
TTLs Matter: Efficient Cache Sizing with

TTL-Aware Miss Ratio Curves and Working Set Sizes

Sari Sultan
1
, Kia Shakiba

1
, Albert Lee

1
, Paul Chen

2
, and Michael Stumm

1

1
University of Toronto,

2
Huawei

{sari.sultan,kia.shakiba,albee.lee}@mail.utoronto.ca,paul.chen1@huawei.com,stumm@eecg.toronto.edu

Abstract

In-memory caches play a pivotal role in optimizing dis-

tributed systems by significantly reducing query response

times. Correctly sizing these caches is critical, especially con-

sidering that prominent organizations use terabytes and even

petabytes of DRAM for these caches. The Miss Ratio Curve

(MRC) and Working Set Size (WSS) are the most widely used

tools for sizing these caches.

Modern cache workloads employ Time-to-Live (TTL) lim-

its to define the lifespan of cached objects, a feature essential

for ensuring data freshness and adhering to regulations like

GDPR. Surprisingly, none of the existing MRC andWSS tools

accommodate TTLs. Based on 28 real-world cache workloads

that contain 113 billion accesses, we show that taking TTL

limits into consideration allows an average of 69% (and up to

99%) lower memory footprint for in-memory caches without

a degradation in the hit rate.

This paper describes how TTLs can be integrated into

today’s most important MRC generation and WSS estima-

tion algorithms. We also describe how the widely used Hy-

perLogLog (HLL) cardinality estimator can be extended to

accommodate TTLs, and show how it can be used to effi-

ciently estimate the WSS. Our extended algorithms maintain

comparable performance levels to the original algorithms.

All our extended approximate algorithms are efficient, run

in constant space, and enable more resource-efficient and

cost-effective cache management.

CCS Concepts: •General and reference→ Performance;

• Computing methodologies→ Simulation tools.

Keywords: Time to Live (TTL), Miss Ratio Curve (MRC),

Working Set Size (WSS), HyperLogLog (HLL), In-memory

Caches, Key-Value Stores, Cache Sizing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0437-6/24/04

https://doi.org/10.1145/3627703.3650066

ACM Reference Format:

Sari Sultan, Kia Shakiba, Albert Lee, Paul Chen, andMichael Stumm.

2024. TTLs Matter: Efficient Cache Sizing with

TTL-Aware Miss Ratio Curves and Working Set Sizes. In Nine-
teenth European Conference on Computer Systems (EuroSys ’24), April
22–25, 2024, Athens, Greece. ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3627703.3650066

1 Introduction

In-memory caches play a critical role in many distributed

systems. They offload backend storage services and reduce

query response times significantly by serving data out of

the cache’s DRAM instead of a backend storage service.

Memcached [1, 2] and Redis [3] are two popular in-memory

caches. All major cloud providers offer in-memory caching

as a service [4–13].

A key challenge in operating in-memory caches is decid-

ing how much physical memory to allocate when provision-

ing each cache. Too little memory results in higher miss

rates and thus less efficient operation, with higher storage

server loads and longer response times. Allocating too much

memory results in unnecessarily increased capital and op-

erational costs. These costs can be substantial [14]. As one

point of reference, a single 100GB enterprise tier Redis cache

from Microsoft Azure costs $8700 per month [15]. Numer-

ous organizations use terabytes or even petabytes of cache

memory, including Google, Meta, Twitter, Pinterest, Airbnb,

GitHub, and LinkedIn [16–23].

In this paper we address the critical issue of sizing in-

memory caches in modern cloud environments. Although

this is a well-trodden problem for which many tools have

been developed over the last five decades to aid in better

understanding cache size tradeoffs [24–39], it is surprising

that none of these tools are able to support modern work-

loads. More specifically, none of these tools are able to take

Time-to-Live (TTL) attributes of cached objects into ac-

count, even though many modern workloads use TTLs to

limit the lifespan of cached objects [23, 40–43]. This paper

rectifies this situation for the most important state-of-the-art

Miss Ratio Curve generation and Working Set Size estima-

tion algorithms.

Miss Ratio Curve (MRC). The MRC is perhaps the most

effective tool for evaluating cache size tradeoffs. It plots

the cache miss ratio as a function of the cache size for a

given workload under a specific eviction policy. For example,

387

https://doi.org/10.1145/3627703.3650066
https://doi.org/10.1145/3627703.3650066
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3650066&domain=pdf&date_stamp=2024-04-22

EuroSys ’24, April 22–25, 2024, Athens, Greece Sultan et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

M
is

s
R

a
ti

o

Cache Size [GB]

Figure 1. MRC for the web workload from MSR.

Fig. 1 shows the MRC for the “web” cache workload from

Microsoft Research (MSR) [44] under the LRU eviction policy.

Assuming the cache is configured with 50GB of memory, the

MRC shows that the memory size can be reduced to 38GB

with minimal effect on the miss ratio; alternatively it can be

increased to 63GB for a 10% reduction in the miss ratio.

Mattson [24] and Olken [25] are two MRC-generation

algorithms that produce exact MRCs. However, they are

known to be computationally intensive and have large mem-

ory footprints, which makes them unsuitable for onlineMRC-

generation [28, 29, 31]. Because of this, a number of al-

gorithms have been introduced that generate approximate
MRCs with significantly lower computation and memory

overheads. Examples include Counterstacks [28], Shards [29],

and AET [31]. Despite being approximate, these algorithms

generally produce MRCs with acceptable errors; e.g., <2%.

Counterstacks stands out among the MRC-generation al-

gorithms for pioneering the concept of streaming, in which

portions of its internal state are periodically checkpointed

(e.g., once per hour). As we outline further below, this offers

a number of benefits: it enables more granular insight into

the behavior of the cache as it processes its workload, and it

enables understanding the effects of combining workloads.

Working Set Size (WSS).WSS is another important tool

that aids in the management of caches. It refers to the aggre-

gate size of all distinct objects accessed by a workload over a

specified interval of time. The WSS identifies the minimum

cache size needed to achieve the minimal miss rate. With

TTLs, the WSS becomes the aggregate size of the unexpired
distinct objects [23].

The WSS can be obtained in a number of ways. First,

a hash table can be used to track objects accessed by the

workload; the WSS is then the aggregate size of the distinct

objects accessed, as recorded in the hash table. This approach

requires memory proportional to the number of distinct

objects accessed, which can be significant given that some

workloads access billions of different objects.

Second, it is also possible to extract an estimate of theWSS

from the workload’s MRC: the point along the 𝑥-axis where

the MRC first reaches its minimum miss ratio [26, 39, 45].

Finally, a WSS estimate can be obtained by using a cardi-

nality estimator (a.k.a. 𝐹0 estimator [46–54]) to identify the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

100 101 102 103 104 105 106

C
D

F
[%

]

TTL [seconds]

Cluster Nr.
ALL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Figure 2. Cumulative distribution function (CDF) of the TTL

limits for the workloads in the Twitter collection. The red

curve: CDF of TTL limits across all Twitter workloads.

number of distinct objects accessed. A popular cardinality

estimator is the HyperLogLog (HLL) counter [55, 56], also

used by the CounterStacks MRC-generation algorithm. HLL

is attractive because it is able to produce a WSS estimate

using only a constant amount of space. Further, it enjoys the

benefits of streaming as described further below.

Time-to-Live (TTL) matters. For many modern work-

loads, TTLs play a critical role in cache management by

providing a mechanism to expire cached objects based on

their age [23, 40–43, 57–65]. TTLs are used, for example, to

limit stale, inconsistent data in the cache or to implement

General Data Protection Regulation (GDPR) mandated re-

strictions [23, 40, 41, 64]. In the Twitter cache workloads

that have been made public [23], each cached object has an

associated TTL attribute. Fig. 2 depicts the cumulative distri-

bution of TTLs for each of the workloads from Twitter. The

figure shows that the TTL distribution varies significantly

for the different workloads. Overall, 27% of the cached ob-

jects expire in less than an hour, 50% of them expire in less

than 12 hours, and 90% of them expire in less than 5 days.

TTL limits can significantly impact MRCs and WSSs. For

example, Fig. 3 shows that neglecting TTLs when generating

MRCs can result in MRCs that are substantially inaccurate.

The figure shows two MRCs for Twitter’s workload 50: one
taking TTLs into account and the other not. The cache size

needed to achieve the minimal miss rate is 7.3GB when TTLs

are taken into account, but it increases to 123GB when they

are not. Similarly, neglecting TTLs when generating WSSs

can also be highly misleading. Fig. 4 shows that for Twitter’s

recommended workload 19 [66], theWSS never exceeds 5GB

when taking TTLs into account, but reaches 40GB when

neglecting TTLs.

Benefits of streaming. Streaming refers to the periodic

saving of HLL counters [28]. It can be used with WSS esti-

mators based on HLL counters and the CounterStacks MRC-

generation algorithm which is also based on HLL counters.

Streaming enables analysis of a given workload at a more

388

TTLs Matter: Efficient Cache Sizing with TTL-Aware Miss Ratio Curves and Working Set Size EuroSys ’24, April 22–25, 2024, Athens, Greece

 0

 0.2

 0.4

 0.6

 0.8

 1

7.3 0 20 40 60 80 100 120 140

Over-provisioning by 115GB

Δ
 =

 0
.4

5

M
is

s
R

a
ti

o

Cache Size [GB]

With TTL
Without TTL

Figure 3. MRCs for the Twitter’s workload 50: with TTL, it

reaches steady-state at 7.3GB; without TTL at 123GB. This

workload was recommended to users by Twitter on the dis-

cussion channel [66].

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180

W
o
rk

in
g
 S

e
t

S
iz

e
 [

G
B

]

Time [Hours]

With TTL
Without TTL

Figure 4.WSS for the Twitter workload 19 both with and

without TTL. Each point at time 𝑡 representsWSS from [0, 𝑡).

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160 180 200

W
ro

ki
n
g
 S

e
t

S
iz

e
 [

G
B

]

Time [Hours]

Figure 5. WSSs for the MSR src2 workload. Each point

captures the WSS over a one hour time period. For most

hours, the size of the WSS is under 200MB. In hours 91–97

the WSS of the workload is orders of magnitude larger.

granular level, and it enables analysis of the effects of com-

bining multiple workloads to use a single cache.

As an example, consider Fig. 5 which depicts the WSS of

the MSR src2 workload for each successive one hour period

obtained using HLLs. The figure shows that the workload

has outliers in hours 91-97 with significantly higher than

normal WSSes. Understanding when exactly these outliers

occur may help in identifying the cause. The outliers would

not be apparent from the WSS of the entire workload.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 20 40 60 80 100 120 140 160 180

W
o
rk

in
g
 S

e
t

S
iz

e
 [

G
B

]

Time [Hours]

Exact
HLL-TTL (b=12)

Figure 6. Twitter workload 19 WSS both with TTL. The

solid line was obtained from exact WSS calculations using

a hash table; each point at time 𝑡 identifies the WSS over

the interval [0, 𝑡). The dotted curve was obtained using our

extended HLL; each point at time 𝑡 is the result of merging

the individual one hour WSS estimates for hours 0 to 𝑡 .

If these one hour WSSs are saved as HLL counters, then

the HLL Merge operator (§3) can be used to combine any

number of adjacent HLL counters to obtain the workload’s

WSS for the corresponding time interval. The effectiveness of

this is demonstrated in Fig. 6 for Twitter workload 19 (when
taking TTLs into account). One curve shows the WSS when

calculated exactly using the hash table technique described

earlier; the curve at point 𝑡 represents the WSS over the

time [0, 𝑡). The other curve shows the WSS as obtained by

combining the HLL-based WSS counters saved each hour

from time 0 to time 𝑡 . The two curves are for all intents and

purposes indistinguishable.

Streaming can also be exploited to better understand

caching patterns (e.g., diurnal patterns) using MRCs which

in turn may help manage dynamic cache resizing [28]. For

example, Fig. 7 shows the MRCs for three different publicly

available workloads from MSR [44], IBM [67], and Twit-

ter [23]. It shows that these workloads have substantially

different MRCs for different 48 hour time windows. This

behavior is not extractable from an MRC generated over the

entire time period, but the MRC over the entire period be-

comes available by combining HLL counters streamed (e.g.)

each hour by, say, CounterStacks.

Contributions. We have demonstrated in the previous

discussion that TTLs matter for accurate MRC-generation

and WSS estimation. In the remainder of the paper we show

how the most important MRC-generation and WSS estima-

tion algorithms can be adapted to take TTLs into account.

First, we show how Mattson and Olken, two exact MRC-

generation algorithms, can be extended to account for TTLs

(§2). These adaptations are straightforward; nevertheless, to

the best of our knowledge, they have not been previously

proposed. Shards generates approximate MRCs by using

Olken on a sampled subset of cache accesses. Shards can

similarly be extended using our extended Olken algorithm.

389

EuroSys ’24, April 22–25, 2024, Athens, Greece Sultan et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

MSR Combined Workload

M
is

s
R

a
ti

o

Cache Size (GB)

Hours
[0-48)

[48-96)
[144-192)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.25 1 4 16 64 256 1024

IBM Workload #027

M
is

s
R

a
ti

o

Cache Size (GB) [logscale]

Hours
[0-48)

[48-96)
[144-192)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

Twitter Workload #50

7
9

M
is

s
R

a
ti

o

Cache Size (GB)

Hours
[0-48)

[96-144)
[624-672)

Figure 7.MRCs for 3 different publicly available workloads from MSR [44] (left), IBM [67] (middle), and Twitter [23] (right).

Each figure shows the MRCs for 3 different 48 hour time periods to show how caching requirements change in these periods.

