationStamp(latest);

The setGenerationStamp() method modifies the
generationStamp field in block. In bottom-up order,
lprof first analyzes setGenerationStamp() and adds
generationStamp to its MV set. Later when lprof an-
alyzes writeBlock(), it removes generationStamp

from its RIC set because generationStamp is in the
MV set of setGenerationStamp().
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Identifying top-level methods: the request identifier
analysis stops at the root of the call-graph: either a thread
entry method (i.e., run() in Java) or main(). However,
a thread entry method might not be the entry of a service
request. Consider the HDFS example shown in Figure 3.
The DataXceiver thread uses a while loop to handle
read and write requests. Therefore lprof needs to iden-
tify writeBlock() and readBlock() as the top-level
methods instead of run().

lprof identifies top-level methods by observing the
propagation of variables in the RIC set and uses the fol-
lowing heuristic when traversing the call-graph bottom-
up: if, when moving from a method M to its caller M’,
many request identifier candidates are suddenly removed,
then it is likely that M is a top-level method. Specifically,
lprof counts the number of times each request identifier
candidate appears in a log point in each method and accu-
mulates this counter along the call-graph bottom-up. (See
Figure 7 for an example.) Whenever this count decreases
from method M to its caller M’, lprof concludes that M is
a top-level method. The intuition is that developers nat-
urally include identifiers in their log printing statements,
and modifications to these identifiers are likely outside
the top-level method.

In Figure 7, both writeBlock() and readBlock()

accumulate a large count of request identifiers, which
drops to zero in run(). Therefore, lprof infers
writeBlock() and readBlock() are the top-
level methods instead of run(). Note that although
the count of generationStamp decreases when
the analysis moves from setGenerationStamp()

to writeBlock(), it does not conclude
setGenerationStamp() is a top-level method
because the accumulated count of all request identifiers
is still increasing from setGenerationStamp() to
writeBlock().

4.3 Partial Order Among Log Points

In this step, lprof generates a Directed Acyclic Graph
(DAG) for each top-level method (identified in the previ-
ous step) from the method’s call graph and control-flow
graph (CFG). This DAG contains each log point reach-
able from the top-level method and is used to help at-
tribute log messages to top-level methods.

It is not possible to statically infer the precise order in
which instructions will execute. Therefore, lprof takes
the liberty of applying a number of simplifications:

1. Only nodes that contain log printing statements are
represented in the DAG.

2. All nodes involved in a strongly connected com-
ponent (e.g., caused by loops) are folded into one

log 2,3
log 4

exit

entry

log 1

*

LOG.info("Request starts"); // log1 

while (not_finished){ 

  r.process(); // log2 and log 3 

}

LOG.info("Request ends"); // log4

Figure 8: DAG representation of log points.

node. This implies that multiple log points may be
assigned to a single node in the DAG.

3. Similarly, if there is a strongly connected compo-
nent due to recursive calls, then those nodes are also
folded into one.

4. Unchecked exceptions are ignored, since they will
terminate the execution. Checked exceptions are
captured by the CFG and are included in the DAG.

As an example, Figure 8 shows the DAG generated
from a code snippet. The asterisk (*) next to log 2 and
log 3 indicates that these log points may appear 0 or more
times. We do not maintain an ordering of the log points
for nodes with multiple log points.

In practice, we found the DAG particularly useful in
capturing the starting and ending log points of a request
— it is a common practice for developers to print a mes-
sage at the beginning of each request and/or right before
the request terminates.

4.4 Thread Communication
In this step, lprof infers how threads communicate with
one another. The output of this analysis is a tuple for
each communication pair: (top-level method 1, top-level
method 2, communication type, set of request identifier
pairs), where one end of the communication is reachable
from top-level method 1 and the other end is reachable
from top-level method 2. “Communication type” is one
of local, RPC, or socket, where “local” is used when two
threads running in the same process communicate. A
“request identifier pair” captures the transfer of request
identifier values from the source to the destination; the
pair identifies the variables containing the data values at
source and destination.

Threads from the same process: lprof detects two
types of local thread communications: (i) thread cre-
ation and (ii) shared memory reads and writes. Detect-
ing thread creation is straightforward because Java has a
well defined thread creation mechanism. If an instruction
r.start() is reachable from a top-level method, where
r is an object of class C that extends the Thread class
or implements the Runnable interface, and C.run() is
another top-level method, then lprof has identified a com-
munication pair. lprof also infers the data-flow of request
identifiers, as they are mostly passed through the con-
structor of the target thread object. In addition to explicit
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thread creation, if two instructions reachable from two
top-level methods (i) access a shared object, and (ii) one
of them reads and the other writes to the shared object,
then a communication pair is identified.

