Languages, Compilers and Run-time Systems for Scalable Computers, Chapter 3, pages 29--42, Kluwer Academic Publishers, Boston, 1995.

CDA LOOP TRANSFORMATIONS

Dattatraya Kulkarni and Michael Stumm
Department of Computer Science and

Department of Electrical and Computer Engineering

Unwversity of Toronto, Toronto, Canada, M55 1A/

ABSTRACT

In this paper we present a new loop transformation technique called Computation De-
composition and Alignment (CDA). Computation Decomposition first decomposes the
iteration space into finer computation spaces. Computation Alignment subsequently,
linearly transforms each computation space independently. CDA is a general frame-
work in that linear transformations and its recent extensions are just special cases
of CDA. CDA’s fine grained loop restructuring can incur considerable computational
effort, but can exploit optimization opportunities that earlier frameworks cannot. We
present four optimization contexts in which CDA can be useful. Our initial experi-
ments demonstrate that CDA adds a new dimension to performance optimization.

1 INTRODUCTION

The introduction of linear transformations in 1990 as an algebraic framework
for loop optimization [5, 22] was a major contribution for three reasons: First,
the framework provides a unified approach to loop restructuring since most
existing loop transformations [19, 23] and arbitrary sequences of these trans-
formations can be represented by a single transformation matrix. Second, the
framework allowed the development of a set of generic techniques to trans-
form loops in a systematic way, independent of the nature of transformations
in the compound transformation. Finally, it made possible semi-quantitative
evaluation of candidate transformations [4, 13, 15, 22].

A linear transformation changes the structure of a loop so as to change the
execution order of the iterations. But note that it does not change the consti-
tution of the iterations themselves: a given iteration in the new iteration space

2 CHAPTER 1

performs the same computations as the corresponding iteration in the original
iteration space, only at a different time.

In the last three years Computational Alignment (CA) frameworks have been
proposed that extend linear transformations [9, 11, 21]. CA applies a separate
linear transformation to each statement in the loop body. Since the new ex-
ecution order of a statement can be different from that of another statement,
CA transformations can alter the constitution of the iterations. A statement
18, however, always mapped in its entirety. The origins of the basic idea in
CA can be traced to loop alignment [2, 18] which is a special case of CA. The
statement level transformation retains the advantages of linear transformations
while enabling additional code optimizations. For example, a CA can be used
to align the lhs references in statements so that all lhs data elements accessed
in an iteration are located on the same processor. This eliminates ownership
tests and thus improves the efficiency of SPMD code.

CDA is a generalization of CA and goes a step further in that it can move
computations of granularity smaller than a statement. Instead of transforming
the statements as written by the programmer, CDA first partitions the origi-
nal statements into finer statements. This creates additional opportunities for
optimization. Thus, a CDA transformation has two components. First, Com-
putation Decomposition divides the statements in the loop body into smaller
statements. Then, Computation Alignment linearly transforms each of these
statements, possibly using a different transformation for each.

We intend to show in this paper that there are benefits in transforming a loop
at subexpression granularity. Because CDA is a generalization of linear loop
transformations and CA| it has all their advantages and can achieve everything
they can and more. CDA can potentially exploit much of the flexibility avail-
able in loop structures to extend existing local optimizations, or to minimize
constraints that are otherwise treated global. CDA does, however, also have
serious drawbacks. The derivation of a suitable CDA requires considerable
computational effort. The search space for CDA’s 1s so much larger than that
for linear transformations that good heuristics are even more important. Other
drawbacks are that CDA may increase memory requirements, may introduce
additional dependences, and may produce complex transformed code. How-
ever, we believe there are many situations where the benefits of CDA outweigh
its drawbacks.

We present an overview of Computation Decomposition and Computation Align-
ment in Sections 2 and 3, respectively. A simple example of how CDA is applied
is given in Section 4. The fine grain manipulation of the loop computation and
memory access structures enables the application of CDA to several optimiza-
tion contexts; four of them are listed in Section 5. We present the results of
some representative experiments that demonstrate the promise of CDA as a
loop restructuring technique om Section 7.

