International Conference on Parallel Processing 1993.

LOCALITY AND LOOP SCHEDULING ON NUMA
MULTIPROCESSORS

Hui Li, Sudarsan Tandri, Michael Stumm, and Kenneth C. Sevcik
Computer Systems Research Institute
University of Toronto

Toronto ON M5HS 1A4
CANADA

Abstract

An tmportant issue in the parallel execution of loops
1s how to partition and schedule the loops onto the
avatlable processors. While most existing dynamic
scheduling algorithms manage load tmbalances well,
they fail to take locality into account and therefore
perform poorly on parallel systems with non-uniform
memory access times. In this paper, we propose
a new loop scheduling algorithm, Locality-based Dy-
namic Scheduling (LDS), that exploits locality, and
dynamically balances the load.

Key Words: Locality, Loop Scheduling, NUMA
Multiprocessors, Data Partitioning, Locality-based
Dynamic Scheduling.

1 Introduction

Loops are a major source of parallelism for todays
parallelizing compilers. An important issue in the
parallel execution of loops 1s how to partition and
schedule the loops onto the available processors. A
number of algorithms have been proposed for this
purpose. For example, static scheduling algorithms
such as block, cyclic, and block-cyclic scheduling, par-
tition the loop into fixed-sized chunks and distribute
the chunks evenly across processors statically at the
beginning of the computation. Dynamic schedul-
ing algorithms, on the other hand, assign the loop
partitions at run time, depending on the speed and
progress of the processors. For example, self schedul-
ing [5] partitions the loop into fixed size chunks,
which are conceptually organized in a single system-
wide queue, and each processor obtains a new chunk
from the queue when it has completed its previ-
ous chunk. More recent proposals, such as guided
self scheduling (GSS) [10], factoring [4], and trape-
zoid [13], vary the size of the chunks; they start with
large chunks in order to reduce the overhead in ac-

cessing the central queue and then progressively use
smaller chunks in order to maintain good load bal-
ance. These scheduling algorithms are described in
detail in Section 2.

All of the loop scheduling algorithms listed above
assume a shared memory architecture with uniform
memory access (UMA) costs, and hence need not take
data locality into consideration. However, many of
the more modern, especially scalable, shared mem-
ory multiprocessors have non-uniform memory access
(NUMA) cost; i.e., the cost of accessing memory in-
creases with the distance between the accessing pro-
cessor and the target memory. Examples of multi-
processors with non-uniform memory access costs in-
clude DASH [6], Hector [14], BBN [12], RP3 [7], and
Cedar [8]. In these systems, data locality is impor-
tant for good application performance, and the loop
scheduling algorithms should take this into account.

In this paper, we introduce a new loop scheduling
algorithm that takes data locality into consideration,
and compare its performance with other well known
scheduling algorithms. The next section describes
some of the existing loop scheduling algorithms. Sec-
tion 3 describes data locality and why it is an impor-
tant factor that cannot be neglected in loop schedul-
ing algorithms. In particular, we argue that data
locality is important even in systems with hardware-
based cache coherence and in cache-only-memory ar-
chitectures (COMA), such as the KSR [1]. The lo-
cality based dynamic scheduling (LDS) algorithm we
propose in this paper is described in Section 4, and
compared against the affinity scheduling algorithm
developed at the University of Rochester, the only
other loop scheduling algorithm we are aware of that
also takes memory access locality into consideration.
In Section b5, the results of experiments comparing
LDS to the other scheduling algorithms are described.

Page 1

2 Scheduling Algorithms

2.1 Static Scheduling

Static scheduling algorithms, such as block schedul-
ing, cyclic scheduling, and block cyclic scheduling,
assign a fixed number of loop iterations to each pro-
Ccessor.

Block scheduling divides the loop into blocks of
[N/P] iterations, where N is the number of itera-
tions and P is the number of processors. Each pro-
cessor 1s assigned a separate block. If the amount
of computation performed by each iteration differs,
then block scheduling can perform poorly because of
load imbalance. For example, in an iteration space
where the amount of computation per iteration in-
creases linearly, the first few blocks will entail very
little computation while the latter ones will involve
much more. The first few processors will therefore
finish their computations early and have to wait for
others to complete, resulting in poor speedup.

