Linear and Extended Linear
Transformations for Shared-Memory
Multiprocessors

DATTATRAYA KULKARNI' AND MICHAEL STUMM?

! Parallel Compiler Development, IBM Toronto Laboratory, Toronto, Canada M3C 1H7
2Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada M5S 3G4
Email: dkulki@vnet.ibm.com

Advances in program transformation frameworks have significantly advanced compiler technology
over the past few years. Program transformation frameworks provide mathematical abstractions
of loop and data structures and formal methods for manipulating these structures. It is these
frameworks that have allowed the development of algorithms capable of automatically tailoring
an application for a target architecture. In this paper, we focus on the utility of these frameworks
in improving the performance of mainly parallel applications on shared-memory multiprocessors.
Data locality-oriented program optimizations are a key to good performance on shared-memory
multiprocessors, since these optimizations can often improve performance by a factor of 10 or more.
In this paper, we show the effectiveness of three key loop and data transformation frameworks
in optimizing parallel programs on shared-memory multiprocessors. In particular, we describe
our computation decomposition and alignment (CDA) framework, which can modify both the
composition and the execution order of the re-composed iterations. We show how fine-grain
transformations within the CDA framework enable new optimizations such as local optimizations
that are otherwise achieved by global data transformations.

Received October, 1996, 1997, revised September, 1997

INTRODUCTION

transformation techniques that perform such optimizations

Shared-memory multiprocessors are becoming increasingly
popular and are now widely used in both universities and
industry. While most of these systems, notably in industry,
are still being used for multiprogramming sequential
applications, their use for running parallel programs will
increase in the future. Even for executing large-scale
parallel applications, shared-memory multiprocessors are
becoming the platform of choice over distributed memory
message passing systems. The shared memory offers the
promise of a simpler programming model, allowing for
easier development and porting of parallel applications.

Intuitively, one would expect the availability of shared
memory to make the task of parallelizing applications easier,
allowing a compiler to focus on identifying and extracting
parallelism from the target application rather than worrying
about data distribution and placement or the generation of
message passing code. In reality, however, it is crucial
to focus on data management, at times even more than
on extracting parallelism. While not focusing on data
management results in correctly working programs when
executed on a shared-memory machine, it can result in a
significant loss of potential performance.

Three important optimizations aimed at managing data
are: improving cache locality, reducing cache conflicts and
improving memory locality. Over the years, many program

have been proposed, and we describe several of them in
this paper. Most of the transformations are capable of only
modifying loops and arrays: loops, because they are regular,
well-defined control structures that are straightforward to
manipulate and because they constitute the core of most
scientific computing, arrays, also because they have a regular
structure.

Focusing on data management adds considerable com-
plexity to the optimization of parallel applications, because
the compiler must deal with parallelization and data manage-
ment in an integrated way —changes to code or changes to
data layout both affect the way data is accessed. Moreover,
because the layout of the data is visible to all processors, it
must be optimized in a global sense. In contrast, distributed
memory compilers tend to address data management issues
in a less integrated way, since the compiler first distributes
and assigns data to the individual processors so as to
minimize inter-processor communication. The program is
later optimized for cache performance considering local data
partitions on individual processors.

To optimize a program, it is often necessary to apply
multiple different transformations to the program. This is
where loop and data transformation frameworks play an
important role—they provide a mathematical abstraction
of program structures and formal methods to manipulate

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




374 D. KULKARNI AND M. STUMM

them. The same abstraction is used to represent and
evaluate many different transformations and compound
transformations. The mathematical foundation provides a
basis for effectively:

1. representing a set of transformations in a concise and
uniform way;

2. reasoning about and comparing transformations and
their effects using formal methods;

3. automatically deriving transformations that achieve
specific optimization objectives, and

4. applying transformations to the program code in an
automated way.

Without a formal framework, reasoning about the effects
of transformations tends to be ad hoc, which often leaves
opportunities for performance improvements unexplored
and makes the design of algorithms to automatically
optimize applications difficult.

In this paper, we show the effectiveness of three
loop and data transformation frameworks based on simple
linear algebra. The linear loop transformation framework
transforms loops to improve parallelism or data access
locality, but can only transform perfectly nested loop
structures. The linear array transformation framework
transforms the target program by modifying the layout of
the arrays with the objective of improving the data access
locality. Finally, computation decomposition and alignment
is a finer-granularity framework we have developed recently
that extends the linear loop transformation framework,
and is capable of transforming some non-perfectly nested
loops.  We illustrate the utility and effectiveness of
these frameworks through transformations applied to many
specific examples. Each of these examples, as well as several
application kernels, were run on a 28-processor KSR-1
multiprocessor, and we include the performance numbers
obtained from these experiments.