CDA Loop Transformations 3
2 COMPUTATION DECOMPOSITION

Computation Decomposition first decomposes the loop body into its individual
statements and then may additionally decompose individual statements into
statements of finer granularity. Because of this, CDA has more alignment op-
portunities than does CA alone. The choice of subexpressions that are elevated
to the status of statements i1s a key decision in CDA optimization. As we see
later in Section 5, the optimization objective influences this decision.

A statement 1s decomposed by rewriting it as a sequence of smaller statements
that accumulate the intermediate results and produce the same final result.
Consider a statement S; in a loop body :

Si: w; — fi1(Rj1) op fj2(R;2)

where w; denotes the lhs array reference. R; 1 and R; o are the sets of references
in subexpressions f; 1(R;1) and f; 2(R; o) respectively. The above statement
can be decomposed into the following two statements to produce the same
result :

Sja: ti — fia(Rq)
Sj2: wj —tj op fia(R;2)

where t; is a temporary variable introduced to accumulate the intermediate re-
sult. We can repeatedly decompose a statement into possibly many statements,
with the result of each new statement held in a different temporary variable.
The loop bounds remain unchanged after a computation decomposition. The
temporary variables are typically chosen as arrays in order to reduce the num-
ber of dependences introduced by the decomposition and this allows for more
freedom in the subsequent search for alignments.

The decomposition of statements adds two main complications. First, the tem-
porary arrays may reduce the degree of cache locality achievable, may increase
the number of references to memory, and may add to space requirements. How-
ever, there are also several optimizations that can reduce some of these over-
heads. In the best case, a temporary can be eliminated altogether, for example
if the lhs array or a dead variable can be used in place of the temporary. Oth-
erwise it may be possible to reduce its dimension and size.! Also, sometimes
temporary arrays can be reused in loops that follow.

Second, the loop independent flow dependence on a temporary array can later
become a loop carried dependence because of alignments that follow. In prac-
tice, this often does not introduce additional constraints, for example if it is
identical to an already existing dependence.

INote that, for some optimizations it is desirable to use the temporary array, for example
to reduce data alignment constraints (see Section 5).

4 CHAPTER 1

3 COMPUTATION ALIGNMENT

A sequence of decompositions produces a new loop body that can have more
statements than the original. We can now employ CA to transform each state-
ment of the new loop body [9, 11, 21]. Analogous to the iteration space,
the computation space of a statement S, C'S(S), is an integer space repre-
senting all execution instances of S in the loop. A separate linear transfor-
mation is applied to each computation space. That is, if the decomposition
produces a loop body with statements Si,...,Sk, which have computation
spaces C'S(S1),...,CS(Sk), then we can separately transform these compu-
tation spaces by linear transforms 77,...,Tgk, respectively. The transformed
computation spaces together define the new iteration space as follows. Sup-
pose (41, ...,1,;S;) denotes the execution instance of statement .S; in iteration
(f1,...,4n). An iteration (i1,...,%,) in the original iteration space then con-
sisted of computations:

(il,...,in) = {(Zl,,Zn,Sl),,(ll,,ln,SK)}
The corresponding iteration in the new iteration space consists of computations:
(1, ovin) =TT (i1, i0);S1)s o (T (i1, -+ 80); SK))

Intuitively, the mapping results in a relative movement of the individual com-
putations across iterations. As a result, a new iteration may consist of com-
putations that originally belonged to different iterations. This computation
movement is explicitly reflected in the text of the new loop structure. It is
for this reason that CDA (and CA) is fundamentally different from traditional
linear loop transformations.

If computation space C'S(S) is transformed by T, and » is a reference in S
with reference matrix R, then r has a new reference matrix, R -7, after the
transformation. The dependence relations change as well. Consider statements
Sw and S, in the original code, where S, is flow dependent on S,,. Let w be the
write reference in Sy, and r be the corresponding read reference.

w[dy, - I] — r[I]

If T,y is applied to C'S(Sy) and T, is applied to C'S(S,), then the dependence
is then transformed to:

w[dyy - Ty - I] — [T, - I)
which can be rewritten as:

1] — 1]

wr

CDA Loop Transformations 5

E S1 computations for I1 = i0, il
2 for 12 = 0, h0-1
S1: ...
h \ NI end for
L - for 12 = h0, min(h1,h3
H S1&S2 computations orSl: min(h1,h3)
S2: ...
end for
for 12 = min(h1,h3)+1, min(h2,h4)
S2: ..

