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Abstract
Persistent byte-addressable memory (PM) is poised

to become prevalent in future computer systems. PMs
are significantly faster than disk storage, and accesses
to PMs are governed by the Memory Management Unit
(MMU) just as accesses with volatile RAM. These unique
characteristics shift the bottleneck from I/O to operations
such as block address lookup – for example, in write
workloads, up to 45% of the overhead in ext4-DAX is
due to building and searching extent trees to translate file
offsets to addresses on persistent memory.

We propose a novel contiguous file system, ctFS, that
eliminates most of the overhead associated with indexing
structures such as extent trees in the file system. ctFS
represents each file as a contiguous region of virtual
memory, hence a lookup from the file offset to the address
is simply an offset operation, which can be efficiently
performed by the hardware MMU at a fraction of the cost
of software maintained indexes. Evaluating ctFS on real-
world workloads such as LevelDB shows it outperforms
ext4-DAX and SplitFS by 3.6x and 1.8x, respectively.

1 Introduction

The emergence of byte-addressable persistent memory
(PM) fundamentally blurs the boundary between mem-
ory and persistent storage. Intel’s Optane DC persistent
memory is byte-addressable and can be integrated as a
memory module. Its performance is orders of magnitude
faster than traditional storage devices: the sequential read,
random read, and write latencies of Intel Optane DC are
169ns, 305ns, and 94ns, respectively, which are the same
order of magnitude as DRAM (86ns) [19].

A number of file system designs have been introduced
with the aim of exploiting the characteristics of PM. For
example, Linux introduced Direct Access support (DAX)

for some of its file systems (ext4, xfs, and ext2) that elim-
inates the use of the page cache. Other designs bypass the
kernel by mapping different file system data structures
into user space to reduce the overhead of switching into
the kernel [7, 8, 21, 25, 37]. SplitFS, a state-of-the-art PM
file system, aggressively uses memory-mapped I/O [21]
for significantly improved performance.

All of these systems use conventional tree-based index
structures for translating the file offset to the device ad-
dress. This index structure was first proposed by Unix in
the 70s [34] when the speed of memory and persistent
storage differed by several orders of magnitude. How-
ever, with the emergence of PM, this speed difference
has shrunk significantly to the point of being almost neg-
ligible. This in turn has shifted the bottleneck from I/O
to file indexing overheads.

Indeed, we show in §2 that this indexing overhead can
be as high as 45% of the total runtime for write work-
loads on ext4-DAX (e.g., for Append). While memory-
mapped I/O (mmap()) can mitigate some of the indexing
overhead [11], it does not remove indexing overhead but
only shifts its timing to page fault handling or mmap()
(when pre-fault is used). For example, §2 shows that with
SplitFS, file indexing overhead can be as high as 63% of
the Append workload runtime. This is 18% higher than
that of ext4-DAX, even though the runtime of Append
is lower on SplitFS; this is because SplitFS’s improved
performance further shifts the bottleneck and exacerbates
indexing overhead.

An alternative to using file indexing is to use con-
tiguous file allocation. While simple contiguous alloca-
tion designs with fix-size or variable-size partitions are
known [36], they face two major design challenges: (1)
internal fragmentation for fix-size partitions, (2) external
fragmentation for variable-size partitions, and (3) file re-
sizing, specifically for expansion which often requires
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costly data movement. Therefore, the only use of con-
tiguous file allocation in practice today is on CD-ROMs,
where files are read-only [36]. SCMFS [39] proposed the
high-level idea of allocating files contiguously in virtual
memory. However, it does not address the challenges of
contiguous file allocation, namely how files are allocated
and how resizing is managed. (Its implementation and
evaluation are also only based on simulations).

We propose ctFS, a contiguous file system designed
from the ground up for PM. ctFS has the following key
designs elements:

• Each file (and directory) is contiguously allocated in
the 64-bit virtual memory space. We demonstrate the
practicality of this idea, given that the 64-bit address
space is enormous. Furthermore, the virtual address
space is carefully managed by a hierarchical layout,
similar to the buddy memory allocation [23], in which
each partition is subdivided into 8 equal-size sub-
partitions. This design speeds up allocation, avoids
external fragmentation, and minimizes internal frag-
mentation (§3.2).

• A file’s virtual-to-physical mapping is managed us-
ing persistent page tables (PPT). PPTs have a similar
structure as the regular, volatile page tables in DRAM,
except that PPTs are stored persistently on PM. Upon a
page fault on an address that is within a ctFS’s memory
region, the OS looks up the PPT and creates the same
mappings in the DRAM-based page tables. Therefore,
subsequence accesses are served by hardware MMU
from DRAM-based page tables, avoiding the indexing
cost.

• Initially, a file is allocated within a partition whose
size is just large enough for the file. When a file out-
grows its partition, it is moved to a larger partition in
virtual memory without copying any physical persis-
tent memory. ctFS does this by remapping the file’s
physical pages to the new partition using atomic swap,
or pswap (§3.3), a new OS system call that atomically
swaps the virtual-to-physical mappings. Atomic swap
also enables efficient crash consistency on multi-block
writes without needing to double-write the data. An
atomic write in ctFS simply writes the data to a new
space, and then pswaps it with the old data (§3.4).

In ctFS, the translation from file offset to the physical
address now needs to go through the virtual-to-physical
memory mapping, which is no less complex than the
conventional file-to-block indexes. The key difference is
that page translation can be sped up by existing hardware
support. Translations that are cached by TLB will be han-
dled transparently from the software and completed in

one cycle. In contrast, a file system’s file-to-block trans-
lation can only be cached by software. Additionally, ctFS
can adopt various optimizations for memory mapping,
such as using huge pages, to further speed up a variety
of operations.

Our evaluation on Intel Optane DC reveals that ctFS
can eliminate most indexing overheads, which results
in up to a 7.7x and 3.1x speedup over ext4-DAX and
SplitFS [21] on the Append workload. ctFS further im-
proves the throughput of LevelDB running YCSB by
up to 3.62x, 1.82x, 3.21x, and 2.45x when compared
to ext4-DAX, SplitFS, Nova [40], and PMFS [8], re-
spectively. Finally, ctFS improves RocksDB [35] per-
formance by up to 1.6x when compared to ext4-DAX.
The source code of ctFS is available at https://github.
com/robinlee09201/ctFS.

