Appeared in Proceedings 6th International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), Montreal, QC, Canada, October 1998, pp. 153-160.

Prioritized Multiprocessor Networks: Design and Performance

Govindan Ravindran and Michael Stumm
Department of Electrical and Computer Engineering
University of Toronto

Toronto, Canada M5S 3G4

Email: gravin@eecg.toronto.edu

Abstract

This paper proposes and evaluates prioritized di-
rect shared-memory multiprocessor networks. We use
three components to implement prioritized networks,
namely, priority-based link arbitration, priority inher-
wtance, and dynamic virtual channels. The two ma-
Jor results from our study are: (i) adding priorities
to direct shared-memory multiprocessor networks can
lead to reduced average transaction latencies and in-
creased system throughput when running traditional
parallel applications, and (i) a prioritized multipro-
cessor network can be used to reduce the worst-case
latencies of time-constrained traffic when it co-exists
with best-effort traffic, without penalizing the average
performance of best-effort traffic.

1 Introduction

Adding priorities to direct interconnection networks
(of shared-memory multiprocessor systems) can lead
to a number of advantages. It can reduce average la-
tencies and improve system throughput. It can be
used to support multiple classes of traffic, such as
multimedia and regular, best-effort traffic. It leads to
much lower variances in latency and hence improved
system predictability, which is important for (soft)
real-time systems.

Adding priorities to direct networks is surpris-
ingly simple, and involves three main components:
(¢) priority-based link arbitration, (i¢) priority in-
heritance, and (¢4¢) dynamic virtual channels. With
priority-based link arbitration, if two or more packets
compete for the same idle link, the link will be assigned
to the higher priority packet (as opposed to assigning
in a round-robin or in a FIFO manner). There are
many ways to assign priority to packets. For instance,
we can assign priority to packets based on its age,
transaction type, or size. Priority-based link arbitra-
tion can, however, result in priority inversion, where
a lower priority packet may block a higher priority
packet that may come behind it in a queue. With pri-

ority inheritance, a blocking lower priority packet at
the head of a queue temporarily inherits the priority
of the higher-priority packet behind it [6]. This allows
the lower priority packet to obtain the desired link
sooner, thereby reducing the queuing delays for higher
priority packets. With dynamic virtual channels, we
dynamically allocate new virtual channel buffers for
high priority packets that would otherwise unneces-
sarily block [7].

In this paper, we show how a connectionless
wormhole switched two-dimensional mesh-connected
shared-memory multiprocessor network can be ex-
tended to support priorities of network packets, and
we analyze its performance. Through extensive flit-
level simulations, we show how such prioritized net-
works can significantly reduce latency, improve system
throughput and predictability.

In a related earlier work [8], Rexford et. al. propose
virtual networks for routing different classes of traffic.
Our approach is different in that we use demand driven
dynamic virtual channels as opposed to static virtual
channels and employ priority inheritance.

2 The Problem

In this section, we illustrate one of the uses of pri-
oritized network, namely to support two classes of
traffic. Multiprocessor systems are increasingly being
used for multimedia applications, while still serving as
data and computation engines. In the backplane net-
works of such systems, a variety of traffic types will
co-exist, ranging from the traffic of sequential and par-
allel computations (best-effort traffic), to the traffic of
multimedia audio and video communications (time-
constrained traffic). These two types of traffic have
quite different traffic characteristics and performance
requirements. Time-constrained traffic often require
a bound on worst-case latency, while a good average-
case behavior will suffice for the best-effort traffic aris-
ing from regular computations.

Bounds on worst-case latency could be provided

3500 | Worst-case Latency - Non-prioritized Network ——]
Worst-case Latency - Prioritized Network ~=—

3 Ave Latency - Non-prioritized Network -+--
%3000 r Ave Latency - Prioritized Network -*-- 7
o

£2500 - B
i

B2000 | .
S

3 .

