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Abstract

Miss rate curves (MRCs) are useful in a number of contexts.
In our research, online L2 cache MRCs enable us to dynam-
ically identify optimal cache sizes when cache-partitioning a
shared-cache multicore processor. Obtaining L2 MRCs has
generally been assumed to be expensive when done in soft-
ware and consequently, their usage for online optimizations
has been limited. To address these problems and opportuni-
ties, we have developed a low-overhead software technique
to obtain L2 MRCs online on current processors, exploiting
features available in their performance monitoring units so
that no changes to the application source code or binaries
are required. Our technique, called RapidMRC, requires a
single probing period of roughly 221 million processor cy-
cles (147 ms), and subsequently 124 million cycles (83 ms)
to process the data. We demonstrate its accuracy by com-
paring the obtained MRCs to the actual L2 MRCs of 30
applications taken from SPECcpu2006, SPECcpu2000, and
SPECjbb2000. We show that RapidMRC can be applied to
sizing cache partitions, helping to achieve performance im-
provements of up to 27%.

Categories and Subject Descriptors C.4 [Computer Sys-
tems Organization]: Performance of Systems—measurement
techniques, modeling techniques; 1.6.4 [Simulation and
Modeling]: Model Validation and Analysis; D.4.8 [Oper-
ating Systems]: Performance—measurements, modeling and
prediction

General Terms Experimentation, Measurement, Perfor-
mance, Management
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1. Introduction

The ever-increasing speed disparity between processors and
disks in computer systems is mitigated, in part, by the mem-
ory hierarchy. Even though the size of processor caches and
memory is constantly increasing, they will continue to be crit-
ical resources that need to be managed well if the memory
hierarchy is to reach its performance potential. More recently
there has also been an increased interest in managing this hi-
erarchy with the objective of reducing energy consumption.
In either case, the operating system is typically responsible
for the management of the memory hierarchy.

Numerous researchers have proposed using Miss Rate
Curves (MRCs) for the purpose of improving management
of the memory hierarchy, including file buffer manage-
ment [18, 28, 48], page management [3, 45, 47], and L2
cache management [29, 40, 41]. MRCs capture the miss rate
as a function of memory size for a process or a workload
consisting of a set of processes (e.g., virtual machine) at a
particular point in time. MRCs thus identify the memory
needs of processes.

MRCs can be obtained offline in a relatively straightfor-
ward way by running the target application or workload mul-
tiple times, each time using a different memory size or cache
size. While online capturing of MRCs for file systems is also
relatively easy, say using ghost buffers [28], the online cap-
ture of MRCs for main memory or for caches is significantly
more challenging without hardware support.

In this paper, we target L2 caches and introduce
RapidMRC, a software-based, online technique that approx-
imates L2 MRCs on commodity systems with low overhead
for the purpose of managing L2 caches. The challenge in this
new context, compared to main memory and disks, is that (1)
the potential gains from reducing cache misses is relatively
small compared to the gains from reducing main memory
misses, and (2) the cost of tracking misses and generating
MRC:s is large compared to the cost of the miss event. A
main memory miss allows plenty of time for the processor to
perform tracking and calculations before receiving the data
from disk. In contrast, the act of recording the cache miss can
be several times more expensive than the cache miss itself.



We make three contributions in this paper. First, we
present RapidMRC, a software-based online method to char-
acterize the cache requirements of processes on a commodity
processor by generating L2 MRCs in a low overhead, low
latency manner. We demonstrate how to exploit the available
architectural support in modern commodity processors, in
the form of performance monitoring units (PMUs), to extract
information and process it in order to enable online opti-
mizations at various software levels, such as at the operating
system, virtual machine monitor, and programming language
run-time system level. We compare the accuracy of online
RapidMRC to the real MRCs for 30 applications taken from
standard benchmarks.

As a second contribution, we examine the multitude of
factors in modern processors that can impact the accuracy
of the calculated MRC. We examine existing architectural
support as well as barriers in developing the RapidMRC
technique.

As a third contribution, we show how RapidMRC can be
applied to L2 cache partitioning by determining the best par-
tition size to allocate to each application running in a co-
scheduled manner on a shared-cache multicore processor.
Shared on-chip L2 caches are a popular cache organization
for multicore chips mainly due to the advantage of higher ag-
gregate utilization when compared to private cache organiza-
tions. However, a shared cache can cause performance prob-
lems because it lacks isolation properties — concurrent pro-
cesses compete for space in the shared cache and may inter-
fere with each other by evicting each others cache lines. Con-
sequently, researchers have proposed partitioning this shared
cache [12, 16, 29, 30, 41, 42]. RapidMRC can be used online
to help determine the best partition sizes.

In addition to cache partitioning, RapidMRC could be
used in several other ways online: (i) to reduce energy con-
sumption by reducing the cache to the minimal size at which
the running process/workload can still run effectively [1, 5,
26]; (ii) to manage bus bandwidth contention to main mem-
ory due to cache misses [2, 17]; (iii) to guide co-scheduling
algorithms in selecting processes that fit within the available
L2 cache space [14, 32, 36, 43]; (iv) to predict the global
MRC of N applications in an uncontrolled cache-sharing
configuration [8, 11]; and (v) to identify applications with
low cache reuse so that they can all be placed into a single,
shared pollute buffer cache [37].

2. Background and Related Work

In this section, we review miss rate curves, describe the spe-
cific requirements for generating L2 cache miss rate curves,
and describe related work on L2 cache partitioning.

2.1 Miss Rate Curves

The Miss Rate Curve (MRC) of a memory access sequence
identifies the miss rate as a function of the amount of memory
allocated to the sequence at a particular point in time. The key
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Figure 1. Offline L2 MRC of mcf.

advantage of the MRC model over the traditional working-
set model is that the MRC model presents an entire trade-off
spectrum between allocated memory size and resulting miss
rate. In contrast, the working-set model only indicates the
amount of memory that a process must have for acceptable
performance, and it does not identify how performance is
affected if the amount of memory allocated is less than its
working-set size.