| \ N [Iﬂ]] S2 computations

hl — N

h0 — —F

|
=S————N
(=== = =—F end for
NN end for
i

(a) Transformed Computation spaces (b) Code for range [i0,i1]

Figure 1 Segmenting the union.

with !, = T,,-T;~!. The transformation is legal if the new dependence relations
are positive. This can be easily verified if the dependences are uniform and the
transformations are simple offsets: we just have to verify that the last column in
d.,, is lexicographically negative (i.e. the write is earlier). If the dependences are
non-uniform, then more sophisticated techniques are necessary, such as those
that reason with symbolic affine constraints [6, 20]. There are cases, when the
only violated dependences are (0) flow dependences between statements and
textual interchange will then suffice to make these positive again.

The new loop bounds have to account for each of the transformed computation
spaces. The basic 1dea is to project all computation spaces onto an integer
space that becomes the iteration space of the transformed loop. Because trans-
formations Ti,...,Tx can be different, the resulting iteration space can be
non-convex. There are two basic strategies that can be pursued to generate
code. First, it is possible to take the convex hull of the new iteration space
and then generate a perfect nest that traverses this hull, but this requires the
insertion of guards that disable the execution of statements where necessary.

A second, alternative strategy is to generate an imperfect nest that has no
guards. Guard-free code is usually desirable for better performance, but a
perfect loop may be desirable in some cases, for instance to avoid non-vector
communications or to avoid loop overheads. An algorithm to generate a guard-
free loop for T when all statements require the same loop stride is described in
Kelly et al [9]. They also developed an algorithm to generate code for general
linear transformations but with conditionals [10]. These algorithms reduce to
the algorithm developed by Torres et al. when the transformations are simple
offsets corresponding to loop alignments [21].

For completeness, we illustrate a typical way to generate guard free code in
Figure 1. The full details can be found in the literature [9, 10, 11, 21]. Assume
a loop with two statements S; and S;. The basic idea of the algorithm is to
partition the new iteration space into segments that contain iterations with S;

6 CHAPTER 1

for i.= I,n
forj=1,n | Sl.2 S L1

SI :AG) = AG§~1)+BGj+l) +AG-14-1) + Bi-1j) +AGi-1)

S2 :B@,j-1) = A (i,j-1) +B(@i,j)

end for
end for
(a) Original loop
10-1 100 100
T 1=lo1 0 Tia=l010 T, =|01-1
: 00 1 001 00 1

(b) Transformations

Figure 2 An example loop and a CDA transformation.

computation only, or those that contain S, computations only, or those with
both computations. First split the I; axis into ranges that demarcate these
segments. For the I; range [0,ip — 1], the lower bound of the segment is given
by 0, and the upper bound by hj; this segment has only S; computations.
For the range [ip, 7], three segments must be defined. The first is delineated
by 0 and Ay and has only S; computations. The second is delineated by hg
and min(hy, hs) and has both S; and Sy computations. The third segment is
delineated by min(hy, hs) + 1 and min(hsa, hy) and has only S; computations.
Further segments are defined for the ranges [i1 + 1, 5] and [is + 1, i3].

Given these segments, we can construct a program with a sequence of four
loops, one for each defined I; range. Each of these loops consists of a sequence
of inner I, loops, one for each segment defined in that particular I; range.
The individual bound expressions are chosen so as to delineate the segment.
Figure 1b shows the code generated for the three segments defined in the range

[10, 1]

4 ILLUSTRATION OF A SIMPLE CDA TRANSFORMATION

We will use the loop of Figure 2a to illustrate the application of a simple CDA
transformation (Figure 2b) and its effect on the computation and memory
access structures. We assume that there are no pre-existing data alignments.
Our goal here is to minimize the data alignment constraints and eliminate the
ownership tests.