A limitation of ctFS is that we implement it as a user-
space library file system that trades protection for per-
formance. While this squeezes the most performance
out by aggressively bypassing the kernel, it sacrifice pro-
tection in that it only protect against unintentional bugs
instead of intentional attacks. We envision that this is an
acceptable, or even desirable, trade-off for data center
environments. We discuss other limitations in §5.

2 Understanding File Indexing Overhead

We analyzed the performance overhead of block address
translation in Linux’s ext4-DAX and in SplitFS [21].
Ext4-DAX is the port of the ext4 extent-based file system
to PM. It eliminates the page cache, and directly accesses
PM using memory operations (memcpy()).

Background on SplitFS. We briefly describe SplitFS for
a better understanding. SplitFS splits the file system logic
into a user-space library (U-Split) and a kernel space
component (K-Split), where K-Split uses ext4-DAX. A
file is split into multiple 2MB regions by U-Split, where
each region is mapped to one ext4-DAX file. Both U-
Split and K-Split participate in indexing: U-Split maps
a logical file offset to the corresponding ext4-DAX file,
and the ext4-DAX in K-Split further searches its extent
index to obtain the actual physical address.

SplitFS also proposed a novel operation called relink

to improve the performance of file expansion and provide
crash consistency on file writes without double-writing
data. Under its sync mode, file appends are first made to
a staging file, and then relinked to the target file either
when fsync() gets called or the staging file reaches its
size limit; file overwrites are applied in-place. Under
its strict mode, every file write, whether it’s overwriting
or appending data, is applied to a staging file and gets
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Figure 1: Performance breakdown (in percentage) of ext4-DAX and SplitFS on persistent memory. The number above
each bar is the total run time in seconds.

relinked at the end of every write. Hence, the indexing
time of SplitFS consists of relink, mmap, and indexing
in both kernel and user components.

Experimental Methodology. Our experiments were
conducted on a server with two 128GB Intel Optane DC
persistent memory (PM) modules, an 8-core Intel Xeon
4215 CPU running at 2.5 GHz, and 96 GB of DRAM.
We used Linux version v5.7.0-rc7+.

We ran a total of 6 tests. The results are shown in
Figure 1. Each test either reads or writes a 10GB file.
The first test, Append, repeatedly appends 4KB of data
to a file which is initially empty. The second test, SWE,
sequentially writes a total of 10GB of data to an empty
file with 10 pwrite() calls to write 1GB at a time. RR
reads 4KB of data from a random (4KB-aligned) offset
in a 10GB file, and RW overwrites an existing 10GB
file with 4KB of data at a random (4KB-aligned) offset,
and they do this 2,621,440 times. Finally, SR/SW we
sequentially reads/writes 10GB data, 1GB at a time.1

For the SW, RW, RR, and SR tests, we ran the ext4-
DAX tests with two types of files: those that were sequen-
tially allocated (ext4) and those that were randomly allo-
cated (ext4r). Sequentially allocated files were created by
SWE, which maximizes ext4-DAX’s grouping of blocks
into an extent. Randomly allocated files were created by
writing to them similarly to the way RW does, except
that the file is initially empty (Linux file systems support
sparse files); these randomly allocated files limit ext4-
DAX’s ability to group blocks into extents. The “ext4r”
bars in RW, RR, and SR represent tests that operated
on such randomly allocated files. Note that ext4-DAX
creates 12 extents for a sequentially allocated 10GB file,
but creates 256 extents for a randomly allocated file. For

1 We found that the version of SplitFS we tested does not support
append operations that write over 128MB under its sync mode. There-
fore, in SWE, we write 128MB at a time in SplitFS, instead of 1GB as
in ext4-DAX and other the file systems we discuss in §4.

SplitFS, all files are sequentially allocated.

Indexing overhead in ext4-DAX. Figure 1 shows the
breakdown of the completion time of each test. For ext4-
DAX, we observe that indexing overhead is significant
in Append and SWE, spending at least 45% of the total
runtime on indexing.2

For the random access workloads, RR and RW, the
proportion of time spent on indexing is lower, but still
considerable: 25% and 21% of the total runtime when
randomly writing and reading to/from a randomly allo-
cated file (ext4r), and 18% and 15% when the file was
sequentially allocated.

Indexing overhead in SplitFS. Figure 1 also shows the
breakdown of the completion time of SplitFS’s sync
mode. 3 Compared to ext4-DAX, SplitFS spends an even
higher proportion of the total runtime on indexing in the
Append (63%), SWE (45%), and RW workloads (38%),
while it spends 14% of the runtime on indexing in RR.

To understand SplitFS’s indexing overhead in more de-
tail, consider the Append workload where SplitFS spends
a total of 6.62s on indexing. Three components make up
this file indexing time: (1) the kernel indexing time as part
of page fault handling (4.37s), (2) U-split’s file indexing
time (0.84s) spent on mapping file offsets to the correct
ext4-DAX file, and (3) U-Split’s mmap() time (1.39s).

3 Design & Implementation of ctFS

This section starts with an overview of ctFS. Then we
describe the file system layout (§3.2), and how ctFS inter-
acts with the kernel’s memory management system (§3.3).
We then explain ctFS’s primitive for atomic operations
— pswap(), and how ctFS handles file updates and en-

2In both cases, the index time includes the time to build the index.
3We only show its sync mode result as its semantics is comparable

to that of ext4-DAX. SplitFS’s strict mode is further evaluated in §4.
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Mode
Atomicity Similar todata metadata

sync 7 3
NOVA-relaxed,

PMFS,
SplitFS-sync

strict 3 3
NOVA-strict, Strata,

SplitFS-strict

Table 1: The two modes provided by ctFS.

sures crash consistency (§3.4). Finally we discuss some
optimizations (§3.5) and the protection model (§3.6).

3.1 Design Overview
ctFS is a high-performance PM file system that directly
accesses and manages both file data and metadata in user
space. Each file is stored contiguously in virtual memory,
and ctFS offloads traditional file systems’ offset to block
number indexing to the memory management subsystem.
ctFS achieves the following design goals:

• POSIX compliance: ctFS currently supports over 30
commonly used functions from the POSIX-compatible
file system API.