In our study, we focus on generating MRCs for on-chip
shared L2 caches. Figure 1 shows an example of the of-
fline L2 MRC of mcf, from the SPECcpu2000 benchmark
suite, where the L2 cache is divided into 16 partitions, using
software-based cache-partitioning [42], and the measured L2
miss rate is plotted as a function of the number of partitions
allocated to the application when it is run. The general trend
in nearly all MRC:s is that as more space is allocated, the miss
rate decreases.

In addition to the specific patterns in memory access se-
quences, the MRC is affected by the replacement policy of
the cache. That is, the MRC of a Least Recently Used (LRU)
policy may be significantly different from that of a Most Re-
cently Used (MRU) policy for the same memory access se-
quence. Throughout this paper we assume that the default re-
placement policy is Least Recently Used (LRU) since it is
the most commonly used replacement policy for processor
caches.

A common method to calculate MRC is the Stack Algo-
rithm, originally developed by Mattson et al. [25] and inde-
pendently by Kim et al. [20], both intended for offline analy-
sis of main memory access patterns at page-level granularity.
In this algorithm, an LRU stack is maintained, consisting of
memory addresses generated from the sequence of memory
accesses so that the top element is the most recently accessed
memory address and the bottom of the stack is the least re-
cently accessed memory address. On each access, the dis-
tance of the current location of the accessed address from the
top of the LRU stack (i.e., Stack Distance) is determined be-
fore moving the address to the top of the stack. The stack dis-
tance of the memory access can be used to speculate whether
the access would result in a miss or a hit given a certain mem-
ory size. That is, for any memory size larger than the stack
distance, the access would be a regarded as a hit since it is ex-
pected that the memory element has, at the time of the access,
not yet been replaced by the LRU algorithm. On the other
hand, for any memory size smaller than the stack distance,



the memory access would be regarded as a miss. In order to
generate the MRC, a histogram, Hist, is calculated where
Hist(dist) shows the total number of memory accesses with
a stack distance of dist. Therefore, the number of misses for
memory of size size, Miss(size) can be calculated as fol-
lows:

Miss(size) = Z Hist(dist)
dist=size+1

Miss rate curves have been used to manage main mem-
ory pages [3, 45, 47]. In this context, misses to the page are
trapped into the kernel and are thus easily seen, and any page
replacement policy can be used. Miss rate curves have also
been used to manage disk buffer caches [18, 28, 44, 48] and
database application buffer caches [38]. In this paper, we ap-
ply miss rate curves to L2 caches, obtaining L2 cache access
traces with the help of hardware performance counters.

In our application of RapidMRC to sizing cache parti-
tions, we must compare current miss rates across memory
access sequences of concurrently executing applications. For
this purpose, we normalize the value of Miss(size) over a
fixed probing period, using the number of Misses Per Kilo
Instructions (MPKI):

Miss(si
MPKI(size) = 1000 x iss(size)

CPU Instructions
where C' PU Instructions is the length of the probing period
as measured by instructions executed.

2.2 L2 MRC Generation

A basic requirement for building a precise LRU stack for
computing an MRC is to have an accurate trace of the appli-
cation’s memory accesses, which can be obtained in several
ways. One way to capture memory traces is to run the ap-
plication in a simulation environment, where the simulator is
able to monitor the execution of individual instructions of the
application. This method is extensively used in computer sys-
tems research for offline analysis of memory access patterns.
Howeyver, simulation is not suitable for online use because of
its high constant overhead.

Another method of capturing memory traces is to instru-
ment all memory access instructions of the application so
that the accessed addresses are recorded into a trace log.
Instrumentation tools such as Pin [24], Dynlnst [10], Dy-
namoRIO [9], and JIFL [27] can be used for this method.
While being simple and straightforward to implement, this
approach is too expensive for online use when all mem-
ory accesses are instrumented. It substantially slows down
the execution of applications (in some cases by a factor of
10 [33]) because of the additional instructions that must be
executed and poorer instruction cache performance due to the
increased instruction footprint.

One way to reduce the overhead is to dynamically enable
or disable instrumentation in an on-demand basis using a dy-
namic code modification system such as DynamoRIO. How-
ever, there still exists a fixed overhead with a such a system,

as Zhao et al. [46] have reported an average minimum run-
time overhead of 13% for DynamoRIO when instrumentation
(for purposes such as memory access tracing) is disabled. In
contrast, our approach has no overhead when memory access
tracing is disabled. In addition, a fundamental advantage of
our approach over a dynamic instrumentation approach is that
we can capture only the hardware events that are of interest,
which is a much smaller fraction of all hardware events that
occur, potentially leading to lower costs and simpler designs.

Our method for collecting memory access traces uses fea-
tures available in modern PMUs in a way that requires no
changes to applications and has sufficiently low overhead so
as to be useful for online purposes. Our software-based solu-
tion is in contrast to hardware-based solutions that have been
proposed in the past. For example, Patt and Qureshi [29] and
Suh et al. [41] propose hardware additions to future proces-
sors to obtain L2 MRCs online. Their general strategy is to
monitor several cache sets in an N-way set-associative cache
by attaching access counters to each LRU position within a
set. Within each set, these access counters serve the role of
tracking the stack distance in Mattson’s algorithm.

Several researchers have presented various analytical
models to calculate L2 cache miss rates based on memory ac-
cess traces, such as [6, 15, 34]. These techniques were mainly
targeted for offline analysis of memory access traces obtained
using a simulator. For Solihin ef al.’s model [15] to be used
online, additional hardware support would be required. Shen
et al.’s model [34] does not require additional hardware sup-
port to be used online but they have yet to show its use in an
online environment. Berg and Hagersten’s model [6] can also
be used online without additional hardware support, and they
have subsequently shown how to obtain the reuse distance
using watchpoints on commodity processors with an average
overhead of 39 % throughout the entire execution of an appli-
cation [7]. In contrast, our work takes an approach opposite
to Berg and Hagersten’s sampling-based approach over the
entire execution of the application because we capture every
access for a short window of accesses for online optimization
purposes.