The loop body of Figure 2a has two statements, L = (S1; S2), each with its own
computation space: CS(S7) and CS(S2). We partition S; into two smaller
statements S; 1 and S 5, using a temporary array t to pass the result of Sy 3
on to Syo. This effectively partitions C'S(S1) into C'S(S11) and CS(S;2)

for a total of three computation spaces as shown in Figure 3b. We chose this

CDA Loop Transformations 7

IS(L)

1,15L)

(a) Original lteration space (IS) of loop L (b) D posing IS into Comg ion (c) Alignment Transformation
Spaces (CS) —- CS(S2), CS(S1.1) of the C
and €S(1.2)

Figure 3 Tllustration of a simple CDA transform on the example loop.

particular decomposition for S1, because all references in S; 1 now have the same
data alignment constraint with respect to A(i, j) along the i-dimension; that is,
the first index in the references are all i— 1. The remaining references in S; and
Sy align to A(1, j) along the i-dimension as they are. This partitioning allows us
to align C'S(S1.1) to C'S(S1.2) to eliminate the data alignment constraints along
the ¢-dimension for all three references in Sy 1, without affecting the references
n Sl.2 and Sz.

After this decomposition, iteration (7, j) has the following computations :
(4,5, L) = (1,55 S11) < (4,4;512) < (i,5;52)

We can now transform the three computation spaces separately by applying
transformations 711, 712 and T of Figure 2b to C'S(S1.1), CS(S12) and
CS(S2), respectively. The transformations required in this case turn out to
be simple offsets. Computation spaces C'S(S11) and C'S(Sz) move relative
to C'S(S1.2), which was applied an identity transformation. C'S(S7.1) moves
one stride in direction 7 in order to change the (¢ — 1, %) references in Sy to
(4, %) references. and C'S(S2) moves one stride in direction j in order to align
B(i,j — 1) to A(i,j) to remove the need for ownership tests. Figure 3¢ shows
the transformed computation spaces and highlights three computations that
are now executed in one iteration.

The new iteration space 1s defined by the projection of the transformed compu-
tation spaces onto a plane which becomes the new iteration space (Figure 4a).
Tteration (7,) in the new iteration space now has the following computations:

(i,5; L) = (4,5;512) < (,7+1;8) < (i+1,j;511)

Notice that it was necessary to change the order of the statements in the loop so
that Sy 1 is executed after the other two statements. Before the transformation,

8 CHAPTER 1

n -— ‘
| S1.1,81.2 ‘SI.Z .
n-1 for i = O,n
\ \ forj = 0,n
\
| - S125 (050 AGY) = i)+ AGJ-D + B+
J }Sl-l §1.2,52,51.1 }sm $2 : (>0j<n) Blj) = A (i) +Blig+D)
\ \ SLI: (i<mjp>0) t(i+l) = AGj-1) +B(i,j) + AG)
\ |
end for
1L S2 end for
0
0 1 i n-1 n
—_—
(a) New iteration space (b) CDA transformed loop

Figure 4 The CDA transformed loop.

S1.1 had a loop carried flow dependence from both S; 5 and S;. These depen-
dences become loop independent after the alignment, thereby necessitating the
reordering.

Figure 4a shows which iterations need to execute which computations. The
new iteration space is non-convex. We choose loop bounds to correspond to the
convex hull and hence require guards to step around computations that should
not be executed. The resulting code is listed in Figure 4b. Code without guards
could have been produced as described in Section 3.

The above CDA| although simple, can be very effective, whether targeting a
parallel system or a uniprocessor. The transformation has achieved our two
main objectives:

(7) The CDA reduced the number of data alignment constraints, thus reducing
the amount of communication required. Assuming both B(i,j) and t(i + 1, j)
are aligned to A(1, j), and assuming the use of the owner computes rule, then the
original loop accesses elements A(1 —1,j — 1), A(i—1,j) and A(1,j— 1) in it-
eration (¢, j), while it only accesses A(i, j — 1) and t(4, j) in the new loop. Sim-
ilarly, the original loop accesses, elements B(i,j), B(i — 1,j) and B(4,j + 1),
but only accesses B(i,j + 1) in the new loop. In comparison, a CA transformed
loop would still need to access a total of 6 elements.

(#i) The original loop needed ownership tests, unless A(i,j) was aligned to
B(i,j — 1). The CDA transformation eliminated the need for these tests, with-
out the need data alignment of B to A. Moreover, the execution of statement
S1 18 now spread over two processors, effectively implementing a modified com-
putation rule.