As an example, consider the HDFS code in
Figure 3. lprof generates the following tuple:
(writeBlock, PacketResponder.run, local, <DataX-
ceiver.block.poolID, PacketResponder.block.poolID>,
..), indicating that writeBlock() could communicate
with PacketResponder via local thread creation, and
poolID is the request identifier used on both ends for the
data value passed between the threads.

Threads communicating across the network: Pairing
threads that communicate via the network is more chal-
lenging. While Java provides standard socket read and
write APIs for network communication, if we naïvely pair
the read to the write on the same socket, we would effec-
tively end up connecting most of the top-level methods
together even though they do not communicate. Con-
sider the HDFS example shown in Figure 3. While
readBlock() and writeBlock() do not communicate
with each other, they share the same underlying socket.

Instead of pairing socket read and write, we observe
that the sender and receiver that actually communicate
both have to agree on the same protocol. Specifically,
whenever lprof finds a pair of invoke instructions whose
target methods are the serialization and deserializaition
methods from the same class, respectively, the top-level
methods containing these two instructions are paired. De-
velopers often use third-party data-serialization libraries,
such as Google Protocol Buffers [15]. This further eases
lprof ’s analysis since they provide standardized serial-
ization/deserialization APIs. Among the systems we
evaluated, Cassandra is the only one that does not use
Google Protocol Buffers, but implements its own serial-
ization library. For Cassandra, a simple annotation to pair
C.serialize() with C.deserialize() for any class
C is sufficient to correctly pair all of the communicating
top-level methods. lprof also parses the Google Proto-
col Buffer’s protocol annotation file to identify the RPC
pairs, where each RPC is explicitly declared.

Improvements: To improve the accuracy of “log stitch-
ing”, we add two refinements when pairing communi-
cation points. First, even when a thread does not con-
tain any log point (which means it does not contain any
top-level method), it will still be included in a commu-
nication pair if it communicates with a top-level method.
In this case, its run() method will be used as the com-
munication end point. The reason is that such a thread
could serve as a link connecting two communicating top-
level methods A and B. Not including the communication
pair would prevent lprof from grouping the log messages
from A and B.

(DataXceiver.writeBlock, DAG#1, [id1,id2..])Top-level 

methods: (DataXceiver.readBlock, DAG#2, [id1,id2..])

DAGs:
entry log1

[log2, log3]*

log4 exit

Regex:
<log1, "Receiving block (.*):blk_(\d+)_\d*", 

   id1:block.poolID, id2:block.block.blockID>

Comm.

pairs:

(writeBlock, PktRsp.run, local, <id1,id1>, ..)
(writeBlock, writeBlock, socket, <id1,id1>,..)

Figure 9: Output of lprof ’s static analysis.

The second improvement is to infer the number of
times a top-level method can occur in a communication
pair. For example, a communication pair “(M1, M2*, lo-
cal, ..)”, where M2 is followed by an asterisk, means that
method M1 could communicate with multiple instances
of method M2 in the same request. The log analysis uses
this property to further decide whether it can stitch mes-
sages from multiple instances of M2 into the same re-
quest. The inference of such a property is straightfor-
ward: if the communication point to M2 is within a loop
in M1’s CFG, then M2 could occur multiple times.

4.5 Summary of Static Analysis
The output of lprof ’s static analysis is a file that contains
the log printing behavior of the system. Figure 9 shows
a snippet of the output file for HDFS. It consists of the
following four segments:

1. Top-level methods: a list of tuples with (i) the name
of the top-level method, (ii) an index into the DAG
representation of the log points, and (iii) a list of
request identifiers;

2. DAGs: the DAG for each top-level method;

3. Log point regex: the regular expressions for each log
point and the identifier for each wildcard;

4. Communication pairs: a list of tuples that identify
the communication points along with the identifiers
for the data being communicated.

To speedup log analysis, this output file also contains a
number of indexes, including: (i) an index of regular ex-
pressions (to speedup the matching of each log message
to its log point) and (ii) an index mapping log points to
top-level methods. This output file is sent to every ma-
chine in the cluster whose log is analyzed.