(o} L

£1500

Latency (ti
4
S
o

) ; .
wol ot ,
ot e +.*»*ﬁ—f-"~‘* s
0.001 0.01 o1

Request Rate

Figure 1: Worst-case and average communication la-
tencies of time-constrained traffic in a 2D 8 x 8 mesh-
connected multiprocessor network. Worst-case la-
tency i1s shown both for round-robin link arbitration
and with dynamic virtual channels. The errorbars
show the variances on these values.

if the network is connection oriented and resources
can be reserved in advance during a connection set-
up phase. A connectionless network, though may not
be able to guarantee bounds on worst-case latency, al-
lows for better utilization of network resources among
several classes of traffic. Wormhole routed connec-
tionless networks with round-robin link arbitration
are used in many of todays multiprocessor routers,
and they deliver good average performance. How-
ever, worst-case communication latency can be very
high and unpredictable as the network load increases.
Figure 1 illustrates this. Assuming a workload de-
scribed in a later section (containing time-constrained
and best-effort traffic), the bottom curve plots the av-
erage communication latency of time-constrained re-
quests as a function of load rate of best-effort requests
for a 2D 8 x 8 mesh network. The top curve plots the
worst-case latency of the time-constrained traffic for
the same workload. We used the batch-mean analysis
method [4], where the average latency is computed as
the grand average of all batch averages and the worst-
case latency is computed as the average of all batch
worst-case latencies. For the worst-case latency, the
top end of the errorbars represents the global worst-
case (over all batches), while the bottom end repre-
sents the global best (over all batches) of the worst-
cases. It is apparent that the worst-case latencies
and their variance increase significantly as the load
increases.

The curve in the middle plots the worst-case la-

—»Router|—»

N\

o PM
\ Bi—directional

Links /

Processor-Memory
Module

Figure 2: A 2D mesh system with 9 processors.

tencies of time-constrained traffic for the same work-
load, but for a network that uses the techniques pro-
posed in this paper. It is clear from this curve that
the techniques are effective in reducing worst-case la-
tency and its variance without the need for bandwidth
reservation. While our goal is to reduce the worst-
case latency of time-constrained packets, we wish to do
so without unnecessarily penalizing best-effort traffic.
By routing time-constrained traffic mainly through
dynamically assigned channels, we reserve a set of pri-
mary virtual channels, which we refer to as virtual
channel 0 or VC-0, for best-effort traffic. This pre-
vents performance deterioration of best-effort traffic
even when there is a moderately high level of time-
constrained traffic.

3 Simulated System

For our study, we assume a 2-dimensional, mesh-
connected, shared-memory multiprocessor. Figure 2
shows the network for a system with 9 processors.
Each processing module (PM) contains a processor,
a local cache and a portion of the main memory.
The connection between each pair of adjacent nodes
is bidirectional, implemented as two 32-bit wide uni-
directional channels and no end-around connections.
This topology allows minimal deadlock free z-y rout-
ing that does not require virtual channels [1]. This
allows us to use virtual channels to route higher pri-
ority traffic to improve system throughput [2]. We
assume wormhole switching, where a packet is sent
as a contiguous sequence of flits with the header flit
containing the routing and sequencing information [3].

The system provides a flat, global (physical) ad-
dress space, and each PM is assigned a unique con-
tiguous portion of that address space, determined by
its location. All processors can transparently access

all memory locations in the system. The target mem-
ory is determined by the address of the memory being
accessed. Local memory accesses do not involve the
network, while remote memory accesses require a re-
quest packet to be sent to the target memory followed
by a response packet from the target memory to the
requesting processor. For time-constrained traffic, the
PM acts both as a storage node responsible for storing
multimedia data and as well a network node that initi-
ates time-constrained requests [5]. The packets are of
variable size® and are transferred in flits, bit-parallel,
along a unique path in the network.

In a mesh-connected system, we refer the router
that connects a PM to the mesh as Network Interface
Controller (NIC). A NIC (with virtual channel buffers)
for a bidirectional mesh is schematically shown in Fig-
ure 3a. It is modeled as a 5 x b crossbar switch with
four input/output links from and to its four direct
neighbors and one input/output link from and to the
local PM. The input links have FIFO buffers to store
flits that are blocked in the network.

The NIC performs basic switching, routing and
flow control functions. It examines the header flit of
a packet to determine which output link the packet
should be forwarded to. The NIC also does proper
arbitration if there are competing requests for an out-
put link. The arbitration policy could be round-
robin, priority-based or both. In our study, we assume
priority-based arbitration with two levels of priority:
a high and a low priority. If a requested output link
is not available, then the requesting flit is blocked and
stored 1n the corresponding input buffer. It is assumed
that the NIC can connect all inputs to outputs in a
single network clock cycle. Once a switch connection
between an input and output link is established, it is
broken only after the last flit of a packet has been
transferred. We assume buffered wormhole switching
with NIC buffer size large enough to store 3 flits [7].