2.3 L2 Cache Partitioning

Many researchers have shown that shared L2 caches can suf-
fer from performance problems, such as [11, 14, 36]. In a
multiprogrammed environment, proper provisioning of the
shared L2 cache among multiple cores or applications by par-
titioning the cache appropriately, can result in performance
improvements over uncontrolled use of this shared resource.
Many hardware-based cache partitioning mechanisms have
been proposed [16, 23, 29, 30, 39, 41], but they are based on
additional hardware components that future processors may
or may not implement. Several software-based cache parti-
tioning mechanisms have also been proposed [12, 21, 22,
42]. These software-based mechanisms can be implemented
in the operating system or virtual machine monitor on exist-
ing processors.



In general, hardware proposals have the inherent advan-
tage of lower runtime overheads and better accuracy than
software implementations, but it remains to be seen if and/or
when these proposals will appear in real processors, thus giv-
ing software implementations the practical advantage of be-
ing deployable today.

As for software-based solutions, an important missing
piece of the puzzle in software-based mechanisms is how
to determine the optimal cache partition size to allocate to
a process or workload in an online manner with low over-
head. For software-based mechanisms, only trial and error
techniques have been employed so far, although they typi-
cally use a form of binary search to reduce the number of
trials [19, 22]. With these approaches, determining the best
sizes for more than 2 applications or cores is non-scalable
because the number of possible size combinations grows ex-
ponentially with the number of applications or cores. Using
dynamically obtained MRCs, on the other hand, we can elim-
inate this trial and error approach. A convenient property of
MRC:s is that they are unaffected by, and independent of, the
currently configured cache partition size. This is possible be-
cause MRCs are generated from a trace of load/store memory
operations, regardless of whether these accesses result in a hit
or a miss in the L2 cache. In Section 4, we apply RapidMRC
to provide a practical analytical approach to determining the
optimal cache partition size, capable of running on commod-
ity processors.

3. RapidMRC

In this section, we describe the design and implementation
of RapidMRC. We describe how we collect memory access
traces and how we generate MRCs from the collected traces.
We also discuss important details about the implementation
of RapidMRC on the IBM POWERS processor.

3.1 Collecting Memory Access Traces

Our method for collecting memory access traces is based on
using data sampling features available in some of the perfor-
mance monitoring units (PMUs) of today’s processors. The
key advantage of this method is that it is completely trans-
parent to the application, requiring no code instrumentation,
since the process of recording data addresses is done entirely
in hardware. The basic PMU feature required is the capa-
bility of recording the data address of memory accesses to
a data address register (DAR), or to a designated memory
buffer. Systems software can then be notified with an excep-
tion when the DAR is updated or when the designated mem-
ory buffer overflows.

In theory, we need to capture all data accesses of the
target process, at least for a short period of time. However,
given the fact that roughly one in three instructions is either
a load or store instruction, recording all memory accesses
is expensive. As a performance optimization, given that we
wish to compute MRC:s for the L2 cache, we record only the

data accesses to the L2 cache. In our case study environment,
the events that access the L2 cache are (1) L1 instruction and
data cache misses, (2) L1 data write-through accesses, and (3)
hardware prefetches. Due to limitations in our hardware, we
only track L1 data cache misses, which are generally much
less frequent that L1 cache hits. Nevertheless, we show in
our results that the accuracy of RapidMRC remains high.

It is important to ensure that the time interval over which
memory accesses are traced is long enough to identify the
patterns in the reuse distance of individual cache lines. The
size of the access trace must be several times as large as the
number of the L2 cache lines so that the reuse distance of
each cache line can be sampled several times.

3.1.1 PowerPC-Specific Issues in Gathering Traces

The PMU in the IBM POWERS processor, a member of
the PowerPC family, can perform data sampling continu-
ously, where the Sampled Data Address Register (SDAR) is
continuously updated by the PMU as memory instructions
with operands that match a selection criterion arrive in the
pipeline. Systems software can sample SDAR values by pe-
riodically reading its value, which identifies the data address
specified by the last memory operation that matched the given
selection criterion. With this method, al/l address operands of
memory instructions have a fairly equal chance of being cap-
tured.

Although other processors, such as the Intel Itanium 2,
AMD Opteron, and IBM POWERA4, can perform data address
sampling, they cannot do so continuously in order to capture
a trace. As for Intel IA-32 processors, we have experimented
with the Precise Event-Based Sampling (PEBS) mechanism
and found that the lack of data address information made
address collection challenging.

We exploit the current implementation of the PMU in the
POWERS, where one can set the selection criterion for up-
dating the SDAR to be a miss in the L1 data cache, thus
capturing accesses to the L2 cache. We then use a separate
PMU counter to count the number of L1 data cache misses,
and assign an overflow threshold of one so that an interrupt is
raised on every L1 data cache miss. Raising an exception on
each L1 miss is costly considering each exception flushes the
processor pipeline and switches the execution context from
user-space to kernel-space and back. One can envision a hard-
ware PMU that automatically records the data address trace
into a small pre-designated buffer, either within the proces-
sor core or in main memory, raising an exception only when
the buffer overflows so that the cost of overflow exception is
amortized over a larger number of data samples. To the best
of our knowledge, the PMU in none of today’s mainstream
processors provide such a feature for data samples. To deal
with this lack of hardware support, we limit the period of
time over which addresses are gathered.

Intricacies of the POWERS introduce two sources of inac-
curacy in our method. The first is the fact that in a superscalar
processor, there may be more than one L1 data cache miss-
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F igure 2. Phase transitions in mcf and their impact on the MRC, measured on an IBM POWERS.

inflicting load-store in flight, due to multiple instruction issue
and out-of-order execution. With two neighboring L1 data
cache misses being serviced in parallel by the two load-store
units of the processor, it is possible that one of them does not
cause the SDAR to be updated. When the first L1 data cache
miss raises an exception, the entire pipeline is flushed, which
includes the second in-flight memory instruction. However,
since the memory access request for the second access has al-
ready been sent to the lower levels of the memory hierarchy,
when the memory instruction is re-issued after the exception
is handled, it may not miss in the L1 data cache anymore,
and therefore, the SDAR would not be updated by the second
memory access. Fortunately, our results in Section 5.2 show
that the collected trace is sufficiently accurate for the purpose
of computing MRCs. For problematic applications, we show
the impact of disabling multiple instruction issue and out-of-
order execution.