5 Log Analysis
The log analysis phase is implemented as a MapReduce
job to group together information from all the log mes-
sages printed by each request. The map and reduce func-
tions use a common data structure, called a request ac-
cumulator (RA), for gathering information related to the
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Figure 10: The grouping of five log messages where four print
a subset of request identifier values.

same request. Each RA contains: (i) a vector of top-
level methods that are grouped into this RA; (ii) the value
of each request identifier; (iii) a vector of log point se-
quences, where each sequence comes from one top-level
method; (iv) a list of nodes traversed, with the earliest and
latest timestamp. The map and reduce functions will iter-
atively accumulate the information of log messages from
the same request into the RAs. In the end, there will be
one RA per request that contains the information summa-
rized from all its log messages.

Map: Intra-thread Grouping
The map function is run on each node to process local
log files. There is one map task per node, and all the map
tasks run in parallel. Each map function scans the log
file linearly. Each log message is parsed to identify its
log point and the values of the request identifiers using
regular expression matching. We also heuristically parse
the timestamp associated with each message.

A parsed log message is added to an existing RA entry
if and only if: (i) their top-level methods match, (ii) the
identifier values do not conflict, and (iii) the log point
matches the temporal sequence in the control flow as rep-
resented by the DAG. A new RA is created (and appro-
priately initialized) if the log message cannot be added to
an existing RA. Therefore, each RA output by the map
function contains exactly one top-level method.

Note that a sequence of log messages can be added to
the same RA even when each contains the values of a
different subset of request identifiers. Figure 10 shows
an example. The 5 log messages in this figure can all be
grouped into a same RA entry even though 4 of them con-
tain the values of a subset of the request identifiers, and
one does not contain the value of any request identifier
but is captured using the DAG.

Combine and Reduce: Inter-thread Grouping
The combine function performs the same operation as the
reduce function, but does so locally first. It combines
two RAs into one if there exists a communication pair be-
tween the two top-level methods in these two RAs, and
the request identifier values do not conflict. Moreover,
as a heuristic, we do not merge RAs if the difference be-
tween their timestamps is larger than a user-configurable
threshold. Such a heuristic is necessary because two RAs
could have the same top-level methods and request iden-
tifies, but represent the processing of different requests
(i.e., two writeBlock operations on the same block). This

05:32:45,103 Receiving block 9..9:blk_5..7_1032

05:32:45,115 Received block 9..9:blk_5..7_1032

05:32:47,826 PacketResponder 9..9:blk_5..7_1032 terminating

node 1: 172.13.9.26

node 2: 172.13.9.28

node 3: 172.13.9.12

req. acc.2: ([PktRsp.run], {<id1:"9..9">, <id2:"5..7">}, 

  [[LP2,LP3]], [<172.31.9.26:"05:32:45,115 - 05:32:47,826">])

req. acc.1: ([writeBlock], {<id1:"9..9">, <id2:"5..7">}, 

  [[LP1]], [<172.31.9.26:"05:32:45,103 - N/A">])

req.acc.3: ({writeBlock,PktRsp.run}, {<id1:"9..9">, <id2:"5..7">}, 

 [[LP1],[LP2,LP3]], [<172.31.9.26:"05:32:45,103 - 05:32:47,826">])

req.acc.4: ([writeBlock,PktRsp.run], {<id1:"9..9">, <id2:"5..7">}, 

 [[LP1],[LP2,LP3]], [<172.31.9.28:"05:32:45,847 - 05:32:47,567">])

req.acc.6: ({writeBlock,writeBlock,writeBlock,PktRsp.run,

   PktRsp.run,PktRsp.run}, {<id1:"9..9">, <id2:"5..7">}, 

  [[LP1],[LP1],[LP1],[LP2,LP3],[LP2,LP3],[LP2,LP3]], 

  [<172.31.9.26:"05:32:45,103 - 05:32:47,826">,

   <172.31.9.28:"05:32:45,847 - 05:32:47,567">,

   <172.31.9.12:"05:32:46,680 - 05:32:47,130">])

req.acc.5:([writeBlock, PktRsp.run], {<id1: "9..9">, <id2:"5..7">}, 

 [[LP1],[LP2,LP3]], [<172.31.9.28:"05:32:45,847 - 05:32:47,567">])

Request accumulators after map

Request accumulators after combine

Request accumulators after reduce

Figure 11: The RAs that combine 9 log messages from 6
threads on 3 nodes belonging to a single write request in HDFS.

value is currently set to one minute, but should be ad-
justed depending on the networking environment. In an
unstable network environment with frequent congestion
this threshold should have a larger value.