• Synchronous writes: Write operations on ctFS are
always synchronous, i.e., writes are persisted on PM
before the operation completes. Hence there is no need
for fsync (which does nothing in ctFS).

• Crash consistency: ctFS supports both file data con-
sistency (by using pswap) and metadata consistency (by
using conventional redo logs).

• Concurrent operations: ctFS supports concurrent op-
erations on different files or concurrent reads on the
same file; a reader-writer lock is used for each file to
synchronize concurrent accesses.

Similar to prior systems, such as NOVA [40] and
SplitFS [21], ctFS offers two modes, sync and strict,
as shown in Table 1. Both modes ensure atomic meta-
data operations that include directory operations. Strict
mode further ensures file data writes are atomic (by using
pswap).

ctFS’s architecture, shown in Fig. 2, consists of two
components: (1) the user space file system library, ctU,
that provides the file system abstraction, and (2) the ker-
nel subsystem, ctK, that provides the virtual memory
abstraction. ctU implements the file system structure and
maps it into the virtual memory space. ctK maps virtual
addresses to PM’s physical addresses using a persistent
page table (PPT), which is stored in PM. Any page fault
on a virtual address inside ctU’s address range is handled

Partition 1                                Partition 2

..
..

..

..
..

..

ctK
Page fault

PPT

Populate/

invalidate

DRAM page table

ctU

....
user space

kernel

Virtual address space

Physical PM Space

Figure 2: Architecture of ctFS. Each box represents a page.
Two partitions are shown. The file allocated in partition 1 uses
3 pages (green), and the file in partition 2 uses 5 pages. ctK
maintains virtual-to-physical page mappings in the PPT.

512GB

 PGD       PUD           PMD        PTE (sub-PMD)

64GB 8GB 1GB 128MB 16MB 2MB 256KB 32KB 4KB

L9 L8 L7 L6 L5 L4 L3 L2 L1 L0

Figure 3: Size of partitions at levels L0 to L9. PGD, PUD,
PMD, and PTE refer to the four levels of page tables in Linux
(from highest to lowest). An L9 partition aligns with PGD, i.e.,
its starting address has zero in all of the lower level page tables
(PUD, PMD, PTE); Similarly, L6-L8 partitions align with PUD,
whereas L3-L5 partitions align with PMD.

by ctK. If the PPT does not contain a mapping for the
fault address, ctK will allocate a PM page, establish the
mapping in the PPT, and then copy the mapping from the
PPT to the kernel’s DRAM page table, allowing virtual
to PM address translations to be carried out by the MMU.
When any mapping in the PPT becomes obsolete, ctK
will remove the corresponding mapping from the DRAM
page table and shoot down the mapping in the TLBs.

With this architecture, there is a clear separation of
concerns. ctK is not aware of any file system semantics,
which is entirely implemented by ctU using memory op-
erations. Next, we discuss the designs that are specific
to ctFS. We omit the designs that are similar to existing
file systems. For example, we use standard transaction
logging to provide crash consistency of metadata, includ-
ing directories, inode, and ctFS data structures such as
partition headers, bitmaps, etc.

3.2 File System Structure (ctU)

ctFS’s user-space library, ctU, organizes the file system’s
virtual memory space into hierarchical partitions to facil-
itate contiguous allocations. The size of each partition at
a particular level is identical, and each level’s size is 8x
the size of the partitions at the next lower level. Figure 3
shows the sizes of the ten levels that ctFS currently sup-
ports. The lowest level, L0, has 4KB partitions, whereas
the highest level, L9, has 512 GB partitions. ctFS can be
easily extended to support more partition levels, e.g. L10
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Figure 4: Layout of ctFS in the virtual address space (VAS). The space of an entire partition is reserved in VAS, whereas the
physical PM space is allocated on-demand based on actual usage. Headers circled in the dashed-line reside on the same page.

(4TB), L11 (32TB), etc.
A file or directory is always allocated contiguously in

one and only one partition, with the size of the partition
being the smallest capable of containing the file. For
example, a 1KB file is allocated in an L0 partition (4KB);
a 2GB file is allocated in an L7 partition (8GB).

We chose each next level to be 8x the size of the previ-
ous level because the boundary of the levels should align
with the boundary of Linux page table levels (Figure 3).
This enables the optimization during pswap we describe
in §3.3. Therefore, our only options for partition size dif-
ferences were: 2x (21), 8x (23), or 512x (29). We chose
8x because 2x would be too small and 512x too large.

File System Layout. Figure 4 shows the layout of ctFS.
The virtual memory region is partitioned into two L9
partitions. The first L9 partition is a special partition used
to store file system metadata: a superblock, a bitmap for
inodes, and the inodes themselves. Each inode stores the
file’s metadata (e.g., owner, group, protection, size, etc.)
and a single field identifying the virtual memory address
of the partition that contains the file’s data. The inode
bitmap is used to track whether an inode is allocated or
not. The second L9 partition is used for data storage. 4

Each partition can be in one of the three states: Allo-
cated (A), Partitioned (P), or Empty (E). A partition in
state A is allocated to a single file; a partition in state
P is divided into eight next-level partitions. We call the
higher level partition the parent of its eight next-level
partitions. This parent partition subsumes its eight child
partitions; i.e., these 8 child partitions are sub-regions
within the virtual memory space allocated to the parent.
For example, in Figure 4, an L9 partition in state P is
divided into 8 L8 partitions. The first L8 partition is also
in state P, which means it is divided into 8 L7 partitions,

4Note that the 512GB allocated for metadata is virtual memory; The
physical pages underneath it are allocated on demand.

and so on. In this manner, the different levels of partitions
form a hierarchy.

This hierarchy of partitions has three properties.
(1) For any partition, all of its ancestors must be in state
P; and any partition in the A or E state does not have
any descendants. (2) Any address in a partition is also
an address in the partitions of its ancestors; e.g., any L3
partition in Figure 4 is contained in its ancestor L4-L9
partitions. (3) The starting address of any partition, re-
gardless of its level, is aligned to its partition size; this
is the case as long as the top-level L9 partitions are 512
GB aligned.