2. LINEAR LOOP TRANSFORMATION
FRAMEWORK

The structure of a loop nest® defines the order in which
data is accessed from within the loop nest. The access
pattern it defines determines the caching behaviour of the
loop nest, and in the case of larger systems, the number
of remote references. The loop structure also defines the
levels at which the loop nest can be parallelized and thus the
granularity at which parallelism can be directly extracted.
Parallelism in a loop nest is generally restricted by data
dependences between statements in the loop, if the parallel
execution of the loop nest is to produce the same result
as the sequential execution [1]. The objective of a loop
transformation is to rewrite the loop nest so that it produces
the same result, but has improved parallelism or has an
improved data access locality. Without a formal framework,
the design of algorithms to automatically transform loops
and code generation are generally difficult.

3When the context is clear, a loop nest is called a loop for simplicity.

The linear loop transformation framework, introduced
in 1990 [2-7], was a major breakthrough that greatly
simplified the task for the compiler, partly because it was a
formal method based on linear algebra and partly because it
provided a unified view of many of the previously proposed
loop transformations. With this framework, it became
possible to design algorithms that automatically search for
transformations for given optimization objectives. However,
linear loop transformations can only be applied to perfectly
nested loop nests.

2.1. Overview of technique

Each iteration of a nested loop corresponds to a point in the
iteration space for the loop, with the loop limits defining the
bounds of the iteration space. For example, the loop called
Loop 1 on the left-hand side of the top half of Figure 1 has
two levels of nesting, so it corresponds to a two-dimensional
iteration space as depicted on the right-hand side. Iteration
(i, j) is represented as an integer point (7, j) in the iteration
space. The iteration space is bounded by the inequalities
1 <i <mnand1 < j < n, as defined by the loop limits.
Precedence constraints between iterations are represented as
relations between points in the iteration space [1,2,8—11].

A linear loop transformation, represented by a non-
singular (i.e. invertible) integer matrix, maps each point in
the original iteration space onto its own integer point in
the new iteration space. The bounds of the new iteration
space define the limits of the transformed loop, and relations
between points in the new iteration space correspond to the
new precedence constraints.

2.2. Applications of linear loop transformations

Linear loop transformations can be used to pursue a number
of optimization objectives. Here we briefly describe three
of them: one that improves parallelism, one that improves
cache locality and one that minimizes the number of remote
memory accesses.

It can be shown that it is always possible to linearly
transform any perfectly nested loop into a new loop that
has parallel executable inner iterations (i.e. where data
dependences no longer exist between the inner iterations).*
Figure 1 contains an example of just such a transformation.
We have implemented this and all other examples of
this paper on a 28-processor KSR-1. The performance
improvements obtained are summarized in Table 1. In
this case, Loop 1 achieved a speedup of somewhat over 8
with the given transformation. The speedup is due to the
parallelism that was exposed by the transformation.

Linear loop transformations can also be used to
improve memory access behaviour. For instance, a linear
transformation applied to Loop 23 permutes the loop levels
so that memory is accessed in storage order (which we
assume throughout the paper to be row major order), thus

“Infinitely many transformations can achieve this.

SIn the examples illustrating loop and data transformations, the original
loop is shown on the left-hand side and the transformed loop is shown on
the right-hand side.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




LINEAR AND EXTENDED LINEAR TRANSFORMATIONS

375

Code Iteration space
ik
Q
o n
3 for i=1,n — -
for j=1,n
© S: A(, j) = AGD j)+AG, jO Ly L Wy Wy
£ end for | A A A A A
k= end for L Sy e S S
S
S AT
Transformation ! noi
1 1—‘
0 1
A
g' ¥ Plane of parallelism
e n
L] for i’ =2,2%n
Q forall j° =max(l,i’®), min(n,i’)
£ S: AR J’) = AGCFID)+AGR D
° end for
‘5 end for
=
«©
= 1 Wl
2

FIGURE 1. Linear loop transformation that improves parallelization of Loop 1.

TABLE 1. Comparison of original and transformed example loops on a 28-processor KSR-1. The column of interest is the relative speedup,
defined as the ratio of the parallel execution time of the original loop to the parallel execution time of the transformed loop. The original
loops all executed in parallel except for Loops 1 and 7. The acronyms are: LLT, linear loop transformation; LAT, linear array transformation;
CDA, computation decomposition and alignment; ELAT, extended linear array transformations.

Relative
Loop # n speedup  Transformation  Optimization

1 1600 8.22 LLT Inner loop parallelization
2 160 9.29 LLT Spatial locality (cache line and page)
3 1600 16.08 LLT Remote memory accesses
4 1600 4.71 LAT Locality (cache and remote memory accesses)
5 1600 3.08 LAT Remote memory accesses
6 256 3.77 ELAT Cache conflicts
7 1600 15.43 CDA Synchronization
8 1600 9.75 CDA Locality (cache and remote memory accesses)
9 1600 1.45 CDA Affinity between loops

10 256 3.39 CDA Cache conflicts

improving the cache hit rate and possibly reducing paging
activity.