4 Static Virtual Channels

A network with virtual channels organizes the flit
buffers associated with each physical channel into sev-
eral virtual channels. Virtual channels increase physi-
cal channel utilization, and thus network throughput,
because any blocked packet that spans several nodes
occupies only one virtual channel, and can be bypassed
using any of the other virtual channels associated with
a physical channel. The virtual channels associated
with a physical channel arbitrate for physical channel

1Six main packet types are simulated, namely read request,
read response (cache-line size), write request (cache-line size),
write response, time-constrained request, and time-constrained
response (cache-line size).

bandwidth on a flit-by-flit basis. With static virtual
channels, the number of virtual channels per physical
channel remains constant. Figure 3a shows a mesh
NIC with two virtual channels per physical channel,
which remains constant.

At the receiving side of a node, the routing algo-
rithm first assigns an incoming packet to an output
physical channel and then to a virtual channel. If vir-
tual channels are being used for deadlock free routing,
then the choice of virtual channel is dictated by the
routing protocol; otherwise, another allocation scheme
is used or any free virtual channel associated with the
physical channel is chosen. Once a packet is assigned
a virtual channel, flit-level flow control is used to ad-
vance the packet across the switch and the physical
channel.

Hardware support for static virtual channel flow
control requires status registers at the transmitting
and the receiving side of a node [2]. The transmitting
node contains a status register for each virtual channel
on the corresponding receiving node. The status reg-
ister normally includes a bit to indicate whether the
virtual channel is active or idle and a count of the num-
ber of free virtual channel buffers. The active/idle bit
is used to prevent interleaving of the flits of different
packets. The receiving node contains a status regis-
ter for each virtual channel that contains information
such as the state of the channel and optionally, in-
put and output virtual channel pointers. The status
register storage requirement per physical channel is:

Spe = N(log(Bue) +1) + N (1)

where the first and second term represent the storage
requirement at the transmitting and receiving side of
a node, respectively. By is the number of flit buffers
per virtual channel, and N is the number of virtual
channels per physical channel. For N =4, and B,. =
4 flits, the status buffer storage requirement is 16 bits.

Adding virtual channels requires a few additional
wires in the physical channel to identify the virtual
channel for each transmitted packet in the forward di-
rection and to indicate the availability of buffers to
the transmitting node in the reverse direction. The
virtual channel buffer counter at the transmitting side
is incremented each time a flit is transmitted to the
neighboring node and decremented when the neigh-
boring node signals that it has forwarded a flit and
thus freed up buffer storage by back propagating a
freed bit along with the virtual channel identification.
The extra channel width overhead for supporting vir-
tual channels in a network with 32-bit phits with 4
static virtual channels per physical channel is: 2 bits

Status registers
associated with
physical channel 0

Idle/Active bit

Buffer count.

Network Network Network

Physical Input Physical
Input Buffers Output
Channels Channels
— —
e —
’ Switch
— =" —
= -
Static / Processor Processor
Virtual
Channels nput Output
Channel Channel
Processor Processor
Input Ouput
Buffers | Buffers
1

Network Network
Physical Network Physical
Input Input Output
Channels Buffers Channels
4—%’
Switch
—{—1 —
— —
Dynan{ Processor Processor

Input Output
Virtual
Channels Channel Channel

Processor Processor
Input Output
Buffers —i

(-

Processing Module

(b)

Figure 3: Mesh Network Interface Controller with (a) static and (b) dynamic virtual channels.

Transmitting Node Receiving Node

Dynamit VCs

11 Physical channel 0
ve1 [1]1]oo 001 vel

allocated to this VC in
the receiving node

Allocation bit 7 \
Output physical channel

vca

AN
Allocation bit / \

Idle/Active bit

Figure 4: Hardware support for dynamic virtual chan-
nel flow control is illustrated for one physical channel
between a transmitting and a receiving node.

to transmit the virtual channel id in the forward path,
2 bits to transmit the virtual channel channel id in the
reverse path, and a freed line.

5 Dynamic Virtual Channels

Dynamic virtual channels are similar to static vir-
tual channels in that they are multiplexed over a single
physical channel and each of these dynamic channels
have independent FIFO buffers of the same size. How-
ever, unlike static virtual channels, virtual channels
in this case are allocated dynamically from a com-
mon pool. Thus, the number of virtual channels per
physical channel varies over time, with the minimum
number per physical channel being 1. Figure 3b shows
a NIC with dynamic virtual channels.

