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Abstract

We propose a simple structuring technique based on
clustering for designing scalable shared memory mul-
tiprocessor operating systems. Clustering has a num-
ber of advantages. First distributed systems princi-
ples are applied by distributing and replicating sys-
tem services and data objects to increase locality, in-
crease concurrency, and to avoid centralized bottle-
necks, thus making the system scalable. However,
since there is tight coupling within a cluster, the sys-
tem performs well for local interactions. Second, a
clustered system can easily be adapted to different
hardware configurations and architectures by chang-
ing the size of the clusters. Third, clustering max-
imizes locality which is key to good performance in
large NUMA systems. Finally, clustering leads to a
modular system composed from easy-to-design and
hence efficient building blocks.

In this paper, we describe clustering and how it
is applied to a micro-kernel-based operating system.
We present measurements of performance, as ob-
tained from a working prototype implementation.

1 Introduction

Considerable attention has been directed towards
designing “scalable” multiprocessor hardware, capa-
ble of accommodating a large number of processors.
These efforts have been successful to the extent that
a number of such systems exist. However, scalable
multiprocessor hardware can only be cost effective
for general purpose usage if the operating system is
as scalable as the hardware. This paper addresses
scalability in operating system design for such scal-
able shared memory multiprocessors as the Stan-
ford Dash [15], the Kendall Square Research KSR-
1 [6], the University of Toronto Hector [18], the BBN
TC2000 [4], and the IBM RP3 [17].

Typically, existing multiprocessor operating sys-

tems have been scaled to accommodate a large num-
ber of processors in an ad hoc manner, by repeatedly
identifying and then removing the most contended
bottlenecks. This is done either by splitting existing
locks, or by replacing existing data structures with
more elaborate, but concurrent ones. The process can
be long and tedious, and results in a system that 1) is
fine-tuned for a specific architecture and hence is not
easily portable to other hardware bases with respect
to scalability; 2) is not scalable in a generic sense,
but only until the next bottleneck is reached; and 3)
has a large number of locks that need to be held for
common operations, with correspondingly large over-
head.

We believe that a more structured approach to de-
sign scalable operating systems is necessary, and pro-
pose a new structuring technique based on clustering
and hierarchical system design. In particular, it ad-
dresses the following set of goals:

1. Secalability: The operating system should run ef-
ficiently on a large number of processors, and
make the potential of the hardware base avail-
able to application programs. However, the sys-
tem should not penalize small-scale parallel or
sequential applications.

2. Adaptability: At minimum, the operating system
should be easily adaptable (that is, without hav-
ing to rewrite code) to run efficiently on different
configurations of a given architecture. More ide-
ally, the operating system should be adaptable
to run efficiently on different (shared memory)
architectures.

3. Modularity and Simplicity: The design of the
operating system should be amenable to mod-
ern software engineering principles: 1t should be
structured using modular components or basic
building blocks that together form the entire sys-
tem.
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Clustering incorporates structuring principles from
both tightly-coupled and distributed systems, and at-
tempts to exploit the advantages of both. On the one
hand, scalability is obtained by using the structuring
principles of distributed systems, where services and
data are replicated: a) to distribute the demand, b) to
avoid centralized bottlenecks, ¢) to increase concur-
rency, and d) to increase locality. On the other hand,
there is tight coupling within a cluster, so the sys-
tem 1s expected to perform well for the common case,
where interactions occur primarily between objects
located in the same cluster.

Clustering is described in more detail in Section 3,
together with its advantages. In Section 4 we argue
that a clustered system can be implemented with lit-
tle increase in complexity by briefly describing an im-
plementation we have developed. We then present the
results of performance measurements obtained from
our implementation, and we conclude in Section 6.
First, however, we consider the meaning of scalability
in the context of operating systems and the implica-
tions it has.

2 Requirements for Scalability

It 1s surprisingly difficult to give a formal definition
that characterizes scalability in a general sense, es-
pecially for operating systems. For example, one of
the better known formal definitions is by Nussbaum
and Agarwal [16]}, but is not applicable to operating
systems for several reasons. First, they exclude the
operating system from their considerations by treat-
ing it as an extension of the hardware. Second, the
definition 1s based on asymptotic limits and thus pro-
vides no hints as to how to design or build a scalable
(operating) system. Finally, the definition is based
on speedup, and hence the response time, which we
do not believe to be appropriate for operating sys-
tems. For parallel systems, we intuitively do not ex-
pect the response time of an operating system call
to speed up as more processors are added to the sys-
tem; rather, we are content if the system call does
not take longer to complete as additional processors
are added. We believe that throughput and concur-
rency are the dominant issues in scalable operating
system design. Since one can expect the demand on
the operating system to increase proportionally with
the size of the system, the throughput must also in-
crease proportionally, which is possible only if the
operating system 1s sufficiently concurrent.