Partition Headers. ctU needs to maintain book keeping
information for each partition, such as its state. To store
such metadata, each partition in P-state has a header
which contains the state of each of its child partitions; ctU
stores the header directly on the first page of the partition
for fast lookup that does not involve indirections. For
example, for each partition in P state at levels L4-L9, the
state of its eight children are encoded using 2 bits packed
into a uint16_t.

To speed up allocation, the header also has an avail-
ability level field that identifies the highest level at which
a descendent partition is available for allocation. For ex-
ample, the availability level of the left-most L9 partition
in Figure 4 is 8 because this L9 partition has at least 1
L8 child partition in E state. With this information, when
allocating a level-N partition, if a P partition’s availability
level is less than N, ctU does not need to drill down fur-
ther to check its child partitions. This results in constant
worst-case time complexity for allocating a parition and
is far more efficient than using bitmaps.

Because ctU places the header in the first page of a
partition in P state, its first child partition will also contain
the same header, and as a result, this first child partition
must also be in P state; it cannot be in the Allocated
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state because the first page would need to be used for file
content. Therefore, a header page can contain the headers
of multiple partitions in the hierarchy. For example, in
Figure 4, the headers in the dashed circle are all stored
on the same page. This is achieved by partitioning the
header page into non-overlapping header spaces for each
level from L4-L9.

ctU does not partition L0–L3 further, as the 4KB
header space becomes much more wasteful for smaller
partition sizes. Instead, each L3 partition (2MB) can only
be partitioned as (1) 512 L0 child partitions, (2) 64 L1
child partitions, or (3) 8 L2 child paritions, as shown at
the bottom of Figure 4. As a result, there is only one
header in each L3 partition that is in state P, and it con-
tains a bitmap to indicate the status of each of its child
partitions, which can only be in either state A or E, but
not P.

Virtual Memory Allocation. During system initializa-
tion, ctU allocates a 1TB, empty (i.e., not backed) virtual
memory area (VMA) to accommodate two L9 partitions.
It does not restrict the starting address of this VMA, so it
can be anywhere in the virtual address space (as long as
it is aligned). If the PM size is larger than 512GB, then
the next level (L10) would be used, and an 8TB VMA
would be allocated. Note that subsequent virtual memory
allocations made from the kernel or processes will not
clash with ctU’s VMA, because the Linux kernel’s VMA
allocation will only allocate a VMA if it does not conflict
with existing VMAs.
TLB usage. ctFS does not use more TLB entries com-
pared to other file systems. In conventional (non-DAX)
file systems, the file data will be buffered in memory,
either in the file system’s buffer cache, or by the process
in the case of memory mapped I/O. Such buffering will
occupy TLB entries just as ctFS does, and the number of
entries used depend on the amount of data a process ac-
cesses. Ext4-DAX eliminates the buffer cache by directly
accessing the devives using statically mapped virtual ker-
nel addresses. However, this mapping still goes through
the page table [14] and hence still occupies TLB entries.
Therefore even compared to ext4-DAX, ctFS does not
use more TLB entries.

3.3 Kernel Subsystem Structure (ctK)

ctK manages the PPT. PPT is essentially identical to a
regular Linux 4-level DRAM page table, except (1) it
is persistent, and (2) it uses relative addresses for both
virtual and physical addresses. It uses relative addresses
because ctFS’s memory region may be mapped to dif-
ferent starting virtual addresses in different processes
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..
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B

PUD PMD PTE page PUD PMD PTE page

A: 111111110 111111110 111111110 0000000000000000

B: 000000000 111111110 111111110 0000000000000000

PUD    PMD PTE Offset

Figure 5: An example of pswap. The shaded entries in the
page tables are the ones used to map the two-page arrays A
and B. The red and blue page table entries are the ones that
are modified by pswap. Before pswap, A maps to the red pages
and B maps to the blue pages, whereas after pswap A maps to
blue pages and B maps to red pages. The last 39 bits of A and
B’s address are shown at the bottom.

due to Address Space Layout Randomization [6] [9], and
hardware reconfiguration could change PM’s starting
physical address. We also note that whereas each process
has its own DRAM page table, ctK has a single PPT that
contains the mapping of all virtual addresses in ctU’s
memory range (i.e., those inside the partitions). The PPT
cannot be accessed by the MMU, so mappings in the PPT
are used to populate entries in the DRAM page table on
demand as part of page fault handling.

ctK provides a pswap system call that atomically
swaps the mapping of two same-sized contiguous se-
quences of virtual pages in the PPT. It has the following
interface:

int pswap(void* A, void* B, unsigned int N,
int* flag);

A and B are the starting addresses of each page sequence,
and N is the number of pages in the two sequences. The
last parameter flag is an output parameter. Regardless
of its prior value, pswap will set *flag to 1 if and only
if the mappings are swapped successfully. ctU sets flag
to point to a variable in the redo log stored on PM and
uses it to decide whether it needs to redo the pswap upon
crash recovery. pswap also invalidates all related DRAM
page table mappings (and shoots them down in TLBs), as
we found it is more efficient than updating the mappings.

The pswap() system call guarantees crash consis-
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tency: it is atomic, and its result is durable as it operates
on PPT. Moreover, concurrent pswap() operations oc-
cur as if they are serialized, which guarantees isolation
between multiple threads and processes. 5

pswap avoids swapping every target entry in the PTEs
(the last level page table) of the PPT whenever possible.
Figure 5 shows an example where pswap needs to swap
two sequences of pages - A and B - each containing
262,658 (512×512+512+2) pages. pswap only needs
to swap 4 pairs of page table entries or directories (as
shown in red and blue colors in Figure 5), as all 262,658
pages are covered by a single PUD entry (covering 512×
512 pages), a single PMD entry (covering 512 pages),
and two PTE entries (covering 2 pages).
pswap() can only perform this optimization if the

starting addresses of the two page sequences are swap-
aligned. We first define the reach of a page table level to
be the size of the memory region that each entry maps
— e.g., the reach of PTE, PMD, PUD, and PGD are 4K
(bytes), 2M, 1G, and 512G, respectively. Given two con-
tiguous sequences of pages in virtual memory that start
at addresses A and B, and given that each sequence spans
a memory region of size S, let L be the highest level in
the page table such that reach(L)≤ S. We then say that
the two page sequences A and B are swap-aligned if and
only if:

A mod reach(L) = B mod reach(L)

In the example of Figure 5, L is PUD, and reach(L) is 1G
(230). A mod reach(L) equals B mod reach(L) because
the last 30 bits of A and B are the same.