CDA Loop Transformations 9

This transformation has a number of other side effects on the loop that were
not specifically part of our goals, but that cause improvements in perforamance
nevertheless.

(#i7) The new loop accesses A and B in a fundamentally different way, with the
dependences changed from:

flow : {(1,1),(0,1),(1,-1),(1,0)}, anti: {(0,1),(0,2)}}
Fflow : {(0,1),(1,0)}, anti: {(0, 1)}, output : {(1,0)}}

In comparison, a CA (without first decomposing S) would change the depen-
dences to:

to:

flow : {(1,1),(0,1),(1,0)},anti: {(0,1)}}
The (1,1) dependence results in non-vectorizable communication with some dis-
tributions. CDA (so could a CA) eliminated the (1,-1) dependence. Thus the
loop is blockable as is, with indexing and loop bounds simpler than if the loop

had first been skewed.

(7v) If the the array sizes and the cache geometry are such that A(1 — 1, j) and
B(i, j) conflict in iteration (i, j) of the original loop, then the transformation
eliminates these conflicts without any changes to the data layout.

(v) The CDA transformation reduces the cache context of B from 2n to n
elements. This is as a result of bringing the two accesses to each element of B
in i and ¢ + 1 outer loop iterations to the same iteration (). Similar effect on
array A is negated by the cache context required for the intermediate storage.

(vi) The transformation modifies the overall number of loads and stores per
iteration from 8 distinct array element accesses to 6 (5 if t is replaced by 4).
This can have an impact on register pressure.

5 APPLICATIONS OF CDA

In this section, we list a number of optimization objectives and describe how
they can be targetted by CDA. However, it should be noted that CDA is often
used to augment existing techniques and is not necessarily intended to replace
them.

Removing data alignment constraints
Data alignment transformations are a popular way of removing data alignment
constraints. For example, a data alignment transformation 7Ty, maps array B
onto 4 so that references rp to B and r4 to A go to the same (hopefully local)
processor if

Tiarp =724

Such a data alignment is a global change, since every reference r to B in the
program is changed to Ty, 7.

10 CHAPTER 1

In some cases, a CDA transformation can have exactly the same effect without
having to (data) align array B. First, the CDA would have to decompose
the loop body so that references to 4 and references to B occur in different
statements.? Second, the linear transformation 7.4, that satisfies

-1
rBTcda =74

would have to be applied legally to each statement with a reference to B.> (The
identity transformation is implicitly applied to all other statements, particularly
those with references to A.)

However, the power of CDA allows more localized optimization. Instead of ap-
plying 7,44 to each statement with a reference to B, it is applied to only those
statements with references rp, leaving the other references to B in other state-
ments undisturbed.* This is illustrated with the example of Figure 2, assuming
that B(i,j) is aligned to A(4,j). The CDA transformation T ; changes the
reference B(i — 1, j) to B(i,j). The same transformation also illustrates what
we call self-alignment, where reference A(i — 1, j) is aligned to A(i, j) without
affecting accesses to A in other statements.

Data alignment and CDA each have their own advantages and drawbacks. Data
alignment does not affect dependences and satisfies a constraint between a pair
of arrays without affecting other arrays. But, it only satisfies a single constraint,
and it modifies the references to the array globally, possibly undoing alignments
in some other loop.® CDA transformations on the other hand are local to the
loop, can potentially remove several data alignment constraints, and do not
require data layout changes. However, CDA changes dependences (so legality
checking is necessary) and changes all references in a statement. An integrated
algorithm might attempt to exploit the advantages of both data alignment and
CDA.

Optimizing SPMD code

The elimination of ownership tests results in better performing SPMD code, be-
cause a processor does not have to execute every iteration just to check whether
it has work to do or not. One way to eliminate ownership tests is to ensure
that all statement instances in an iteration are to be executed by the same pro-
cessor. This can be achieved by transforming statements so as to collocate all
the lhs references of the loop body if this can be legally done [21]. To achieve
this in the CDA transformed loop, we first choose a lhs reference, say A(4i, j)
that serves as a basis. Each temporary array is data aligned so that its lhs
reference is collocated with A(4, j). Then, each statement with a lhs reference
r is applied a linear transformation, 7', such that »7'~! and A(i,j) are collo-
cated. We eliminated the need for ownership tests in the example of Figure 2

2This is not always beneficial in practice, as in the following statement: 4 = rg + ¢.