In our case, a new virtual channel is allocated dy-

Output VC pointer (optional

Input VC pointer (optional) n

namically, if possible, for a high priority packet that
would otherwise unnecessarily block. The number of
dynamic channels allocated per physical channel thus
varies depending on the contention for the physical
channel. Routers using dynamic virtual channel allo-
cation prevent head-of-line blocking effectively, where
a packet waiting for a blocked link is itself blocking
another packet behind it whose target output link is
free.

We assume that the total number of virtual chan-
nels that can be allocated in a NIC is constant. Ini-
)tially there is one virtual channel per physical chan-
el, which we refer to as VC-0. A virtual channel is
allocated for a packet by the flow-control logic at the
transmitting side of a link, which transmits the dy-
namic virtual channel number along with the packet
(similar to the static virtual channel allocation case).
At the receiving side of a node, when a packet arrives,
it is buffered in the specified virtual channel buffer (if
the virtual channel has been already allocated to the
physical channel). When the specified virtual chan-
nel does not exist, it will be allocated from a common
buffer pool. A dynamic channel, once allocated, 1s re-
leased only when it contains no more data. In the rare
case when there are no free common pool buffers? for
an incoming packet, then it cannot be assigned the
specified virtual channel and the packet (header flit)
is dropped and a drop signal 1s asserted. The trans-
mitting node then retransmits the header flit when
the drop signal is deasserted. This requires the trans-
mitting node to keep a copy of the header flit when
a dynamic virtual channel is requested so that it can

2This can happen when two or more arriving packets at
different physical channels require new virtual channels at the
same time and only some of the requests could be granted.

later be retransmitted if necessary. This has no per-
formance impact on the system, as it is equivalent to
blocking a flit for an extra cycle.

Dynamic virtual channels can be implemented with
a simple extension to the hardware used to support
static virtual channels. Figure 4 presents the hard-
ware required for implementing dynamic virtual chan-
nel flow control for one physical channel between a
transmitting and a receiving node. Similar to the
static virtual channel case, the transmitting node con-
tains a status register for each virtual channel on the
receiving side. The number of such status registers
1s equal to the maximum number of possible dynamic
virtual channels. The status register contains an allo-
cation bit to identify whether the virtual channel has
been allocated to a physical channel and, if allocated,
a bit to indicate whether it is idle or active, and a
count of the number of free virtual channel buffers. In
addition to the above, to avoid head-of-line blocking, 3
bits are required to store the output physical channel
number assigned to the packet at the head of virtual
channel buffer in the receiving node.

The receiving side contains a status register for each
virtual channel; the register contains an allocation bit
and/or an idle/active bit. The status register storage
requirement per physical channel is therefore:

Spc = Ymax (log(BUC) +2+ 3) + 2 Ninae (2)

where the first and second term represents the storage
requirement at the transmitting and receiving side of a
node, respectively, By is the number of flit buffers per
dynamic virtual channel, and N,,q; 1s the number of
maximum virtual channels that can be assigned. For
Nz = 4, and B, = 4 flits, the status buffer storage
requirement becomes 36 bits.

With respect to channel width overhead, similar to
the static virtual channel case, we need to identify the
virtual channel number both in the forward direction
that is transmitted along with the packet and in the
reverse direction that is transmitted along with the
freed signal. In addition, an extra wire is required for
the drop signal that is asserted when a header flit is
dropped.

6 Simulator

The simulator we use reflects the behavior of the
system we simulate at the register-transfer level on
a cycle-by-cycle basis. It was implemented using the
smpl simulation library [4]. The batch means method
of output analysis was used, with the first batch dis-
carded to account for initialization bias. A base ver-
sion of the simulator was validated against measure-
ments taken from the Hector prototype, a hierarchical

slotted ring architecture [9]. The base simulator was
then extended to model meshes and switching tech-
niques such as wormhole switching.?

Our measures of performance are system through-
put (in requests completed per processor cycle), and
worst-case and average round-trip memory access la-
tency (in processor clock cycles). We assume that the
network clock cycle is twice the processor clock cy-
cle. The average round-trip latency is computed as the
grand average of all batch averages, while the worst-
case round-trip latency is computed as the average of
maximum round-trip latency of all batches.