The second source of inaccuracy is due to hardware
prefetch requests to the L1 data cache that do not cause the
SDAR register to be updated with the address of the prefetch
target. As aresult, a stale SDAR value is recorded into the ac-
cess trace, leading to trace segments containing consecutive
entries all with the same value. We handle this problem by
converting these repetitions into a series of ascending cache
lines accesses, thus emulating the value that should have been
recorded into the SDAR. Fortunately, our results Section 5.2
show that the corrected trace is sufficiently accurate for the
purpose of computing MRCs.

3.2 L2 MRC Generation

In order to generate MRCs, we record the L2 accesses due to
L1 data cache misses by appending them to an access trace
log located in main memory. This can be done either auto-
matically by the hardware, or through an exception-handler
in software. We then feed the access trace into an LRU stack
simulator which builds the LRU stack and generates the MRC
using the Mattson stack algorithm [25]. In our targeted use of
RapidMRC, since the L2 MRCs are used to size the parti-
tions of the L2, we limit the size of the LRU stack to the size
of the L2 cache. The LRU stack simulator implementation is

based on our design described in [3], which uses the range
list optimization proposed by Kim et al. [20].

As we will show in Section 5.2, cache prefetching and
missed events on address trace collection have the effect of
causing the calculated MRC to be vertically offset from the
real MRC. To adjust for this, we vertically shift (transpose)
the calculated MRC so that it matches at least one point of the
real MRC. Since any point can be used, in practice, this point
can be the currently configured cache partition size, since its
miss rate can be easily obtained from the processor PMU.

MRC:s predict the miss rate for a fully associative cache.
While today’s L2 caches are not fully associative, they usu-
ally have high associativity (e.g., 16-way). This makes the
behavior of the cache to be similar to that of a fully associa-
tive cache. We have found this approximation to be adequate
for computing MRCs, as we will show in Section 5.2.

Many applications go through several phases in their exe-
cution. In each phase, the performance of an application, of-
ten characterized in terms of key performance metrics such as
Instruction Per Cycle (IPC), is fairly stable. However, the per-
formance characteristics of two phases of a single application
may be substantially different. As a result, we need to take
into account the potential changes in an application’s MRC,
caused by phase transitions. While the number of unique
phases in an application is often quite small, there may be
many transitions back and forth between these phases.

Figure 2 shows the impact of phase transitions on the
measured MRC of mcf. These measurements were taken by
using our software-based cache partitioning mechanism [42],
running the application 16 times, each time with a different
L2 cache size, and using the PMUs to measure the cache miss
rate [4]. Figure 2a shows how mcf alternates between two
phases repeatedly. This graph also indicates how the L2 miss
rate diminishes as more L2 partitions (parts) are allocated.

The graph in Figure 2b shows the measured MRCs for
these two phases, compared to the average MRC over the
entire execution of the application. The MRCs for the two
phases imply substantially different L2 cache requirements
within a single application.



4. Example Usage of RapidMRC: Cache
Partitioning

In this section we describe how RapidMRC can be applied
to the cache partitioning problem, especially in the context of
multicore chips. We utilize our software-based cache parti-
tioning mechanism, described in [42], to divide the L2 cache
into a number of colors. Each application is allocated a num-
ber of colors and as a result can only populate a fraction of the
cache. A key issue is how to determine the number of colors
to allocate to each application.

In Section 5.3, we show the effectiveness of using Rapid-
MRC in determining partition sizes to allocate to applications
with the overall goal of improving performance. However,
the operating system could pursue other performance objec-
tives, such as providing quality-of-service.

For deciding optimal performance partitioning between
two co-scheduled applications, we use a simple function
which minimizes overall misses. Given two miss rate curves
M RC, and M RC}, for two processes, we apply:

min [(MRCy(z) + MRCy(C — z)
z€[1,C0—1]
where C' is the total number of colors into which the cache
can be divided. While, for typical C' values (e.g., 16), this
utility function is sufficiently lightweight to be re-computed
dynamically (online) for different phases of applications, in
our current implementation we compute this utility function
for any pair of applications statically (offline).

Our simple method for obtaining the optimal partitioning
is effective only when two applications run simultaneously.
In configurations where there are more than two applications
at a time, one can use more sophisticated methods such as the
approximation presented by Qureshi et al. [29] to address the
NP-Hard complexity of the problem [31].

5. Experimental Results
5.1 Setup

The experimental results we present here were obtained on an
IBM POWERS system, as specified in Table 1, and on a sim-
ilarly configured POWERS5+ system for some experiments.
Each POWERS chip contains an L2 cache that is shared be-
tween 2 cores. Each core contains a private L1 data cache and
L1 instruction cache. Connected to each chip is an off-chip
L3 victim cache, which is also shared between the 2 cores.
RapidMRC was implemented in the Linux Operating
System, kernel version 2.6.15 on POWERS5 and 2.6.24 on
POWERS5+, and evaluated with 19 applications from SPEC-

cpu2000, 10 applications from SPECcpu2006, and SPECjbb2000.

The IBM J2SE 5.0 JVM was used to run SPECjbb2000
(1 warehouse configuration). For SPECcpu2000 and SPEC-
cpu2006, the applications were run using the standard refer-
ence input set. Thread migration between cores was disabled
in the operating system to provide a more controlled execu-
tion environment.

Item Specification
# of Cores per Chip 2
Frequency 1.5 GHz

L1 ICache (Private)
L1 DCache (Private)

64 KB, 128-byte lines, 2-way associative

32 KB, 128-byte lines, 4-way associative

L2 Cache (Shared) 1.875 MB, 128-byte lines, 10-way associative
L3 Victim Cache 36 MB, 256-byte lines, 12-way associative
RAM 8 GB (4 GB on POWERS5+)

Table 1. IBM POWERS specifications.