The original loop has poor cache locality and can cause
excessive paging because only one element of each cache
line fetched is actually accessed and because each iteration
of the innermost loop accesses a different set of pages.
By interchanging the i and k loops, the transformed loop
accesses elements of A in storage order.

In our final example, a linear loop transformation is used
to reduce the number of remote memory accesses. This is
still an important objective, even if the cost of accessing non-
local data is significantly lower than on a distributed memory
system. If we assume that matrix A is stored in row major
order and distributed over multiple memory modules, then
Loop 3 will cause many remote memory accesses, since each
execution of the inner loop will access a different row of the
matrix.

The transformed loop accesses the arrays contiguously by
row, and row i of A and B can be mapped to memory close
to the processor executing the ith iteration to make all array
accesses in every iteration local. This type of transformation
is referred to as access normalization [5], and achieves a
speedup of over 16 on Loop 3 running on the KSR-1.

We have described three important and frequent uses of
linear loop transformations: exposing available parallelism,
improving cache and paging behaviour, and reducing the
number of remote memory accesses. There are of course
other applications. Improving processor load balance [3, 12]
and enabling loop tiling [13, 14] are two examples. The
latter is important, because loop tiling, although not a
linear transformation in itself, is an effective technique that
improves cache performance, even on uniprocessors. Often
loops are not tileable as is, but linear loop transformations
exist that can make them tileable.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




376

D. KULKARNI AND M. STUMM

forall k=1,n
forall j=1,n
for i=1,n
A(, j, k) = B(@, j,k)...
end for
end for
end for

forall i =1,n
forall j=1,n
for k=1,n
A(, j, k) = B3, j, k)...
end for
end for
end for

Loop 2. Linear loop transformation that improves cache locality.

forall i =1,n
for j=1,i
Al —j, ) =A0—Jj, D+BGE—Jj,J)
end for
end for

forall i =0,n—1

for j=1,n—i
A@, j) = AG, j) + B(@, j)
= end for
end for

Loop 3. Linear loop transformation that reduces the number of remote memory accesses.

2.3. Automatic derivation of linear loop
transformations

The derivation of a linear loop transformation that is optimal
for a given optimization objective is, unfortunately, hard
in general. The problem is NP-complete for unrestricted
loops and even affine loops with non-constant dependence
distances [15]. Since the inception of the linear loop
transformation framework, researchers have developed
heuristic algorithms capable of automatically deriving
transformations given specific optimization objectives, such
as maximizing parallelism, maximizing cache locality,
minimizing communication volume, balancing load etc. [3—
5,7,12,16].

The approximate solutions are typically derived by using
the desired properties of the transformed loop, such as the
structure of the dependence matrix or patterns of expressions
in array references, to guide the search for a transformation.
For example, an important optimization objective is to
bring parallelism to the outermost loops, so that there are
no dependences between the outer loop iterations, thus
removing the need for synchronization. The dependence
matrix can be used to guide the search and to derive a
linear transformation to parallelize the outer loops of a
perfectly nested affine loop in polynomial time [4, 17].
Such algorithms apply a sequence of matrix operations
to transform the original dependence matrix into a new
dependence matrix having the desired properties; in this
case, the new dependence matrix will have the first row
and possibly a few subsequent rows that contain only zero
elements.

3. LINEAR ARRAY TRANSFORMATION
FRAMEWORK

The previous section described how linear loop
transformations can change the data access pattern to
improve performance. An alternative strategy to pursue
the same objective is to change the way data is stored in
memory. In this section we describe three such techniques:
linear array transformations [18, 19], array padding [20, 21]

and data tiling. The linear array transformation is similar to
the linear loop transformation in concept and also subsumes
numerous data transformations. Array transformations are
considered to be global, since they affect all references to
the array in the entire program. This is in contrast to loop
transformations that only affect individual loops. Because
data transformations are global, it can be difficult to find
a good one, since each transformation applied must be
suitable for each loop that accesses the target array. On
the other hand, data transformations do not change data
dependences and are thus always legal to apply. Array
transformations are used extensively on distributed memory
machines to implement data alignments [18] that match
references to arrays so that they can be distributed in a way
that minimizes communications.

3.1. Linear array transformation

A target array can be regarded as an integer space with each
data element of the array corresponding to an integer point.
A linear transformation can then be applied to the integer
space, effectively changing the storage location of the data
elements. Such a transformation requires that each reference
to the array be updated to reflect the new location of the
target element.