Second, we show how HLL counters can be extended to

accommodate TTLs (§3). Our focus on extending HLLs is

motivated by the fact that HLLs enable streaming for both

MRC-generation and WSS estimation algorithms. The pri-

mary challenge in extending HLLs is the fact that HLLs (up

to now) do not support deletes, a crucial operation needed

to handle expired objects.

Third, we show how our extended HLLs can be used to ex-

tend the CounterStacksMRC-generation algorithm to accom-

modate TTLs (§4). We found that a straightforward integra-

tion of our extended HLL counters with CounterStacks led to

a significant negative impact on accuracy. This issue arises

because CounterStacks processes accesses in batches [28],

which may result in inaccuracies when handling TTLs, as

some accesses could expire within the batch before the last

access’s timestamp. To address this issue, we devised a new

method for batch processing which terminates the batch

prematurely whenever an object expires in the batch. This

resulted in performance degradation due to the significant

increase in the number of batches, which was further com-

pounded by the extended HLL’s larger memory footprint,

leading to poorer cache locality. However, through crucial

optimizations, we ultimately developed an algorithm that is

far more efficient than CounterStacks and requires only a

constant amount of space. As another application of our ex-

tended HLLs, we show how they can be utilized to estimate

the WSS of TTL-endowed workloads in constant space (§5).

Finally, our experimental evaluation (§6) demonstrates

the efficacy of our algorithms across 28 workloads from

Twitter [23], totaling 113 billion accesses. The results indicate

that accommodating TTLs lead to memory savings of 69% on

average, and up to 99%. Our approximate algorithms achieve

over 99% accuracy on average when incorporating TTLs. The

throughput of our extended MRC-generation algorithms are

comparable to their original counterparts, maintaining their

performance despite the inclusion of TTLs.

2 Mattson
++
, Olken

++
, and Shards

++

In this section, we extend the seminal Mattson (§2.1),

Olken (§2.2), and Shards (§2.3) MRC-generation algorithms

to accommodate TTLs.

2.1 Mattson
++

Mattson introduced the first algorithm capable of generating

anMRC in a single pass over a workload of cache accesses, as-

suming a compatible eviction policy such as LRU [24]. Prior

to Mattson, generating an MRC required running a separate

simulation for each different cache size on the MRC. For each

access to an object in the workload, Mattson identifies the

number of distinct objects accessed since the current object

was last accessed. This number of distinct objects identifies

the minimal cache size needed for the current object to re-

main in the cache; any smaller cache size would result in a

miss and any larger cache size would result in a hit.

To identify the number of distinct objects accessed since

the currently accessed object was last accessed, Mattson

maintains a stack of distinct accessed objects ordered by

access recency with the most recently accessed object at

the top. While processing the workload, for each access,

Mattson linearly searches the stack from the top for the

currently accessed object. If found, the position in the stack,

referred to as the stack distance, is recorded in a histogram of

encountered stack distances, and the object is moved to the

top of the stack as it is now the most recently accessed object.

If the object is not found in the stack, then it is being accessed

for the first time; in that case a stack distance of ∞ is added

to the histogram and a new element representing the object

is added to the top of the stack. After processing the entire

workload, the MRC is constructed as the inverse Cumulative

Distribution Function (CDF) of the histogram. For aworkload

with accesses to𝑀 distinct objects, space complexity is𝒪(𝑀)
and each stack search has𝒪(𝑀) time complexity for𝒪(𝑁𝑀)
total time complexity with 𝑁 accesses in the workload.

Mattson
++

is a straightforward adaptation of Mattson’s

algorithm to accommodate TTLs. In Mattson
++
, stack ele-

ments are extended to also record the eviction time of the

accessed objects. While traversing the stack to determine

the stack distance of an accessed object, any encountered

object that has expired is removed and not considered in the

stack distance calculation. Objects in the stack beyond the

current stack distance need not be removed as they will be

removed in a later operation. Mattson
++

maintains the same

time and space complexities as the original algorithm.

390

TTLs Matter: Efficient Cache Sizing with TTL-Aware Miss Ratio Curves and Working Set Size EuroSys ’24, April 22–25, 2024, Athens, Greece

2.2 Olken
++

Olken optimized Mattson’s algorithm by using a balanced

binary search tree instead of a stack [25]. This brings the com-

plexity of computing the stack distance down from 𝒪(𝑀)
to𝒪(log𝑀), and overall from𝒪(𝑁𝑀) to𝒪(𝑁 log𝑀). Each
node in the tree represents a distinct object and has a weight,

defined as the total count of child nodes plus one for the

node itself. Ordered by access recency, the tree simplifies

counting the number of objects with a timestamp greater

than the timestamp of the current access. The algorithm also

maintains a hash table to track the last access time of each

object, which is used to efficiently locate objects in the tree.

The computation of the stack distance for an accessed

object is as follows. If the object is found in the hash table,

then the timestamp obtained from the hash table is used to

search for the object in the tree. The stack distance is then

computed as the number of nodes in the tree with a times-

tamp larger than the obtained one, counted via the weights

during the tree search. This stack distance is recorded in

the histogram of encountered stack distances. The node is

subsequently removed from the tree and reinserted with the

current timestamp, and the hash table entry for the accessed

object is updated to the current timestamp. If the object is

not present in the hash table, then it is being accessed for

the first time, so a new node with the current timestamp is

added to the tree, a corresponding entry is added to the hash

table, and a stack distance of∞ is recorded in the histogram.

Olken
++

extends Olken’s algorithm to accommodate TTLs.

The basic idea behind Olken
++

is to track the expiry time

of each object by maintaining a priority queue, ET-PQ, of
⟨object, eviction time⟩ tuples, ordered by eviction time.

Then, on each access, all expired objects are first evicted

before computing the stack distance. Olken
++

maintains the

same time and space complexities as the original algorithm.
1

2.3 Shards
++

To reduce the overhead of exact MRC-generation algorithms

(e.g., Olken), Waldspurger et al. introduced SpatiallyHashed

Approximate Reuse Distance Sampling (Shards) [29].

Shards uses Olken to generate the MRC, but considers only

a sampled subset of the total workload. Access 𝑖 in the work-

load is sampled if the hash of the object’s key 𝐻𝑖 modulo 𝑃

(a constant typically set to 2
24
) is less than a threshold𝑇 ; i.e.,

if 𝐻𝑖%𝑃 < 𝑇 . 𝑇 is used to control the sampling rate 𝑅 = 𝑇 /𝑃 .
This method of spatial sampling has the attractive property

that if an access to an object is sampled, then all accesses to

the same object will be sampled.

1
We note that recording the eviction times in the tree nodes and evicting

expired objects during tree traversal, similar to the strategy in Mattson
++
,

is inefficient and would increase the compute complexity of the algorithm

from𝒪(𝑁 log𝑀) to𝒪(𝑁𝑀) . This is because all nodes that might affect

the stack distance of the current accessed object would have to be tested to

determine whether they have expired. For example, if the accessed object is

in the left sub-tree, then the entire right sub-tree would have to be traversed.

The sampling makes Shards an approximate algorithm,

but generates surprisingly accurate MRCs for most work-

loads, even with a sampling rate of 𝑅 = 0.001(= 0.1%) [29].
Two variants of Shards have been proposed: fixed-rate

FR-Shards which maintains a constant sampling rate and

fixed-size FS-Shardswhich adjusts the sampling rate down

to keep the number of sampled objects below a specified con-

stant; Waldspurger et al. further introduced an extension

to the two variants which adjusts the generated MRCs to

address sampling biases: FR-Shards𝑎𝑑 𝑗 and FS-Shards𝑎𝑑 𝑗 .

FR-Shards
++
. FR-Shards uses a fixed sampling rate 𝑅

when processing the workload to generate the MRC. To

accommodate TTLs, FR-Shards can use Olken
++

instead

of Olken with no other changes required. We refer to this

variant as FR-Shards
++
. It has the same time and space

complexity as FR-Shards, namely 𝒪(𝑁 log𝑀) and 𝒪(𝑀),
with compute and memory overheads reduced by a factor of

1/𝑅 compared to Olken
++
.

FS-Shards
++
. FS-Shards samples accesses to objects such

that the number of distinct sampled objects does not ex-

ceed a constant 𝑆𝑚𝑎𝑥 . Waldspurger et al. showed that with

𝑆𝑚𝑎𝑥 = 8𝐾 , reasonably accurate MRCs can be generated

for most workloads [29]. This variant achieves 𝒪(1) space
overhead and 𝒪(𝑁) compute overhead, making it the most

efficient known MRC-generation algorithm as we will show

in the evaluation section. The algorithm begins with a high

sampling rate (typically 𝑅 = 0.1) and reduces it monotoni-

cally to prevent sampling more than 𝑆𝑚𝑎𝑥 distinct objects.

For each object sampled for the first time, the object’s sam-

pling factor 𝐹𝑖 = 𝐻𝑖%𝑃 is recorded in a priority queue, F-PQ,
of ⟨object, 𝐹𝑖⟩ tuples, ordered by the sampling factor. Once

the number of sampled objects is about to exceed 𝑆𝑚𝑎𝑥 , the

object with the largest sampling factor, 𝐹𝑚𝑎𝑥 , is removed

from both F-PQ and Olken’s data structures and the algo-

rithm’s sampling threshold 𝑇 is lowered to 𝐹𝑚𝑎𝑥 .

To accommodate TTLs, FS-Shards
++

uses Olken
++
, as FR-

Shards
++

does, but with the following modifications. When

an object is removed from F-PQ it must also be removed from

Olken
++
’s expiry time priority queue, ET-PQ (§2.2). Similarly,

when an object expires from ET-PQ, it should be removed

from F-PQ. One way to implement this is to add two new

fields to Olken
++
’s hash table of objects: a pointer to the

object in F-PQ and a pointer to the object in ET-PQ. Thus,

when an object is removed from F-PQ, it can efficiently be

removed from ET-PQ, and vice versa. FS-Shards
++

maintains

the same complexities as the original algorithm.

FR-Shards
++
𝑎𝑑 𝑗

and FS-Shards
++
𝑎𝑑 𝑗

. Sampling bias is a

known downside of Shards, as it may not sample frequently

accessed objects, leading to MRCs with high errors [29]. For

example, we observed that FR-Shards performed poorly on

most workloads from SEC EDGAR [68, 69], with a Mean

Absolute Error (MAE) of 12%, on average, even with a high

sampling rate of 𝑅 = 0.1 (=10%). This poor accuracy stems

391

EuroSys ’24, April 22–25, 2024, Athens, Greece Sultan et al.

from Shards not distinguishing between highly popular

and less popular objects. In the case of the SEC workloads,

Shards did not sample any of the 3 most frequently accessed

objects which account for 47% of all the accesses.

To mitigate this issue, Waldspurger et al. proposed an ex-

tension to Shards called Shards𝑎𝑑 𝑗 [29]. This modification

estimates the number of accesses expected to be sampled

for a given sampling rate, and then adjusts the first bucket

in the stack distance histogram by the difference between

the expected and actual number of sampled accesses. The

modification is based on the assumption that the difference

between the expected and actual number of sampled accesses

is primarily due to not sampling frequently accessed objects,

and that most accesses for these popular unsampled objects

would result in hits at relatively small stack distances. In-

creasing the frequency of the first bucket in the stack distance

histogram addresses this issue. With the SEC workloads, we

found this adjustment reduces the MAE to less than 2%.

The adjustment can easily be incorporated into

FR-Shards
++

and FS-Shards
++

which we refer to as FR-

Shards
++
𝑎𝑑 𝑗

and FS-Shards
++
𝑎𝑑 𝑗

, respectively.

3 Extending HyperLogLog

HLL is a cardinality estimation algorithm that efficiently

approximates the number of distinct elements in a multi-

set [55, 56]. It is one of the most efficient methods to estimate

the WSS, which can be used to size caches. For our particu-

lar application, the multiset being considered contains one

element for each access in the target workload. More specif-

ically, each element is a hash of the key used to access an

object in the cache. Below, we first briefly give a high-level

overview of the HLL algorithm, and then show how HLLs

can be extended to accommodate TTLs.

3.1 HLL Background

Assuming multisetM contains 64-bit integers, the algorithm

identifies the number of leading zeros NLZ(𝑥) in the bi-

nary representation of each 𝑥 ∈ M. If the maximum NLZ is

𝑛 = max𝑥∈M NLZ(𝑥) then the algorithm estimates thatM’s

cardinality is 𝛼 · 2𝑛+1, where 𝛼 is a constant fudge factor.

To improve accuracy, the algorithm actually first partitions

the elements ofM into 2
𝑏
buckets. The𝑏-bit prefix of 𝑥 , 𝑃 (𝑥),

is used to identify which bucket 𝑥 belongs to. Each bucket

separately tracks the maximum NLZ of the (64−𝑏) bit suffix

𝑆 (𝑥) of each 𝑥 assigned to the bucket; these maxima are

maintained in a bucket array, which we denote HLL[0 : 2𝑏 −1].
See Fig. 8 (a). The overall count estimate is then 𝛼 · 2𝑛+1
where 𝑛 + 1 is the harmonic mean of the bucket maxima in

the bucket array HLL[0 : 2𝑏 − 1].

The estimation error of an HLL counter is 1.04/
√
2
𝑏
, so 𝑏

is effectively a precision parameter [55]; for example 𝑏 = 12

provides over 98% accuracy in practice. The space used per

bucket is typically 6 bits, so an HLL counter (in its entirety)

(a) Original HLL (b) HLL-TTL

etNLZ
0
1

2b-1

...

0
1

2b-1

...