Cyclic scheduling assigns loop iterations to pro-
cessors 1n a cyclic order, so that processor p will ex-
ecute the iterations p,p+ P,p+ 2P, ..., where P is
again the number of processors executing the loop.
In contrast to block scheduling, cyclic scheduling
obtains better load balance for triangular iteration
spaces and other iteration spaces where the amount
of computation increases/decreases linearly with the
iterations.

Block cyclic scheduling is a compromise be-
tween block scheduling and cyclic scheduling. This
algorithm assigns blocks of a fixed size to processors
in a round robin fashion. If the block size is equal
to one, then block-cyclic scheduling degenerates to
cyclic scheduling and if the block size is [N/ P], then
block-cyclic scheduling is same as block scheduling.
Hence, block cyclic scheduling forms a continuum be-
tween block and cyclic scheduling algorithms.

The static algorithms ignore the fact that the
amount of computation performed per iteration may
differ, or that it cannot always be determined a pri-
ori (for example, the amount of computation could be
dependent on the data). Moreover, the speed of each
processor may also differ because of multitasking in-
terference. Therefore static scheduling often suffers
from load imbalance, resulting in poor speedup.

2.2 Dynamic Scheduling

If the imbalance becomes large, then it is necessary
to dynamically adjust the work assigned to each pro-
cessor at run-time in order to balance the load. This
is done by grouping together one or more iterations

to form subtasks which are dynamically allocated and
executed by the processors. The subtasks need not be
of fixed granularity, and in fact the granularity could
vary dynamically. If the granularity is very large
(N/ P iterations per subtask) then we effectively have
block scheduling. On the other hand, if the granular-
ity 1s very small, then the data structure controlling
the subtasks could become a bottleneck because of
the number of accesses each processor must perform
to this structure. Self scheduling, guided self schedul-
ing, factoring, and the trapezoid method are exam-
ples of dynamic scheduling algorithms.

3 Locality and Scheduling

Self scheduling partitions the loops into subtasks
containing one or more iterations [5]. Each processor
then continuously allocates and executes one subtask
at a time until no subtasks are left for processing.
If the number of iterations per subtask is fixed and
greater than one, then this scheduling strategy is gen-
erally referred to as fized-size chunking [5].

With fixed-size chunking it can be difficult to
choose the correct granularity. Small granularity in-
creases the overhead of accessing the data structure
controlling the subtasks that still need to be executed.
Larger granularity can lead to load imbalances when
the last set of subtasks is being executed. Hence in
the algorithms that follow, the size of the subtasks is
dynamically adjusted with the progress of the com-
putation.

Guided self scheduling(GSS) uses a subtask
granularity of [n/P] iterations, where n is the total
number of remaining iterations [10]. With this algo-
rithm, the subtasks are composed of a large number of
iterations at the start of the computation, then pro-
gressively fewer until the size is one. In this scheme,
there will be at least P — 1 subtasks consisting of
only one iteration, and each will be executed inde-
pendently. When the execution time of the iterations
differ, it is possible that an early subtask could be
so large that it does not complete by the time all
other subtasks have completed [4]; this load imbal-
ance problem is addressed by the factoring algorithm.

Factoring is similar to GSS in that the size of
the subtask decreases as the computation progresses,
but it assigns [n/(2P)] iterations to P consecutive
subtasks, where n is equal to the number of remain-
ing iterations at the beginning of these allocations [4].
Hence P consecutive subtasks will be of the same size,
before the granularity is decreased. If the variance of
the amount of computation performed by each iter-

Page 2

Scheme No. of Iterations = 500 and P = 4

Factoring
Trapezoid

GSS 125947153403022171297543221111
6363636331313131161616168888444422221111

62 58 54 50 46 42 38 34 30 26 22 18 14 8

LDS 6355484237322825622191714131110877654433322211111111

Table 1: Subtask Sizes for dynamic scheduling algorithms. The GSS, factoring and trapezoid algorithms are

described in Section 2. LDS is described in Section 4.