A linear array transformation is illustrated in Figure 2,
where the original program has two loops. The first
initializes array B, while the second, named Loop 4, reads it
and writes to array A. Loop 4 accesses array A in row major
order, but accesses B in column major order. It also accesses
B at an offset; that is, iteration (i, j) accesses B(j,i — 1)
instead of B(j, i). The transformation in Figure 2 transforms
array B in two ways. First, B is transposed so that it is
accessed in storage (row major) order. The transposition
requires a change in references to B from B(j,i — 1) to
B(i — 1, j). If data is both stored and accessed in row major
order, then the cache hit rate will be significantly higher
than if the data is stored in row major order but accessed in
column major order. On large systems, the transposition also
reduces the number of remote accesses; some of the accesses
in the original loop will invariably be to remote memory,

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




LINEAR AND EXTENDED LINEAR TRANSFORMATIONS 377

Code

B’s Data space

forall i=0,n
for j=0,n
B(@, j) =...
end for
end for
forall i=1,n
for j=1,n
Ali, j) = B(j, iD
end for
end for

Original Loop

forall j=0,n
for i=0,n
B(j+1,i) =...
end for
end for
forall i=1,n
for j=1,n
A, j) =B(@, j)
end for
end for

Transformed Loop

Transformation of B

A

J Cache line dimension

2.4

(32)

0 11

100
0 01
i 1

‘ Cache line dimension

33

(5.2)

-y

FIGURE 2. Illustration of a linear array transformation, improving locality (Loop 4).

whereas accesses in the transposed loop can be made local
by mapping B by row to appropriate memory modules. The
second effect of the transformation is to shift B right by one
so that iteration (i, j) accesses B(i, j) instead of B(i — 1, j)
to match the access to A(i, j).

The above transformation improved the performance of
Loop 4 by a factor of 4.7 on our KSR-1 (Table 1). It
should be noted that a linear loop transformation could not
have achieved the same result—if the second loop is loop-
transformed to modify its accesses to B, then its accesses to
A would also change in a similar way, yet here we wish to
change only the accesses to one of the arrays and not both.
This example also illustrates one of the disadvantages of data
transformation. While the array transformation improves the
behaviour of the second loop, it makes it worse for the first,
because the transformation on B is global. Luckily in this
case, it was possible to interchange the loops of the first nest
to retain row major order access.

The example transformation above illustrated two uses of
linear array transformations: improving cache performance
and reducing remote memory accesses. With a proper
mapping of rows to memory modules close to the accessing
processors, all B accesses can be made local by simplifying
array index functions in Loop 5 using transformation similar
in effect to access normalization loop transformations [5].

3.2. Other types of data transformations

Other data transformations exist that do not belong directly
to the category of linear array transformations. For example,

array padding increases the array size (along any dimension)
and/or introduces a dummy array between two arrays for
the purpose of reducing cache conflicts. The four elements
in the original Loop 6, namely A(i, j, k), B(G — 1, j, k),
B(i, j, k) and B(i+1, j, k) are accessed in each iteration and
conflict in the cache on a system with 256 Kb two-way set-
associative caches (as is the case on the KSR-1), assuming
256 x 256 x 256 arrays with row major ordering and 8 bytes
per array element. Hence, each access will cause a cache
miss. The conflicts can be eliminated by increasing the size
of array B from 256 x 256 x 256 to 256 x 258 x 258.

One disadvantage of padding and some unimodular array
transformations that increase the size of arrays is that they
affect the relative storage positions of all arrays that follow
in memory. In recent work, we have extended linear array
transformations to include nonlinear modulo operators in
the transformation. A unimodular array transformation in
conjunction with modulo operations wraps the transformed
data space around to allow the array transformation without
the increase in size. For example, a unimodular array
transformation that maps A(i, j) to A(, j') could be
modified to map A(i, j) to A(i’%m, j'%n) if the size of the
target array is m X n.

Array B of Loop 6 can be transformed so that B(i, j, k) is
mapped to B(i, (j+i)%n, k) to eliminate the cache conflicts
described earlier. The transformed loop no longer has cache
conflicts since no more than two array accesses map onto a
cache set. The result is a speedup of 3.7 on the KSR-1.

Another nonlinear extension to the linear array transfor-
mation framework, we have developed, is called array tiling

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




378 D. KULKARNI AND M. STUMM

forall i=1,n
for j=1,n
A, j)=BGA+j,j)--.
end for
end for

forall i =1,n

for j=1,n
A@, j) =BG, j)...
= end for
end for

Loop 5. Linear array transformation to improve remote memory access pattern.

forall i =1,n
for j=1,n
for k=1,n
AG, ) =Yy, Blite, j k)
end for
end for
end for

forall i =1,n

for j=1,n
for k=1,n
AU, j k)= o1 Blitc, (j+i£c)%n, k)
end for
end for

end for

Loop 6. Extended linear array transformation to eliminate cache conflict misses.

and uses both division and modulo operators. Conceptually,
the target m x n array is tiled into a x b subarrays or data
tiles, and the array is then transformed so that all elements
of any data tile fit in one cache line of size /. The restrictions
on a and b are that //a divides evenly and that b = [/a.
In effect, this transformation implements rectangular cache
lines, and thus can be viewed as the data equivalent of loop
tiling. It can significantly increase the cache hit rate for
loops that access elements of the array along both the i and
J dimensions.