0 1 … 64-b

Figure 8. HLL & HLL-TTL bucket arrays (et: eviction time).

requires (2
𝑏 · 6) bits (using a 64-bit hash function); that is,

with 𝑏 = 12, 3KB of space is needed for the bucket array.
2

There are three main operations on HLL counters: Insert,
Count, and Merge. Their implementations are surprisingly

simple and shown in Fig. 9. Insert updates an HLL to reflect

a new element 𝑥 being added to a multiset. Count returns the
count estimate. Merge generates anHLL to reflect the number

of distinct objects in the union of two multisets,M1 ∪M2,

given their respective HLLs. It is the Merge operation that

makes streaming so powerful.

3.2 TTL Support with HLL-TTL

The original HLL does not provide the functionality to delete

expired objects. We found that extending HLLs to support

deletion of expired objects to be non-trivial. The core idea un-

derlying our approach is to exclude the expired objects from

the counting process, effectively treating them as deleted.

To accommodate TTLs, the basic HLL 1-dimensional array

of buckets shown in Fig. 8 (a) is extended to a 2-dimensional

matrix as shown in Fig. 8 (b). The size of the array is selected

as follows. The number of rows is set to 2
𝑏
, the same as the

number of buckets in the original algorithm. The number

of columns is set to 64 − 𝑏. The elements of M are also

partitioned as before, but in this case into 2
𝑏 × (64 − 𝑏)

buckets. The first 𝑏 bits of 𝑥 , 𝑃 (𝑥), are used to index into a

bucket row, and the NLZ of 𝑥 ’s suffix, 𝑆 (𝑥), is used to index

into a bucket column. The column index efficiently encodes

the NLZ, and hence, there is no need to store the maximum

NLZ values explicitly. Instead, each bucket is used to store

the largest eviction time seen while updating the bucket.

We now consider the operations of the extended HLL, we

call HLL-TTL. Their implementations are shown in Fig 10.

When a new object 𝑥 is added to the multisetM, the most

significant 𝑏 bits of 𝑥 , 𝑃 (𝑥), are used to index into a row of

the HLL-TTL matrix. The NLZ of 𝑥 ’s least significant 64 − 𝑏
bits, 𝑆 (𝑥), is then used to index into an HLL-TTL column to

identify a target bucket. If the eviction time of 𝑥 is larger than

the recorded value in the bucket, then the bucket’s eviction

time is updated to the larger value.

2
In practice, using a byte instead of 6 bits per bucket makes the implemen-

tation easier, but increases the space required from 3𝐾𝐵 to 4𝐾𝐵. In our

implementation, we use Heule et al.’s HLL++ implementation [56], which

supports 64-bit hashes and has a sparse implementation. Throughout the

paper, we refer to Heule’s HLL++ as HLL.

392

TTLs Matter: Efficient Cache Sizing with TTL-Aware Miss Ratio Curves and Working Set Size EuroSys ’24, April 22–25, 2024, Athens, Greece

Insert(x, HLL): update HLL to reflect x added to multiset

HLL[P(x)] = max{HLL[P(x)], NLZ(S(x))} where
P(x)=first 𝑏 bits of x; S(x)=last 64 − 𝑏 bits of x.

Count(HLL): returns counter estimate

return 𝛼 · 2𝑛+1 where 𝑛 + 1 = harmonic mean of HLL[0..2
𝑏 − 1]

and 𝛼 is a constant.

Merge(HLL1, HLL2)→ HLL: merge HLL1 and HLL2

for i=0..2𝑏 − 1 HLL[i] = max{HLL1[i], HLL2[i]}

Figure 9. HLL operations

Insert(x, 𝑒𝑡 ,HLL): update HLL to reflect x added to multiset

with eviction time 𝑒𝑡
HLL[P(x),NLZ(S(x))] = max{HLL[P(x), NLZ(S(x))], 𝑒𝑡}

Count(HLL): returns counter estimate

return 𝛼 · 2𝑛+1 where 𝑛 + 1 = harmonic mean of 𝑛0 ..𝑛
2
𝑏−1

where 𝛼 is a constant and

𝑛𝑖 = max{𝑗 ∈ [0, 64 − 𝑏]}: HLL[𝑖 ,𝑗]≠ 0 and not expired

Merge(HLL1,HLL2)→ HLL: Merge HLL1 and HLL2

for i=0..2𝑏-1 for j=0..64-𝑏
HLL[i,j] = max(HLL1[i,j],HLL2[i,j])

Figure 10. HLL-TTL operations

Cardinality estimation (Count) is now based on the har-

monic mean of the column indices corresponding to the

rightmost bucket in each row with a recorded expiry time

that is not 0 and has not yet expired.
3
That is, given that

NLZ increases as one moves right in the columns, we scan

each row from right to left, and identify the rightmost bucket

with a non-expired value; the column index of that bucket

is used to compute the harmonic mean. The fundamental

concept behind this approach is that the largest NLZ will

be utilized for cardinality estimation, similar to the original

HLL method. We note that when the current largest NLZ

in a row expires, then the next largest NLZ that has not yet

expired will be used.

The implementation of Merge is analogous to the one for

the basic HLL. Merging two HLL-TTL counters, 𝐻1 and 𝐻2,

results in an HLL-TTL counter such that the eviction time

of each bucket is equal to the larger eviction time from 𝐻1

and 𝐻2 for the same index.

Performance considerations. Adding a second dimen-

sion to the HLL increases space usage by a large constant

factor. Assuming the eviction time can be encoded as a 32-bit

integer, then the extended version increases the space re-

quired from 2
𝑏 ×6 bits to 2

𝑏 × (64−𝑏) ×32 bits. For precision

𝑏 = 12, the space requirement increases from 4𝐾𝐵 to 832𝐾𝐵.

Henceforth, we will refer to this as the dense implementation.
Alternatively, a dynamic implementation utilizes a linked

list similar to the approach proposed by Heule et al. to save

3
If every entry in a row equals zero (or if all entries have expired), then

this row will not make any contribution to the harmonic mean. Rather, the

count of rows where all entries are zero (or all have expired) will be used

to make bias corrections, following the same procedure as detailed in the

original HLL paper [55].

Table 1. Comparison of HLL-TTL Implementations

HLL precision 8 10 12 14 16

Space usage: Dynamic relative to Dense 80% 82% 83% 85% 88%

Slowdown: Dynamic relative to Dense (×) 1.83 1.96 2.25 2.43 3.03

Overhead converting Dynamic to Dense (ms) 0.1 0.2 1.5 4.2 36

Overhead serializing Dense impl. (ms) 0.2 0.7 3.0 14 38

Overhead serializing Dynamic impl. (ms) 0.1 0.5 1.7 5.8 23

space [56]. Each row is replaced with a linked list, allocat-

ing list elements as needed.
4
Each elements contains the

tuple ⟨NLZ, eviction time⟩ and the list is ordered by NLZ.
Whenever an element has an eviction time less than that

of the next element in the list, it can be removed because it

is guaranteed not to ever contribute to the results Count ().
While this reduces space usage in practice, the downside is

that it incurs extra processing overhead for allocating and

freeing list elements as well as for traversing the linked lists.

In our evaluation over all workloads we considered, space

usage is reduced by over 80%, on average, compared to the

dense implementation, but throughput decreased by a factor

of two.

In our practical implementation, we use a three-pronged

approach. First, we use a sparse implementation based on a

dynamically-sized closed hash table with one entry for each

unique key countered. Each entry contains a ⟨Hash(key),
expiry time⟩ tuple. This is similar to Microsoft’s HLL im-

plementation’s direct counting approach [70]. Second, when

the size of the hash table reaches the size of the 2D array in

the dense implementation, the sparse implementation is con-

verted to the dense implementation. Finally, whenever the

HLL needs to be stored to disk or sent over a communication

channel (for streaming), then the dense implementation is

converted to the dynamic implementation with the linked

lists and marshalled.

The performance of the dynamic implementation is lower

than that of the dense implementation. However, the dy-

namic implementation uses significantly less memory, be-

cause the dense implementation is a 2D matrix where many

of the cells can be zeros. Table 1 compares the performance

and space usage of the two implementations across precision

levels 8 through 16, and it shows the overheads of converting

a dynamic representation to a dense representation as well

as the serialization overheads for the two representations.

4 CounterStacks
++

In this section, we provide background on Counterstacks

(CS)(§4.1), extend CS to accommodate TTLs (§4.2), describe

optimizations (§4.3), and discuss streaming (§4.4). We re-

fer to the extended CS version that accommodates TTLs as

CounterStacks
++

(CS
++
).

4
The same approach can also be used for the columns.

393

EuroSys ’24, April 22–25, 2024, Athens, Greece Sultan et al.

𝑐𝑖 a b b c b a

𝑐1 1 2 2 3 3 3

𝑐2 1 1 2 2 3

𝑐3 1 2 2 3

𝑐4 1 2 3

𝑐5 1 2

𝑐6 1

Figure 11. Operation of CS: Rows represent counters from

oldest (top) to newest (bottom). Columns represent time

steps from left to right, with the accessed object identified at

the top. Counter values reflect the processed access of each

column. For instance, after first access to 𝑎, a counter 𝑐1 with

value 1 is initialized. With the second access to 𝑏, counters

𝑐1 and 𝑐2 update to 2 and 1, respectively. As an example for

determining the stack distance, consider the processing of

the third access to 𝑏 (in bold): counter 𝑐3 (boxed) does not

increase, but counter 𝑐4 (dash boxed) does, so the value of

𝑐3, namely 2, is the stack distance for the third access to 𝑏.

4.1 CounterStacks Background

CS uses Mattson’s approach to build the MRC using a his-

togram of stack distances (§2.1). For ease of understanding,

we first describe a basic CS algorithm that is highly ineffi-

cient and then describe three optimizations introduced by

the CS authors to make it more efficient. CS works as fol-

lows. For each access to an object in the workload: (i) a new

counter is instantiated and added to a stack of counters, and

(ii) all previously created counters are incremented by one if

they have not previously encountered an access to the same

object. To obtain the stack distance of the current access, the

counters are traversed from oldest to newest to find the first

counter 𝑐𝑖 that was not incremented while the next counter

𝑐𝑖+1 was incremented. The value of 𝑐𝑖 is taken as the stack

distance, because counter 𝑐𝑖 recorded an access to the same

object previously, while counter 𝑐𝑖+1 did not, and the value

of 𝑐𝑖 identifies how many distinct objects it has encountered.

See Fig. 11 for an example.

Wires et al. introduced the following three optimizations

to make the basic algorithm more efficient [28].

A. HLLs.HLL counters are used to estimate the number of

distinct objects accessed since the counter was instantiated.

Each HLL counter uses a fixed amount of space (and no

longer needs tomaintain a list of previously accessed objects).

The accurate counters are replaced with HLLs, and their

reported values are used in the same way as described earlier.

B. Pruning.Once two counters have the same count, their

future values will remain the same in perpetuity, because

each further access to a new distinct object adds one to both

counters. Hence, pruning is used to keep only one of the

two counters in order to save space and computation. CS is

more aggressive and deletes a younger counter whenever its

value is at least (1 − 𝛿) times the older counter, where 𝛿 is a

fixed pruning parameter. This guarantees that the number

of counters is at most 𝒪(log𝑀/𝛿) [28]. Wires et al. used a

pruning 𝛿 of 0.02 and 0.1 for their High-Fidelity (HiFi) and

Low-Fidelity (LoFi) variants [28, 31], respectively.

C. Downsampling. Although pruning limits the number

of counters in the stack, the number of instantiated counters

is still 𝑁 , which makes the algorithm slow. With downsam-

pling, a new counter is instantiated only on every𝑑-th access.

This reduces the number of instantiated counters from 𝑁 to

𝑁 /𝑑 . Moreover, to further reduce the computational over-

head, the counts of all counters are updated only on every

𝑑 − 𝑡ℎ access (instead of on each access). Wires et al. showed

that downsampling has minimal impact on the accuracy of

the MRCs for the MSR workloads [28]. Their experimental

evaluation used a downsampling factor 𝑑 = 1 million. They

also add a new counter every 60 seconds for the HiFi variant

and every 3,600 seconds for the LoFi variant (based on access

reference time), if the downsampling factor is not reached

within that time frame.

Downsampling changes the way the stack distance is com-

puted because with downsampling up to 𝑑 accesses are pro-

cessed instead of a single access. To estimate the stack dis-

tances for those accesses, CS iterates over all the counters,

from oldest to newest, and compare how much adjacent

counters increased after processing these accesses. If two

adjacent counters, 𝐻𝑖 and 𝐻 𝑗 are increased by Δ𝑖 and Δ 𝑗 , re-
spectively, we can infer that (Δ 𝑗 −Δ𝑖) accesses represent hits
in the cache represented by 𝐻𝑖 but misses in the cache repre-

sented by𝐻 𝑗 [28]. Thus, CS increments the𝐻𝑖 histogram bin

by (Δ 𝑗 −Δ𝑖). For the last counter in the stack, 𝐻𝑛 , histogram

bin𝐻𝑛 is incremented by 𝑑 −𝐻𝑛 . The reason is that𝐻𝑛 repre-

sents the number of distinct accesses in the last processed 𝑑

accesses, and thus 𝑑 −𝐻𝑛 hits must have occurred. Wires et

al. refer to this process as the finite differencing scheme [28].
Finally, the histogram bin corresponding to the ∞ stack dis-

tance is incremented by 𝑑 minus the sum of all previous bin

increments to ensure the histogram is updated by 𝑑 .

4.2 TTLs Support in CounterStacks
++

To take TTLs into account, we replace CS’s basic HLL with

our extended HLL-TTL (§3). Simply integrating the extended

HLLs into CS causes an issue related to downsampling. With

TTL treatment, processing 𝑑 accesses often introduces inac-

curacies because some of the accesses may be mistakenly

identified as misses when they are, in fact, hits. For example,

assume object 𝐴 with an expiry time of 10 is represented in

the stack. If a new access to𝐴 at time 9 is processed, it should

be considered a cache hit. But if we complete processing 𝑑

accesses at time 15, then the access to 𝐴 will be mistakenly

treated as a miss, because at time 15𝐴 will have been evicted

from the stack. We have found that this significantly affects

accuracy and hence needs to be addressed.