INussbaum and Agarwal’s definition is: The scalability of
a machine for a giwven algorithm is the ratio of the asymptotic
speedup on the real machine and the i1deal realization of an

EREW PRAM.

Instead of attempting to develop a definition of
our own, we identify several necessary requirements
for an operating system to be scalable by considering
throughput and utilization formulas from elementary
queueing theory [14]. If ¢ is a type of OS service re-
quest, then A (p), the arrival rate of requests for this
service, can be expected to grow linearly with the
number of processors in the worst case. Each service
request ¢ will require v, (p) visits at service center k,
where k represents an operating system resource, and
each such visit will require a service time of s, x(p).
Note that in general, both v, z(p) and s. x(p) are func-
tions of p.

The utilization of resource k devoted to servicing
requests for ¢ is then:

Uc,k — Xc,k cSek = Ac(p) : Uc,k(P) : Sc,k(p)

Because a system cannot scale if any of its resources
are saturated, overall utilization of resource k cannot
be larger than one:

12Uk = D Vet = 3 0elp) ve(p) - ser(p)

Therefore, since A. is expected to increase with p, the
following set of requirements must hold:

1)  The time spent at resource k to service a re-
quest ¢, s. x(p), must be bounded by a constant,
for otherwise, resource k& will begin to saturate.
Hence, there must be a high degree of locality
in the data accesses when servicing ¢ at resource
k, and the time to access data structures when
servicing ¢ must be bounded and independent of

p.

2) The total number of visits to any operating sys-
tem resource k (3, v r(p)) must be bounded by
a constant. This is only possible if the number of
service centers increases proportionally with p.

Additionally, since in the worst case A. may increase
proportionally with p, and since the number of service
centers can increase at most proportionally with p:

3) The total number of visits to all service centers
for request ¢ (3", v, x(p)) must not increase with
p (or otherwise, >, s, must decrease by a cor-
responding amount).

The above requirements can be translated into the
following design guidelines:

Preserving parallelism: The operating sYs-
tem must preserve the parallelism afforded by the
applications. This follows directly from require-
ment 2 above. If several threads of an executing
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application (or of independent applications run-
ning at the same time) request independent oper-
ating system services in parallel; then they must
be serviced in parallel. Otherwise, the operating
system becomes a bottleneck, limiting scalabil-
ity and application speedup. Because we do not
expect parallelism in servicing a single operating
system request, and because an operating sys-
tem is primarily demand driven, parallelism can
only come from application demand. Therefore,
the number of operating system service points
must increase with the size of the system and
the concurrency available in accessing the data
structures must grow with the size of the system
to make i1t possible for the overall throughput to
increase proportionally.

Bounded overhead: The overhead for each inde-
pendent operating system service call must be
bounded by a constant, independent of the num-
ber of processors [2]. This follows directly from
requirements 1 and 3. If the overhead of each
service call increases with the number of proces-
sors, the system will ultimately saturate, so the
demand on any single resource cannot increase
with the number of processors. For this reason,
system wide ordered queues cannot be used and
objects cannot be located by linear searches if the
queue lengths or search lengths increase with the
size of the system. Broadcasts cannot be used for
the same reason.

Preserving locality: The operating system must
preserve the locality of the applications. 1t is
important to consider the memory access local-
ity in large-scale systems, because for example,
many large-scale shared memory multiproces-
sors have non-uniform memory access (NUMA)
times, where the cost of accessing memory is a
function of the distance between accessing pro-
cessor and the target memory, and because cache
consistency incurs more overhead in a large sys-
tems. Locality can be increased a) by prop-
erly choosing and placing data structures within
the operating system, b) by directing requests
from the application to nearby service points,
and c) by enacting policies that increase local-
ity in the applications’ memory accesses. For
example, policies should attempt to run the pro-
cesses of a single application on processors close
to each other, place memory pages in proxim-
ity to the processes accessing them, and direct
file I/O to devices close by. Within the operat-
ing system, descriptors of processes that interact
frequently should lie close together, and memory

mapping information should lie close to the pro-
cessors which must access them to handle page
faults.