After the combine function, lprof needs to assign a
shuffle key to each RA, and all the RAs with the same
shuffle key must be sent to the same reducer node over
the network. Therefore the same shuffle key should be
assigned to all of the RAs that need to be grouped to-
gether. We do this by considering communication pairs.
At the end of the static analysis, if there is a communi-
cation pair connecting two top-level methods A and B, A
and B are jointed together into a connected component
(CC). We iteratively merge more top-level methods into
this CC as long as they communicate with any of the top-
level methods in this CC. In the end, all of the top-level
methods in a CC could communicate, and their RAs are
assigned with the same shuffle key.

However, this approach could lead to the assignment of
only a small number of shuffle keys and thus a poor dis-
tribution in practice. Hence, we further implement two
improvements to the shuffling process. First, if all of the
communicating top-level methods have common request
identifiers, the identifier values will be used to further dif-
ferentiate shuffle keys.4 Secondly, if an RA cannot pos-
sibly communicate with any other RA through network
communication, we do not further shuffle it, but instead
we directly output the RA into the request database.

Finally, the reduce function applies the same method

4Note that if a request identifier is not shared by all of the communi-
cating top-level method, it cannot be used in the shuffle key because dif-
ferent communicating RAs might have different request identifier (e.g.,
one RA only has poolID while the other RA has blockID).
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Figure 12: The web application that visualizes a request’ la-
tencies over time.

as the combine function. Figure 11 provides an ex-
ample that shows how the RAs of log messages in the
HDFS writeBlock request are grouped together. After
the map function generates req.acc.1 and 2 on node 1,
the combine function groups them into req.acc.3, because
writeBlock() and PacketResponder.run() belong
to the same communication pair, and their request iden-
tifier values match. Node 2 and node 3 run the map
and combine functions in parallel, and generate req.acc.4
and 5. lprof assigns the same shuffle key to req.acc.3,
req.acc.4, and req.acc.5. The reduce function further
groups them into a final RA req.acc.6.

Request Database and Visualization
Information from each RA generated by the reduce
function is stored into a database table. The database
schema is shown in Figure 1. It contains the following
fields: (i) request type, which is simply the top-level
method with the earliest time stamp; (ii) starting and
ending time stamps, which are the MAX and MIN in
all the timestamps of each node; (iii) nodes traversed
and the time stamps on each node, which are taken
directly from the RA; (iv) log sequence ID (LID),
which is a hash value of the log sequence vector field
in the RA. For example, as shown in Figure 11, the
vector of the log sequence of a writeBlock request is
“[[LP1],[LP1],[LP1],[LP2,LP3],[LP2,LP3],[LP2,LP3]]”.
In this vector, each element is a log sequence from a
top-level method (e.g., “[LP1]” is from top-level
method writeBlock() and “[LP2,LP3]” is from
PacketResponder.run()). Note the LID captures
the unique type and number of log messages, their
order within a thread, as well as the number of threads.
However, it does not preserve the timing order between
threads. Therefore, in practice, there are not many unique
log sequences; for example, in HDFS there are only
220 unique log sequences on 200 EC2 nodes running a
variety of jobs for 24 hours. We also generate a separate
table that maps each log sequence ID to the sequence
of log points to enable source-level debugging. We use
MongoDB [28] for our current prototype.

We built a web application to visualize lprof ’s analy-
sis result using the Highcharts [21] JavaScript charting

System LOC workload # of msg.
HDFS-2.0.2 142K HiBench 1,760,926
Yarn-2.0.2 101K HiBench 79,840,856
Cassandra-2.1.0 210K YCSB 394,492
HBase-0.94.18 302K YCSB 695,006

Table 1: The systems and workload we used in our evaluation,
along with the number of log messages generated.

library. We automatically visualize (i) requests’ latency
over time; (ii) requests’ counts and their trend over time;
and (iii) average latency per node. Figure 12 shows our
latency-over-time visualization.

One challenge we encountered is that the number of
requests is too large when visualizing their latencies.
Therefore, when the number of requests in the query
result is greater than a threshold, we perform down-
sampling and return a smaller number of requests. We
used the largest triangle sampling algorithm [39], which
first divides the entire time-series data into small slices,
and in each slice it samples the three points that cover
the largest area. To further hide the sampling latency,
we pre-sample all the requests into different resolutions.
Whenever the server receives a user query, it examines
each pre-sampled resolution in parallel, and returns the
highest resolution whose number of data points is below
the threshold.

6 Evaluation

We answer four questions in evaluating lprof : (i) How
much information can our static analysis extract from the
target systems’ bytecode? (ii) How accurate is lprof in
attributing log messages to requests? (iii) How effective
is lprof in debugging real-world performance anomalies?
(iv) How fast is lprof ’s log analysis?