3T.qq will change all references in the statement s being transformed.

41t is sufficient to decompose the loop body so as to separate only those references to A
and B with indexing as in r 4 and r g into different statements.

5Realignment of data at run-time is usually expensive.

CDA Loop Transformations 11

by data aligning t(i + 1, j) to A(1, j) and (computationally) aligning Ss to Sy 2
so that all three lhs accesses in an iteration become collocated, allowing the
entire iteration to be executed by the same processor.

The example of Figure 2 also shows that in general CDA can be viewed to
be implementing a class of flexible computation [7] rules with the aid of a
fixed computation rule such as owner-computes. The original statement S; is
executed in parts by two processors instead of the owner of A(1, j) alone.

Reducing cache conflicts

Array padding is a simple and popular technique that changes the data layout in
memory to eliminate cache conflicts. However, array padding is a global change
and requires that the size of the arrays be known a priori. More seriously, array
padding can be illegal without proper inter-procedural analysis.

CDA can also be used to eliminate cache conflicts. The loop is decomposed into
statements such that all (most) references in a statement do not conflict so that
conflicts are (mostly) between references in different statements. Computation
alignment then moves each statement with respect to the other statements
until there are no conflicts. This spreads the conflicting data accesses in an
iteration across different iterations. CDA is an attractive alternative to array
padding since it does not change data layouts and is therefore always legal.
Even when the array sizes are unknown, a simple conditional on the size and
the cache geometry can dynamically select between the original code or a CDA
transformed code at run-time. However, CDA is constrained by dependences
and therefore may not be able to eliminate all conflicts. Moreover, CDA may
introduce extra loop overhead compared to array padding.

Reducing communication for a reference stencil

A communication optimal distribution of an array depends on its reference
stencil in the loop [1, 3, 8. A CDA can modify the reference stencil, thus
providing an additional dimension of optimization in the choice of distribution.
Conversely, if an array distribution is given, then it is possible to change the
reference stencil to suit the given distribution better.

6 EXPERIMENTAL RESULTS

We summarize the results of five experiments run on the SUN Sparc 20 and the
KSR1 platforms to demonstrate the flexibility loops have at fine granularity and
how this flexibility can be exploited both on parallel and uniprocessor systems.
It should be noted that the KSR1 has a COMA architecture, where the data
automatically moves to the processor accessing it.

We chose mg, rtmg, slia, swm256, and wanal, so as to show improvements
over existing transformation frameworks. The loops do not benefit from any
linear transformation as such. Three loops, namely, mg, rtmg, and slia have a
single statement in their loop body, so CA cannot be applied directly, but only

12 CHAPTER 1

transformations that can be applied at subexpression granularity. Listings of
the original and transformed loops, details of the applied CDA, and all of the
measurement data can be found in [12].

SLIA

Objective: Remowal of data alignment constraints.

SLIA is a synthetic two dimensional loop with ¢ & ¢ references to three arrays
A, B, and C [12]. The original loop needs data alignment of both (%, j — 1)
and (#, j) references of arrays to A(i, j). Clearly, a data alignment can satisfy
only one reference pattern to A(1, j), not both. We applied CDA to remove the
(*, j — 1) data alignment constraints. We decomposed the statement in the loop
body to have a statement with (*, j — 1) references and another statement with
other references. We then aligned the first statement to obtain (%, j) references.
The execution time on the KSR1 improved by 30%-38% when using upto 16
processors.

Swm256

Objective: Elimination of ownership tests without data alignment.

The calcl subroutine of the SPEC benchmark, SWM256, has 4 statements, with
lhs references to CU(i + 1,3), CV(i,j+ 1), Z2(i 4+ 1,j + 1) and H(i, j). The loop
requires ownership tests unless CU(i + 1,3), CV(i,j+ 1) and Z(1 +1,j+ 1) are
aligned to H(1i, j). Hence, we aligned the statements so that their lhs references
are all of the form (i, j). The transformed version does not require ownership
tests and does not require any data alignments. Because of the shared address
space and relatively low cost of remote accesses on the KSR1, the execution
time of the transformed code improved by only 17%.