3 Clustering

We believe that an operating system designed using
the structuring principles based on clustering and de-
scribed in this section will largely meet the above re-
quirements for scalability, and is conducive for en-
acting appropriate policies that enhance locality (al-
though we do not intend to address policy issues in
this paper).

The basic unit of structuring for the operating sys-
tem is a cluster, which provides the functionality of
a complete, efficient, small-scale symmetric multipro-
cessing operating system. Kernel data and control
structures are expected to be shared by all proces-
sors within the cluster, giving good performance for
fine-grained communication. In our implementation,
a cluster consists of a symmetric micro-kernel, mem-
ory and device management subsystems, and a num-
ber of user-level system servers such as a scheduler
and file servers.

On larger systems, multiple clusters are instanti-
ated so that each cluster manages a unique group of
“neighboring” processing modules (including proces-
sors, memory and disks), where neighboring implies
that in the absence of contention memory accesses
within a cluster are never more expensive (and usu-
ally cheaper) than memory accesses to another clus-
ter. Clusters cooperate and communicate to give
users and applications an integrated and consistent
view of a single large system.

The basic idea behind using clusters for structur-
ing is to use multiple easy-to-design and hence effi-
cient computing components to form a complete sys-
tem. Clustering incorporates structuring principles
from both tightly-coupled and distributed systems.
By using the structuring principles of distributed sys-
tems, services are naturally replicated to distribute
the demand, to avoid centralized bottlenecks, and to
increase locality. The structuring principles of small-
scale multiprocessors allow fine-grained data sharing
for the common case where communication 1s local.

In a clustered system, many important design is-
sues are similar to those encountered in distributed
systems. For example, shared objects can be dis-
tributed and migrated across clusters to increase lo-
cality and decrease contention, but then it must also
be possible to find them. Other objects may be repli-
cated to increase locality and decrease contention, but
then consistency becomes an important issue.

Page 3



Despite the similarities between a clustered system
and a distributed system, there are important differ-
ences that lead to completely different design trade-
offs. For example, in a distributed system the hosts
do not share physical memory, so the cost for commu-
nication between hosts is far greater than the cost of
accessing local memory. In a (shared memory) clus-
tered system, it is possible to directly access memory
physically located in other clusters, and the costs for
remote accesses are often not much higher than for
local accesses. Moreover, demands on the system are
different in the multiprocessor case, because of tighter
coupling assumed by the applications. Finally, fault
tolerance is a more important issue in distributed sys-
tems where the failure of a single node should not
crash the entire system. In a shared-memory multi-
processor, this type of fault tolerance is not (yet) a
large 1ssue.

Clustering leads to a number of direct advantages.
First, 1t provides a framework for managing local-
ity. For the case of small-scale parallel or sequential
programs, all processes are scheduled onto the same
cluster. This enhances performance as all interac-
tions are local. Large-scale applications are sched-
uled across multiple clusters, and can benefit from
the concurrency afforded through replicated system
services; the components of the large-scale applica-
tion typically request service from local servers.

Second, clustering allows performance tuning to
different configurations and architectures by allowing
the size of the clusters to be adjusted. The appropri-
ate cluster size for a system is affected by several fac-
tors, including the machine configuration, the local-
remote memory access ratio, the hardware cache size
and coherence support, the topology of the intercon-
nection backplane, etc. On hierarchical systems such
as Cedar [12], Dash [15], KSR-1 [6], or Hector [18], a
cluster might correspond to a hardware station. On
a local-remote memory architecture, such as the But-
terfly [3], a smaller cluster size (perhaps even a clus-
ter per processor), may be more appropriate; in this
case, clustering can be viewed as an extension of the
fully distributed structuring sometimes used on these
machines.

Finally, clustering simplifies lock structuring issues,
and hence reduces code complexity, which can lead
to improved performance and scalability. For exam-
ple, Chaves reports that the fine-grained locking used
in an unclustered system significantly increases the
length of the critical path, even when there 1s no lock
contention [7]. As well, deadlock can be a problem
when several fine-grained locks must be held simul-
taneously. Because contention for a lock is primarily
limited to the number of processors in a cluster, clus-

tering allows for coarser grained locking, as we show
in Section b.