Both of the above nonlinear extensions introduce more
complex and costly array index computations. But with
the difference between processor and memory speeds
increasing, it becomes increasingly beneficial to trade-off
memory access overhead for index computation overhead.

3.3. Automatic derivation of array transformations

The general problem of deriving linear array transformations
is to find the optimal shapes for the arrays considering
all nested loops in the program. Finding the optimal
shape for arrays is NP-hard [22]. Approximate techniques
for automatically deriving data alignments [18, 19, 23],
that transform one array onto another, can be used in
this case to improve cache and memory locality. Recent
work in dependence analysis and optimization techniques
suggests that exact techniques may in fact have acceptable
execution times in practice [10]. Therefore, we believe
that exact techniques that exhaustively search for optimal
linear array transformations may not be impractical. This
is especially so, because the arrays accessed in programs
tend to have only a small number of array dimensions and
simple transformations such as transpose or permutation of
array dimensions result in good solutions in practice as these
transformations have low index computation and spatial
overhead.

4. EXTENDED LINEAR LOOP
TRANSFORMATION FRAMEWORK

The linear loop transformation framework is elegant and
can be effective, but it does not always exploit all of the
optimization opportunities that are available. Loops are
transformed at the granularity of iterations, which only
changes the order in which the iterations are executed.
It does not transform the composition of the iterations
themselves. Recently, several groups have been exploring
extensions to the linear loop transformation framework to
transform loops at statement [24, 25] and substatement
granularity [26, 27]. Here we describe our transformation
framework called computation decomposition and align-
ment (CDA). The CDA transformation framework unifies
many existing transformations, including all linear loop
transformations, and enables new optimizations which can-
not be obtained by linear loop transformations alone. It
is also capable of transforming some non-perfectly nested
loops. However, heuristics are essential to efficiently
derive CDA transformations as the space of candidate
transformations tends to be large.

4.1. Basic idea of the CDA transformation technique

A CDA transformation consists of two stages. In the
first stage, computation decomposition decomposes the
loop body initially into its individual statements, and then
optionally the individual statements into statements of finer
granularity. A statement is decomposed by rewriting
it as a sequence of smaller statements that produce the
same result as the original statement. In so doing,
it is necessary to introduce temporary variables to pass
intermediate results between the new statements. For
example, the statement a = b 4+ ¢ 4+ d + e can be
partitioned into t = d + e and a = b + ¢ + ¢,
where ¢ is a temporary variable used to pass the result
of the first statement to the second. A statement can be
decomposed multiple times into possibly many statements.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




LINEAR AND EXTENDED LINEAR TRANSFORMATIONS 379

Code Iteration space Computation spaces
=3 fori =1,n CS(S2)
o =5
o forj=1,n n &

- S1: A(iyj) = B(i,j+1)+A(,jO+ .
© A(ij)+A (OjD+B(ilj) Computation
= S2: B(i,jD = A(i,jD+B(,j) €
=) end for L4
6 end for Decomposition CSSLD

1

;
1 n

A Computation Alignment
a i
o
o n
- for i =0,n
o for j =0, n
Q S1.2: (i>0&j>0) A(iyj) = t(i,j)+B(i,j+1)+A(,jD
g S2 : (i>0&j<n) B(i,j) = A(i,j)+B(i,j+1)
o S1.1: (i<n&j>0) t(i+1,j) = A(i,j)+A(i,jO+B(,j)
® end for CSS11)
c d for e
S |en
S
=

1 ¢
0 —
1
0 1 n

FIGURE 3. Illustration of an extended linear loop transformation.

The choice of which subexpressions to elevate to the status
of statements is a key decision in CDA optimization and
is determined largely by the specific optimization objective
being pursued.

A sequence of decompositions produces a new loop body
that can have more statements than the original, but the
loop references and loop bounds remain unchanged. For
each new statement S, there is a computation space, CS(S),
which is an integer space that represents all execution
instances of statement S in the loop.

In the second stage of CDA, computation alignment
applies a separate linear transformation to each of the
computational spaces. The set of all transformed
computation spaces together defines the new iteration space.
Unlike the original iteration space, the new iteration space
may be non-convex, so the corresponding new loop may
have complex bounds.