Our solution is to monitor the upcoming expiry times

of objects represented in the stack. We prematurely termi-

nate processing accesses whenever an object expires, thus

394

TTLs Matter: Efficient Cache Sizing with TTL-Aware Miss Ratio Curves and Working Set Size EuroSys ’24, April 22–25, 2024, Athens, Greece

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

D
y
n
a
m

ic
D

N
LZ

M
e
rg

e
C

o
u
n
t

T
=

2

T
=

4

T
=

8

T
=

1
6

C
=

1
0

C
=

5
0

C
=

1
0

0

A
ll-

T
=

8
C

=
5

0

A
ll-

T
=

8
C

=
1

0
0

HLL
Optimi-
zations

Parallel with
 T threads

Fixed Size with
 C counters

S
p

e
e
d

u
p

 (
X

)
lo

g
2
 s

ca
le

Mean
Median

Figure 12. Speedup from each optimization against the orig-

inal CS algorithm using all 14 MSR workloads, including

the combined workload used in the CS paper [28]. Line

ends show maximum and minimum speedups, while the

box marks the 75th and 25th percentiles.

processing fewer than 𝑑 accesses. This may substantially

increase the number of instantiated counters, which has a

negative impact on performance. To reduce the number of

times a new counter is instantiated, we round eviction times

to the closest 𝑓 seconds. In our implementation, we set 𝑓 to

30 seconds when CS
++

is configured for HiFi, and 60 seconds

for LoFi. We maintain a priority queue of expiry times to

efficiently check for expired objects in 𝒪(1) time. Further,

to confine memory usage, only the earliest 8𝐾 non-expired

eviction times are recorded in the priority queue; limiting

the recorded expiry times to 8𝐾 does not affect accuracy.

4.3 Optimizations

We optimized CS
++

significantly, and these improvements

also apply to the original CS algorithm for workloads with-

out TTLs. This section details these optimizations and their

effects on the CS algorithm using all the MSR workloads

used in the CS paper (and other studies) [28, 29, 31]. Fig. 12

shows the speedups using HLL precision (𝑏 = 16) and the

HiFi setup. The optimizations result in an average speedup

of 26×with 50 counters and 8 threads. Lower HLL precisions

yield speedups of 86× and 50× on average for 𝑏 = 12 and

14. In the LoFi setup, average speedups for HLL precisions

𝑏 = 12, 14, and 16 are 41×, 33×, and 22×, respectively.
O1. Hardware Supported Instruction (LZCNT). As CS

uses HLLs (§3), identifying the NLZs in the binary repre-

sentation of the hash of the accessed object’s key consumes

significant processing time. Existing HLL implementations,

such as those by Redis
5
and Microsoft

6
, use for loop and

shift operations to count the NLZ. We observed that a hard-

ware supported instruction, LZCNT (leading zeros count), is
more efficient. For CS, this leads to an average speedup of 2×.
5
Redis code (method hllPatLen()): https://git.io/JDBtu

6
Microsoft code (method GetSigma()): https://git.io/JDBtR.

O2. New Specialized HLL Operation (MergeCount). As
detailed in §4.1, after instantiating a new counter, up to 𝑑

accesses are Inserted into all existing counters. The count

of each counter is then calculated using the Count oper-

ation (§3), which requires accessing all buckets of every

counter. We devised a new batch processing mechanism to

enhance performance by exploiting the HLL Merge opera-

tion. Instead of adding accesses to all existing counters, we

exclusively add them to a new instantiated counter, followed

by the execution of our new MergeCount operation. This

operation merges the latest counter with all previously ex-

isting ones, while performing the operations necessary for

the Count operation. The MergeCount operation improved

the performance of CS by a factor of 5 on average.

O3. Fixed Size Overhead. We found that we can prune

much more aggressively than what was originally proposed

for CS and do so with marginal impact on accuracy. In fact,

we found we can limit the number of counters to a constant,

making CS/CS
++

an MRC-generation algorithm with

constant space overhead. The general strategy employed

to limit the amount of memory used is as follows: whenever

the existing counters are about to exceed the specified con-

stant number of counters, we invoke the pruning operation

with the smallest 𝛿 that guarantees that at least one of the

existing counters is pruned. This optimization affects the ac-

curacy of the algorithm as it reduces the number of counters.

The original CS algorithm uses up to 265 counters, with an

average of 141 counters. Limiting the number of counters to

10, 50, and 100 increases the MAE by an average of 6.34%,

0.26%, and 0.05%, respectively, but leads to an average speed

up of 6.89×, 1.58×, and 1.11×, respectively.
O4. Parallel Processing. Using the earlier optimization of

our batch processing mechanism with MergeCount, CS/CS++

can trivially be parallelized. Theworkload is still processed in

batches: for each batch, the accesses in the batch are added to

the newly instantiated HLL serially, and this HLL can then be

MergeCounted to the existing HLLs in parallel. This parallel

processing does not require locking as there are no conflicts:

the newest HLL is read-only and the other HLL buckets

are updated exactly once. Using 8 threads, this results in an

average speed up of 4.1×.
O5. Dynamic Downsampling. CS uses a constant down-

sampling factor 𝑑 , potentially causing inaccuracies for work-

loads with smaller WSS. We propose adjusting 𝑑 using the

formula 𝑑 =𝑊𝑆𝑆𝐺𝐵 × 10,000 (capped at 1M, similar to the

original algorithm). The WSS is obtained from the oldest

counter in the stack. After this optimization, CS runs at 0.88×
its original speed, but its average and max MAE improves

from 0.59% and 2.60% to 0.42% and 1.70% respectively.

4.4 Streaming

A major feature of CS and CS
++

is their ability to stream in-

termediate counter information; e.g., by persistently storing

the most recent counter values after the processing of each

395

https://git.io/JDBtu
https://git.io/JDBtR

EuroSys ’24, April 22–25, 2024, Athens, Greece Sultan et al.

batch. The streams can be used to generate MRCs over arbi-

trary time intervals, and streams from different workloads

can be merged to obtain MRCs for combined workloads.

For workloads without TTLs, the MRC for the accesses

between any 𝑡𝑥 and 𝑡𝑦 can be generated by using the fi-

nite differencing scheme (§4.1-C) for the streamed counter

values in each successive interval (𝑡𝑥 , 𝑡𝑥+1), (𝑡𝑥+1, 𝑡𝑥+2), · · · ,
(𝑡𝑦−1, 𝑡𝑦), updating the stack distance histogram each time.

Accommodating TTLs introduces a complication with

the above method. After processing a batch, some objects

previously added to the existing counters might have expired.

Because CS
++

uses HLL-TTL counters when computing the

stack distances, objects that have expired while processing

the batch are taken into account. However, this is not the case

when CS
++

streams counter values because they are static,

which means that expired objects during the processing of

the batch are not accounted for. As a result, based on the

TTL workloads we analyzed, the generated MRCs becomes

so inaccurate, they effectively become unusable.

To address this, we output two streams: a PreMerge stream
and a PostMerge stream. The former records the counts of

unexpired objects for the existing counter values just be-

fore the latest counter is merged with the existing counters,

and the latter records the counter values immediately after

the merge. The finite differencing scheme is then applied

between the latest PreMerge and the PostMerge counter val-
ues (instead of between the latest PostMerge counts and the

previous PostMerge counts).
As an alternative to streaming counter values, it is possible

to stream the HLL (or HLL-TTL) counters directly. While

this consumes significantly more storage space, it alleviates

the need to use two streams since the HLL-TTLs reflect ex-

piry times. Streaming HLL counters (as opposed to counter

values) has the further advantage that it allows generating

MRCs of combined workloads even if the workloads being

merged access common objects. In contrast, when streaming

counter values, the workloads being combined cannot access

common objects (as observed by Wires et al. [28]) because

otherwise common objects would be counted multiple times

when the streams are merged. Streaming HLL counters re-

solves this issue because common objects do not increase

the HLL (or HLL-TTL) counts; i.e., the Insert and Merge
operations are idempotent.

5 Exploiting HLL-TTL for WSS Estimation

There are mixed opinions as to the utility of WSS. Some

consider it "not enough to guide memory allocation" and find

MRCs to offer more utility [29, 71]. Others have found WSS

to be sufficient to guide memory allocations without the need

for MRCs [72]. We have found that both the WSS and MRC

have their own use cases. For small WSS values, directly

setting the cache configuration to the WSS will minimize

the miss rate. Conversely, for larger WSS values, the MRC

Table 2. Workloads used in this paper. For the Tencent

dataset, it contains 5,584 traces mapped to 40 cache instances.

workloads # accesses

MSR Cambridge [44] 13 434M

Twitter [23] 54 247B

Wikipedia [73] 1 2.5B

SEC EDGAR [68, 69] 58 25B

IBM [67] 98 1.6B

Tencent [35] 5,584 30B

provides insights into cache size versus miss rate trade-offs,

which are not available when using WSS.

Fig. 13 (left) shows the WSS CDF across the 264 workloads

from 6 different collections shown in Table 2 (without con-

sidering TTLs). Nearly 20% of these workloads have a WSS

of less than 1GB. By allocating 1GB of memory to each cache

serving these workloads, we achieve the lowest possible miss

rate. Fig. 13 (right) shows the WSS CDF across 28 workloads

from the Twitter collection (described in §6). Taking TTLs

into account drastically reduces the largest WSS from over

2TB to 64GB. The effect of TTLs is substantial: 80% of the

analyzed workloads have a WSS of 16GB at most, compared

to 256GB when disregarding TTLs. Furthermore, 60% of the

workloads have a WSS of less than 6GB when considering

TTLs, compared to 32GB when disregarding TTLs. In cases

like these, WSS alone often suffices for allocation guidance

without MRC-generation.

WSS estimation through cardinality estimation aims to

measure the number of distinct objects in a multiset. HLL

is one of the most efficient tools for this task [55, 56]. In

contrast, tools tailored for object membership testing (like

Bloom and Cuckoo filters) are less efficient than the HLL due

to their broader scope [28].

To the best of our knowledge, our extended HLL-TTL (§3)

is the first to accurately estimate the WSS of workloads in

constant spacewhen taking TTLs into account. Its worst-case

memory usage for precision 𝑏 = 12 is 832KB (140KB when

using the dynamic implementation), and results in 98.8%

accuracy. In contrast, exact WSS calculation requires space

linear to the number of distinct objects in the workload. For

example, the workloads in the Twitter collection combined

include 247 billion accesses to 25 billion distinct objects,

which requires 279 GB of memory to compute the exact

WSS. Our HLL-TTL based estimate is up to five orders of
magnitude more memory-efficient.

6 Evaluation

In this section we show that (1) significant memory savings

can be achieved when sizing caches using TTL-aware WSSs

and MRCs, (2) existing WSS and MRC algorithms, which

do not take TTL into account, are highly inaccurate when

applied to workloads with TTLs, (3) the performance of our

TTL-aware algorithms are comparable to that of the existing

396

TTLs Matter: Efficient Cache Sizing with TTL-Aware Miss Ratio Curves and Working Set Size EuroSys ’24, April 22–25, 2024, Athens, Greece

 0

 20

 40

 60

 80

 100

64MB 256MB 1GB 4GB 16GB 64GB 256GB 1TB

C
D

F
(%

)

Working Set Size[logscale]

 0

 20

 40

 60

 80

 100

32MB 256MB 1GB 4GB 16GB 64GB 256GB 1TB

C
D

F
(%

)

Working Set Size [logscale]

Without TTL
With TTL

Figure 13. The left figure shows the WSS CDF for the work-

loads listed in Table 2. The right shows the WSS CDF for 28

TTL-related Twitter workloads (with and without TTLs).

TTL-agnostic algorithms, and (4) our extended algorithms

maintain consistent accuracy across varied configuration

parameters. We first consider WSS results (§6.1) and then

MRC results (§6.2).

Experimental Setup and Workloads. Our experiments

were conducted on a server equipped with an Intel 13900KS

CPU and 128GB of DDR5-4800MHz DRAM. Workloads were

read from a Corsair PCIe 4.0 MP600 PRO 8TB NVME SSD

after they were formatted into a binary format. We use an

in-house system that processes the access workloads and

generates the WSS and MRC using each of the algorithms

discussed in this paper. In all our generated MRCs, the stack

distance histogram is divided into 64K buckets each repre-

senting 32MB, supporting a cache size up to 2TB; a similar

approach was used in earlier studies [27, 29, 31].
7

Since the Twitter workloads are the only publicly available

workloads with TTLs, only they were used to evaluate claims

regarding TTL. We included all workloads recommended

by Twitter [66],
8
as well as the workloads with a median

TTL less than the duration of the workload. These 28 Twitter

workloads (out of 54) include 113B accesses.
9
We only used

the GET requests from the workloads, as in previous stud-

ies [28, 31, 34].
10
We extracted the TTL information from the

SET requests corresponding to the same key used in the GET

request, as GET requests do not include TTL information.

6.1 WSS Results

To evaluate the impact of TTLs on the WSS, we compared

the exact𝑊𝑆𝑆𝑡𝑡𝑙 and the exact𝑊𝑆𝑆𝑛𝑜𝑡𝑡𝑙 across all 28 work-

loads. Notably, the𝑊𝑆𝑆𝑡𝑡𝑙 fluctuates over time, as previously

illustrated in Fig. 4. Hence, in our comparisons, we used the

high watermark of the𝑊𝑆𝑆𝑡𝑡𝑙 values as measured at the end

of each hour over the duration of the workload. The potential

memory savings by accommodating TTLs is presented in

terms of Relative Savings
(
𝑅𝑆 =

𝑊𝑆𝑆𝑛𝑜𝑡𝑡𝑙−𝑊𝑆𝑆𝑡𝑡𝑙
𝑊𝑆𝑆𝑛𝑜𝑡𝑡𝑙

)
.