Using clusters to structure an operating system
for scalable systems also presents several challenges.
One challenge is to completely hide from the appli-
cations the fact that the operating system is parti-
tioned into clusters; to users and applications, the
system should, by default, appear as a single, large,
integrated system.?

Another challenge is to keep the complexity intro-
duced by separating the system into clusters within
reasonable bounds; clusters were introduced as a
structuring mechanism primarily to reduce overall
complexity. Therefore, the performance of each clus-
ter should be similar to that of a small-scale multi-
processor operating system. For those applications
with a small degree of parallelism (or sequential ap-
plications) we expect the vast majority of all system
interactions to be intra-cluster, and even for larger
applications that span multiple clusters, we expect
most of the system interactions to be intra-cluster,
because of the replication of system services. Never-
theless, the overhead of inter-cluster communication
should be minimized in order not to overly penalize
those cases where inter-cluster communication is nec-
essary.

4 Implementation

In this section, we show how clustering affects the
structure of the primary operating system compo-
nents. While the principles of clustering are appli-
cable to many OS philosophies, the discussion is pre-
sented using examples from the Hurricane operating
system, a prototype clustered system we have imple-
mented for the Hector multiprocessor.

The Hurricane kernel, which is similar in structure
to the V kernel [8], provides for 1) address spaces,
2) processes, and 3) message passing. The address
spaces are (initially empty) containers in which an
arbitrary number of processes can run. Through the
memory manager (and indirectly through various file
servers), regions of the address space are bound to
file regions before they can be used. Once a file is
bound to a virtual address space, all references to
memory are effectively references to the correspond-
ing locations in the file, thus providing for a single-
level store abstraction, where main memory is con-
sidered a cache of secondary store.

Multiple processes can run within an address space.
Processes within an address space typically commu-

2Clusters can be made visible to sophisticated applications
to allow performance optimizations.
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nicate through shared memory, but messages are used
to communicate between processes in different ad-
dress spaces, and in particular between application
and server processes.

Services not provided for by the kernel are provided
for by servers. Some of these servers run in kernel
space for protection (and sometimes for performance)
reasons; examples are the device server that has to
service interrupts, and the memory server that man-
ages address spaces. The other servers run as normal
user-level processes; they include the file server, the
program manager, the pipe server, and the internet
server.

4.1 The Hurricane Kernel

The kernels of each cluster in the system communi-
cate and cooperate in order to provide the processes
and users a consistent view of the system. While
shared memory is used as the primary mode of com-
munication within a cluster, three different mecha-
nisms can be used for the kernels to communicate
across clusters.

First, shared memory access remains a viable op-
tion for cross cluster communication, particularly for
light-weight operations that make only a few refer-
ences. For example, shared memory is used to locate
the current position of a process descriptor. When a
process 1s created, it is assigned a process identifier
within which the id of the home cluster is encoded.
Usually, a process remains within its home cluster,
but if it migrates, then a record of its new location
1s maintained at the home cluster. As a process mi-
grates from cluster to cluster, its location information
at the home cluster is updated each time. Remote
shared memory access to this data structure is ap-
propriate, because this information is maintained in
a hash table so that only a small number of references
are needed for lookup.

Remote procedure calling is a second mechanism
for cross-cluster communication. It is implemented
using remote interrupts; the interrupted cluster ob-
tains the call information and arguments through
shared memory directly. The use of remote procedure
calls allow data accesses to be local to the interrupted
cluster, but the cost of the interrupt (i.e. the cycles
that are stolen and the register saving and restoring)
must be amortized.

Finally, message passing can be used to communi-
cate between processes on different clusters. For mes-
sage passing within a cluster, the message is copied
into the descriptor of the sending process, which in
turn is queued in the message queue of the target pro-
cess descriptor. For message passing across clusters,

remote procedure calls are used to interrupt the tar-
get cluster to 1) allocate a message retainer (similar
to a process descriptor), 2) copy the relevant informa-
tion including the message by directly accessing the
source processor descriptor on the source cluster, and
3) add the message retainer to the message queue of
the target descriptor. The actions between the source
and the target cluster are similar to the actions taken
by the V kernels on different hosts, except for the fact
that data is passed through shared memory directly
instead of through a network packet. Other message
passing primitives, such as Reply and Forward, are
implemented in a similar fashion. Note that by using
local message retainers as opposed to the source pro-
cess descriptors which are remote, the message queue
will always be an entirely local data structure.