Figure 6 shows the performance of pswap as a function
of the number of pages that are swapped. We compare
it with the performance of the same swap implemented
with memcpy that approximates the use of conventional
write ahead or redo logging that requires copying data
twice. The pswap curve shows a wave-like pattern: as the

5pswap uses conventional redo log to ensure crash consistency.

read (fd, buf, size)

address

offset

target   

memcpy(buf, target, size)
Metadata

inode +

Figure 7: Implementing read() on ctFS.

number of pages increases, pswap latency first increases
and then drops back as soon as it can swap one entry
in a higher-level page table instead of 512 entries in the
lower-level table. The two drop points in Figure 6 are
when N is 512 (mapped by a single PMD entry) and
262,144 (mapped by a single PUD entry). In comparison,
memcpy’s latency increases linearly with the number of
pages. When N is 1,048,576 (representing 4GB of mem-
ory), memcpy takes 2.2 seconds, whereas pswap takes
only 62µs. However, when N is less than 4, memcpy is
more efficient than pswap.

Concurrent invocations to pswap() will only be serial-
ized if they operate on overlapping memory ranges. We
use a binary search tree to store the ranges of concurrent,
on-going pswap()s.

3.4 File System Operations
Since files are contiguous in virtual memory, read and
write operations require special treatment. Other opera-
tions that operate on metadata (i.e., directories and meta-
data in inodes) are similar to those on conventional file
systems.

Figure 7 shows how read() is implemented in ctFS.
Given the file offset (from the file descriptor), ctU lo-
cates the inode, and further locates the starting address
of the file. It adds offset to this starting address, which
is the virtual address of the data to be read. Then, it uses
a single memcpy() to copy the data to the user buffer. All
of these operations are performed by the user space ctU.

ctFS allocates a partition on-demand on the first write
to a file. It always allocates the smallest partition that is
big enough to store the write. Later when the file size
increases beyond the partition size, ctFS will “upgrade”
it to the next higher level partition that can accommodate
the file. Also recall that ctFS supports two modes, where
strict mode offers atomic writes. Consequently there are
two special write cases: one that triggers an upgrade and
one that requires atomicity. In the normal case where
neither applies, write does not differ from read. Both
of the special cases use pswap, and in both cases ctU
guarantees that the starting addresses are swap-aligned.
Next, we explain each case.

Write with Upgrade. When a write (append) triggers an
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Figure 8: An example of atomic write using pswap. The
yellow color indicates the original file content whereas green
indicates new data to be written.

upgrade, ctFS will first relocate the file to a new parti-
tion before applying the write. It also maintains a redo
log to ensure crash consistency of the upgrade. Say a
write requires upgrading from a level L partition, P0, to
a level M partition, P1 (where M > L). ctU first allocates
P1 in virtual memory. It then calls pswap (P0, P1, N,
flag), where N is the number of pages in the level L
partition. Note that right after the partition allocation, P1
does not map to any PM pages; therefore, after pswap(),
P1 points to the PM pages that used to map to P0, and P0
is no longer mapped. Both steps will first be recorded in
the redo log, and flag is located in the redo log, so if a
crash occurs ctU knows whether pswap had completed
successfully or not. If a crash happens before pswap com-
pletes, ctU only needs to free P1. If a crash happens right
after pswap has completed, then ctU will continue to fin-
ish the upgrade by changing the starting address in the
file’s inode to P1. Partition “downgrades” (e.g., when the
file is truncated) are handled in a similar manner.

Atomic Write. In strict mode, ctFS handles an atomic
write using a write-and-swap protocol. Assume a write
that writes N bytes to offset O of a file in a level L parti-
tion, P0. Figure 8 shows an example, where O is not page
aligned, and N spans three pages where the last page, p3,
has not been accessed and is hence not mapped to PM.
ctU carries out the following two steps.

Step 1: ctU first allocates a staging partition, P1, that
is also at level L. It then writes the new data to the same
offset O in P1. If O is not page-aligned, as is the case in
Figure 8, ctU copies the data fragment between the start
of the first page and O in P0 to P1, and similarly, it will
copy any fragment data at the end if O+N is not page
aligned. Note that ctU does not need to copy any pages
that are not modified.

Step 2: ctU invokes pswap() to atomically swap the
page sequence in P0 with its corresponding sequence in

P1. In Figure 8, it pswaps pages p1–p3 in partition P0
with pages p5–p7 in partition P1.

To handle crash consistency, ctU uses the redo log
that records the status of each step, and the flag used in
pswap() is located on this redo log.

3.5 Other Optimizations

Huge Page. ctK allocates huge pages (2MB pages) when-
ever possible. Because the address of any partition is
aligned with the partition size, all files that reside in level
L3 or above benefit from huge pages. However, when ctU
performs pswap with small N, huge pages may have to be
broken into base pages, adding extra overhead to pswap().
Note that pswap can apply its optimization whenever the
page sequences are swap-aligned regardless of whether
they are huge pages or not. Huge pages are enabled in our
evaluation unless otherwise noted. In §4.1.3, we evaluate
and explain the impact of huge pages in details.
Optimized append in strict mode. ctFS performs an
optimization on append operations by exploring the in-
variant between a file’s metadata and its data [4, 12].
Instead of using the write-and-swap protocol, it directly
appends the new data and then changes the file size in
the inode. If a crash occurs before the append completes,
the file will be consistent, as the file size still has the old
value, presenting a view as if the append did not occurr.
Instruction choices in memcpy(). We experimented
with different memory copy strategies (e.g. repeat instruc-
tions, non-temporal instructions, cache flush) and found
that AVX512 [1] non-temporal 512-bit load and store
(VMOVDQU and MOVNTDQ) performed the best, re-
sulting in a 5%–20% performance gain over what SplitFS
and ext4-DAX uses.