7
AET uses logarithmic ranges [31].

8
Recommended TTL clusters are: 6, 7, 11, 18, 19, 22, 25, 52 [66].

9
The 28 workloads are: {4, 6, 7, 8, 11, 13, 14, 16, 18, 19, 22, 24, 25, 29, 30, 33,

34, 37, 40, 41, 42, 43, 46, 48, 49, 50, 52, 54}. This subset is larger than those of

previous related studies [41, 72].

10
The SET requests in the workloads were captured when running a specific

(undisclosed) cache size, and the number and placement of SET requests

would be different for different cache sizes.

Using𝑊𝑆𝑆𝑡𝑡𝑙𝑊𝑆𝑆𝑡𝑡𝑙𝑊𝑆𝑆𝑡𝑡𝑙 instead of𝑊𝑆𝑆𝑛𝑜𝑡𝑡𝑙𝑊𝑆𝑆𝑛𝑜𝑡𝑡𝑙𝑊𝑆𝑆𝑛𝑜𝑡𝑡𝑙 results in 69%69%69%mem-

ory savings, on average. Fig. 14 shows that sizing caches

using𝑊𝑆𝑆𝑡𝑡𝑙 instead of𝑊𝑆𝑆𝑛𝑜𝑡𝑡𝑙 results in a relative savings

of between 7.20% and 99.93% per workload, with an average

of 69.38%. The aggregate𝑊𝑆𝑆𝑡𝑡𝑙 (242.3GB) is 96% less than

the aggregate𝑊𝑆𝑆𝑛𝑜𝑡𝑡𝑙 (7.8TB).

The savings achieved depend primarily on the distribution

of TTL limits in the workload and the access patterns. Typi-

cally, longer TTLs result in lower savings due to less frequent

expiration, whereas shorter TTLs lead to increased savings.

Our analysis of common TTLs used across the evaluated

workloads supports this.

Consider workloads 52 and 6. For workload 52, 62% of

the accesses have a TTL of 24 hours, and 36% have a TTL

of 336 hours, resulting in approximately 30% savings. In

contrast, for workload 6, where 90% of accesses have a TTL

of at most 10 minutes, the savings increase to around 90%.

These examples underscore the significant impact that TTL

duration has on savings.

To further illustrate the effect of access patterns on savings,

we compare workloads 14 and 49. Both workloads feature a

TTL of 24 hours for all accessed objects. However, the savings

differ markedly: workload 14 achieves 71% savings, whereas

workload 49 has 19% savings. This discrepancy is clarified

upon examining the high watermark of the number of non-

expired objects present in the cache during these workloads.

For workload 14, only 28% of the total objects coexist in the

cache at any given time in the worst-case scenario, compared

to 77% for workload 49. This analysis highlights the nuanced
ways in which TTL settings and access patterns together

influence cache efficiency and savings.

The estimation error of our HLL-TTL (when applied to

workloads with TTLs) is in line with the expected error

of the original HLL (when applied to workloads without

TTLs). To evaluate the accuracy of our HLL-TTL, we used

Absolute Relative Error
(
𝐴𝑅𝐸 =

|𝐸𝑥𝑎𝑐𝑡𝑊𝑆𝑆𝑡𝑡𝑙−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑊𝑆𝑆𝑡𝑡𝑙 |
𝐸𝑥𝑎𝑐𝑡𝑊𝑆𝑆𝑡𝑡𝑙

)
.

We tested using different values for HLL precision parameter

𝑏 within the range [8 − 16]. Fig.15 shows that precisions

𝑏 = 12, 13, and 14 exhibit AREs of 1.14%, 0.85%, and 0.7%,

respectively. The figure also shows the original theoretical

standard error of HLL-NoTTL, 𝜎 = 1.04√
2
𝑏
[55]. The error of

our HLL-TTL is in line with that expected error.

For throughput, Fig.16 shows that precisions 𝑏 = 12, 13,

and 14, achieve average throughput of 50𝑀, 47𝑀, and 43𝑀

accesses per second, respectively. The primary reason for the

decrease in throughput as the precision increases is poorer

cache locality. The memory usage of the dense and dynamic

implementations of our HLL-TTL for different precision lev-

els (𝑏 = 8 to 16) is summarized in Table 3.

6.2 MRC Results

MRCs are more complex to evaluate than WSS because each

MRC identifies a tradeoff between the cache size and miss

397

EuroSys ’24, April 22–25, 2024, Athens, Greece Sultan et al.

Table 3. Comparison of space usage for dense and dynamic

HLL-TTL implementations. Units are in KB.

HLL b= 8 9 10 11 12 13 14 15 16

Dense 56 110 216 424 832 1,536 3,195 6,267 12,288
Dynamic 11 21 39 73 136 252 466 851 1,536

 0

 20

 40

 60

 80

 100

4 6 7 8
1
1

1
3

1
4

1
6

1
8

1
9

2
2

2
4

2
5

2
9

3
0

3
3

3
4

3
7

4
0

4
1

4
2

4
3

4
6

4
8

4
9

5
0

5
2

5
4

S
a
v
in

g
s

(%
)

Twitter Workload ID

Figure 14. Relative memory savings across workloads when

sizing memory with 𝑊𝑆𝑆𝑡𝑡𝑙 instead of 𝑊𝑆𝑆𝑛𝑜𝑡𝑡𝑙 . Savings

range from 7.20% to 99.93%, with an average of 69.38%.

1
 0

 2

 4

 6

 8

 10

 8 9 10 11 12 13 14 15 16

A
R

E
 (

%
)

HLL Precision (b)

Mean

Median

σ

Figure 15. Sensitivity of the precision parameter, 𝑏, for HLL-

TTL. 𝜎 is the theoretical Standard Error of the original HLL-

NoTTL (when applied to workloads without TTL). In Fig-

ures 15, 16, 17, and 18, each line represents the range of

results across the 28 workloads analyzed. The line’s top and

bottom represent maximum and minimum results. The box’s

top and bottom represent the 75th and 25th percentiles.

 0
 10
 20
 30
 40
 50
 60
 70

 8 9 10 11 12 13 14 15 16

M
il.

 A
cc

e
ss

/S
e
c

HLL Precision (b)

Mean
Median

Figure 16. Throughput of HLL-TTL for different precisions.

rate. We observed that the MRCs of most workloads have

long tails with a small negative slope before reaching steady-

state. Thus, a system operator might decide to downsize the

cache while accepting a slight increase in miss rate, depend-

ing on the application. For example, an operator may deem a

miss rate increase of 𝑡 ∈ {0%, 0.1%, 0.5%, 1%} to be acceptable
in return for lower memory requirements.

Utilizing𝑀𝑅𝐶𝑡𝑡𝑙𝑀𝑅𝐶𝑡𝑡𝑙𝑀𝑅𝐶𝑡𝑡𝑙 instead of𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙 results in amem-

ory saving of 66%66%66%, on average. For each of the workloads

examined, we measured the smallest cache size needed to

achieve the minimal miss rate + 𝑡 for both the exact𝑀𝑅𝐶𝑡𝑡𝑙
and exact 𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙 , then quantified the savings using the

same relative saving metric, RS, described above. Utilizing

𝑀𝑅𝐶𝑡𝑡𝑙 , instead of 𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙 , leads to memory savings of

66%, 56%, 52%, and 49%, on average per workload, for 𝑡 = 0%,

0.1%, 0.5%, and 1%, respectively. These results may appear

counter-intuitive, as one might think that an increase in

tolerance, 𝑡 , should correspond to an increase in savings.

However, 𝑀𝑅𝐶𝑡𝑡𝑙 has a notably shorter tail than 𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙
(e.g., Fig. 3), making an increase in 𝑡 less beneficial. We also

measured the aggregate of the smallest cache sizes needed to

achieve the minimal miss rate + 𝑡 for both the exact𝑀𝑅𝐶𝑡𝑡𝑙
and exact𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙 , assuming one cache instance per work-

load, quantifying the savings as we did earlier. In aggregate,

utilizing𝑀𝑅𝐶𝑡𝑡𝑙 , instead of𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙 , leads to memory sav-

ings of 94% (from 4.49TB to 243.66GB), 93% (from 2.50TB

to 173.81GB), 88% (from 1.08TB to 131.13GB), 83% (from

618.28GB to 104.94GB) for 𝑡 = 0%, 0.1%, 0.5%, and 1%, respec-

tively.

ExistingMRC-generation algorithms which do not ac-

commodate TTLs can misreport miss rates by up to 38%38%38%

on workloads with TTLs. To quantify how much existing

MRC-generation algorithms deviate from the exact 𝑀𝑅𝐶𝑡𝑡𝑙 ,

we measured the Mean Absolute Deviation(
𝑀𝐴𝐷 =

∑𝐵
1
|𝑀𝑅𝐶𝑡𝑡𝑙 [𝑖]−𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙 [𝑖] |

𝐵

)
between 𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙 and

𝑀𝑅𝐶𝑡𝑡𝑙 , where 𝐵 is the maximum number of points in either

MRC. We compared points on both MRCs (in increments of

32MB) up to the point where both MRCs cease to change,

extending the shorter MRC as necessary.
11 𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙 devi-

ates by up to 38% from𝑀𝑅𝐶𝑡𝑡𝑙 , with an average MAD of 5%,

as shown in Fig. 17 (a).

The errors introduced by our extendedMRC-generation

algorithms (when applied to workloads with TTLs) are

comparable to those of their original counterparts (when

applied to workloads without TTLs). To evaluate the ac-

curacy of our TTL-accommodating MRC-generation algo-

rithms, we measured the Mean Absolute Error(
𝑀𝐴𝐸 =

∑𝐵
1
|𝑀𝑅𝐶𝑡𝑡𝑙 [𝑖]−𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙 [𝑖] |

𝐵

)
between approximate

𝑀𝑅𝐶𝑡𝑡𝑙 and the exact 𝑀𝑅𝐶𝑡𝑡𝑙 obtained using our Olken
++

algorithm. The MAE is widely used to quantify MRC er-

rors [28, 29, 31–33, 37, 72, 74, 75]. Fig. 17 (b) shows the errors

for different configuration parameters to illustrate the sensi-

tivity of these algorithms to their configuration parameters.

We make several observations. First, the Shards𝑎𝑑 𝑗 variant

should always be used over Shards as it has significantly

lower MAEs. For example, FR-Shards
++−0.001 has a worst-

case MAE of 8.7%, when not adjusted, while having a worst-

case MAE of 3.5%, when adjusted (FR-Shards
++
𝑎𝑑 𝑗

−0.001).
Second, FS-Shards

++
𝑎𝑑 𝑗

with 𝑆𝑚𝑎𝑥 = 1𝐾 is surprisingly accu-

rate with an average MAE of 0.4%. Increasing 𝑆𝑚𝑎𝑥 to 8𝐾 and

11
This is crucial because if we compare up to a much larger size (e.g., 2TB),

the deviation (or error) will be dominated by the last point on the MRC.

398

TTLs Matter: Efficient Cache Sizing with TTL-Aware Miss Ratio Curves and Working Set Size EuroSys ’24, April 22–25, 2024, Athens, Greece

 0
 5

 10
 15
 20
 25
 30
 35
 40

O
lk

e
n

FR
-S

H
-.

1

FR
-S

H
a
d
j-.

1
FS

-S
H

a
d
j1

K
FS

-S
H

a
d
j6

4
K

M
A

D
 (

%
)

0
0.5

 1
 2
 3
 4
 5
 6
 7
 8
 9

FR
-S

H
+

+
-.

1

FR
-S

H
+

+
-.

0
1

FR
-S

H
+

+
-.

0
0
1

FR
-S

H
a
d
j+

+
-.

1

FR
-S

H
a
d
j+

+
-.

0
1

FR
-S

H
a
d
j+

+
-.

0
0
1

FS
-S

H
a
d
j+

+
1

K

FS
-S

H
a
d
j+

+
2

K

FS
-S

H
a
d
j+

+
4

K

FS
-S

H
a
d
j+

+
8

K

FS
-S

H
a
d
j+

+
1

6
K

FS
-S

H
a
d
j+

+
3

2
K

FS
-S

H
a
d
j+

+
6

4
K

C
S

+
+
C

5
0
H

iF
i

C
S

+
+
C

5
0
Lo

Fi

M
A

E
 (

%
)

Mean
Median

Figure 17. (Left) Deviation of exact and approximate

𝑀𝑅𝐶𝑛𝑜𝑡𝑡𝑙 from exact𝑀𝑅𝐶𝑡𝑡𝑙 in terms of MAD. (Right)MAE

between approximate𝑀𝑅𝐶𝑡𝑡𝑙 and exact𝑀𝑅𝐶𝑡𝑡𝑙 in terms of

MAE.

64𝐾 , reduces the average MAE to 0.09% and 0.06%, respec-

tively, but increases memory usage by a factor of 8× and 64×,
respectively. Third, CS

++
, running with only 50 counters, has

an average MAE of 0.32% and 0.39% for the HiFi and LoFi

variants, respectively.
12

The throughput of our extended algorithms is com-

parable to those of their original counterparts. Fig. 18

shows the throughput of the discussed algorithms using dif-

ferent configuration parameters. The throughput of Olken
++

is, on average, 15% faster than the original Olken algorithm

(which does not support TTLs) because the number of ob-

jects in the Olken
++

tree is reduced due to TTL evictions. The

throughput of FR-Shards is not affected by our extensions.