Having the size of the clusters be smaller than the
size of the system has three key advantages:

1. 1t localizes the kernel data structures that need
to be accessed;

2. 1t reduces the number of process descriptors that
must be managed within a cluster, thus reducing
the average length of cluster-wide queues; and

3. 1t limits the amount of searching for ready pro-
cesses when dispatching.

On the other hand, having a cluster span more than
one processor reduces the amount of inter-cluster
communication, and makes it easier to balance the
load of the processors, leading to better system
throughput and reduced application response time.

4.2 Memory Management

The memory management sub-system is responsible
for virtual resources: the address spaces and their cor-
responding memory regions; and for the management
of physical resources: the physical pages of memory
and hardware support. Virtual resources are man-
aged by servers on each cluster, which accept appli-
cation requests to, for example, allocate and deallo-
cate address spaces and regions. All memory-related
operations at the physical level are on a per page ba-
sis, and are primarily demand-driven, which means
they are initiated by the hardware as the result of
translation or protection exceptions.

Clustering increases locality of accesses to the data
structures of the memory manager, since each clus-
ter maintains its own set of data structures to man-
age both the virtual and physical resources of lo-
cal processes. This improves performance, since the
structures that manage private data (such as process
stacks) are local to the cluster on which the process
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executes. When applications share resources across
clusters, the data structures that manage these re-
sources can typically be replicated and cached lo-
cally, preventing bottlenecks and increasing concur-
rency. Virtual resources are kept consistent by di-
recting all modifications through the home cluster,
which thus serves as a point of synchronization. Since
address space modifications are infrequent relative
to the number of accesses due to page faults, this
synchronization point has so far not been a bottle-
neck. Hurricane uses a simple directory mechanism
to maintain the consistency of physical pages across
clusters. There i1s one directory entry for each valid
file block currently resident in memory; the entry
identifies which clusters cache the page, and serves as
the synchronization point for cross-cluster page oper-
ations. The directory entries are distributed across
the processors of the system, allowing concurrent
searches and balancing the accesses evenly across the
system.

Clustering also provides a framework for enacting
paging policies. At this time, the default policy is
to share physical pages within a cluster, but to repli-
cate and migrate pages across clusters. Several re-
search groups have shown that page-level replication
and migration policies can reduce access latency and
contention for some applications [5, 9, 13]. However,
the overhead of these policies must be amortized to
realize a net gain in performance. On machines where
the local-remote access ratio is high, relatively few lo-
cal accesses are sufficient to recoup these costs. How-
ever, technology advances have permitted this gap
to narrow, and have allowed increases in hardware
cache size. Both these trends mean that more lo-
cal accesses are required to justify a page movement,
which argues for less aggressive placement /replication
policies. Moreover, replication lowers the effective
utilization of memory by increasing the resident set
size of an application, which could lead to increased
disk paging when the level of multi-programming is
high. The current default policy therefore limits the
amount of replication or migration, reducing over-
head, but still allows for the reduced latency and in-
creased concurrency of localized accesses to replicated
data.

4.3 The File System

File system responsibilities can be divided into three
levels: name space management; open file state man-
agement; and the handling of 1/0O. In Hurricane®,

these services are provided on a per cluster basis, and

3A more complete description of the Hurricane file system
can be found in [11]

all application requests are directed to local servers.

Since changes to the name space are relatively
localized, file names and directories are replicated
across clusters. Consistency of replicated entries is
maintained through an updating mechanism (instead
of invalidating). This approach localizes name space
searches and allows them to proceed in parallel across
clusters.

Open files are seldom shared between programs, so
open file state 1s generally maintained on the cluster
where the file was opened. In two cases the open state
may become used at other clusters, namely: 1) the
process that opened the file passes the file handle as a
capability to another program, or 2) several processes
of a program spanning multiple clusters are accessing
the file. In these cases the open file state is replicated
on demand from the home cluster (the id of which is
encoded in the file handle), which thus serves as the
point of synchronization for state updates.

For those operations that require I/O, we believe
clustering can provide a framework for balancing the
load across the disks of the system. Although this
part of the file system has not yet been implemented
we believe it would be beneficial if the blocks of indi-
vidual files could be distributed and replicated across
a number of disks. All requests for disk I/O from a
particular cluster would still be directed to the local
cluster, but the request is forwarded to the appropri-
ate server on another cluster if it cannot be handled
locally.