A processor 1s allowed to have four outstanding re-
quests, before it is required to block for a reply. This
parameter is used to model processors with prefetch-
ing and/or multi-threading. For best-effort traffic, we
assume the probability of a request being a read is
0.7 (the remaining being write requests). The batch
termination condition is that all processors have to
complete a minimum number of requests.

7 Prioritized Direct Networks

In our implementation of a prioritized direct net-
work, one virtual channel, VC-0, is initially statically
assigned to each physical channel. In addition, vir-
tual channels are allocated dynamically (from a pool)
to a physical channel. Low-priority packets may only
use VC-0s, while high priority packets use dynamically
assigned channel(s).

We use a three step process to allocate output links.
Output links are first allocated to high priority packets
buffered in dynamic virtual channels. Among compet-
ing high priority packets, we allocate the output link
to the oldest one. Second, we assign output links to
high priority packets, if any, at the head of the pro-
cessor input queue. Finally, lower priority packets in
the VC-0s and at the processor input queues are as-
signed output links in that order. Since we have inde-
pendent virtual channels for time-constrained traffic
in the network, we need to apply priority inheritance
only at processor input queues, as that i1s the only
place where priority inversion can occur.

In this section, we show how effective priority net-
works are in reducing latency and in improving sys-
tem throughput and predictability. We do this by
simulating a 2-dimensional mesh-connected network,
extended with priority-based link arbitration, priority
inheritance, and dynamic virtual channels. Although
our evaluations are for two priority levels, a high and

3For the mesh simulator, the processor and memory modules
are essentially the same as in the ring simulator with new NIC
modules that incorporate switching, routing and flow-control.

350

Base ——
High Priority Write Trans -—+--- | |
300 - High Priority Short Pkts = PF o) 1
High Priority Long Pkts -x i
High Priority Read Trans -=-- i

N

a

o
T

Latency (cycles)
N
o
o

50 L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Throughput (requests/cycle)

Figure 5: Throughput versus latency for a 64 proces-
sor 8 x 8 wormhole switched prioritized network. The
base case is for a non-prioritized network with no dy-
namic channels. For the other curves higher priority
is given to packets based on its size (longer or shorter)
or its transaction type (read or write).

a low priority level, 1t could be extended to multi-
ple priority levels. We also show that dynamic vir-
tual channels can be used to support multiple classes
of traffic. For this purpose, we consider two traffic
classes, namely best-effort traffic and time-constrained
traffic. 'We show that the priority network is effec-
tive in reducing the worst-case communication latency
of time-constrained traffic, while not penalizing best-
effort traffic.

7.1 Priority Traffic for Traditional Appli-
cations

Even with no time-constrained traffic, it can make
sense to assign priorities to different classes of pack-
ets if it benefits that class or the traffic overall. For
example, in a shared-memory multiprocessor, one can
consider giving a higher priority to large packets con-
taining data or to shorter packets containing requests
or acknowledgments. Large packets consume more
network resources (e.g., links and buffers) than short
packets, and when a large packet is blocked in the net-
work, it will unnecessarily block other packets, thereby
reducing system throughput. By giving priority to
large packets, they will be removed from the network
sooner, thereby reducing the number of packets they
can block. On the other hand, by giving priority to
short packets, we prevent them from being unneces-
sarily blocked by large packets.

It is also possible to prioritize packets according to
transaction type i.e., read and write transactions. Fig-
ure b presents the throughput-latency curves for five

10000 T
9000 Worst-case Latency - Base ——)
Worst-case Latency - Pri Read Trans ~=—
8000 Average Latency - Base -+--)
Average Latency - Pri Read Trans -x--
__7000 r B
]
© 6000 l |
> -
2
5000 r R
o /
c /
£ 4000 + B
=
- %
3000 - % % R
2000 | 1
1000 +)’ % ¥]
,,,,,,,,,,,, EPUIPSE
Q M s & e e
0.001 0.01 0.1

Request Rate

Figure 6: Worst-case latency versus request rate for
a 64 processor 8 x 8 wormhole switched prioritized
network. Curves are drawn for a base case of a non-
prioritized network with no dynamic channels and for
a network with dynamic channels where read transac-
tion is given higher priority.

different cases: a base case of a non-prioritized net-
work with no dynamic or static channels, and a priori-
tized network with high priority given to large packets,
short packets, read transactions, and write transac-
tions. This is for a 64 processor 8 x 8, mesh-connected
system with 32 byte cache lines and a workload with
a uniformly distributed memory access pattern. For
the prioritized network, we assume a virtual channel
buffer size of 3 flits and that the maximum number of
dynamic virtual channels is 4. For the base case, the
network input buffer size of 6 flits is twice as large as
that of the prioritized network, under the assumption
of equal memory resources.