3.6 Protection

For protection, ctFS’s exloits both Intel Memory Protec-
tion Keys (MPK) and regular page table protection. We
first explain Intel MPK before discussing ctFS’s design.
Background on Intel MPK. MPK allows each memory
page to be tagged with one of 16 protection keys, K0, K1,
..., K15. Four unused bits in each page table entry are
used to store the key for the page. Each key’s protection
rights can be changed from user space, using a special
instruction. For example, key K0’s right can be set to no
access, K1 can be set to read only, and K2 can be set to
read/write. The access rights associated with each key are
stored in a register called PKRU. Hence the access rights
are thread-local (as each core has its own PKRU register).

A key advantage of using MPK over the conventional
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mprotect() system call is performance. While assign-
ing a key to a page still requires a system call, set-
ting/changing the access permission associated with each
key is a user-space instruction that only consumes around
20 cycles [33].
Protection in ctFS. ctFS tags each page within ctFS’s
memory region with a single MPK key, which we refer
to as NONE. When a ctFS operation is invoked, ctU sets
the access right for the NONE key to be read/write, and it
resets the access right back to no access before returning.
Therefore, any access to ctFS’s memory space from out-
side of ctFS will be prevented. If multiple processes with
different access rights access the same file concurrently,
ctFS can protect the same page differently for different
processes as the access rights for the same key, NONE,
can be set differently on different cores.

This protection strategy protects ctFS against unin-
tentional bugs. For example, a dangling pointer in an
application won’t be able to accidentally corrupt the file
system, given that changing the rights associated with the
key requires a special instruction. However, this design
does not protect against intentional attacks. For example,
a malicious application could intentionally set the rights
for the NONE key to be read/write and modify the file
system in an arbitrary manner.

4 Evaluation

In this section, we present the results of evaluating ctFS
against other PM file systems (FS) using both real-world
applications and microbenchmarks. The server and OS
settings used in our evaluation are as described in §2.

4.1 Micro-benchmarks

We evaluate the performance of ctFS and compare it
with that of SplitFS, ext4-DAX, PMFS, and NOVA, us-
ing the same 6 micro-benchmarks as in §2. We repeat
each experiment 10 times and report the average. In all
experiments, ctFS uses demand paging and does not pre-
populate any pages in order to accentuate the maximum
page fault handling overhead in ctFS. SplitFS prefaults
staging files at its system bootup time so there are no
page faults on those files.

4.1.1 Append

Append is particularly relevant as the append operation
is the dominant file system operation of many applica-
tion [21], and it is the operation on which SplitFS shows
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Figure 9: Runtime of Append normalized to the runtime of
ctFS. The different file system and configuration combinations
are grouped by the crash consistency guarantees on file data.

the most significant speedup. Figure 9 shows the perfor-
mance of Append.

ctFS achieves a 7.7x speedup against ext4-DAX for
Append in sync mode. 45% of ext4-DAX’s runtime is in
building and searching indices as it has to allocate many
small extents. Even if we deduct kernel trap overhead
(shown in Figure 1) from the runtimes of ext4, ctFS-sync
still achieves an 7.0x speedup. This shows the benefit of
using contiguous file allocation, regardless of whether it
is a user-space or kernel-space implementation.

While SplitFS is able to significantly reduce the in-
dexing time by using memory-mapped I/O, ctFS still
achieves 3.1x speedup over SplitFS in sync mode. Specif-
ically, SplitFS takes 7.2s longer than ctFS to run Append,
and 92% (6.62s) of that time comes from indexing. The
other 8% of the speedup comes from ctFS’s improved I/O
performance. In contrast, ctFS successfully eliminates
most of the overhead of file indexing, primarily by hav-
ing the MMU perform the indexing in hardware during
memory page translation. (See Figure 11 for a break-
down of ctFS’s runtime.) It only spends 24ms in page
fault handling, compared to SplitFS’s 4.4s of page fault
handling (§2). Even though ctFS has a similar number of
page faults (525,490) as SplitFS (578,260), SplitFS trig-
gers page faults whose handling requires file indexing,
whereas all of ctFS’s page faults are minor faults.

For the Append workload, whether running in sync or
strict mode does not affect ctFS performance because of
ctFS’s append optimizations (§3.5); ctFS achieves 7.66x
speedup over SplitFS in strict mode.

Compared to NOVA’s sync mode and pmfs, ctFS-sync
achieves 4.4x and 3.87x speedups, respectively.

4.1.2 Other Micro-benchmarks

Figure 10 shows ctFS’s performance compared to that of
ext4-DAX and SplitFS for the other 5 microbenchmarks.
In sync mode, ctFS achieves an average speedup of
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Figure 11: ctFS overhead breakdown under four config-
uration combinations: with huge pages enabled and disabled,
while running in sync and strict mode.

2.17x, 1.97x, 2.43X, 2.97X, against ext4-DAX, SplitFS-
sync, pmfs, and NOVA, respectively. In strict mode, ctFS
achieves an average speedup of 1.46x and 1.59X against
SplitFS-strict and NOVA-strict.

4.1.3 ctFS Runtime Breakdowns

Figure 11 shows the breakdown of ctFS’s runtime on
each test while running in sync and strict mode, and with
huge pages enabled and disabled. We first consider the
difference between ctFS’s sync and strict modes. Recall
that ctFS invokes pswap at the end of file overwrite oper-
ations under strict mode. This affects both RW and SW.
In RW, 68% of the run time of ctFS-strict is spent on
pswap. This test represents the worst-case scenario for
ctFS-strict, as each write triggers a pswap at the smallest
granularity (4KB page): pswap cannot perform any op-
timizations when swapping the entries in the last-level
page table, and it is foreced to break up the huge pages
into base pages.6 In comparison, while ctFS also needs
to invoke pswap in SW when running in strict mode, be-

6Even then, ctFS outperforms SplitFS and NOVA in strict mode as
shown in Figure 10. SplitFS also uses huge pages, so that it also needs
to break up huge pages, which makes up 37.6% of its runtime.

cause pswap is only invoked once at the end, it incurs
negligible overhead (5.7ms).