5.2 Results

We begin by evaluating the accuracy of RapidMRC by com-
paring it to the real MRC values, and then analyzing the run-
time overhead. Finally, we briefly present results from apply-
ing RapidMRC to sizing cache partitions.

5.2.1 MRC Accuracy

There are two components to MRC accuracy: curve shape
and vertical offset (v-offset). Matching the shape is the chal-
lenging component, whereas matching the v-offset is rela-
tively easy, as described in Section 3.2. Factors influencing
the v-offset will be examined in later subsections.

The size of the access trace log was configured to 160k
entries. For each application, the percentage of the trace log
used for warming up the LRU stack is shown in Table 2,
column f. The number of entries used for warmup was either
determined automatically by the MRC calculation engine or
it was statically set to 80k entries (one half of the trace
log). For automatic warmup determination, we waited until
all entries in the LRU stack were occupied before switching
out of warm up mode. For some applications, the trace log
was not long enough to warm up the LRU stack under this
criteria. These applications had very small working set sizes
and seldom spilled to memory, as evidenced by the LRU
Stack Hit Rate shown in Table 2, column g. Therefore, the
statically set warmup length was, in fact, adequate for them.

Figure 3 illustrates the online calculated MRC compared
to the real MRC for each of the 30 applications. To ob-
tain the real MRCs, we used an exhaustive offline method
combined with our software-based cache partitioning mech-
anism described in [42]. For each of the possible 16 cache
sizes of our L2 cache, the application was executed in its
entirety while using the processor PMU to measure the L2
cache miss rate every 1 billion processor cycles. Both real
and calculated MRCs are taken from a brief slice of execu-
tion, at the 10-billion completed instruction mark. For the real
MRC s, the length of the slice is 1-billion completed instruc-
tions, whereas the slice length of the calculated MRCs varies
and is shown in Table 2, column c, averaging to 54-million
instructions. To verify that the offline real MRC generated
from the 1-billion instruction slice of a phase was indeed rep-
resentative of the entire phase, we also experimented with
thicker, 10-billion instruction slices and obtained the same
results. For each application, v-offset matching was done, as
described in Section 3.2, using the 8-color point of the real
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Figure 4. Improved RapidMRC.

MRC. This shift amount was uniformly applied to all other
points of the calculated MRC, resulting in a uniform vertical
shift without any distortion to its shape. Table 2, column h
shows the amount of vertical shifting applied to each appli-
cation.'

For 25 out of the 30 applications, the calculated MRCs
match closely to the real MRCs. The general trend is that
RapidMRC is capable of tracking a variety of shapes from
real MRCs. However, there are five problematic applica-

! The average is calculated using absolute values.

tions: swim, art, apsi, omnetpp, and ammp. Using a longer,
1600k-entry trace log improved swim, as shown in Figure 4a,
but it remains problematic. Some improvements to art were
achieved on the POWERS5+ configured with hardware data
prefetching disabled, in-order execution, and single instruc-
tion issue, as shown in Figure 4b. However, a problem re-
mains with the 15-color point. In general, the sources of
inaccuracy in these five applications are subject to further
research, since they are not caused by the factors examined
in the subsequent subsections.

For a quantitative evaluation of MRC similarity, we pro-
pose using the metric of average MPKI distance between the
each real and corresponding calculated point, over the 16 pos-
sible cache sizes. The formula is shown below, and the calcu-
lated values are shown in Table 2, column i.

16
. 1 ) .
Distance = T ;:1 |[MPKI (i) — MPK Iq.(i)]



Column (a) (b) (© d (e) (3] (g) (h) @ )]
Trace MRC Application Average Prefetch % Log LRU Vertical | Distance (MPKI)
Logging Time | Calculation Time | Instructions Phase Length Conversion Used for Stack Shift 160k 1600k
Workload (x106cycles) (x106cycles) (xlOG) instrs:cycles (x109) (% Log) Warmup Hit Rate (MPKI) Log Log
[ jbb [ 189 86 | 17 ] 60: 101 ] 15% ] 42 % 80 % | 13 ] 051 ] 0.51
ammp 192 72 22 46: 65 14 % 83 % 95 % 1.6 1.02 1.02
applu 201 83 27 400: 483 7 % 29 % 70 % -1.6 0.28 0.26
apsi 462 59 351 5: 6 39 % 60 % 88 % 1.1 1.09 1.09
art 177 146 6 100: 246 18 % 20 % 76 % 17.5 4.54 4.06
bzip2 200 81 26 16: 17 4% 81 % 97 % -0.8 1.02 0.94
crafty 191 48 24 250: 249 5 % 50 % 98 % 0.0 0.08 0.07
equake 252 128 57 120: 150 42 % 12 % 48 % -0.6 0.12 0.12
gap 599 98 301 175: 224 76 % 27 % 65 % -0.2 0.00 0.00
gzip 191 51 21 325: 446 30 % 50 % 99 % -0.1 0.14 0.22
mcf 185 155 5 3: 11 2 % 13 % 50 % 25.0 2.57 2.64
mesa 284 47 91 275: 356 7 % 50 % 98 % 0.0 0.03 0.03
mgrid 192 69 30 550: 509 54 % 38 % 72 % -1.2 0.08 0.07
parser 203 59 24 104: 144 5 % 50 % 98 % 0.3 0.28 0.21
sixtrack 207 48 36 500: 474 8 % 50 % 99 % 0.2 0.13 0.12
swim 204 113 20 11: 28 62 % 15 % 51 % 2.1 6.12 4.88
twolf 191 77 16 300: 518 4% 50 % 100 % 2.2 1.72 1.71
vortex 251 74 97 450: 400 11 % 54 % 88 % 0.0 0.02 0.03
vpr 189 69 16 16: 25 5% 50 % 99 % 1.7 1.03 1.01
wupwise 291 137 129 310: 314 48 % 15 % 37 % 0.1 0.01 0.01
astar 185 158 16 152: 355 3% 30 % 69 % -0.3 0.20 0.19
bwaves 150 62 14 15,000 : 16,088 0% 50 % 91 % -0.8 0.00 0.00
bzip2 2k6 161 81 27 42: 38 11 % 50 % 92 % 0.4 0.43 0.47
gromacs 243 90 71 5,000: 7,230 11 % 62 % 89 % -0.2 0.06 0.02
libquantum 153 404 11 2,250: 1,753 96 % 9 % 0 % -14.0 0.02 0.02
mcf 2k6 161 282 6 25: 104 2 % 20 % 53 % 30.1 1.95 1.96
omnetpp 167 323 7 650: 1,704 0% 24 % 86 % -15.8 6.57 3.82
povray 161 324 24 14,000 : 14,362 6 % 50 % 100 % 0.0 0.00 0.00
xalancbmk 176 177 21 324: 551 4% 66 % 88 % 2.1 0.53 0.53
zeusmp 224 113 102 12,000 : 12,650 5% 47 % 83 % 0.1 0.13 0.15
[ Average [ 221 ] 124 ] 54 ] 1,782 : 1,987 ] 20% | 2% ] 9% ] 3.9 1 1.02 ] 0.87 ]