We evaluated lprof on four, off-the-shelf distributed
systems: HDFS, Yarn, Cassandra, and HBase. We ran
workloads on each system on a 200 EC2 node cluster for
over 24 hours with the default logging verbosity level.
Default verbosity is used to evaluate lprof in settings
closest to the real-world. HDFS, Cassandra, and YARN
use INFO as the default verbosity, and HBase uses DE-
BUG. A timestamp is attached to each message using the
default configuration in all of these systems.

For HDFS and Yarn, we used HiBench [22] to run
a variety of MapReduce jobs, including both real-world
applications (e.g., indexing, pagerank, classification and
clustering) and synthetic applications (e.g., wordcount,
sort, terasort). Together they processed 2.7 TB of data.
For Cassandra and HBase, we used the YCSB [11]
benchmark. In total, the four systems produced over 82
million log messages (See Table 1).
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System
Threads Top-lev. Log points

tot. ≥ 1 log* meth. ≥ 1 id. per DAG*
HDFS 44 95% 167 79% 8
Yarn 45 73% 79 66% 21
Cass. 92 74% 74 45% 21
HBase 85 80% 193 74% 30
Average 67 81% 129 66% 20

Table 2: Static analysis result. *: in these two columns we
only count the log points that are under the default verbosity
level and not printed in exception handler — indicating they are
printed by default under normal conditions.

System Correct Incomplete Incorrect Failed
HDFS 97.0% 0.1% 0.3% 2.6%
Yarn 79.6% 19.2% 0.0% 1.2%
Cassandra 95.3% 0.1% 0.0% 4.6%
HBase 90.6% 2.5% 3.5% 3.4%
Average 90.4% 5.7% 1.0% 3.0%

Table 3: The accuracy of attributing log messages to requests.

6.1 Static Analysis Results

Table 2 shows the results of lprof ’s static analysis. On
average, 81% of the statically inferred threads contain at
least one log point that would print under normal con-
ditions, and there are an average of 20 such log points
reachable from the top-level methods inferred from the
threads that contain at least one log point. This sug-
gests that logging is prevalent. In addition, 66% of the
log points contain at least one request identifier, which
can be used to separate log messages from different re-
quests. This also suggests that lprof has to rely on the
generated DAG to group the remaining 34% log points.
lprof ’s static analysis takes less than 2 minutes to run and
868 MB of memory for each system.

6.2 Request Attribution Accuracy

With 82 million log messages, we obviously could not
manually verify whether lprof correctly attributed each
log message to the right request. Instead, we manually
verified each of the log sequence IDs (LID) generated by
lprof . Recall from Section 5 that the LID captures the
number and the type of the log points of a request, and
the partial orders of those within each thread (but it ig-
nores the thread orders, identifier values, and nodes’ IPs).
Only 784 different LIDs are extracted out of a total of
62 million request instances. We manually examined the
log points of each LID and the associated source code to
understand its semantics. The manual examination took
four authors one week of time.

Table 3 shows lprof ’s request attribution accuracy. A
log sequence A is considered correct if and only if (i) all
its log points indeed belong to this request, and (ii) there
is no other log sequence B that should have been merged

with A. All of the log messages belonging to a correct log
sequence are classified as “correct”. If A and B should
have been merged but were not then the messages in both
A and B are classified as “incomplete”. If a log message
in A does not belong to A then all the messages in A are
classified as “incorrect”. The “failed” column counts the
log messages that were not attributed to any request.

Overall, 90.4% of the log messages are attributed to
the correct requests.

5.7% of the log messages are in the “incomplete” cat-
egory. In particular, 19.2% of the messages in Yarn were
mistakenly separated because of only 2 unique log points
that print the messages in the following pattern: “Start-
ing resource-monitoring for container_1398” and “Mem-
ory usage of container-id container_1398..”. lprof failed
to group them because the container ID was first passed
into an array after the first log point and then read from
the array when the second message was printed. lprof ’s
conservative data-flow analysis failed to track the com-
plicated data-flow and inferred that the container ID was
modified between the first and the second log points, thus
attributing them into separate top-level methods. A sim-
ilar programming pattern was also the cause of “incom-
plete” log messages for HBase and HDFS. Cassandra’s
0.1% “incomplete” log messages were caused by a few
slow requests with consecutive log messages whose in-
tervals were over one minute.

1.0% of the log messages are attributed to the wrong
requests, primarily because they do not have identifiers
and they are output in a loop so that the DAG groups
them all together. This could potentially be addressed
with a more accurate path-sensitive static analysis.