4.2. Example transformation

Figure 3 illustrates the application of a simple CDA
transformation. Computation decomposition first splits the
loop body into two statements S} and S,. Statement S is
further decomposed into two smaller statements S;; and
S1.2, using a temporary array ¢ to pass the result of S;; to
S1.2. The result is a loop with three statements in the body:

St ) =A0G—-1)+AG—-1,j-D+BG@—1,))
S12:AG J) =10, )+ BG j+ 1D+ AG -1
S2:BG, j—1) =A@, j— 1)+ BG, j).

This computation decomposition effectively partitions the
iteration space into three computation spaces, namely

CS(S1.1), CS(S12) and CS(Sy). The particular decompo-
sition for S; was chosen so that it separates all (i — 1, x)
references into a new statement, in this case S; ;. This will
allow a subsequent transformation to modify the (i — 1, %)
references into (i, x) references, without affecting the other
references in S that are now in S| ,.

The three computation spaces are computationally aligned
by applying transformations

1 0 -1 1 00
Ti;,=1] 0 1 0 Ti,=]1 0 1 0
00 1 0 0 1
and
1 0 0
Ih=] 0 1 -1
0 0 1

to CS(S1.1), CS(S12) and CS(S,) respectively. As a result,
computation spaces CS(S;.1) and CS(S,) move relative to
CS(S12), since Tj; is the identity matrix. CS(S;.1) moves
one stride in direction i so that the (i — 1, %) references
in S;; change to (i, %) references. CS(S;) moves one
stride in direction j so that the B(i, j — 1) reference
changes to B(i, j). The transformations thus align the
computation spaces so that most references are aligned to
A(i, j). Figure 3 shows the transformed computation spaces
and highlights three computations that are now executed in
one iteration.’

61t was necessary to change the order of the statements in the loop so
that S;; is executed after S;, and S, to maintain legality. Before the
transformation, S7.; had a loop-carried flow dependence from both Sj 2
and S,. These dependences become loop independent after the alignment,
thereby necessitating the reordering.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




380 D. KULKARNI AND M. STUMM
for i=1,n forall i =0,n
for j=1,n for j=1,n
A, =AU, j—1)... (i>0) AG, j)=AG, j—1)...
Bi—1,))=AG—-1,))... — (i <n) B, j) =A@, Jj)...
end for end for
end for end for

Loop 7. CDA transformation to eliminate synchronizations.

The new iteration space is defined by the projection of
the transformed computation spaces onto a plane. Iteration
(7, j) in the new iteration space now has new, different
instances of S;,, S and S;; computations, namely those
that were originally in iterations (i, j), (i, j+1) and (i+1, j)
respectively. The new iteration space is non-convex, and the
limits of the new, transformed loop correspond to the convex
hull of this new iteration space. It is no longer true that each
iteration entails the execution of all three statements. The
transformed loop requires guards that allow a statement to be
executed only if appropriate. These guards can be removed
in most cases to produce a more complex transformed code
with imperfect nesting.

5. APPLICATIONS OF CDA TRANSFORMATIONS

In this section, we describe some of the optimization
contexts, where CDA’s ability to transform loops at
statement and subexpression granularity is particularly
useful.

5.1. Elimination of synchronizations

Loop 7 does not have any outer loop parallelism due to the
(1,0) and (0, 1) dependences; that is, iterations (i, j) must
wait until iterations (i — 1, j) and (i, j — 1) have completed.
Because the loop has only inner loop parallelism, it does
not scale due to synchronization overheads. The (1,0)
dependence can be eliminated by linearly transforming the
computations associated with the second statement while
leaving the first statement as is. In this particular example,
we transform the second statement in order to change the
A(i — 1, j) reference to A(i, j), with the result of bringing
parallelism to the outer loop. The result is a speedup of
almost 15.5 on our 28-processor KSR-1 (Table 1). These
types of CDA transformations are called loop alignments.

In general, dependences in a loop limit the availability
of coarse-grained parallelism. When the rank of the
dependence matrix is not less than the loop dimension, then
the loop nest does not have any parallel outer loops (although
all the inner loops can be made parallel) [4]. Unfortunately,
the performance of parallel inner loops is not scalable, since
the dependences in the outer loops manifest themselves as
barrier synchronizations. CDA transformations can be used
to modify the dependence matrix of some loops, so that the
rank becomes less than the loop dimension; this effectively
eliminates the need for synchronization and thus makes
available coarse-grained parallelism.

Here, we show how to derive CDA transformations
that eliminate synchronization by modifying loop-carried

dependences between statements into loop-independent
dependences. The technique is general in that it can
be used to modify a loop-carried dependence d between
two statements S, and S, into any desired dependence d',
although in this case we would modify d to be 0. Let A,
and A, be the reference matrices of the write reference w to
an array in statement Sy, and a read reference r to the array in
statement S, respectively.” We can derive a matrix f, which
transforms the computations of S, so that the dependence
between w and the modified reference r’ becomes d’, as

follows. Let A, A, and f~! be
Uw O dr -1 _ T t
WERE !