Table 2. RapidMRC statistics.

5.2.2 Overheads

Table 2, columns a and b show the overheads involved in
calculating the MRC. The trace logging time measures the
wall clock time required to capture 160k entries into the
trace log during application execution. On average, it takes
221 million cycles to obtain the trace log, which is 147 ms
on our POWERS system. During this trace log period, the
application is still making progress, although much slower,
at 24% of the original IPC on average. The MRC calculation
time is the time required to process the trace log and generate
the calculated curve. This time was acquired assuming that
the application is not running during the calculation. The
average time required is 124 million cycles (83 ms). Given
the two columns of trace logging time and MRC calculation
time, we can see that the average time required to perform
online MRC calculation is 345 million cycles (230 ms).

The actual runtime overhead incurred by RapidMRC de-
pends on the frequency of phase transitions, which require
recomputation of the MRC. Due to limitations in our cur-
rent implementation of RapidMRC, we currently do not au-
tomatically track program phase transitions and re-trigger
RapidMRC. However, we have done post-mortem analysis
on the collected PMU data to calculate the average length of
application phases. Column d in Table 2 indicates the average
phase length of each application, both in terms of the number
of instructions and the number of processor cycles. In all but

two cases (apsi and mcf) the total runtime overhead of trace
logging and online MRC calculation is below 2%. In many
cases, due to very long phases, the overhead is negligible.

To locate phase transitions in our collected PMU data, we
used the following simple heuristic. We used changes in the
L2 cache miss rate as the indicator of phase transitions be-
cause it directly reflects the changes in the application’s cache
usage, rather than IPC as suggested by Sherwood et al. [35].
The L2 cache miss rate of an application can be monitored
online with negligible overhead. In order to identify signifi-
cant changes in the miss rate, we used the following simple
heuristic. We divided the collected PMU data into intervals
containing a fixed number of instructions. At the end of each
interval, we compared the miss rate of the current interval
against the average miss rate of the past w intervals, and a
phase transition was declared if the two miss rates differed
more than a specified threshold. In addition, since phase tran-
sitions can span several intervals, this threshold is also used
as the minimum/maximum miss rate difference threshold to
signify the beginning/end of a lengthy phase transition.

The numbers shown in Table 2, column d were obtained
using the following parameter values for the above heuristic:
(1) the L2 miss rate of the 8-color cache size configuration,
(2) an interval length of 1 billion instructions, (3) a history
size of w = 3, (4) a miss rate difference threshold of 3 MPKI,
and (5) a start/end of phase transition threshold of 50%.
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Figure 5. Impact of various factors on the calculated and real MRC of mcf.

An indication of the accuracy of this heuristic can be seen
in the phase boundary markings shown for mcf in Figure 2a.
These boundary locations coincide with the actual phase tran-
sitions visually depicted in the graph.

Figure 2c provides an example to demonstrate that these
boundary locations are insensitive to an application’s cur-
rently configured L2 cache size. The graph indicates the
phase boundaries of mcf detected by monitoring the L2
MPKI for each possible L2 cache size. It can be clearly seen
that the vast majority of phase transitions are detected at the
same points of execution for all L2 cache sizes.

Figure 2c also shows that changes to the MRC as a whole,
can be detected by monitoring changes to just a single point
of the MRC. If a single point on the MRC changes signifi-
cantly, then all points of the MRC change significantly too.
Conversely, if a single point on the MRC does not change,
then all points do not change significantly either.

5.2.3 Impact of Trace Log Size

We chose a trace log that was long enough so that the bottom
stack position, the furthest from the top of the LRU stack,
had a chance of being incremented several times. Since our
LRU stack is 15,360 in length, in the worst-case cache-hit
scenario, it would require a trace log of at least 15,360+1
in length in order for the first trace log entry to end up at
the bottom of the stack and then be accessed on the 15,361st
access, registering a stack hit. To be conservative, we chose
a trace log of approximately 10 times the length of the LRU
stack, resulting in our trace log length of 160k entries.

Although the trace log itself can pollute the L2 cache,
this impact has been automatically incorporated into the
RapidMRC curves of Figure 3.

In addition to the 160k-entry trace log size, we also tried
using a 1600k-entry trace log size. Although swim benefited
greatly, as shown in Figure 4a, the other applications did not
show benefits. Figure 5a shows how mcf is largely unaffected
by the log size. The warmup period is 50% of the trace log
size. For the remaining applications, we show the average
MPXKI distances for a 1600k-entry log in Table 2, column j.

5.2.4 Impact of Warmup Period

As with any structure that contains state information, the
LRU stack requires a warmup period before it begins record-
ing statistics. This warmup period prevents the stack distance
counters from initially reporting wrong stack position hits,

as well as false cold misses. For automatic warmup deter-
mination, we waited until all entries in the LRU stack were
occupied before switching out of warm up mode. The impact
of varying the warmup period for mcf is shown on Figure 5b.
Similar trends were seen for the other applications and are not
shown in this paper. From these results, we can see that our
chosen criteria for warmup is adequate for MRC accuracy.