3.0% of the log messages were not attributed to any
request because they could not be parsed. We manu-
ally examined these messages and the source code, and
found that in these cases, developers often use compli-
cated data-flow and control-flow to construct a message.
However, these messages are mostly generated in the
start-up or shut-down phase of the systems and thus likely
do not affect the quality of the performance analysis.

Inaccuracy in lprof ’s request attribution could affect
users as follows: since the “incomplete requests” are
caused by two log sequences A and B that should have
been merged but were not, lprof would over-count the
number of requests. For the same reason, timing informa-
tion separately obtained from A and B would be underes-
timations of the actual latency. The “incorrect requests”
are the opposite; because they should have been split into
separate requests, “incorrect requests” would cause lprof
to under-count the number of requests yet overestimate
the latencies. Note that administrators should quickly re-
alize the “incorrect requests” because lprof provides the
sequence of log messages along with their source code in-
formation. The information about the “failed” messages,
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Figure 13: The cumulative distribution function on the number
of log messages per unique request. For Cassandra, the number
of nodes each streaming session traverses varies greatly, there-
fore the number of log messages in each streaming session re-
quest also varies greatly (it eventually reaches 100% with 1060
log messages, which is not shown in the figure).

Category example tot. helpful
Unnecessary
operation

Redundant DNS lookups
(should have been cached)

15
13
(87%)

Synch-
ronization

Block scanner holding
lock for too long, causing
other threads to hang

4 1 (25%)

Unoptimized
operation

Used a slow read method 2 0 (0%)

Unbalanced
workload

A particular region server
serves too many requests

1
1
(100%)

Resource
leak

Secondary namenode
leaks file descriptor

1 0 (0%)

Total - 23
15
(65%)

Table 4: Evaluation of 23 real-world performance anomalies.

however, will be lost.

Number of messages per request: Figure 13 shows the
cumulative distribution function on the number of mes-
sages printed by each unique request, i.e., the one with
the same log sequence ID. In each system, over 44% of
the request types, when being processed, print more than
one messages. Most of the requests printing only one
message are system’s internal maintenance operations.

6.3 Real-world Performance Anomalies
To evaluate whether lprof would be effective in de-
bugging realistic anomalies, we randomly selected 23
user-reported real-world performance anomalies from the
bugzilla databases associated with the systems we tested.
This allows us to understand, via a small number of sam-
ples, what percentage of real-world performance bugs
could benefit from lprof . For each bug, we carefully read
the bug report, the discussions, and the related code and
patch to understand it. We then reproduced each one to
obtain the logs, and applied lprof to analyze its effec-
tiveness. This is an extremely time-consuming process.
The cases are summarized in Table 4. We classify lprof
as helpful if the anomaly can clearly be detected through
queries on lprof ’s request database.

Analysis helpful
Request clustering to identify bottleneck 73%
Log printing methods (inefficiencies are in

67%
the same method as the log point)

Request latency analysis 33%
Per-node request count 7%

Table 5: The most useful analyses on real-world performance
anomalies. The percentage is over the 15 anomalies where lprof
is helpful. An anomaly may need more than one queries to de-
tect and diagnose, so the sum is greater than 100%.

Overall, lprof is helpful in detecting and diagnosing
65% of the real-world failures we considered. Next, we
discuss when and why lprof is useful or not-so-useful.

Table 5 shows the features of lprof that are helpful in
debugging real-world performance anomalies we consid-
ered. The “request count” analysis is useful in 73% of
the cases. In these cases, the performance problems are
caused by an unusually large number of requests, either
external ones submitted by users or internal operations.
For example, the second performance anomaly we dis-
cussed in Section 2 belongs to this category, where the
number of verifyBlock operations is suspiciously large.
In these cases, lprof can show the large request number
and pinpoint the particular offending requests.

Another useful feature of lprof is its capability to as-
sociate a request’s log sequence to the source code. This
can significantly reduce developers’ efforts in searching
for the root cause. In particular, among the cases where
lprof is helpful, 67% of the bugs that introduced ineffi-
ciencies were in the same method that contained one of
the log points involved in the anomalous log sequence.

lprof ’s capability of analyzing the latency of requests
is useful in identifying the particular request that is slow.
The visualization of request latency is particularly use-
ful in analyzing performance creep. For example, the
anomaly to HDFS’s write requests discussed in Section 2
can result in performance creep if not fixed. In addi-
tion, lprof can further separate the requests of the same
type by their different LIDs which corresponds to differ-
ent execution paths. For example, in an HBase perfor-
mance anomaly [19], there was a significant slow-down
in 1% of the read requests because they triggered a buggy
code path. lprof can separate these anomalous reads from
other normal ones.