Axrch. | Cache | Local Mem. | Remote Mem.
Hector 1 10 24
DASH 1 22 61

RP3 1 10 15

Table 2: Latency for memory read operation in pro-
cessor clocks

ation is large, then factoring performs better than
GSS [4].

The Trapezoid method also assigns a decreas-
ing number of iterations to subtasks and thus is a
variation of GSS. In this case, however, the subtask
size decreases linearly instead of exponentially [13].
The total number of iterations, IV, is partitioned into
S = [2N/(f + 1)] subtasks, where f = |[N/(2P)] is
the size of the first task. Consecutive subtasks differ
by [(f —1)/(S —1)] iterations.

For comparison, the subtask sizes employed by the
dynamic scheduling algorithms GSS, factoring, and
the trapezoid method for a problem size with 500 it-
erations executing on four processors is given in Ta-
ble 1.

In NUMA systems, managing data locality is im-
portant due to the increased cost of accessing remote
memory. Table 2 shows the difference between re-
mote memory access costs and local memory access
costs for different architectures configured with 64
processors. On these systems having most of the ac-
cessed data local to the accessing processor can be a
major factor in improving performance [2, 3, 11].

In parallelizing a loop, it is important to consider
the partitioning of both the data space and the loop
iteration space, and how both are mapped onto the
processors. For good performance, it is essential that
the loop partitions and scheduling match the data
partitions. Best performance is achieved when all
data required by a loop partition is local to the pro-
cessor on which the partition is scheduled. A mis-
match in the scheduling of the loop partitions and

the data partitions can have a heavy performance
penalty on NUMA multiprocessors, as will be shown
in Section b.

Consider for example the simple loop shown in Fig-
ure 1. The iteration space and the data space are two
dimensional. Because the inner loop j 1s sequential,
the data space must also be partitioned row-wise and
implicitly the iteration space must also partitioned
row-wise. Because of the simple reference pattern,
the loop and data partitions match. If the loop par-
tition ¢ = 0 is scheduled on the processor which has
the row A[0][*], then all the accesses to A are local.
Otherwise all the accesses would be non-local. We
call the static scheduling algorithm Block-D if both
the data partitioning and the loop scheduling occur
in blocks. (Analogously we use the terms Cyclic-D
and Block-cyclic-D if both data partitioning and the
loop scheduling match.)

parallel_for(i=0; i < N; i++)
for(j=0; j< N; j++)
ALiI[3] = ...

Figure 1: Simple Program

In general, dynamic scheduling algorithms can
achieve good load balance, but at the cost of de-
creased locality in data accesses, since each subtask
may be scheduled on any of the processors regardless
of the location of the data it must access. The cost of
an average memory access would increase on systems
with non-uniform memory access cost. This can lead
to a decrease in performance, not only because of in-
creased latencies to access the remote data, but also
because of increase in network traffic and congestion.

It 1s interesting to note that, while cache mem-
ory helps reduce the effects of non-uniform mem-
ory access costs, 1t does not eliminate them entirely.
In practice, even on a multiprocessor with hardware

Page 3

for(k=0; k < N-1; k++) {
do = Alk][k];
parallel_for(j= k+1; j< N; j++) {
A[j1[k] /= do;
dl = A[j1[k];
for (1 =k+1; i < N; i++)
A[j1[i] -= di*A[k][i];

Figure 2: LU Decomposition

cache consistency (such as the DASH multiproces-
sor), the average memory response time can be re-
duced by exploiting memory locality. We illustrate
this using LU decomposition as an example. The core
of the LU decomposition code is shown in Figure 2.
It consists of an outer sequential loop and a parallel
loop. In the innermost loop, one of the rows of the
matrix A is modified based on the pivot row k. Con-
sider the execution of the parallel loop j = 5 running
on processor P1, and trace the computation. P1 ac-
cesses the elements of the fifth row and modifies it,
causing a valid copy of this row to be in the cache of
processor P1 and the copy in the memory to become
invalid (assuming a write-back cache). If in the next
invocation of the parallel loop, loop j = 5 is executed
on another processor (say PT7), then the main mem-
ory needs to be updated with the values still cached
on P1, and the values in P1 need to be invalidated
when PT7 modifies them. Thus the validation and
invalidation traffic on the network can become exces-
sive if there is no locality. Similar effects are possible
in cache-only memory architectures (COMA), such

as the KSR.