FS-Shards
++
𝑎𝑑 𝑗

is 4.7%, 13.7%, and 24% slower that the original

FS-Shards𝑎𝑑 𝑗 for 𝑆𝑚𝑎𝑥 = 1𝐾 , 8𝐾 , and 64𝐾 , respectively, due

to the extra processing overhead introduced by evictions

from two priority queues F-PQ and ET-PQ (§2.3). CS
++

is

762% and 170% faster that the original CS for the HiFi and

LoFi variants.

As a side observation, our study yielded a surprising result:

the Shards
++

variants exhibited a significantly higher accu-

racy compared to CS
++
. This outcome was unanticipated as

CS has generally been perceived as being more accurate than

Shards, as even suggested by the authors of Shards [29].

To validate this unexpected finding, we undertook a com-

parative analysis between Shards and CS (both without our
extensions), using the 264 workloads listed in Table 2. This

comparison confirmed that, without TTLs, Shards𝑎𝑑 𝑗 indeed

outperforms CS in all aspects (accuracy, throughput, and

memory usage). The primary advantage of CS over Shards,

however, is streaming.

12
Surprisingly, the HiFi variant has a worst-case MAE of 2.4%, compared

to LoFi’s 1.7%. Similarly, increasing 𝑆𝑚𝑎𝑥 in FS-Shards
++
𝑎𝑑 𝑗

from 1𝐾 to 2𝐾

raises the worst-case MAE from 1.3% to 1.7%. The reason for this is being

investigated. Average MAE decreases with higher precision as anticipated.

.5
 1
 2
 4
 8

 16
 32
 64

 128
 256

O
lk

e
n

FR
-S

H
-.

1

FR
-S

H
a
d
j-.

1
FS

-S
H

a
d
j1

K
FS

-S
H

a
d
j6

4
K

C
S

-H
iF

iP
1

2
C

S
-L

o
Fi

P
1

2

O
lk

e
n

+
+

FR
-S

H
+

+
-.

1
FR

-S
H

+
+
-.

0
1

FR
-S

H
+

+
-.

0
0
1

FR
-S

H
a
d
j+

+
-.

1
FR

-S
H

a
d
j+

+
-.

0
1

FR
-S

H
a
d
j+

+
-.

0
0
1

FS
-S

H
a
d
j+

+
1

K
FS

-S
H

a
d
j+

+
2

K
FS

-S
H

a
d
j+

+
4

K
FS

-S
H

a
d
j+

+
8

K
FS

-S
H

a
d
j+

+
1

6
K

FS
-S

H
a
d
j+

+
3

2
K

FS
-S

H
a
d
j+

+
6

4
K

C
S

+
+
C

5
0
P
1

2
H

iF
i

C
S

+
+
C

5
0
P
1

2
Lo

Fi

T
h
ro

u
g
h
p
u
t

[M
.

a
cc

e
ss

e
s/

se
c]

Mean
Median

Figure 18. Throughput of all tested algorithms.

7 Some Practical Considerations

In this section we address two practical considerations. The

first is related to accommodating heterogeneous objects sizes

and the second is comparison to real-world caches.

Accommodating heterogeneous object sizes. Using a

uniform object size has been the most widely used approach

in past MRC studies [28, 29, 31]. Carra et al. proposed an

extension to Olken and Shards algorithms to support het-

erogeneous object sizes, thus improving MRC-generation

accuracy when modeling real-world caches that use hetero-

geneous object sizes [65].
13
Carra et al.’s extension, however,

requires modifying these algorithms’ internal data struc-

tures [65]. In contrast, Olken described how to accommodate

heterogeneous object sizes without replacing the original

data structure (i.e., AVL tree), by adjusting node weights

to reflect the total size of child nodes [25]. The same ap-

proach can be applied to Olken
++
, Shards

++
, and Shards to

accommodate heterogeneous object sizes.

Computing the WSS with heterogeneous object sizes can

be achieved by using multiple HLLs, one for each object size

group (e.g., grouped as powers of 2), and track the average

object size per HLL to reduce the variance. Thus, the WSS

becomes the aggregate sum of each HLL’s cardinality multi-

plied by the HLL’s average object size. The downside of this

approach is that it increases the space required by a factor

of the number of object size groups maintained. The same

approach can be applied to HLL-TTL, which in turn enables

CounterStacks
++

to also process heterogeneous object sizes.

As an alternative for both the MRC and WSS, one can

simply use the average object size in the workload. The aver-

age object size can be computed efficiently while processing

the workload using the Welford’s method [76], which only

requires extra 16 bytes: a double for the average and an

integer for the count. However, this approach of just using

the object size average results in lower accuracy than the

previously described approaches.

13
However, they did not report that the state-of-the-art MRC-generation

does not accommodate TTLs, which causes a significant gap when used to

model workloads with TTLs, as we have shown.

399

EuroSys ’24, April 22–25, 2024, Athens, Greece Sultan et al.

Comparison to real-world caches. Most existing in-

memory caches do not implement eviction policies in their

ideal form to improve the efficiency of the production system.

LRU, which is the most widely used eviction policy [67, 77],

is often approximated as well. For instance, sampling is used

in Redis to approximate LRU evictions [78], and CacheLib

promotes accessed objects to the most recently accessed posi-

tion in the LRU stack lazily in order to reduce contention [79].

Other resource constrained caches such as flash caches ap-

proximate even more to reduce the amount of metadata per

object [80, 81].

To understand howwell MRC-generation algorithms track

the behavior of real-world in-memory caches, we compared

our Olken
++

results with actual measurements obtained from

experiments with Redis instances using the same 28 work-

loads listed in §6 and found that the miss rates deviate by

less than 1% in the worst case. Since our Olken
++

is exact,

our approximate algorithms are expected to have error rates

inline with the error rates shown in §6. Hence, our approxi-

mately generated MRCs and WSSs will track the behavior of

real-world caches reasonably well. In contrast, the original

Olken miss rates when not accommodating TTLs, deviate

by 6.2% on average and 45.8% for the worst case from Re-

dis (confirming our results in Fig. 17). Since Olken is exact

(without TTLs), then the the state-of-the-art approximate

MRC-generation algorithms that aim to approximate Olken’s

results also significantly deviate from real-world use cases.

Our results are further supported by Redis documentation

which notes: ”In simulations we found that using a power
law access pattern, the difference between true LRU and Re-
dis approximation was minimal or non-existent.”[78]. Twitter
workloads also follow a power law distribution [23, 40]. Sim-

ilarly, the approximations presented by CacheLib and RIPQ

do not affect miss rates in practice [79, 81].

In addition, although real-world in-memory caches are

used to evict expired objects lazily [79], this has changed

recently due to the benefits of proactive evictions. For in-

stance, in 2019, Twitter found that Redis’ memory usage can

be reduced by up to 25% by employing more proactive ob-

ject expiry [82]. This motivated Redis to introduce proactive

object expiry using a radix tree of expiry times starting with

Redis 6.0 which guarantees objects are removed within 1𝑚𝑠

of their expiry [83, 84]. Other in-memory caches have also

started to proactively evict objects [41, 77].

8 Related Work

MRCs have long served as a foundational tool for analyzing

the relationship between cache size and miss ratio. Over the

last five decades, a wealth of MRC-generation algorithms

have been proposed [24, 25, 27–30, 32, 35–38, 72, 74, 75, 85–

94]. In this paper, we covered the seminal algorithms: Matt-

son, Olken, Shards, and Counterstacks. MRCs are widely

utilized to optimize cache resources [22, 35, 38, 75, 88, 90, 92,

93, 95–102]. Dynacache and LAMA use MRCs to improve

Memcached’s slab allocation [22, 90]. Talus and eMRC utilize

MRCs to remove performance cliffs through cache partition-

ing [30, 38]. Centaur uses MRCs to manage cache allocations

for virtual machines [99]. OSCA, mPart, ORCA, and APAC

utilize MRCs to optimize cache allocations [35, 38, 92, 101].

The WSS has also been a focal point of research, offering

insights into application memory demands. Its importance is

evidenced by numerous studies in the last five decades [39,

45, 72, 97, 103–116]. WSS has practical applications in cache

management and has been a guiding metric for memory allo-

cations [45, 72, 97, 114, 115, 117]. WSS estimation is related

to cardinality estimation, which has been the subject of ex-

tensive research [46–56, 118]; both aim to measure statistics

concerning the number of distinct objects [28].

TTL limits are prevalent in caching systems [23, 40–43, 57–

65]. Their importance is underscored by practices such as

Twitter’s TTL enforcement for in-memory caches [40, 41].

Yang et al. have also highlighted the necessity of TTLs for

in-memory caching, emphasizing their role in effective WSS

management [40]. The rising significance of TTLs in storage

systems, especially in the context of GDPR compliance, is

worth noting [64]. TTLs are more generally becoming in-

creasingly important for compliance with privacy laws. To

the best of our knowledge, we are the first to extend MRC-

generation and WSS estimation algorithms to accommodate

TTLs.

9 Concluding Remarks

This paper addresses the critical issue of tools to support

the sizing of in-memory caches in modern cloud environ-

ments. The key issue we focused on is to incorporate TTL

handling into the state-of-the-art MRC-generation and WSS

estimation algorithms. We demonstrated the importance of

modeling TTLs for in-memory caches. We adapted the Matt-

son, Olken, and Shards algorithms to handle TTLs, and we

extended HLLs to accommodate deletion of expired objects.

These extensions, in turn, enabled efficient WSS estimation

and a TTL-enabled CounterStacks MRC-generation algo-

rithm. Extensive evaluation on a large number of workloads

shows the effectiveness of our algorithms.

Future research directions include adapting our extended

HLLs to the sliding window model [118], and investigating

the effects of delayed hits [119] on MRC-generation. Also,

we intend to utilize the presented tools in a real-time deci-

sion making system to optimize the resources of in-memory

caches.

Acknowledgments.

Thanks to the anonymous reviewers, our shepherd Daniel

Berger, and Ashvin Goel for their valuable feedback that

helped improve the quality of this paper.

400

TTLs Matter: Efficient Cache Sizing with TTL-Aware Miss Ratio Curves and Working Set Size EuroSys ’24, April 22–25, 2024, Athens, Greece

References

[1] Memcached.org. Memcached. https://memcached.org. [Online;

2023].

[2] Brad Fitzpatrick. Distributed caching with Memcached. Linux J.,
2004(124), 5 2004.

[3] Redis Labs. Redis. https://redis.io. [Online; 2023].
[4] Amazon. Amazon Elasticache. https://aws.amazon.com/elasticache/.

[Online; 2023].

[5] Google. Google Memorystore. https://cloud.google.com/
memorystore. [Online; 2023].

[6] Microsoft. Microsoft Azure cache. https://azure.microsoft.com/en-
us/services/cache/. [Online; 2023].

[7] Huawei. Huawei Distributed Cache Service. https://www.
huaweicloud.com/en-us/product/dcs.html. [Online; 2023].

[8] IBM. IBM Cloud Databases for Redis. https://www.ibm.com/cloud/
databases-for-redis. [Online; 2023].

[9] Oracle. Using caches in Oracle application container cloud ser-

vice. https://docs.oracle.com/en/cloud/paas/app-container-cloud/
cache/index.html. [Online; 2023].

[10] DigitalOcean. Managed Redis. https://www.digitalocean.com/
products/managed-databases-redis/. [Online; 2023].

[11] Alibaba. ApsaraDB for Memcache. https://www.alibabacloud.com/
product/apsaradb-for-memcache. [Online; 2023].

[12] ObjectRocket. ObjectRocket for Redis. https://www.objectrocket.
com/managed-redis/. [Online; 2023].

[13] Tencent. TencentDB for Redis. https://intl.cloud.tencent.com/
product/crs. [Online; 2023].

[14] Timothy Zhu, Anshul Gandhi, Mor Harchol-Balter, and Michael A

Kozuch. Saving cash by using less cache. In Proc. 4th USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud’12), 2012.

[15] Azure. Azure cache for Redis pricing. https://azure.microsoft.com/en-
us/pricing/details/cache/. [Online; 2023].

[16] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel, Peter Vajgel,

et al. Finding a needle in Haystack: Facebook’s photo storage. In Proc.
9th Conf. on Operating Systems Design and Implementation (OSDI’10),
pages 1–8, 2010.

[17] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-

man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek,

Paul Saab, et al. Scaling Memcache at Facebook. In Proc. 10th USENIX
Symp. on Networked Systems Design and Implementation (NSDI’13),
pages 385–398, 2013.

[18] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communica-
tions of the ACM, 56(2):74–80, 2013.

[19] Alex Hall, Alexandru Tudorica, Filip Buruiana, Reimar Hofmann,

Silviu-Ionut Ganceanu, and Thomas Hofmann. Trading off accuracy

for speed in powerdrill. Google Research, 2016.
[20] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. Workload analysis of a large-scale key-value store. In Proc.
12th Intl. Conf. on Measurement and Modeling of Computer Systems
(SIGMETRICS’12), pages 53–64, 2012.

[21] Qi Huang, Ken Birman, Robbert Van Renesse, Wyatt Lloyd, Sanjeev

Kumar, and Harry C Li. An analysis of Facebook photo caching. In

Proc. 24-th Symp. on Operating Systems Principles (SOSP’13), pages
167–181, 2013.

[22] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.

Dynacache: Dynamic cloud caching. In Proc. 7th Workshop on Hot
Topics in Cloud Computing (HotCloud’15), 2015.

[23] Juncheng Yang, Yao Yue, and KV Rashmi. A large scale analysis of

hundreds of in-memory cache clusters at Twitter. In Proc. 14th Symp.
on Operating Systems Design and Implementation (OSDI’20), pages
191–208, 2020.