In practice, the user might not identify the root cause in
her first attempt, but instead will have to go through a se-
quence of hypotheses validations. The variety of perfor-
mance information that can be SQL-queried makes lprof
a particularly useful debugging tool. For example, an
HBase bug caused an unbalanced workload — a few re-
gion servers were serving the vast majority of the requests
while others were idle [18]. The root cause is clearly vis-
ible if the administrator examines the number of requests
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Figure 14: Output size after map, combine, and reduce com-
pared to the raw log sizes. The raw log sizes are also shown.

per node. However, she will likely first notice the request
being slow (via a request latency query), isolate particu-
larly slow requests, before realize the root cause.

In the cases where lprof was not helpful, most (75%)
were because the anomalous requests did not print any
log messages. For example, a pair of unnecessary mem-
ory serialization and deserialization in Cassandra would
not show up in the log. While theoretically one can add
log messages to the start and end of these operations, in
practice, this may not be realistic as the additional log-
ging may introduce undesirable slowdown. For example,
the serialization operation in Cassandra is an in-memory
operation that is executed on every network communi-
cation, and adding log messages to it will likely intro-
duce slowdown. In another case, the anomalous requests
would only print one log message, so lprof cannot ex-
tract latency information by comparing differences be-
tween multiple timestamps. Finally, there was one case
where the checksum verification in HBase was redundant
because it was already verified by the underlying HDFS.
Both verifications from HBase and HDFS were logged,
but lprof cannot identify the redundancy because it does
not correlate logs across different applications.

If verbose logging had been enabled, lprof would have
been able to detect an additional 8.6% of the real-world
performance anomalies that we considered since the of-
fending requests print log messages under the most ver-
bose level. However, enabling verbose logging will likely
introduce significant performance overhead.

6.4 Time and Space Evaluation
The map and combine functions ran on each EC2 node,
and the reduce function ran on a single server with 24
2.2GHz Intel Xeon cores and 32 GB of RAM.

Figure 14 shows the size of intermediate result. On
average, after map and combine, the intermediate result
size is only 7.3% of the size of the raw log. This is the
size of data that has to be shuffled over the network for
the reduce function. After reduce, the final output size is
4.8% of the size of the raw log.

Table 6 shows the time and memory used by lprof ’s
log analysis. lprof ’s map and combine functions finish in
less than 6 minutes for every system exception for Yarn,
which takes 14 minutes. Over 80% of the time is spent

System
Time (s) Memory (MB)

map+comb. reduce map+comb. reduce
HDFS 14/528 21 185/348 1,901
Yarn 412/843 1131 1,802/3,264 7,195
Cassandra 4/9 17 90/134 833
HBase 3/7 2 74/150 242

Table 6: Log analysis time and memory footprint. For the
parallel map and combine functions, numbers are shown in the
form of median/max.

on log parsing. We observe that when a message can
match multiple regular expressions, it takes much more
time than those that match uniquely. The memory foot-
print for map and combine is less than 3.3GB in all cases.

The reduce function takes no more than 21 seconds
for HDFS, Cassandra, and HBase, but currently takes
19 minutes for Yarn. It also uses 7.2GB of mem-
ory. Currently, our MapReduce jobs are implemented in
Python using Hadoop’s streaming mode, which may be
the source of the inefficiency. (Profiling Yarn’s reduce
function shows that over half of the time is spent in data
structure initializations.) Note that we run the reduce job
on a single node using a single thread. The reducer could
and should be parallelized in real-world usage.

7 Limitations and Discussions

We outline the limitations of lprof through a series of
questions. We also discuss how lprof could be extended
under different scenarios.
(1) What are the logging practices that make lprof most
effective? The output of lprof , and thus its usefulness, is
only as good as the logs output by the system. In partic-
ular, the following properties will help lprof to be most
effective: (i) attached timestamps from a reasonably syn-
chronized clock; (ii) output messages in those requests
that need profiling (multiple messages are needed to en-
able latency related analysis); (iii) the existence of a rea-
sonably distinctive request identifier, and (iv) not printing
the same message pattern in multiple program locations.