5.2.5 Impact of Missed Events

The POWERS PMU does not guarantee that it will capture
every single L1 data cache miss event. In this section, we
examine the impact on the calculated MRC of losing more
and more of these events. Since we are unable to obtain the
number of lost events from the PMU, we examine the impact
on the calculated MRC by artificially further dropping more
and more entries from the trace log. By working forwards to
capture the trend, we can extrapolate the trend backwards.

Figure 5c shows the impact on the calculated MRC of
mcf as a larger and larger percentage of its trace log entries
are ignored. These artificial degradations to the trace log are
indicated by labels such as “keep every 4th”, which simulates
the impact of dropping 3 events and keeping the next event.
The larger 1600k-entry trace log was used to ensure adequate
trace log lengths. Similar trends were seen for the other
applications and are not shown here.

From these results, we can see that the v-offset of the
calculated MRC is affected. As the number of events missed
increases, the MRC is shifted further down. There is also a
potential impact on the MRC shape, affecting the smaller
cache sizes. The precise magnitude of the shifting or shape
distortion varies across applications and shows no predictable
pattern. By extrapolating these trends backwards, we can
conclude that missed events are a potential source of the v-
offset mismatch between the real and calculated MRCs.

5.2.6 Impact of Set Associativity

To examine the impact of using a fully associative cache
model compared against the 10-way set-associative cache
used by the POWERS, we fed our trace log into the Dinero
cache simulator [13]. We configured it to simulate only the
POWERS L2 cache. The associativity was varied from 10-
way to full, and the impact on the miss rate was extracted. The
results for mcf are shown in Figure 5d. Similar trends were
seen for the other applications. The graph indicates that our
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Figure 6. Impact of various factors on the calculated MRC.

fully associative cache model simplification does not have a
material impact on miss rate.

5.2.7 Impact of Hardware Prefetching

Hardware prefetchers, located in the L1 data cache and the
L2 cache can have an impact on the real MRC. For some
applications, the prefetchers can pollute the L2 cache and
lead to a higher miss rate than indicated from the memory
access pattern or predicted by RapidMRC. On the other hand,
for other applications, the prefetchers can be beneficial and
help overcome the problems of smaller cache sizes. Figure Se
shows the impact on the real MRC of mcf from disabling
the hardware prefetchers. Similar trends were seen for 8
other applications that we tried” indicating that the POWERS
hardware prefetchers are beneficial and help to reduce the
miss rate, vertically shifting the real MRC downwards.

Hardware prefetchers can also have an impact on the cap-
tured trace log because prefetching is occurring during the
capture period, thus also affecting the calculated MRC. On
the POWERS, these prefetched addresses appear in the trace
log as a series of consecutive repeated data address values,
as described in Section 3.1.1, but they do not show the actual
values. As described in Section 3.1.1, we converted these rep-
etitions into consecutive adjacent cache line addresses. Ta-
ble 2, column e shows the percentage of the trace log that
required this conversion. In contrast, the POWERS5+ omits
this prefetch activity from the trace log. Therefore, both pro-
cessors cannot provide adequate information to accurately
model the prefetcher impact on the calculated MRC. In ef-
fect, this problem causes an increase in the number of missed
events in our trace log, leading to the problems described in
Section 5.2.5. To model prefetcher activity, we need to cap-
ture all L1 data cache accesses (both hits and misses). How-
ever, this approach incurs extremely high overhead which
makes it impractical for online use.

In an attempt to determine the general impact of hardware
prefetching on the calculated MRCs, we compare the calcu-
lated MRC from a trace log obtained with prefetching against
a trace log obtained without prefetching. These experiments
were run on the POWERS+. Figure 6a and Figure 6b show
two examples of how these MRCs are affected for mcf and
equake, respectively. The other applications show similar re-
sults. In general, the calculate MRCs are vertically shifted by

2applu, apsi, art, equake, mgrid, swim, twolf, vpr.

various, currently unpredictable amounts, perhaps dependent
on the application access pattern.

5.2.8 Impact of Multiple Instruction Issue &
Out-of-Order Execution

Allowing multiple instructions to be issued and be in-flight
in the processor pipeline may potentially lead to inaccura-
cies in RapidMRC, as described Section 3.1.1. Figure 6a and
Figure 6b show the impact of a simplified processor mode
(single-issue, in-order, no prefetching) on RapidMRC as cal-
culated on the POWERS+ for mcf and equake. The processor
executes the application in complex mode (multiple-issue,
out-of-order, with prefetching) except during the trace col-
lection period when it is placed into the simplified mode. The
other applications had similar trends and are therefore not
shown. The trends indicate that the calculated MRCs are ver-
tically shifted by varying amounts, dependent upon the ap-
plication. There is also a potential impact on the MRC shape,
affecting the smaller cache sizes. The precise magnitude of
the shifting or shape distortion varies across applications and
shows no predictable pattern. As described in Section 5.2.1,
art showed significant accuracy improvement in Figure 4b
with the simplified processor mode.

Finally, Figure S5e shows the impact on the real MRC
running in the simplified mode. In general, the real MRC is
vertically shifted upwards relative to the complex mode.

5.3 RapidMRC for Sizing Cache Partitions

We briefly evaluate the usefulness of RapidMRC by apply-
ing it to sizing cache partitions for multiprogrammed work-
loads running on a shared-cache multicore processor. We
compare the partition size chosen using the MRC supplied by
RapidMRC versus the offline real MRC. Since in our current
implementation we compute RapidMRC only once, we have
selected applications that have fairly stable behavior through-
out the measurement period.