As can be seen from Figure 5, the highest through-
put is achieved when read transactions (i.e., read re-
quest and read response packets) are given high pri-
ority. Also, giving priority to large packets results in
better performance than giving priority to short pack-
ets, but giving priority to write transactions results in
a poor performance. A possible explanation for this
is that since the number of read transactions is far
higher than the number of write transactions, giving
priority to read transactions will result in a higher
dynamic channel buffer utilization when compared to
high-priority write transactions.

To measure the impact of prioritized networks on
the predictability of the system, we plot worst-case
latencies in Figure 6 for both the non-prioritized net-
work and for the prioritized network with high priority
read transactions. For comparison purposes, we also

. 3000
2]
s Base ——
2 2500 L Prioritized Network)
Qo
I ,
S 2000 1
o}
£ g
g A
© 1500 1
) 5
Q@)
)
£ 1000 | } 1
= i
L 500 r S H b
L & gt (@
[S)
R ‘
0.001 0.01 0.1

Request Rate

N

N

o
.

Base ——
Prioritized Network -—+---

N

N

o
T

N
o
o

180

160

140

Ave Latency, best-effort traffic(cycles)

() A

80 .
0.001 0.01 0.1
Request Rate

Figure 7: (a) Worst-case latency of time-constrained requests and (b) average latency of best-effort requests,
both as a function of best-effort request rate for an 8 x 8 64 processor wormhole switched prioritized network.
Curves are for a base case of a non-prioritized network with no dynamic channels and for a network with dynamic

channels, with priority given to time-constrained packets.

present the average latency curves. It is clear that
though the average latencies are small, the worst-case
latency for the non-prioritized network can be as high
as a factor 50 higher than for the priority network.
The unpredictability of the worst-case latency values
is shown by the length of the errorbars. The priori-
tized network substantially reduces the average worst-
case latency, and it reduces the variance by more than
a factor of 2, thereby improving the predictability of
the system.

7.2 Time-constrained Traffic

In this section, we consider a mix of two classes
of traffic: (é) best-effort traffic with uniformly dis-
tributed destinations and an exponentially distributed
inter-arrival time between requests, and (i) time-
constrained traffic with destinations uniformly dis-
tributed, but with a fixed inter-arrival time between
requests, as seen in multiprocessor video servers [5]. In
our simulations, a processor is allowed to have 2 out-
standing best-effort requests and 2 outstanding time-
constrained requests for a total of 4 outstanding re-
quests, before it is required to block for a reply.* For
best-effort traffic, we assume that 32 byte cache lines
are being transferred. The batch termination crite-
rion 1s that all processors have to complete both a
minimum number of best-effort requests and a min-
imum number of time-constrained requests. In all

4TIn this model, the time-constrained and best-effort requests
are interleaved and can be assumed to be equivalent to having a
main processor and a co-processor with the former issuing best-
effort requests while the latter issuing time-constrained requests
independent of each other.

our experiments we vary the request rate of best-
effort traffic, and we measure the worst-case latency
of time-constrained requests and the average latency
of best-effort requests. The inter-arrival time of time-
constrained requests is fixed at 1 in 1000 processor
cycles.

Figure 7a presents the average worst-case commu-
nication latency (over all batches) of time-constrained
requests. Errorbars indicate the absolute maximum
and minimum values over all batches. There are two
curves: the top curve represents a non-prioritized net-
work with no dynamic channels, whereas the bottom
curve is for a prioritized network with four dynamic
channels per node, giving priority to time-constrained
traffic. It is clear that a prioritized network is effec-
tive in reducing the worst latency of time-constrained
requests more than 50%. In particular, the priori-
tized network is effective in reducing the absolute max-
imum worst-case latency of time-constrained requests,
thereby improving the predictability of the network.

Figure 7b presents the average latency of the best-
effort requests as a function of best-effort request
rate. The graph shows that giving priority to time-
constrained requests does not significantly worsen the
average latency of best-effort requests.