Some multiprocessors, such as RP3 and BBN
Butterfly/TC-2000 allow remote memory to be ac-
cessed in an interleaved and/or randomized manner.
By distributing the memory accesses more evenly
across the processors, the number of hot-spots at the
memories and in the network is reduced. Thus the
NUMA machine behaves like an UMA machine with
one cost (close to the maximal one) for accessing the
memory. While randomized access has the possible
advantage of reducing memory and network hotspots,
it also has the disadvantage of not exploiting local-
ity. Because a single processor can execute using only
local memory, the speedup of applications that exclu-
sively access shared data in this randomized manner

will be poor. The execution time of the application
would be better, if data locality were exploited.

4 Locality-based
Scheduling

Dynamic

In this section, we propose a new scheduling algo-
rithm, Locality-based Dynamic Scheduling (LDS),
that addresses both locality and load balancing. LDS
(see Figure 3) is based on the following principles:

1. The data space is partitioned to reside on P pro-
cessors. Typical data partitions are block, cyclic,
and block-cyclic. Often, the partition chosen is
constrained by rest of the computation.

2. Each processor, when 1t is ready to execute the
next subtask, computes the size of this subtask.
The size can be chosen as in any of the dynamic
scheduling algorithms as a function of the num-
ber of remaining iterations and the number of
processors. In our experiments, we set the sub-
task size to [n/(2P)] (where n is the number of
remaining unscheduled iterations and P is the
number of processors). This creates subtasks
about half as large as those by GSS in order to
avoid overly large initial subtask sizes (see Ta-

ble 1.

3. Once the subtask size has been determined, the
processor must decide which iterations to execute
as part of its subtask. The dynamic scheduling
algorithms sequentially take iterations from the
loop iteration space; that is the first subtask of
size S1 includes iterations 1,2,..., 51, the sec-
ond subtask of size S2 includes iterations S1 +
1,...,514 52, and so on. In LDS, on the other
hand, the iterations are chosen such that locality
1s maximized. For example, if the data distribu-
tion is cyclic, and the processor p has to execute
a subtask of S1 iterations, then it executes the
iterations p+ P, p+2P, ..., p+ PxS1. If the data
distribution is block then the subtask would in-
clude iterations px B+ 1,pxB+2,...,px B+ 51,
where B is the block size. If all the scheduled
local iterations are completed, iterations are ac-
quired from the processor with the most unsched-
uled iterations.

The LDS algorithm is related to the affinity
scheduling algorithm (AFS) proposed by Markatos
and LeBlanc in that AFS also takes locality into ac-
count [9]. AFS divides the iterations of a loop into
block partitions of [N/P] iterations, where N is the

Page 4

1. Determine the subtask size S = [n/(2P)] based
on the total number of unscheduled iterations (n)
and the number of processors (P).

2. If the processor has r > 0 locally assigned, un-
scheduled iterations, then the subtask includes
min(r, S) of those iterations. Otherwise, if r =0
then min(rmqy,S) iterations are acquired from
the processor with the most unscheduled itera-
tions, where 7,40 18 the maximum number of
unscheduled iterations on that processor.

3. Execute the subtask.

4. Repeat 1-3 until n = 0.

Figure 3: Locality-based Dynamic Scheduling Algo-
rithm

total number of iterations and P is the number of
processors, and assigns each partition to a different
processor. When a processor becomes free, it takes
the next subtask of 1/k iterations from its local par-
tition, where & is a parameter of the algorithm that
is chosen statically between 2 and P. Once the en-
tire local partition has been executed, the processor
determines the processor with the most remaining it-
erations, and takes fraction [1/P] of them. The im-
plementation of AFS uses P local locks to protect
the local partitions and a global lock to protect the
data structure indicating the processor with the most
remaining iterations.
LDS is different from AFS in the following ways:

e AFS assumes that data is copied into local stor-
age when first accessed. This can be done by
hardware on machines with cache coherence or
by the operating system. AFS does not uti-
lize the information of data placement. Instead,
it assumes that data accessed in iteration j is
likely to be adjacent to the data used in itera-
tion j+ 1, and thus partitions the iteration space
into blocks and assigns a block to each proces-
sor. Therefore, memory locality can be exploited
only when the data is also partitioned and dis-
tributed in blocks. LDS, on the other hand, takes
data placement into account, by always having
the processor first execute those iterations which
have the data local to the processor. For this
reason, LDS can easily accommodate other data
partitioning methods, such as cyclic or block-
cyclic.

Do not consider Consider
Locality Locality
Block Block-D
Static Cyclic Cyclic-D
Block-cyclic Block-cyclic-D
GSS
Dynamic Self AFS
Factoring LDS
Trapezoid

Table 3: Comparing the various scheduling algo-
rithms

e In AFS, each processor independently schedules
iterations from its local partition using a param-
eter k. The best value for & will depend on the
application and may be difficult to choose. If k
1s small, then a processor with an exceptionally
large proportion of the workload assigned to it
could make the size of the first subtask too large
so that later dynamic scheduling will not be able
to adjust for the load imbalance. The maximum
load 1imbalance in a loop with a linear iteration
space in AFS is %If_—_lk)% + 1 iterations. When &
approaches P, on the other hand, the worst-case
load-imbalance approaches that of GSS; but at
the cost of an increase in the number of syn-
chronization operations by a factor of P, since
the total number of lock operations performed
by AFS is O(kPlog X5) + O(Plog &) [9]. In
LDS, the worst-case load-imbalance will be one
iteration and the number of synchronization op-

erations will be O(P log(N)).

e AFS uses one way to determine the number of
iterations to be taken from a local partition and
another way to determine the number of itera-
tions to be taken from other partitions. LDS
uses the same algorithm for the both.

Table 3 gives a comparative classification of the
scheduling algorithms we have discussed. The differ-
ences between AFS and LDS in particular are sum-
marized in Table 4. Differences in performance are
shown in the next section.

5 Experimental Results
In this section, we present performance results from

experiments involving four benchmark programs:
Matrix Multiplication, LU Decomposition, Successive

Page b

AFS LDS
Locality block only any data dist.
Lock Ops | O(kPlogZ5)+ | O(Plog(N))
O(Plog 57)
Max Imbal. %If_—_lk)% + 1 iters one iter.

Table 4: Comparison of AFS and LDS

Over Relaxation, and Transitive Closure.

e Matrix Multiplication: The regular matrix mul-
tiplication i-j-k algorithm is parallelized at the
outer ¢ loop, multiplying 400 x 400 matrix of dou-
ble precision numbers.

e LU Decomposition: This algorithm has a sequen-
tial outer loop, a parallel loop and an inner most
sequential loop. A matrix of 400 x 400 double
precision numbers is partitioned by row. The
computation of LU decomposition is skewed in
that the lower rows must be recalculated more
frequently than the upper rows; ¢.e., row 1 is cal-
culated only once, where as elements of row N —1
are processed in N — 1 iterations.

e Successive Over Relaxation: SOR is similar to
LU decomposition in that it has a sequential
outer loop and a parallel inner loop. Because
each processor must access all the neighboring
elements of the element being computed, local-
ity plays a major role in obtaining good perfor-
mance.

e Transitive Closure: Transitive closure has a loop
structure similar to LU decomposition. Un-
like the previous algorithms, the sequential in-
ner most loop may or may not be executed, and
hence the computation is dynamic. The input
values determine the variation of iteration exe-
cution time. High variance can cause load im-
balance. A matrix size of 800 x 800 integers is
processed.

The experiments were performed on Hector, a scal-
able shared memory multiprocessor [14, 11]. Hector
consists of sets of processor-memory pairs connected
together by buses, several buses connected together
by local rings, and several local rings connected to-
gether by a global ring (see Figure 4). Hector pro-
vides a single global physical address space; each
memory module contains one portion of the global
memory. Access time to memory is a function of
memory hierarchy.