U,
a=lor 1] a[

Transforming the computations of S, by matrix f modifies
the reference matrix A, to become A, f~ ! Ifthe dependence
between statements S,, and S, in the original loop was d,
then reference matrices A, I and A, I + A, d both access the
same array element in the original loop. We would like A, I
and A, I 4+ A,d’ to access the same array element after the
transformation; i.e.

AT = A f1I+4).

By substituting for A,, A, and f~! in this equation, we
obtain

Uy, O
0 1

After expanding the matrix-vector multiplication on the
right-hand side we have

:|I:|: U(’)T U’t;rdr }(I—i—d’).

UpyI=UTI+d)+Ut+d,
which can be expanded into
U,I1=UTI1+UTd + Ut +4,.

For this equation to be true for all iterations I, it is necessary
for T to be equal to U,“Uw, and for U,t to be equal to
—U,Td' — d,. By substituting T = U~'U, in this latter
equation, we obtain

Ut =-U,yd —d,

which we can solve for t by pre-multiplying both sides of
the equation by U~

t=-U"'U,d - U 'q,.

"The matrices are suitably padded when the array and loop dimensions
are not the same.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




LINEAR AND EXTENDED LINEAR TRANSFORMATIONS 381

forall i =0,n/2
for j=0,n/2

AQRx*i—1,2%j) = AQ*1,2%j)+AQ*i —2,2% J)
AQx*j,2%i—1) = AQx*j,2%i)+ AQ* j, 2%i —2)

end for
end for

forall i =0,n/2

for j=0,n/2
AQRxi—1,2%j) = AQ#i, 2% j)+ AQRx*i —2,2%j)
AQxi, 2% j—1) = AQx*i, 2% j)+AQ2x1,2+J =2)

= end for

end for

Loop 8. CDA transformation to improve cache locality.

Therefore, matrix f is defined such that

fl= v-'v, -U'U,d -U 4,
- 0 1

which modifies the dependence d between statements S,
and S, to be d’. In particular, when the desired dependence
d’ is 0, then the transformation f is defined such that

v-'u, -U"'d
-1 _ r w r r
A R

The technique we have just described is a generalization
of loop alignment. While loop alignment considers only
offset alignments between statements, CDA transformations
can be any non-singular integer matrices. Moreover, CDA
can align subexpressions, statements or subnests in the loop
body. Thus, CDA can be viewed as unifying loop alignment
and its generalizations into a linear algebraic framework.

5.2. Improving locality and parallelism

CDA can achieve improvement in locality and parallelism
that is traditionally achieved with loop distribution and
fusion. Consider the improvement of locality in Loop 8.
Loop levels i and j need to be interchanged for the second
statement, but not the first, in order to ensure row major
order access for array A. Traditionally, this is done by
distributing the statements in the loop into two separate loop
nests, interchanging the i and j loops in the second nest and
then fusing the two loop nests back together again. CDA
can directly transpose the computation space of the second
statement alone, improving the execution time by a factor of
9.7.

In particular, the CDA framework generalizes loop
distribution in three ways. First, any loop distribution can be
represented by a CDA transformation that decomposes the
loop body and applies an appropriate offset alignment along
the outermost loop dimension to each group of statements
(to be distributed) so that the computation space for each
group does not overlap with the computation space for any
other group. The first group is aligned by an offset of O,
whereas the ith group is aligned by an offset of ni — n,
where n is the size of the outermost loop. Note that the
loops resulting from loop distribution and the loops resulting
from the CDA transformation differ in subscript functions.

However, most compilers can normalize loop bounds to
simplify the subscript functions.

Second, with CDA, loop distribution can be performed
at the granularity of subexpressions, and not just entire
statements. Computation decomposition can store the results
of subexpressions in temporaries to isolate dependence
cycles. Thus, appropriate computation decomposition can
be considered as a form of node splitting, which introduces
temporaries to break dependence cycles. In contrast to node
splitting, CDA can also move computations of the portions
of the split statement apart from each other in the iteration
space.

Third, CDA makes partial loop distributions possible. A
loop distribution separates all instances of a statement from
the instances of another statement in the loop body. A
partial loop distribution separates only some instances of
a statement or subexpression from the instances of other
statements or subexpressions in the loop body. A partial
loop distribution would be beneficial in a situation where
a dependence cycle prevents loop distribution (and where
node splitting does not help break the dependence cycle).