‘Wanal

Objective: Improving cache locality.

Wanal is a wave equation solver that is part of the Riceps benchmark suite [14].
The three dimensional loop we CDA transformed has two statements in its loop
body. A linear transformation cannot improve cache locality here, because only
one statement requires a loop interchange, while the other does not. A CDA,
which is equivalent to a CA in this case, can be applied to the statement to
achieve locality. On the KSR1, the parallel execution time improved by 45-50%.

Rtmg

Objective: Elimination of cache conflicts on the SUN Sparc 20.

The rtmg loop from the Arco Seismic benchmarks suite is a two a dimensional
loop with a single statement in the loop body which accesses two dimensional ar-
rays p1 and p2 [16]. There are cache conflicts between the lhs reference p1(i, k)
and the rhs reference p2(i, k) on a Sparc 20 (with a IMB, direct-mapped cache).
We decomposed the statement into a statement Sg with references p1(i,k) and
p2(i — 1,k) and statement S; contaning all other references . We then aligned
S; to Sy such that the p2(i,k) reference became p2(i+ 1,k), leaving the S,
references unchanged. The indexing of the temporary was chosen as to con-
flict with p; and ps. The data accesses in an iteration now map to different

CDA Loop Transformations 13

cache lines and therefore do not conflict, reducing the execution time by about

50-55% of the original.

Mg

Objective: Elimination of cache conflicts on the KSR1.

NAS mg is a multigrid solver in the NAS benchmarks suite [17]. We CDA
transformed the psinv subroutine and were able to improve the speed up by
a factor of 2 over the original by eliminating cache conflicts. However, the
dependence introduced by CDA reduced the available degree of parallelism.

The loop has iterators 7,7, and &, and accesses three dimensional arrays U and
R with (i & ¢1,j £ c2,k & c3) reference patterns, where the ¢’s are either 0,1,
or -1. For a given i iteration, the loop accesses elements in i'" plane of U,
and elements in (i — 1), i and (¢ + 1)** planes of R. The references with sim-
ilar j indexing conflict in cache. We decomposed the (only) statement into a
statement with references to the (i — 1) plane of R (i.e. all R(1 — 1, *, *) refer-
ences) and another statement with the other references. We then aligned the
two statements so that the R(1 — 1, #, *) references become R(i, *, %) references,
effectively eliminating the references to the (i — 1)!* plane of R.° The trans-
formed loop, therefore, has fewer planes with similar j indexing, and hence,
fewer conflicts.

7 CONCLUDING REMARKS

With respect to optimization, loop structures have considerable flexibility at
the subexpression level. Computational Decomposition and Alignment (CDA),
which we introduced in this paper, provides a framework to linearly transform
loops at this relatively fine granularity. It can be applied to target a number
of different optimization objectives. However, heuristics are a key to applying
CDAs successfully, since the derivation of a suitable CDA is more complex than
say the derivation of a linear transformation. Nevertheless, we are hopeful that
it will be possible to find good heristic algorthms that find near optimal CDAs,
similar to the way linear transformations are found today.

We believe that CDA will be particularly effective in the context of global
optimization, because it can help reduce constraints that are otherwise treated
global. It is also interesting to observe that CDA can be applied both to extend
current control optimization techniques, as well as to optimizations that are
traditionally handled by data layout changes.

In our current work, we are focusing on deriving CDAs that improve cache
performance on both uniprocessors and multiprocessors. For example, we are
comparing CDA and array padding in reducing the number of cache conflicts

8In this case, we can eliminate the need for the temporary by using the lhs array, U, to
hold the intermediate results.

14

CHAPTER 1

on numerous benchmark codes, and intend to develop algorithms capable of
automatically deriving suitable CDA transformations for this purpose.

Acknowledgements

We thank Ron Unrau at IBM, Toronto Laboratory and Wei Li at the University of Rochester

for their contribution to certain aspects of the CDA framework. This work was supported in

part by the Natural Sciences and Engineering Research Council of Canada and the Informa-

tion Technology Research Center of Ontario.