: |

r\"Procr

Module

Execution Time (Sec)

N
7~ X
Local Ring /
Global Ring

Loca Ring

Figure 4: General Architecture of Hector

140 = T T T T T T
v "LDS' ©—
120 |- @ "AFS' —+- -
E "Block-D" - -
, "Seft X
100 |- "Factoring" -A--
\ "GSS' K-
80 L Cyclic-D" -©-- |
60 -
40 -
20 -
0
0 2 4 6 8 10 12 14 16

Number of Processors

Figure 5: Execution Times for Matrix Multiply

Figures 5-8 show the response times of the four
applications listed above when run with the different
scheduling policies.

In matrix multiplication, all processes must access
all of the matrix B. Assuming B does not fit in the
cache, thus the overhead of accessing B will dom-
inate the total overhead of accessing the data ele-
ments. Good locality in accessing the elements of
matrices A and C' is automatically achieved through
the caching. For this reason, and because the load in
this computation is well balanced, all of the schedul-
ing algorithms perform equally well, as shown in Fig-
ure 5. Our results for matrix multiplication differ
from those of a similar experiment performed on the
RP3 by Hummel et al. [4]. In our case, static par-

Page 6

& T T T T T T
60 - W "Factoring” —+

Execution Time (Sec)
g8 & 8
T T T

N
o
I

Number of Processors

Figure 6: Execution Times for LU Decomposition

titioning, namely cyclic-D, performs marginally bet-
ter than the other scheduling algorithms. Hummel’s
results indicate that static partitioning performs far
worse than the dynamic schemes. We believe this
discrepancy is due to a mismatch between the data
partitioning and loop partitioning in the RP3 exper-
iments, making the static algorithm perform poorly.

For LU decomposition, static cyclic scheduling
(cyclic-D) outperforms all other scheduling algo-
rithms, because cyclic loop partitioning and schedul-
ing matches the cyclic data partitioning, and bal-
ances the load well for the triangular iteration space
of LU decomposition. LDS performs almost as well
as cyclic-D, and better than the other algorithms for
the same reasons. The execution time of the program
using LDS 1is slightly higher than that for cyclic-D
because of the run-time scheduling overhead. The
results are shown in Figure 6.

For SOR, the static scheduling algorithm that
matches the data partitioning, namely block-D, per-
forms best, and the best results are obtained when the
data and iteration spaces are partitioned into blocks.
Again, LDS performs almost as well as block-D be-
cause its iteration space is effectively also partitioned
into blocks, given the block distribution of data. In
this case affinity scheduling (AFS) performs equally
as well because of block partitioning. From Figure 7,
it is interesting to note that the performance of the
other dynamic algorithms is substantially worse than
Block-D, LDS, and AFS because of the lack of data
locality.

The transitive closure experiment was chosen as
a representative of computationally imbalanced iter-

140 T T T T T T T
S <
120 i "Cyclic-D" —+-
["Factoring" -G -
glOO B per A
23 WO "LDS" k-
Eeol | "Block D" -%--
= AN
— MY
2 60 - '1‘\
2 N
Q40 AR
20 -
0 I I I I I I I
0 2 4 8 10 12 14 16

Number of Processors

Figure 7: Execution Times for Successive Over Re-
laxation

ation spaces. In this case, LDS outperforms all of
the other scheduling algorithms, because it is able to
dynamically balance the load, and yet exploit data
locality. Block-D performs almost as well, because in
this case the variance in the amount of computation
of the blocks is not very large. One would expect
that AFS could perform as well or better than block-
D scheduling, but our results indicate that the over-
head AFS incurs for locking will increase quadrati-
cally with the number of processors. For example,
with P = 16, the number of lock operations per-
formed will be about 431, with most locking occur-
ring towards the end of the computation. The de-
terioration of AFS’s performance as the number of
processors increases is visible in Figure 8.

Our results indicate that no fixed scheduling algo-
rithm will perform satisfactorily for all applications
without taking data locality into account. The static
algorithms perform better if the iteration partitions
match the data partitioning. With the exception of
LDS, the dynamic algorithms are all similar.