4.4 Scheduling

The primary purpose of the scheduling subsystem is
to keep the loads on the processors (and possibly
other resources, such as memory) well balanced, in
order to decrease the average response time of the
applications. In a clustered system, the processes of
an application are scheduled to run in a single cluster,
unless there are performance advantages for a job to
span multiple clusters. Hence, for parallel programs
with a small number of processes, all of the processes
will run on the same cluster. For larger-scale par-
allel programs that span multiple clusters, the num-
ber of clusters spanned is minimized. These policies
are motivated by simulation studies[19], which have
shown that clustering can noticeably improve overall
performance?.

The scheduling decisions are divided into two lev-
els. Within a cluster, the load between the proces-
sors 1s balanced at a fine granularity through the dis-

4 A similar structuring mechanism for scheduling has been
proposed by Feitelson and Rudolph [10], and by Ahmad and
Ghafoor [1].
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patcher (in the micro-kernel). This fixed scope lim-
its the load on the dispatcher itself and allows local
placement decisions to be made in parallel. Cross-
cluster scheduling is handled by higher-level schedul-
ing servers, which balance the load by assigning newly
created processes to specific clusters, and by migrat-
ing existing processes to other clusters. The coarser
granularity of these movements permits a low rate of
inter-cluster communication between schedulers.

4.5 Super Clusters

A single level of clusters can be expected to effec-
tively support moderately large systems (in the, say,
100-200 processor range). However, for larger sys-
tems, additional levels in the hierarchy will proba-
bly be necessary. In particular, while each cluster is
structured to maximize locality, there is no locality
in cross-cluster communication. Examples of this are
the home cluster concept for address spaces and the
directory for locating pages. The logical next step is
to group clusters into super clusters. Processor load
balancing is an obvious candidate for this hierarchical
clustering. A high-level process manager schedules
processes between super clusters, while lower-level
managers schedule processes within a super cluster.

The introduction of super clusters should not af-
fect the lower levels of the system. For example, the
micro-kernel requires no changes. Super clusters can
also be applied to manage memory and 1/O. For ex-
ample, in the memory management, the single-level
directories could be replaced with a hierarchical one,
and multiple copies of the home address descriptor
may be necessary; say one per super cluster.

5 Experimental Results

In this section, we present the results of simple ex-
periments and performance measurements. All our
experiments were conducted on a 16 processor Hec-
tor shared-memory multiprocessor running the Hurri-
cane operating system. Hector is a hierarchical multi-
processor designed for scalability [18], where a num-
ber of processing modules are connected by bus to
form stations, which in turn are connected by a hier-
archy of rings. The processing modules of the current
implementation contain a Motorola 88000 processor,
up to 128 Kbytes instruction and 128 Kbytes data
cache and 16 Mbytes RAM. The particular configu-
ration used in our experiments consists of 4 process-
ing modules per station and 4 stations connected by
a ring, and runs at 20 MHz.

Hector is a NUMA system in that the memory ac-
cess times differ depending on the distance between

accessing processor and target memory, although the
difference on Hector is typically less pronounced than
on other NUMA systems, such as the BBN TC-2000.
In our configuration, it takes 20 cycles to fill a 16 byte
cache line from local (on-board) memory, 26 cycles if
filled from off-board but on-station memory, and 30
cycles if filled from the memory of another station (in
the absence of contention). The differences in mem-
ory access times can be more pronounced if there is
memory contention, so the non-uniform memory ac-
cess times in Hector can still affect performance in
a significant way. For example, we can compare the
execution time of a 512 x 512 matrix multiply in a sys-
tem configured as 4 clusters containing 4 processors
each, where the clusters are mapped onto the hard-
ware in different ways. If the clusters correspond to
the hardware stations, then the matrix multiplication
takes 6% less time to complete than when each pro-
cessor of a cluster is assigned to a different station;
and it takes 2.3% less time to complete when 2 pro-
cessors of a cluster share a station.