[24] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger.

Evaluation techniques for storage hierarchies. IBM Systems journal,
9(2):78–117, 1970.

[25] Frank Olken. Efficient methods for calculating the success function

of fixed-space replacement policies. Master’s thesis, University of

California, Berkeley), 1981.

[26] Weiming Zhao, Xinxin Jin, Zhenlin Wang, Xiaolin Wang, Yingwei

Luo, and Xiaoming Li. Efficient LRU-based working set size tracking.

Michigan Technological University Computer Science Technical Report,
2011.

[27] Qingpeng Niu, James Dinan, Qingda Lu, and P. Sadayappan. PARDA:

A fast parallel reuse distance analysis algorithm. In Proc. 26th Intl.
Parallel and Distributed Processing Symp. (IPDPS’12), pages 1284–1294.
IEEE, 2012.

[28] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas JA Harvey, and

Andrew Warfield. Characterizing storage workloads with counter

stacks. In Proc. 11th Symp. on Operating Systems Design and Imple-
mentation (OSDI’14), pages 335–349, 2014.

[29] Carl AWaldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan

Ahmad. Efficient MRC construction with SHARDS. In Proc. 13th
Conf. on File and Storage Technologies (FAST’15), pages 95–110, 2015.

[30] Nathan Beckmann and Daniel Sanchez. Talus: A simple way to

remove cliffs in cache performance. In Proc. 21st Intl. Symp. on High
Performance Computer Architecture (HPCA’15), pages 64–75. IEEE,
2015.

[31] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Chen Ding, and

Zhenlin Wang. Kinetic modeling of data eviction in cache. In Proc.
USENIX Annual Technical Conf. (ATC’16), pages 351–364, 2016.

[32] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun

Park. Cache modeling and optimization using miniature simulations.

In Proc. USENIX Annual Technical Conf. (ATC’17), pages 487–498, 2017.
[33] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Zhenlin Wang,

Chen Ding, and Chencheng Ye. Fast miss ratio curve modeling for

storage cache. ACM Trans. on Storage (TOS’18), 14(2):1–34, 2018.
[34] Cheng Pan, Xiameng Hu, Lan Zhou, Yingwei Luo, Xiaolin Wang, and

Zhenlin Wang. Pace: Penalty aware cache modeling with enhanced

AET. In Proc. 9th Asia-Pacific Workshop on Systems, pages 1–8, 2018.
[35] Yu Zhang, Ping Huang, Ke Zhou, HuaWang, Jianying Hu, Yongguang

Ji, and Bin Cheng. OSCA: An online-model based cache allocation

scheme in cloud block storage systems. In Proc. USENIX Annual
Technical Conf. (ATC’20), pages 785–798, 2020.

[36] Jiangwei Zhang and YC Tay. PG2S+: Stack distance construction

using popularity, gap and machine learning. In Proc. The Web Conf.
(WWW’20), pages 973–983, 2020.

[37] Damiano Carra and Giovanni Neglia. Efficient miss ratio curve com-

putation for heterogeneous content popularity. In Proc. USENIX
Annual Technical Conf. (ATC’20), pages 741–751, 2020.

[38] Zhang Liu, Hee Won Lee, Yu Xiang, Dirk Grunwald, and Sangtae

Ha. eMRC: Efficient miss ratio approximation for multi-tier caching.

In Proc. 19th Conf. on File and Storage Technologies (FAST’21), pages
293–306, 2021.

[39] Zhilu Lian, Yangzi Li, Zhixiang Chen, Shiwen Shan, Baoxin Han,

and Yuxin Su. eBPF-based working set size estimation in memory

management. In Proc. 2022 intl. conf. on Service Science (ICSS’22),
pages 188–195, 2022.

[40] Juncheng Yang, Yao Yue, and KV Rashmi. A large-scale analysis of

hundreds of in-memory key-value cache clusters at Twitter. ACM
Transactions on Storage (TOS’21), 17(3):1–35, 2021.

[41] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Segcache: A memory-

efficient and scalable in-memory key-value cache for small objects.

In Proc. 18th USENIX Symp. on Networked Systems Design and Imple-
mentation (NSDI’21), pages 503–518, 2021.

[42] Alexander Fuerst and Prateek Sharma. Faascache: Keeping serverless

computing alive with greedy-dual caching. In Proc. the 26th ACM
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’21), pages 386–400, 2021.

401

https://memcached.org
https://redis.io
https://aws.amazon.com/elasticache/
https://cloud.google.com/memorystore
https://cloud.google.com/memorystore
https://azure.microsoft.com/en-us/services/cache/
https://azure.microsoft.com/en-us/services/cache/
https://www.huaweicloud.com/en-us/product/dcs.html
https://www.huaweicloud.com/en-us/product/dcs.html
https://www.ibm.com/cloud/databases-for-redis
https://www.ibm.com/cloud/databases-for-redis
https://docs.oracle.com/en/cloud/paas/app-container-cloud/cache/index.html
https://docs.oracle.com/en/cloud/paas/app-container-cloud/cache/index.html
https://www.digitalocean.com/products/managed-databases-redis/
https://www.digitalocean.com/products/managed-databases-redis/
https://www.alibabacloud.com/product/apsaradb-for-memcache
https://www.alibabacloud.com/product/apsaradb-for-memcache
https://www.objectrocket.com/managed-redis/
https://www.objectrocket.com/managed-redis/
https://intl.cloud.tencent.com/product/crs
https://intl.cloud.tencent.com/product/crs
https://azure.microsoft.com/en-us/pricing/details/cache/
https://azure.microsoft.com/en-us/pricing/details/cache/

EuroSys ’24, April 22–25, 2024, Athens, Greece Sultan et al.

[43] Gerhard Hasslinger, Mahshid Okhovatzadeh, Konstantinos Ntougias,

Frank Hasslinger, and Oliver Hohlfeld. An overview of analysis

methods and evaluation results for caching strategies. Computer
Networks, 228:109583, 2023.

[44] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron.

Write off-loading: Practical power management for enterprise storage.

ACM Trans. Storage (TOS’08, pages 10:1 – 10:23, 10 2008.

[45] Vlad Nitu, Aram Kocharyan, Hannas Yaya, Alain Tchana, Daniel

Hagimont, and Hrachya Astsatryan. Working set size estimation

techniques in virtualized environments: One size does not fit all. In

Proc. the ACM on Measurement and Analysis of Computing Systems,
pages 1–22, 2018.

[46] Philippe Flajolet and G Nigel Martin. Probabilistic counting algo-

rithms for data base applications. Journal of Computer and System
Sciences, 31(2):182–209, 1985.

[47] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity

of approximating the frequency moments. Journal of Computer and
System Sciences, 58(1):137–147, 1999.

[48] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Tre-

visan. Counting distinct elements in a data stream. In Proc. Intl.
Workshop on Randomization and Approximation Techniques in Com-
puter Science, pages 1–10, 2002.

[49] Marianne Durand and Philippe Flajolet. Loglog counting of large

cardinalities. In Proc. European Symp. on Algorithms, pages 605–617,
2003.

[50] Frédéric Giroire. Order statistics and estimating cardinalities of

massive data sets. Discrete Applied Mathematics, 157(2):406–427,
2009.

[51] Kevin Beyer, Peter J Haas, Berthold Reinwald, Yannis Sismanis, and

Rainer Gemulla. On synopses for distinct-value estimation under

multiset operations. In Proc. Intl. Conf. on Management of Data (SIG-
MOD’07), pages 199–210, 2007.

[52] Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. A

linear-time probabilistic counting algorithm for database applications.

ACM Trans. on Database Systems (TODS’90), 15(2):208–229, 1990.
[53] Odysseas Papapetrou, Wolf Siberski, and Wolfgang Nejdl. Cardi-

nality estimation and dynamic length adaptation for Bloom filters.

Distributed and Parallel Databases, 28(2):119–156, 2010.
[54] Hazar Harmouch and Felix Naumann. Cardinality estimation: An

experimental survey. Proc. of the VLDB Endowment, 11(4):499–512,
2017.

[55] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier.

Hyperloglog: The analysis of a near-optimal cardinality estimation

algorithm. In Proc. Discrete Mathematics and Theoretical Computer
Science, pages 137–156, 2007.

[56] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog

in practice: Algorithmic engineering of a state of the art cardinality

estimation algorithm. In Proc. 16th Intl. Conf. on Extending Database
Technology, pages 683–692, 2013.

[57] Internet Engineering Task Force (IETF). Domain name system (DNS)

IANA considerations. https://aws.amazon.com/elasticache/. [Online;
2023].

[58] Jaeyeon Jung, Arthur W Berger, and Hari Balakrishnan. Modeling

TTL-based internet caches. In Proc. 22nd Annual Joint Conf. of the IEEE
Computer and Communications Societies, volume 1, pages 417–426,

2003.

[59] Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don

Towsley. Performance evaluation of hierarchical TTL-based cache

networks. Computer Networks, 65:212–231, 2014.
[60] Daniel S Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. Exact

analysis of TTL cache networks. Performance Evaluation, 79:2–23,
2014.

[61] Ningwei Dai, Yunpeng Chai, Yushi Liang, and Chunling Wang. ETD-

cache: An expiration-time driven cache scheme to make SSD-based

read cache endurable and cost-efficient. In Proc. 12th ACM Intl. Conf.
on Computing Frontiers, pages 1–8, 2015.

[62] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai,

and Ramesh Sitaraman. Adaptive TTL-based caching for content

delivery. Transactions on Networking, 26(3):1063–1077, 2018.
[63] Damiano Carra, Giovanni Neglia, and Pietro Michiardi. TTL-based

cloud caches. In Proc. Conf. on Computer Communications, pages
685–693, 2019.

[64] Aashaka Shah, Vinay Banakar, Supreeth Shastri, Melissa Wasserman,

and Vijay Chidambaram. Analyzing the impact of GDPR on storage

systems. In Proc. 11th Workshop on Hot Topics in Storage and File
Systems (HotStorage’19), 2019.

[65] Damiano Carra, Giovanni Neglia, and Pietro Michiardi. Elastic provi-

sioning of cloud caches: A cost-aware TTL approach. Transactions
on Networking, 28(3):1283–1296, 2020.

[66] Twitter. Anonymized cache request traces from Twitter production.

https://github.com/twitter/cache-trace. [Online; 2023].
[67] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen Kat.

It’s time to revisit LRU vs. FIFO. In Proc. 12th Workshop on Hot Topics
in Storage and File Systems (HotStorage’20), 2020.

[68] U.S. Securities and Exchange Commission (SEC). Electronic data

gathering, analysis, and retrieval system (EDGAR) log file dataset.

https://www.sec.gov/dera/data/edgar-log-file-data-set.html. [On-
line].

[69] James Ryans. Using the EDGAR log file data set. Available at SSRN
2913612, 2017.

[70] Saguiitay. Cardinality estimation. https://github.com/microsoft/
CardinalityEstimation/. [Online; 2023].

[71] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,

Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page

miss ratio curve for memory management. In Proc. 11th Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’04), pages 177–188, 2004.

[72] Rong Gu, Simian Li, Haipeng Dai, Hancheng Wang, Yili Luo, Bin Fan,

Ran Ben Basat, Ke Wang, Zhenyu Song, Shouwei Chen, BeinanWang,

Yihua Huang, and Guihai Chen. Adaptive online cache capacity

optimization via lightweight working set size estimation at scale. In

Proc. USENIX Annual Technical Conference (ATC’23), pages 467–484,
2023.

[73] Guido Urdaneta, Guillaume Pierre, andMaarten Van Steen. Wikipedia

workload analysis for decentralized hosting. Computer Networks,
53(11):1830–1845, 2009.

[74] David K Tam, Reza Azimi, Livio B Soares, and Michael Stumm.

RapidMRC: Approximating L2 miss rate curves on commodity sys-

tems for online optimizations. In Proc. Intl. Conf. on Architectural
Support for Programming Languages &Operating Systems (ASPLOS’09),
pages 121–132, 2009.

[75] Trausti Saemundsson, Hjortur Bjornsson, Gregory Chockler, and

Ymir Vigfusson. Dynamic performance profiling of cloud caches. In

Proc. Symp. on Cloud Computing (SoCC’14), pages 1–14, 2014.
[76] BP Welford. Note on a method for calculating corrected sums of

squares and products. Technometrics, 4(3):419–420, 1962.
[77] Yazhuo Zhang, Juncheng Yang, Yao Yue, Ymir Vigfusson, and

KV Rashmi. Sieve is simpler than LRU: an efficient turn-key eviction

algorithm for web caches. In Proc. 21st USENIX Symp. on Networked
Systems Design and Implementation (NSDI’24), 2024.

[78] Redis. Redis eviction. https://redis.io/docs/reference/eviction/. [On-
line; 2024].

[79] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac Grosof, Sathya

Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,

Mor Harchol-Balter, et al. The CacheLib caching engine: Design and

experiences at scale. In Proc. 14th Symp. on Operating Systems Design
and Implementation (OSDI’20), pages 753–768, 2020.

402

https://aws.amazon.com/elasticache/
https://github.com/twitter/cache-trace
https://www.sec.gov/dera/data/edgar-log-file-data-set.html
https://github.com/microsoft/CardinalityEstimation/
https://github.com/microsoft/CardinalityEstimation/
https://redis.io/docs/reference/eviction/

TTLs Matter: Efficient Cache Sizing with TTL-Aware Miss Ratio Curves and Working Set Size EuroSys ’24, April 22–25, 2024, Athens, Greece

[80] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng

Yang, Sathya Gunasekar, Jimmy Lu, Daniel S Berger, Nathan Beck-

mann, and Gregory R Ganger. Kangaroo: Caching billions of tiny

objects on flash. In Proc. 28th Symp. on Operating Systems Principles
(SOSP’21), pages 243–262, 2021.