We now consider a non-uniform bit-complement
best-effort traffic pattern. The bit-complement traffic
congests the center of a 2D mesh network and signifi-
cantly affects the worst-case latency as shown in Fig-
ure 8a. A prioritized network can again be effective in
reducing by an order of magnitude the worst-case la-
tency of time-constrained requests. Another benefit of

7000 T

Base ——
6000 - Prioritized Network ~=—

5000 | 1
4000 |- 1
3000 | 1
2000 | %]

1000 | % @
IS S & & &

WC latency, time-constrained traffic (cycles)

Loa

0
0.001 0.002 0.003 0.004 0.005 0.006 0.007
Request Rate

600

H Base —— |
550 Prioritized Network -—+---

500 | 1
450 | 1
400 | :
350 | 8
300 | e]
250 | V4 |
200 i

Ave Latency, best-effort traffic(cycles)

150 B (b) 4

100 .
0.001 0.01 0.1
Request Rate

Figure 8: (a) Worst-case latency of time-constrained requests and (b) average latency of best-effort requests,
both as a function of best-effort request rate for an 8 x 8 64 processor wormhole switched prioritized network.
A non-uniform bit complement memory access pattern is used for best-effort requests. Curves are drawn for a
base case of a non-prioritized network with no dynamic channels and for a network with dynamic channels, where

time-constrained packets are given priority.

the prioritized network with a non-uniform best-effort
memory access pattern, is a significant reduction in
the average latency of best-effort requests at high re-
quest rates when compared to the non-prioritized net-
work (see Figure 8b).

8 Conclusion

In this study we proposed and evaluated prior-
itized connectionless shared-memory multiprocessor
networks. In our implementation of prioritized net-
works, we used three main components; priority-based
link arbitration, priority inheritance, and dynamic vir-
tual channels. It was shown that a prioritized network
can significantly reduce average transaction latencies
and improve system throughput when running tradi-
tional parallel applications. It was also shown how a
prioritized network could be used to reduce the worst-
case latencies of time-constrained traffic when it co-
exists with best-effort traffic. One of the key aspects
of the prioritized network is that it do not increase the
average latency of best-effort traffic while improving
the average latency of time-constrained traffic, inde-
pendent of the best-effort traffic pattern.

References

[1] W. J. Dally and C. L. Seitz, “Deadlock-free mes-
sage routing in multiprocessor interconnection net-
works,” IEEE Trans. on Computers, vol. C-36, No.
5, pp. b47-553, May 1987.

[2] W. J. Dally, “Virtual-channel flow control,” IEEE
Trans. on Parallel and Distributed Systems, vol. 3,
no. 2, pp. 194-205, March 1992.

[3] W.J. Dally and C. L. Seitz, “The Torus routing
chip,” Journal of Distributed Computing, vol. 1,
no. 3, pp 187-196, March 1986.

[4] M. H. MacDougall, Simulating Computer Systems:
Techniques and Tools, MIT Press, 1987.

[5] A. L. Narasimha Reddy, “Scheduling and data dis-
tribution in a multiprocessor video server,” Proc.
Intl. Conf. on Multimedia Computing and Sys-
tems, pp. 256-263, May 1995.

[6] R. Rajkumar, “Synchronization in real-time sys-
tems: A priority inheritance approach,” Kluwer
Academic Publishers, ISBN 0-7923-9211-6 pp. 15-
58, 1991.

[7] G.Ravindran, Performance Issues in the Design of
Hierarchical-ring and Direct Networks for Shared-
memory Multiprocessors, Ph.D. Dissertation, De-
partment of Electrical and Computer Engineering,
University of Toronto, January 1998.
http://www.eecg.toronto.edu/gravin

[8] J. Rexford, J. Dolter and K. Shin, “Hardware sup-
port for controlled interaction of guaranteed and
best-effort communication,” Proc. Second Work-
shop on Parallel and Distributed Real-time sys-
tems, pp. 188-193, April 1994.

[9] Z. G. Vranesic, M. Stumm, D. Lewis, and
R. White, “Hector: A hierarchically structured
shared-memory multiprocessor,” IEEE Computer,
vol. 24, no. 1, pp. 72-78, January 1991.

	Text15: Appeared in Proceedings 6th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Montreal, QC, Canada, October 1998, pp. 153-160.