Note that these properties not only will help lprof ,
but also are useful for manual debugging. lprof natu-
rally leverages such existing best-practices. Furthermore,
lprof ’s static analysis can be used to suggest how to im-
prove logging. It identifies which threads do not con-
tain any log printing statements. These are candidates for
adding log printing statements. lprof can also infer the
request identifiers for developers to log.
(2) Can lprof be extended to other programming lan-
guages? Our implementation relies on Java bytecode and
hence is restricted to Java programs (or other languages
that use Java bytecode, such as Scala). Similar analysis
can be done on LLVM bytecode [24], but this would most
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likely require access to the C/C++ source code so it can
be compiled to LLVM bytecode.
(3) How scalable is lprof? While the map phase is exe-
cuted in parallel on each node that stores the raw log, the
reduce phase may not be evenly distributed. This is be-
cause all of the RAs that contain top-level methods that
might communicate with each other need to be shuffled to
the same reducer. This can result in unbalanced load. For
example, in Yarn, 75% of the log messages are printed
by one log point during the heartbeat process, and their
RAs have to be shuffled to the same reducer node. This
node becomes the bottleneck even if there are other idle
reducer nodes. How to further balance the workload is
part of future work.
(4) How does lprof change if a unique per-request ID ex-
ist? If such an ID exists in every log message, then there
would be no need to infer the request identifier. The log
string format parsing could also be simplified since now
our log parser only needs to match a message to a log
printing statement, but does not need to precisely bind
the values to variables. However, the other components
are still needed. DAG and communication pairs are still
needed to infer the order dependency between different
log messages, especially if we want to perform per-thread
performance debugging. The MapReduce log analysis is
still needed. If such an ID exists, then the accuracy of
lprof will increase significantly, and we can better dis-
tribute the workload in the reduce function by using this
ID as part of the shuffle key.
(5) What happens when the code changes? This requires
lprof to perform static analysis on the new version. The
new model produced by the static analysis should be sent
to each node along with the new version of the system.

8 Related Work
Using machine learning for log analysis: Several tools
apply machine learning on log files to detect anoma-
lies [4, 29, 42]. Xu et al., [42] also analyzes the log print-
ing statements in the source code to parse the log. lprof
is different and complementary to these techniques. First,
these tools target anomaly detection and do not identify
request flows as lprof does. Analyzing request flows is
useful for numerous applications, including profiling, and
understanding system behavior. Moreover, the different
goals lead to different techniques being used in our de-
sign. Finally, these machine learning techniques can be
applied to lprof ’s request database to detect anomalies on
a per-request, instead of per-log-entry, basis.
Semi-automatic log analysis: SALSA [40] and
Mochi [41] also identify request flows from logs pro-
duced by Hadoop. However, unlike lprof , their mod-
els are manually generated. By examining the code and

logs of HDFS, they identify the key log messages that
mark the start and the end of a request, and they identify
request identifiers, such as block ID. The Mystery Ma-
chine [10] extracts per-request performance information
from the log files of Facebook’s production systems, and
it can correlate log messages across different layers in
the software stack to infer the performance critical path.
To do this, it requires developers to attach unique request
identifiers to each log message. Commercial tools like
VMWare LogInsight [26] and Splunk [38] index the logs,
but require users to perform keyword-based searches.
Single thread log analysis: SherLog [43] analyzes the
source code and a sequence of error messages to recon-
struct the partial execution paths that print the log se-
quence. Since it is designed to debug functional bugs
in single-threaded execution, it uses precise but heavy-
weight static analysis to infer the precise execution path.
In contrast, lprof extracts less-precise information for
each request, but it analyzes all the log outputs from all
the requests of the entire distributed system.
Instrumentation-based profiling: Instrumentation-
based profilers have been widely used for performance
debugging [6, 8, 16, 17, 23, 32, 34]. Many, includ-
ing Project 5 [1], MagPie [3], X-Trace [14], and Dap-
per [36], just to name a few, are capable of analyzing
request flows by instrumenting network communication,
and they can profile the entire software stack instead of
just a single layer of service. G2 [17] further models all
the events into an execution graph that can be analyzed
using LINQ queries and user-provided programs. In com-
parison, lprof is non-intrusive. It also provides source-
level profiling information. However, it cannot provide
any information if requests do not output log messages.

9 Conclusions
This paper presented lprof , which is, to the best of our
knowledge, the first non-intrusive request flow profiler
for distributed services. lprof is able to stitch together
the dispersed and intertwined log messages and associate
them to specific requests based on the information from
off-line static analysis on the system’s code. Our evalua-
tion shows that lprof can accurately attribute 90% of the
log messages from widely-used, production-quality dis-
tributed systems, and is helpful in debugging 65% of the
sampled real-world performance anomalies.
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