[81] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.

RIPQ: Advanced photo caching on flash for Facebook. In Proc. 13th
USENIX Conf. on File and Storage Technologies (FAST’15), pages 373–
386, 2015.

[82] Twitter. Improving key expiration in Redis. https://blog.twitter.
com/engineering/en_us/topics/infrastructure/2019/improving-key-
expiration-in-redis. [Online; 2024].

[83] Redis. Diving into Redis 6.0. https://redis.com/blog/diving-into-redis-
6/. [Online; 2024].

[84] Redis. Discussion by the maintainers of Redis on Twitter’s article [82].

https://news.ycombinator.com/item?id=19662501. [Online; 2024].
[85] Bryan T Bennett and Vincent J. Kruskal. LRU stack processing. IBM

Journal of Research and Development, 19(4):353–357, 1975.
[86] James Gordon Thompson. Efficient analysis of caching systems. PhD

thesis, University of California, Berkeley, 1987.

[87] George Almási, Cǎlin Caşcaval, and David A Padua. Calculating

stack distances efficiently. In Proc. Workshop on Memory System
Performance, pages 37–43, 2002.

[88] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghuraman,

Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page miss

ratio curve for memory management. In Proc. the 11th Intl. Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’04), page 177–188, 2004.

[89] David Eklov and Erik Hagersten. Statstack: Efficient modeling of

LRU caches. In Proc. Intl. Symp. on Performance Analysis of Systems
& Software (ISPASS’10), pages 55–65. IEEE, 2010.

[90] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen

Ding, Song Jiang, and Zhenlin Wang. LAMA: Optimized locality-

awarememory allocation for key-value cache. In Proc. USENIXAnnual
Technical Conf. (ATC-15), pages 57–69, 2015.

[91] Ailing Yu, Yujuan Tan, Congcong Xu, Zhulin Ma, Duo Liu, and Xi-

anzhang Chen. DFShards: Effective construction of MRCs online for

non-stack algorithms. In Proc. the 18th ACM intl. Conf. on Computing
Frontiers 2021 (CF’2021), page 63 – 72, 2021.

[92] Rongshang Li, Yingtian Tang, Qiquan Shi, Hui Mao, Lei Chen, Jikun

Jin, Peng Lu, and Zhuo Cheng. Accurate probabilistic miss ratio curve

approximation for adaptive cache allocation in block storage systems.

In Proc. the 2022 Design, Automation and Test in Europe Conf. and
Exhibition (DATE’22), page 1197 – 1202, 2022.

[93] Yuchen Wang, Junyao Yang, and Zhenlin Wang. Multi-tenant

in-memory key-value cache partitioning using efficient random

sampling-based LRU model. IEEE Transactions on Cloud Comput-
ing, 11(4):3601–3618, 2023.

[94] Jun Xiao, Yaocheng Xiang, Xiaolin Wang, Yingwei Luo, Andy Pi-

mentel, and Zhenlin Wang. FLORIA: A fast and featherlight ap-

proach for predicting cache performance. In Proc. 37th intl. Conf. on
Supercomputing, pages 25–36, 2023.

[95] Mark D Hill and Alan Jay Smith. Evaluating associativity in CPU

caches. IEEE Trans on Computers, 38(12):1612–1630, 1989.
[96] Moinuddin K Qureshi and Yale N Patt. Utility-based cache parti-

tioning: A low-overhead, high-performance, runtime mechanism to

partition shared caches. In Proc. 39th intl. Symp. on Microarchitecture
(MICRO’06), pages 423–432, 2006.

[97] Weiming Zhao and Zhenlin Wang. Dynamic memory balancing for

virtual machines. In Proc. 2009 ACM SIGPLAN/SIGOPS Intl. Conf. on
Virtual Execution Environments (VEE’09), page 21–30, 2009.

[98] Ioan Stefanovici, Eno Thereska, Greg O’Shea, Bianca Schroeder,

Hitesh Ballani, Thomas Karagiannis, Antony Rowstron, and Tom

Talpey. Software-defined caching: Managing caches in multi-tenant

data centers. In Proc. Symp. on Cloud Computing (SoCC’15), pages
174–181, 2015.

[99] Ricardo Koller, Ali José Mashtizadeh, and Raju Rangaswami. Centaur:

Host-side SSD caching for storage performance control. In Proc. Intl.
Conf. on Autonomic Computing (ICAC’15), pages 51–60, 2015.

[100] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.

Cliffhanger: Scaling performance cliffs in web memory caches. In

Proc. 13th Symp. on Networked Systems Design and Implementation
(NSDI’16), pages 379–392, 2016.

[101] Daniel Byrne, Nilufer Onder, and Zhenlin Wang. mPart: Miss-ratio

curve guided partitioning in key-value stores. In Proc. Intl. Symp. on
Memory Management (ISMM’18), pages 84–95, 2018.

[102] Song Liu, Chen Zhang, Shiqiang Nie, Keqiang Duan, and Weiguo

Wu. PC-Allocation: Performance cliff-aware two-level cache resource

allocation scheme for storage system. Applied Sciences, 13(6):3556,
2023.

[103] Peter J Denning. The working set model for program behavior. Com-
munications of the ACM, 11(5):323–333, 1968.

[104] Donald R. Slutz and Irving L. Traiger. A note on the calculation of

average working set size. Communications of the ACM, 17(10):563–

565, 1974.

[105] M.C. Easton and B.T. Bennett. Transient-free working-set statistics.

Communications of the ACM, 20(2):93 – 99, 1977.

[106] P.J. Denning. Working sets past and present. IEEE Transactions on
Software Engineering, SE-6(1):64–84, 1980.

[107] Ashutosh S Dhodapkar and James E Smith. Managing multi-

configuration hardware via dynamic working set analysis. In Proc.
29th Intl. Symp. on Computer Architecture (ISCA’02), pages 233–244,
2002.

[108] Sameh Elnikety, Steven Dropsho, and Willy Zwaenepoel. Tashkent+:

memory-aware load balancing and update filtering in replicated

databases. In Proc. 2nd ACM SIGOPS/EuroSys European Conf. on
Computer Systems 2007 (EuroSys’07), page 399–412, 2007.

[109] Changwoo Min, Inhyuk Kim, Taehyoung Kim, and Young I.K. Eom.

Hardware assisted dynamic memory balancing in virtual machines.

IEICE Electronics Express, 8(10):748 – 754, 2011.

[110] Xiaoya Xiang, Bin Bao, Chen Ding, and Yaoqing Gao. Linear-time

modeling of program working set in shared cache. In Proc. 2011 Intl.
Conf. on Parallel Architectures and Compilation Techniques (PACT’11),
pages 350–360, 2011.

[111] Lei Cui, Jianxin Li, Tianyu Wo, Bo Li, Renyu Yang, Yingjie Cao, and

Jinpeng Huai. HotRestore: A fast restore system for virtual machine

cluster. In Proc. 28th Large Installation System Administration Conf.
(LISA’2014), pages 10–25, 2014.

[112] Aparna Mandke Dani, Bharadwaj Amrutur, and Y.N. Srikant. Toward

a scalable working set size estimation method and its application for

chip multiprocessors. IEEE Trans. on Computers, 63(6):1567 – 1579,

2014.

[113] Kishore Kumar Pusukuri. Working set model for multithreaded

programs. In Proc. 2014 Conf. on Timely Results in Operating Systems
(TRIOS’2014), 2014.

[114] Jui-hao Chiang, Tzi-Cker Chiueh, and Han-Lin Li. Memory reclama-

tion and compression using accurate working set size estimation. In

Proc. 2015 IEEE 8th Intl. Conf. on Cloud Computing (CLOUD’15), pages
187–194, 2015.

[115] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan Sundarara-

man, and Ming Zhao. CloudCache: On-demand flash cache manage-

ment for cloud computing. In Proc. 14th USENIX Conf. on File and
Storage Technologies (FAST’16), pages 355–369, 2016.

[116] Peter J Denning. Working set analytics. Computing Surveys, 53(6):1–
36, 2021.

[117] Weiming Zhao, Xinxin Jin, Zhenlin Wang, Xiaolin Wang, Yingwei

Luo, and Xiaoming Li. Low cost working set size tracking. In Proc.
2011 USENIX Annual Technical Conf. (ATC’11), 2011.

403

 https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/improving-key-expiration-in-redis
 https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/improving-key-expiration-in-redis
 https://blog.twitter.com/engineering/en_us/topics/infrastructure/2019/improving-key-expiration-in-redis
https://redis.com/blog/diving-into-redis-6/
https://redis.com/blog/diving-into-redis-6/
https://news.ycombinator.com/item?id=19662501

EuroSys ’24, April 22–25, 2024, Athens, Greece Sultan et al.

[118] Yousra Chabchoub and Georges Heébrail. Sliding hyperloglog: Esti-

mating cardinality in a data stream over a sliding window. In Proc.
Intl. Conf. on Data Mining, pages 1297–1303, 2010.

[119] Nirav Atre, Justine Sherry,WeinaWang, and Daniel S Berger. Caching

with delayed hits. In Proc. Annual conference of the ACM Special Inter-
est Group on Data Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication (SIGCOMM’20),
pages 495–513, 2020.

A Artifact Appendix

A.1 Abstract

The TTLs Matter artifact provides our implementations of

the following algorithms:

• Olken’s MRC-generation algorithm [25]

– TTL-agnostic Olken
– TTL-aware Olken++

• Fixed-rate Shards MRC-generation algorithm [29]

– TTL-agnostic FR-Shards and FR-Shards𝑎𝑑 𝑗
– TTL-aware FR-Shards++ and FR-Shards++

𝑎𝑑 𝑗

• Fixed-size Shards MRC-generation algorithm [29]

– TTL-agnostic FS-Shards and FS-Shards𝑎𝑑 𝑗
– TTL-aware FS-Shards++ and FS-Shards++

𝑎𝑑 𝑗

• The HyperLogLog (HLL) cardinality estimator [56]

– TTL-agnostic HLL
– TTL-aware HLL-TTL

• CounterStacks MRC-generation algorithm [28]

– TTL-agnostic CounterStacks
– TTL-aware CounterStacks++

A.2 Description & Requirements

The README associated with the artifact includes details

on compilation and usage.

A.2.1 How to access.

• Repository: https://github.com/SariSultan/TTLsMatter-EuroSys24

• Zenodo: https://doi.org/10.5281/zenodo.10783873

A.2.2 Hardware dependencies. Our experiments were

conducted on a server equipped with an Intel 13900KS CPU

and 128GB of DDR5-4800MHz DRAM.

A.2.3 Software dependencies. The artifact depends on

dotnet sdk v8.0.100. Generating the plots depends on

Gnuplot v5.4+. The artifact was tested on a server running

Ubuntu 23.04.

A.2.4 Benchmarks. Our evaluation utilized 28 workloads

from the Twitter dataset [23]. The 28 workloads are: 4, 6, 7,

8, 11, 13, 14, 16, 18, 19, 22, 24, 25, 29, 30, 33, 34, 37, 40, 41, 42,

43, 46, 48, 49, 50, 52, 54. The workloads can be downloaded

from https://github.com/SariSultan/TTLsMatter-EuroSys24.

A.3 Set-up

To compile the source code, go to the directory

“src/TTLsMatter” in the artifact, and execute the script “./pub-

lish.sh”. This will create a compiled binary file called “TTLs-

Matter” inside the directory “src/TTLsMatter/bin”.

A.4 Evaluation workflow

A.4.1 Major Claims.

• (C1): Significant memory savings can be achieved when
sizing caches using TTL-aware Working Set Sizes (WSSs)
and Miss Ratio Curves (MRCs).

• (C2): Existing WSS and MRC algorithms, which do not
take TTL into account, are highly inaccurate when ap-
plied to workloads with TTLs.

• (C3): The performance of our TTL-aware algorithms are
comparable to that of the existing TTL-agnostic algo-
rithms.

• (C4): Our extended algorithms maintain consistent ac-
curacy across varied configuration parameters.

A.4.2 Experiments. We have streamlined the process of

reproducing all the results from our evaluation section (§6)

by running a single command.
14
This will also reproduce the

figures from the evaluation section, namely, figures 14, 15,

16, 17-(a), 17-(b), and 18, which support the aforementioned

claims. These claims are further discussed in Sections 6.1

and 6.2.

After compiling the source code as described earlier, run

“./TTLsMatter” inside the “bin” directory. The figures will be

generated in a new directory named “Figures”. The WSS re-

sults will be generated in a directory named “WSS-AE-2024”.

The MRC results will be generated in a directory named

“MRCs-AE-2024”. The estimated compute time for this exper-

iment is 5 days.

14
Comprehensive details are provided in the artifact’s GitHub repository

README, under “Reproducing the evaluation section results”

404

https://github.com/SariSultan/TTLsMatter-EuroSys24
https://doi.org/10.5281/zenodo.10783873
https://github.com/SariSultan/TTLsMatter-EuroSys24

	Abstract
	1 Introduction
	2 Mattson++, Olken++, and Shards++
	2.1 Mattson++
	2.2 Olken++
	2.3 Shards++

	3 Extending HyperLogLog
	3.1 HLL Background
	3.2 TTL Support with HLL-TTL

	4 CounterStacks++
	4.1 CounterStacks Background
	4.2 TTLs Support in CounterStacks++
	4.3 Optimizations
	4.4 Streaming

	5 Exploiting HLL-TTL for WSS Estimation
	6 Evaluation
	6.1 WSS Results
	6.2 MRC Results

	7 Some Practical Considerations
	8 Related Work
	9 Concluding Remarks
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