All experiments were run on a fully configured ver-
sion of Hurricane with all servers running, but no
other applications were running at the time. We
have spent considerable efforts to optimize the mem-
ory management for improved performance in gen-
eral, and maximum concurrency in particular. In
contrast, the rest of the kernel has not been opti-
mized and is rather crude; for example, only a single
lock is available in the kernel to control concurrency
(effectively serializing kernel operations). To reduce
caching effects, we disabled the caching of all data
within the kernel except for stack data; instructions
were cachable.

5.1 Basic Operations

Remote procedure calls are often used for cross-
cluster communication within the operating system
kernel. The cost of a cross-cluster null-RPC in our
implementation is 27 microseconds, which includes
the time to interrupt the target processor and the
time to save and subsequently restore its registers.

The cost to handle a read-page-fault increases from
128 microseconds within a cluster to 243 microsec-
onds across clusters. The additional overhead in the
latter case is due to the extra directory lookup needed
to locate an existing copy of the page (because it is
in another cluster), and the overhead of replicating a
page descriptor.

The cost of a 32 byte send-response message trans-
action between two user-level processes increases from
328 microseconds within a cluster to 403 microsec-
onds across clusters. Here the extra overhead is due
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to two RPCs and the allocation, initialization, and
subsequent deallocation of message retainers at the
target cluster.

5.2 Synthetic Stress Tests

To study the effects of clustering on throughput and
response time, we ran several tests with different clus-
ter sizes:®

Config-1: 1 cluster of 16 processors
Config-2: 2 clusters of 8 processors
Config-4: 4 clusters of 4 processors
Config-8: 8 clusters of 2 processors
Config-16: 16 clusters of 1 processor

In these tests, p processes are run on different pro-
cessors, where p is varied from 1 to 16 to adjust the
load on the system. Figure 1 shows the behavior of
the system as a function of the load for three basic
system functions, namely page fault handling, ker-
nel call handling and message passing. In the page
fault test (Figure 1.a), the page faults of each process
are to pages in different regions, so that the faults on
different processors are independent of each other, ex-
cept for the fact that they are all in the same address
space. Moreover, the pages are found in a local page
cache, so no I/0O is required; i.e. the page only needs
to be mapped in. In the kernel call test (Figure 1.c),
a user-level process sends a message to a local pro-
cess server (running in the kernel address space) to
request the id of its creator. Finally, in the message
passing test (Figure 1.d), a user-level sender process
sends a 32 byte message to a user-level receiver pro-
cess running on a different processor; the message is
received by the receiver and a 32 byte response is sent
back to the sender.

In these tests, the p processes are assigned to sep-
arate processors, but in a way that minimizes the
number of clusters spanned. That is, the processes
are first added to one cluster until each processor in
the cluster has a process, before adding them to the
next cluster. This corresponds to a scheduling pol-
icy that attempts to assign related processes to the
same cluster whenever reasonable. Figure 1 shows
that for all three tests, the response time increases
until p is equal to the number of processors in a clus-
ter, at which point lock contention within the cluster
i1s maximized. Because Config-1 has only one cluster,
the response time is maximized at 16 processors with
a response time of approximately 1500 microseconds.

5Note that the hardware configuration does not change and
is always 4 processors to a station, and the clusters are assigned
to the hardware stations in a natural way.

For the other configurations, however, the average
response time decreases sharply when p is further in-
creased by one, because the last process added runs
in a cluster by itself and therefore has a low response
time, pulling down the average. As p is further in-
creased, the average response time will begin to in-
crease, until p is a multiple of the cluster size again.
For this reason, we find peaks at p = 8 and p = 16 in
the 2 cluster configuration, and we find peaks at 4, §,
12, and 16 in the 4 cluster configuration. Moreover,
we note that at the peaks, the response time is the
same; that is, at equal levels of cluster loading, we
observe the same response time, indicating that the
speedup is linear in the number of clusters regard-
less of size (as far as lock contention for independent
operations is concerned).

The figure shows that all three tests behave in the
same way; this is because the overhead for lock con-
tention dominates in each case. Although the page-
fault test primarily exercises the memory manage-
ment subsystem which has been optimized for in-
creased concurrency, it still behaves similar to the
less optimized components of the system (although
a higher load is needed before lock contention takes
effect).® The figure also clearly shows that by in-
creasing the number of clusters (and consequently
decreasing cluster size) additional concurrency made
available, substantially reducing response time when
locks are highly contended. Also note that when
there is not much contention, the response time gets
marginally better as we go to smaller clusters because
of the higher degree of locality and the smaller data
structures. (See, for example, the case where p = 1.)