The workloads twolf+equake and vpr+applu® were exe-
cuted on the POWERS5+ but with the 36 MB L3 cache dis-
abled. We found that the small working set size of these appli-
cation pairs, combined with the abnormally large L3 cache,
eliminated any shared cache performance problems: with the
L3 cache enabled, the application pairs experienced a 98%
hit rate to the L2 or L3 caches, leaving only 2% of accesses
to main memory. Consequently, we disabled this unusually
large L3 cache to re-introduce the shared cache performance
problems seen by previous researchers who used commonly-
found dual-core hardware configurations that do not contain
L3 caches.

The ammp+3applu workload, in contrast, demonstrates
a fully utilized hardware configuration. It was run on the
POWERS, utilizing the 36 MB L3 cache and all 4 SMT

3 Only the “place” phase of vpr was utilized.
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Figure 7. Multiprogrammed workload performance as a function of L2 cache size.

hardware contexts. To reduce its search space, all 3 instances
of applu were confined to sharing the same cache partition*.

Since the chosen applications exhibit fairly stable behav-
ior, the application MRCs shown in Figure 3 from both the
RapidMRC and offline real MRCs were first fed as inputs to
the partition size selection algorithm described in Section 4.
Although this algorithm can be executed online with low-
overhead, due to limitations in our current implementation
of RapidMRC, we used this algorithm offline. The resulting
chosen partition sizes are shown in the table of Figure 7.

Next, we ran the selected applications together with the
L2 cache partitioned according to the suggested partition
sizes. In addition to the cache configurations chosen from
RapidMRC and the real MRC, all other possible partition
sizes were also run to obtain an entire spectrum of mul-
tiprogrammed performance results, as shown in Figure 7.
The graphs show the average IPC of each application for
the entire multiprogrammed run of the application, normal-
ized to the uncontrolled sharing configuration. The multipro-
grammed combinations are terminated as soon as one of the
applications ended.

Figure 7 shows that using RapidMRC, twolf+equake im-
proved by 27%, vpr+applu by 12%, and ammp+3applu by
14%. In contrast, using the sizes chosen using the offline real
MRC:s resulted in improvements of 50%, 28%, and 14%, re-
spectively. The cause of the performance gaps is the horizon-
tally flat sections of the calculated MRCs in twolf and vpr,
seen in Figure 3, which prevent the size selection algorithm
from choosing the same sizes as with the offline real MRCs.
Despite the performance gaps, these results illustrate that the
MRC supplied by RapidMRC can help achieve performance
gains when applied to cache partitioning.

For future work, we envision extending our current imple-
mentation to dynamically track MRC transitions and recom-
pute optimal partition sizes accordingly. To enable dynamic
L2 cache partition resizing in this vision, we have taken some
initial steps and implemented a page migration mechanism
with an attendant cost of 7.3 us per 4 kB page.

6. Discussion

In developing RapidMRC, we have pushed the envelope of
what is possible using today’s PMUs. In particular, we have

4 A simple heuristic is to place all cache-insensitive applications, indicated
by their horizontally-flat RapidMRCs, into a single shared cache partition.

taken the data address capturing feature of the POWERS pro-
cessor, which is primarily intended for the purpose of sam-
pling, to the extreme so that it can be used for tracing. To
trace in this way, we force the processor to raise an exception
at every L1 data cache miss, which obviously has substan-
tial overhead. In addition, this method of tracing is inherently
incomplete, as some data accesses are not recorded by the
hardware PMU due to concurrency with other accesses. For-
tunately, the results of our experimental analysis show that
even with these limitations, the calculated MRCs are accu-
rate in most cases, and the performance overhead is accept-
able for our purposes. However, we believe more adequate
hardware monitoring support will facilitate producing more
accurate MRCs with much lower overhead.

Based on our experience, there are a few capabilities we
would like to see in future PMUs. The first one is the abil-
ity of tracing data addresses into a small trace buffer, rather
than a single data address register. This feature would allow
an overflow exception to be raised only when the buffer is
full, as opposed to on every data access. This would amortize
the cost of exception handling over many data samples and
thus greatly reduce monitoring overhead. Secondly, the trace
buffer should be capable of recording all accesses, despite
having several memory instructions in-flight. This seems to
be feasible with a trace buffer instead of a single data address
register. Thirdly, all accesses to the on-chip cache should be
recordable, regardless of whether they are the result of pro-
cessor memory instructions or hardware prefetchers. With
these three features, for a short period of time, a complete
trace of memory accesses performed by an application can
be recorded. Finally, our experience with varying hardware
performance counter capabilities, even within the same fam-
ily of processors, leads us to believe that they should be stan-
dardized in an implementation-independent fashion so that
they can be widely adopted across different platforms, per-
haps analogous to the IEEE 754 floating-point standard.

7. Concluding Remarks

In this paper, we have shown a technique, called RapidMRC,
to obtain the L2 miss rate curve of an application online by
exploiting hardware performance counters found in modern
processors. We have also shown that our transparent method
produces fairly accurate MRCs with a runtime overhead that
is substantially less than other software-based approaches.
As an example of the utility of the calculated MRCs, we



show they can be used for determining cache partition sizes
in a shared cache environment, enabling up to 27% perfor-
mance improvement compared to an uncontrolled cache shar-
ing scheme. We believe that by providing a fairly accurate
estimate of the cache needs of applications, RapidMRC will
enable further optimization opportunities in on-chip caches.

We acknowledge the fact that we have exploited a PMU
feature, i.e., continuous data address sampling, that is cur-
rently available only in IBM POWERS processors. However,
by demonstrating what can be accomplished with a simple
PMU feature that is already implemented in a real processor,
we hope to provide motivation to other processor vendors to
adopt similar PMU features.

As for future directions, we would like to explore methods
for further increasing the accuracy of calculated L2 MRCs.
One such method is the ability to automatically track applica-
tion phase changes and to dynamically calculate the L2 MRC
of each phase. We would like to explore extending L2 MRCs
to account for the impact of non-uniform miss latencies in
addition to predicting the impact of misses on processor stall
cycles. Finally, we would like to explore other online opti-
mization opportunities that can be pursued using the online
information provided by RapidMRC and its underlying trace
of cache accesses.
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