REFERENCES

(1]

(2]

[10]

[11]

Abraham, S.G.,; and Hudak, D.E., “Compile-time partitioning of iterative par-
allel loops to reduce cache coherency traffic,” IEFE Transactions on Parallel
and Distributed Systems, 2(3):318-328, July 91.

Allen, R., Callahan, D., and Kennedy, K., “Automatic decomposition of scientific
programs for parallel execution,” In Conference Record of the 14th Annual ACM
Symposium on Principles of Programming Languages, pages 63-76, Munich, West
Germany, January 1987.

Ancourt, C. and Irigoin, F., “Scanning polyhedra with DO loops,” In Pro-
ceedings of the 8rd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, volume 26, pages 39-50, Williamsburg, VA, April 1991.

Anderson, J. and Lam, M., “Global optimizations for parallelism and locality
on scalable parallel machines,” In Proceedings of the ACM SIGPLAN 93 Con-
ference on Programming Language Design and Implementation, volume 28, June
1993.

Banerjee, U., “Unimodular transformations of double loops,” In Proceedings of
Third Workshop on Programming Languages and Compilers for Parallel Com-
puting, Irvine, CA, August 1990.

P. Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20, 1991.

Gilbert, J. and Schreiber, R., “Optimal expression evaluation for data parallel
architectures,” Journal of Parallel and Distributed Computing, 13:58—64, 1991.

Irigoin, F. and Triolet, R., “Supernode partitioning,” In Conference Record
of the 15th Annual ACM Symposium on Principles of Programming Languages,
pages 319-329, San Diego, CA, 1988.

Kelly, W. and Pugh, W., “A framework for unifying reordering transformations,”
Technical Report UMIACS-TR-92-126, University of Maryland, 1992.

Kelly, W., Pugh, W. and Rosser, E., “Code generation for multiple mappings,”
Technical Report UMIACS-TR-94-87, University of Maryland, 1994.

Kulkarni, D. and Stumm, M., “Computational alignment: A new, unified pro-
gram transformation for local and global optimization,” Technical Report CSRI-
292, Computer Systems Research Institute, University of Toronto, January 1994.
hitp://www.eecg.toronto.edu/EECG/RESEARCH/ParallelSys.

CDA Loop Transformations 15

[12]

[13]

[22]

[23]

Kulkarni, D.; Stumm, M., Unrau, R., and Li, W., “A generalized the-
ory of linear loop transformations,” Technical Report CSRI-317, Com-
puter Systems Research Institute, University of Toronto, December 1994.

hitp://www.eecg.toronto.edu/EECG/RESEARCH/ParallelSys.

Kumar, K.G.; Kulkarni, D.; and Basu, A., “Deriving good transformations
for mapping nested loops on hierarchical parallel machines in polynomial time,”
In Proceedings of the 1992 ACM International Conference on Supercomputing,
Washington, July 1992.

C.H. Li. Program wanall. ftp ftp.cs.rice.edu, Rice University, 1992.

Li, W. and Pingali, K., “A singular loop transformation framework based on
non-singular matrices,” In Proceedings of the Fifth Workshop on Programming
Languages and Compilers for Parallel Computing, August 1992.

Mosher, C., “Arco Seismic Benchmarks,” ARCO E&PT.
NASA, Ames Research Center “NAS Parallel Benchmarks”

Padua, D., “Multiprocessors: Discussion of some theoretical and practical prob-
lems,” Phd thesis, University of Illinois, Urbana-Champaign, 1979.

Padua, D. and Wolfe, M., “Advanced compiler optimizations for supercomput-
ers,” Communications of the ACM, 29(12):1184-1201, December 1986.

Pugh, W. and Wonnacott, D., “An exact method for analysis of value-based ar-
ray data dependences,” Technical Report CS-TR-3196, University of Maryland,
1993.

Torres, J., Ayguade, E.| Labarta, J., and Valero, M., “Align and distribute-based

linear loop transformations,” In Proceedings of Sixth Workshop on Programming
Languages and Compilers for Parallel Computing, 1993.

Wolf, M. and Lam, M., “An algorithmic approach to compound loop transfor-
mation,” In Proceedings of Third Workshop on Programming Languages and
Compilers for Parallel Computing, Irvine, CA; August 1990.

Wolfe, M., Optimizing supercompilers for supercomputers. The MIT Press,
1990.