The figure also shows the difference between having
huge pages enabled and disabled. With huge pages en-
abled, ctFS indeed eliminates much of the indexing over-
head, as all workloads are bottlenecked by I/O, except for
the RW workload when ctFS runs in strict mode. With
huge pages disabled, both the persistent page table (PPT)
and the DRAM page table have 512x more entries, and
each TLB entry now only maps 4KB instead of 2MB.
For SW, RW, SR, and RR, the overhead after disabling
huge pages is negligible in both sync and strict modes (at
most 3.4% in SR-strict). This indicates that the overhead
of additional TLB misses is negligible. In RR, for exam-
ple, there are 512x more TLB misses with huge pages
disabled, yet this still results in negligible overhead. Note
that the number of page faults remains the same even
when huge pages are disabled, because ctK copies 512
page table mappings (or the mappings for a 2MB region)
from the PPT to the DRAM page tables on each page
fault. In comparison, the large overheads in Append and
SWE come from allocating physical PM page frames and
building the persistent page tables (PPT), because with
only base pages, the PPT contains 512x more entries.

Interestingly, in RW, disabling huge pages results in
a 2x speedup for ctFS-strict. This is because with huge
pages enabled, every write, which is at the granularity of
a base page (4KB), will trigger a pswap that breaks the
huge page and causes TLB shootdowns. In comparison,
when huge pages are disabled, there is no need to break
up huge pages.

4.2 Real-world Applications

We evaluated ctFS using LevelDB [28] and
RocksDB [35], both of which are persistent key-
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A Update heavy: 50/50 read/write mix
B Read mostly: 95/5 read/write mix
C Read only: 100% read
D Read latest: new records are inserted, and the most

recently inserted records are read the most
E Short ranges: short ranges of records are queried, in-

stead of individual records
F Read-modify-write: read a record, modify it, and write

back the changes

Table 2: YCSB runs and their characteristics.

value stores. We drove LevelDB with the Yahoo! Cloud
Serving Benchmark (YCSB) [5]. YCSB includes six
different key-value workloads that are described in
Table 2. We drove RocksDB using RocksDB’s built-in
benchmark db_bench with three workloads: random fill,
which creates and adds key-value pairs; random read,
which returns the values of given keys; and random
update, which updates the values of given keys. Each
of these tests carries out 5 million operations. Both
LevelDB and RocksDB use pwrite and pread instead of
memory-mapped I/O.

The LevelDB workloads demonstrate ctFS’s perfor-
mance advantage achieved by removing the indexing
overheads in a real world application. The RocksDB
workloads show that it is feasible and beneficial to re-
place write-ahead logs (WALs) with ctFS’s atomic writes.

LevelDB. Figure 12 shows the performance of different
PM file systems on LevelDB using the YCSB workloads.
ctFS outperforms all the other file systems in each of the
workloads when run at comparable consistency levels.

ctFS achieves the most significant improvement in
throughput under write-heavy workloads: Load A and

E and Run A, B, F. 7 Among these write-heavy work-
loads, ctFS-sync’s throughput is 1.64x the throughput
of SplitFS-sync on average, with 1.82x the throughput
in the best-case (under Load E). In strict mode, ctFS’s
throughput is 1.30x higher than that of SplitFS on aver-
age, with 1.50x higher in the best-case (under Load A).
Compared with ext4-DAX, ctFS-sync has 2.88x higher
throughput on average and 3.62x higher throughput in
the best case (under Run A).

On read-heavy workloads, ctFS’s thoughtput is still
higher than that of the other file systems, but by a smaller
amount. It achieves an average of 1.25x - 1.36x higher
throughput over ext4-DAX. As for SplitFS, recall from
our microbenchmarks that it spends more time on index-
ing in random reads than sequential reads. This is why
ctFS achieves better throughput than SplitFS in Run B, C,
and D, which are dominated by random reads; e.g., ctFS’s
throughput is 1.18x and 1.25x higher than that of SplitFS
under Run D when run in either sync or strict mode. For
Run E, which is dominated by sequential reads, cfFS has
1.02x and 1.22x higher throughput.

By studying the breakdowns of ext4-DAX’s time con-
sumption, we observe that indexing time takes up 19.6%,
25%, and 24.5% of the total runtime of LoadA, RunA,
and LoadE, respectively. Meanwhile, ctFS only spends
a maximum of 0.2% on indexing overhead (in handling
page faults) across all workloads. Hence, indexing ac-
counts for 39.3%, 49.9%, and 46.4% of ctFS’s speedup
over ext4-DAX on these three workloads. Another 22.5%,
36.4%, and 33% of ctFS’s speedups arise from a more
efficient I/O data path over ext4-DAX.

7Load A and Load E create the respective key value stores that are
used by the six YCSB runs.
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Figure 13: RocksDB performance.

SplitFS Ext4-
sync strict DAX ctFS

Bootstrap (µs) 1.4×106 1.1×106 0 5
open (create) (µs) 40 40 15 2

open (existing) (µs) 4 10 4 2
unlink (µs) 32 43 31 1.6

DRAM usage (MB) 198 572 N/A 0.52
Space available

230.7 230.7 248.1
after format (GB)
Space used after

5486 5337 5378
YCSB LoadA (MB)

Table 3: Metadata operation and resource overhead. There
is no difference on between sync and strict modes for ctFS.

RocksDB. We ran our RocksDB experiments two con-
figurations: strict and relaxed. With strict, where data
consistency is guaranteed, ext4-DAX is run with WAL
enabled, and ctFS is run in strict mode (ctFS-strict) but
with WAL disabled. With relaxed, where crash consis-
tency is not guaranteed, both ext4-DAX and ctFS-sync
are run with WAL disabled.

With strict, ctFS-strict has 1.60x, 1.22x and 1.3x the
throughput of ext4-DAX for the Random Fill test, the
Random Read test and the Random Update test, respec-
tively. This demonstrates the feasibility of replacing
WALs in applications with atomic writes in ctFS, as do-
ing so not only improves performance but also simplifies
application logic.

With relaxed, ctFS-sync is on par with ext4-DAX with
the Random Fill test, but has 1.25x and 1.19x the through-
put for the Random Read and Random Update test.