Figure 2 shows the results of the same page-fault
and message passing test, but where the p processes
are spread evenly across the clusters. In this case,
the response times stay constant as p 1s increased
until p is equal to the number of clusters, because
no cross-cluster interaction is necessary at this point.
But when more processors are added, the response
time begins to increase (because of lock contention).

The above tests show that for independent opera-
tions the response time and concurrency improve as
the cluster size is reduced. The next set of tests con-
sider operations that interact with one another, caus-
ing a significant amount of cross-cluster interaction.
Figure 3.a shows the results of a page fault test, where
one process first initializes a number of pages, after
which all participating p processes start to access the
same pages, causing the processes to fault. In these
tests, processes are again assigned to the same cluster
until each processor in the cluster is assigned a pro-

51n the first test, contentionis caused by a common address
space descriptor that must be accessed for all processes.
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a: page fault handling

b: page fault handling throughput
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Figure 1: The response times for page fault handling, kernel request servicing, and message passing for different
cluster sizes.
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a: page fault handling b: message passing
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Figure 2: The response times for page fault handling, and message passing. These are the same tests as in the
previous figure, except that the processes here are spread as evenly across the clusters as possible.
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Figure 3: The response times for (a) page fault handling, and (b) message passing requiring cross-cluster com-
munication, for varying cluster sizes. The different curves represent the tests performed with different numbers
of processes.
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cess, before starting to assign processes to the next
cluster. The figure shows that the response times to
handle a page fault for cluster sizes of 1, 2,4, 8 and 16
processors. When p is 2, 4 or 8, the ideal cluster size
18 2, 4 and 8, respectively. In each case, the efficiency
of staying within a cluster outweighs the overhead of
cross-cluster communication. However, when p is 16,
a cluster size of 4 yields the best response time; in this
case, the contention within the cluster dominates at
large cluster sizes, so the increased overhead for cross-
cluster communication is amortized by the increase in
concurrency available when smaller cluster sizes are
used.

Figure 3.b shows the response time for a message
passing test, where one process iteratively receives a
message from p processes after which it replies to each
(thus implementing a barrier of sorts). The behavior
of this test is similar to the behavior of the page-
fault test. The only difference occurs when p = 16.
In the message passing test, a cluster size of 16 is
the optimal, because there is little lock contention, in
contrast to the page fault test where lock contention
is significant.

6 Concluding Remarks

We have introduced the concept of clustering as a
way to structure operating systems for scalability, and
described how we applied this structuring technique
in our experimental operating system. We presented
performance results from our prototype that demon-
strate the characteristics and behavior of the clus-
tered system. In particular, we showed how cluster-
ing trades off the efficiencies of tight coupling for the
advantages of replication, increased locality and re-
duced lock contention but at the cost of cross-cluster
overhead.

The system we have designed and implemented can
easily be adapted to different machine configurations
and sizes, by changing the cluster size. Moreover, our
design meets a number of requirements necessary for
scalability. First, we showed that independent oper-
ations directed to different clusters can be serviced
completely in parallel; there are no central servers, or
system-wide locks. The system can therefore preserve
the parallelism afforded by the applications.

Second, the number of queues and the number of
service points in the system increases with the size
of the system. The overhead for each independent
operation is therefore independent of the size of the
system.

Finally, the system preserves the locality of the ap-
plications. Service requests are directed to local ser-

vice points, and state is distributed and replicated in
order to localize access whenever possible. With only
one exception, the data structures of only those clus-
ters directly involved in a service request are accessed
when servicing the request. The exception involves
lookup tables accessed by hash functions. These ta-
bles are used to locate objects (such as process de-
scriptors, or cached file pages), can be accessed con-
currently, and span the system to distribute the load.

Our work on clustering and Hurricane is still in
its initial stages. We intend to pursue further ex-
periments to determine how cluster size affects per-
formance, and how the workload and the attributes
of the hardware affect the ideal cluster size. We also
wish to study whether each service (i.e., kernel, mem-
ory management, file service, etc.) is best served by
the same cluster size, and whether one should en-
tertain the possibility of having non-uniform cluster
sizes, where the larger clusters are used to run ap-
plications with a higher degree of parallelism. In the
long term, we intend to study policy issues for the
various components of the system, including paging,
scheduling and T/O subsystems.
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