6 Conclusions

In this paper we have argued that data locality
is an important factor to consider in partitioning
and scheduling loops. While most existing dynamic
scheduling algorithms manage load imbalances well,
they fail to take locality into account and therefore
perform poorly on parallel systems with non-uniform
memory access times. We have presented a new
scheduling algorithm, LDS, that is dynamic, yet takes

Page 7

L T T T T T T

. "Selfr ¢

"Factoring” —+-
"GSS' GF-

80

Execution Time (Sec)
[o2]
o
T

5
T

N
o
I

Number of Processors

Figure 8: Execution Times for Transitive Closure

locality into account. We have presented experimen-
tal results that indicate:

e on NUMA systems, scheduling algorithms do not
perform well over a variety of applications if they
do not take locality into account;

e no single scheduling algorithm performed best
across all applications considered;

e of all the dynamic scheduling algorithms, LDS
performed best for the applications considered;
and

e unless large load imbalances exist (that is, vari-
ance in loop execution times are high), appro-
priate static algorithms outperform the dynamic
scheduling algorithms.

We are currently working on extending LDS to
handle irregular data distributions.

References

[1] Gordon Bell. Ultracomputers: A teraflop before
its time. CACM, 35(8):27-47, August 1992.

[2] William J. Bolosky, Michael L.Scott, Robert P.
Fitzgerald, Robert J. Fowler, and Alan L. Cox.
NUMA policies and their relation to memory ar-
chitecture. In ASPLOS-IV Proccedings, pages
212-221, April 1991.

[3] Stephen Curran and Michael Stumm. A com-
parison of basic CPU scheduling algorithms for

=

[10]

[11]

[12]

[13]

multiprocessor Unix. Computing Systems, 3(4),

Fall 1990.

Susan F. Hummel, FEdith Schonberg, and
Lawrence E. Flynn. Factoring: A method for
scheduling parallel loops. CACM, 35(8):90-101,
August 1992.

Clyde P. Kruskal and Alan Weiss. Allocating in-
dependent subtasks on parallel processors. IEEFE
Transactions on Software Eng., SE-11(10):1001-
1016, October 1985.

Daniel Lenoski, James Laudon, Kourosh Ghara-
chorloo, Wolf-Dietrich Weber, Anocop Gupta,
John Hennessy, Mark Horowitz, and Monica S.
Lam. The Stanford DASH multiprocessor. [EEE
Computer, 25(3):63-79, March 1992.

Jack G. Lipovski and Miroslaw Malek. Paral-
lel Computing: Theory and Comparisons, Ap-
pendix C: The RP3. John Wiley and Sons, 1987.

Jack G. Lipovski and Miroslaw Malek. Paral-
lel Computing: Theory and Comparisons, Ap-
pendix D: Cedar. John Wiley and Sons, 1987.

Evangelos P. Markatos and Thomas J. LeBlanc.
Using processor affinity in loop scheduling on
shared-memory multiprocessors. In Supercom-
puting 92, pages 104-113, November 1992.

Constantine Polychronopoulos and David Kuck.
Guided self scheduling: A practical scheduling
scheme for parallel computers. ITEFE Transac-
tions on Computers, C-36(12):1425-1439, De-
cember 1987.

Michael Stumm, Zvonko G. Vranesic, Ron
White, Ron Unrau, and Keith Farkas. Experi-
ences with the Hector multiprocessor. In Inter-
national Parallel Processing Symposium, April

1993.

Arthur Trew and Greg Wilson. Past, Present,
Parallel: A Survey of Available Parallel Com-
puter Systems. Springer-Verlag, 1991.

Ten H. Tzen and Lionel M. Ni. Dynamic loop-
scheduling for shared memory multiprocessors.
In Proceedings International Conference on Par-
allel Processing, pages 247-250, August 1991.

Zvonko G. Vranesic, Michael Stumm, David M.
Lewis, and Ron White. Hector: A hierarchically
structured shared memory multiprocessor. IFEE
Computer, 24(1):72-79, January 1991.

Page 8