4.3 Resource Usage & Other Operations

Table 3 shows the cost of several frequently used file sys-
tem operations, as well as DRAM overhead after filesys-
tem initialization and space efficiency for ctFS, SplitFS
and Ext4-DAX. Notably, SplitFS spends over one sec-
ond to initialize because it needs to build the U-Split
mapping table, create and mmap all the staging files. Simi-
larly, because of the mapping table, SplitFS uses 3 orders
of magnitude more DRAM comparing with ctFS. The
DRAM usage does not change significantly for SplitFS
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Figure 14: Scalability of ctFS versus ext4-DAX and SplitFS
on LevelDB running YCSB Run A in terms of throughput.

and ctFS when running workloads as both of them pri-
marily operate on PM.

In terms of space efficiency, ctFS has 7.52% more
available space than ext4-DAX and SplitFS when newly
formatted. In fact, ctFS only incurs 10MB memory over-
head for newly formated 248.06GB space. This is be-
cause ctFS allocates inodes and inode bitmaps on de-
mand. After running Load A in the YCSB test on Lev-
elDB, ctFS occupies 0.78% more space than ext4-DAX
and 2% less than SplitFS.

4.4 Scalability

The design of the cfFS’s concurrency model is the same
as that of ext4-DAX. Figure 14 shows ctFS’s scalability
compared with ext4-DAX, running YCSB Run A on
LevelDB. All file systems scale similarly. Performance
of ctFS peaks at 6 worker threads in a 8 core machine
(as two additional threads are spawned by LevelDB for
other purpose).

5 Limitations and Discussion

The design of ctFS presents two unique trade-offs. First,
compared with an in-kernel file system, ctFS’s user-space
file system design trades protection for performance.
While ctFS is not suitable as a general purpose file sys-
tem, it presents a (rather extreme) trade-off point for data
center applications to squeeze the most out of the hard-
ware, as in data center environments each machine runs
only a small number of applications that often trust each
other, and protection against intentional attacks is ensured
at the boundary of machines or data centers. Furthermore,
ctFS can be used as an application’s private file system,
i.e., where one or several applications own one instance
of ctFS.

Second, ctFS’s design is also at the expense of internal
fragmentation within each fixed-sized partition in the vir-
tual memory address space. We argue this is acceptable
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given the size of today’s virtual address spaces. Both In-
tel and Linux now support 57 bits virtual addresses with
5-level paging, enabling a 128PB virtual address space.
In comparison, the maximum size of Intel Optane DC
that can be supported by a server today is 6TB [27]. Note
that ctFS does not waste physical storage space as any
unused regions of a partition are not mapped to physical
memory. In addition, ctFS’s allocation algorithm is simi-
lar to the buddy memory allocator, and hence, the internal
fragmentation problem is fundamentally inline with that
of modern size-segregated memory allocators like jemal-
loc [10], TCMalloc [13], and Go’s runtime [16]; the wide
adoption of these allocators further suggests that internal
fragmentation is an acceptable trade-off.

6 Related Work

To the best of our knowledge, this paper is the first to
propose a complete file system that supports contiguous
files with a detailed design and evaluation.
SCMFS. SCMFS [39] proposed the high-level idea of
allocating each file contiguously in the virtual address
space. However, its design is only at a conceptual level.
How files are allocated in the virtual memory space is
not clearly described. Specifically, it does not address file
resizing and external fragmentation, the two fundamental
challenges faced by contiguous files. It is unclear what
happens if one file expands into the range of another
file. Finally, SCMFS’s implementation and evaluation
are entirely based on simulation.
File systems for PM. A number of file systems were
designed to bypass the kernel. Aerie [37], PMFS [8],
Strata [25], SplitFS [21], and ZoFS [7] all allow the user
to directly access file data through a user-space compo-
nent; PMFS, SplitFS, and ZoFS map the metadata and
data in application’s virtual memory space. In Aerie,
metadata updates and locking requests must be sent via
IPC to be processed by a trusted system service. Strata
logs updates in userspace which are then digested in the
kernel. ZoFS strives to provide security by only map-
ping the metadata to the users who have access permis-
sion, and only allows trusted library code to modify the
metadata by exploiting MPK memory protection keys.
KEVIN [24], a file system for NAND SSD instead of PM,
provides an FPGA implementation of the log-structured
merge tree, and ports file operations on top.

All of the file systems mentioned above still use a
tree-structured index for file indexing. BetrFS proposes
a Bε-tree that is a write-optimized variant B-tree [20].
HashFS [30] uses a global fixed-sized hash table for in-
dexing. However, it still suffers software indexing over-

head, and its performance is no better when compared
to SplitFS. KUCO [3] offloads some indexing from the
kernel to the userspace through “collaborative indexing”,
to improve scalability. However, it still uses traditional
ext2-style block mapping. In comparison, ctFS uses a
contiguous file design that obsoletes file indexing.
Crash consistency on file data. Conventional write-
ahead logging/journaling [15, 17, 38] typically requires
writing the data twice: first to journal before updating
the target file. The cost of double-write for data may be
large, and several mechanisms that avoid data copying
have been proposed [2, 4, 18, 26, 29]. Similar to pswap,
SplitFS’s relink is used to efficiently provide atomic
writes without copying the data to the journal. pswap
differs from relink in that the former swaps the virtual-
to-physical memory mapping, whereas relink changes
the mapping within ext4-DAX’s extent trees. Failure
atomic msync [32] atomically commits changes to a
memory mapped file by using ext4’s journalling func-
tion. SHARE [31] atomically lets pairs of pages share
the same physical page in the flash storage. It does not
explore the page table hierarchy for optimization.

SubZero [22] proposed a patch() function that atom-
ically overwrites the destination region of a mmap file
with the content of the source region. pswap is different
in a few ways. First, pswap swaps the mapping whereas
patch discards the content in the source region. In addi-
tion, pswap leverages the page table hierarchy to achieve
significant speedup. Finally, pswap is mainly used for fast
cross-partition expansion and shrink, whereas patch is
only used for atomic writes.

7 Concluding Remarks

This paper proposes ctFS, a persistent memory file sys-
tem which offloads file system indexing to the memory
management hardware by keeping files contiguous in
virtual memory. Our evaluation shows ctFS can outper-
form ext4-DAX and SplitFS by up to 7.7x and 3.1x, and
improve YCSB throughputs by up to 3.6x and 1.8x.
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