As an example, consider the loop on the left-hand side of
Figure 4, which has a dependence cycle between statements
S; and S;. The dependence cycle cannot be isolated with
computation decomposition, since the dependences in the
cycle are flow dependences.® However, S, can be aligned
by an offset of —k to obtain the transformed loop shown
in the centre of the figure. The CDA transformed loop
after eliminating the guards is shown on the right-hand side
of Figure 4. The transformation effected a partial loop
distribution where only k£ computations (out of n) of the
statements S; and S, are separated from each other.” When
the dependent iterations are far apart (i.e. k is large or k
is an offset in the outermost loop index), then partial loop
distribution can separate a substantial number of statement
instances.

As another example, consider the loop on the left-hand
side of Figure 5 which cannot be distributed due to a
dependence cycle that cannot be broken. CDA can align S,
by an offset along the j dimension in this case so that the
statements are distributed only with respect to the j and k

8That is, all statements of the decomposed loop will be in the
dependence cycle.

The dependence cycle prevents the distributions of the computations of
the statements in the remaining iterations.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




382 D. KULKARNI AND M. STUMM

L: for i=k+1,n
for j=1,n
Sy B, j)=A>G—-1,))
S>: AG, j) = Bl —k, J)
end for
end for

L: for i=1,n
for j=1,2xn

Si:(k+1<i<n) B, j)=A>G—-1,))

S (1<j<n—k) AG+k, j)=B(3,}j) -
end for
end for
Ly:for i =1,k
for j=1,n
Sy A@ +k, j) =BG, j)
end for
end for
Ly:for i=k+1,n—k
for j=1,n

Syt B(, j) = Al — 1, j)
Sy A +k, j)=B(3, )

end for
end for
Ly:for i=n—k+1,n
for j=1,n
S, B, j) = Al — 1, )
end for
end for

FIGURE 4. CDA transformation for partial loop distribution.

dimensions. The CDA transformed loops with and without
guards are shown at the centre and right of Figure 5.

In general, any sequence of loop distribution, linear
transformation of the new loop nests and fusion of the
transformed loop nests can be represented by a single
CDA transformation. A linear transformation applied to a
loop nest after loop distribution is essentially an alignment
transformation applied to the computation space of the
corresponding statement(s). The loop fusion is effected
while generating code for the CDA transformed loop, where
the computation spaces are coalesced by projecting them
onto a grid and finding their union.

5.3. Inter-loop computation alignments

CDA transformations can be used to improve memory
locality across loop nests by tailoring the loop to the way
iterations are assigned to parallel threads. Consider a
situation where threads are assigned individual iterations for
execution. For instance, in the original loop, Loop 9, assume
that the first iteration of the first loop is assigned to the same
thread as the first iteration of the second loop, and that the
following iterations are assigned to subsequent threads in
a similar way. With this assignment, the thread executing
iteration { of both loops will read and write A(i, *) and
A(i — 1,%). Because this data set overlaps with the data
set being accessed by the thread executing iteration (i — 1),

there will be an excessive amount of consistency traffic. This
situation can be alleviated by CDA transforming the second
statement of the second loop so as to align the accesses to
A in the second statement to the corresponding accesses in
the first loop. The first statement of the second loop is kept
unchanged to keep the accesses to B local. This results in a
speedup of 1.45 over the original Loop 9.

5.4. CDA as a control dual to array padding

Many CDA transformations behave as duals to data transfor-
mations. This duality allows for additional opportunities for
optimization, because CDA is an optimization local to the
loop, while data transformations are global. For instance, a
CDA transformation can eliminate cache conflict misses in
Loop 6 in place of array padding or an extended linear array
transformation. Loop 6, which is reproduced as Loop 10,
can be CDA transformed by decomposing the statement
into two statements and computationally aligning one with
respect to the other along the j dimension. As a result, at
most two of the references map to a cache set so that the
CDA transformed loop behaves as though the arrays had
been suitably padded without any changes to data layout.
The speedup achieved on this example is 3.4 (Table 1).
The CDA transformed loops in general may run somewhat
slower than array-padded versions because of the computa-
tional and spatial overheads in the CDA transformed loops.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




LINEAR AND EXTENDED LINEAR TRANSFORMATIONS 383
L: for i=1,n
for j=1,n
for k=1,n
S B(,j,k)=AG—-1, j, k)
S, A(G, j,k) =BG —1, j,k) =
end for
end for
end for
L: for i=1,n
for j=1,n
for k=1,n
Sit (I=j=n)B(@, jk)=A>l—-1,j,k)
S m+1<i<2xn)A@,j—nk)=B@i—1,j—n,k) =
end for
end for
end for
L: for i=1,n
Ly: for j=1,n
for k=1,n
S1: B(,j,k)=A@G—-1, j k)
end for
end for
Ly: for j=n+1,2%xn
for k=1,n
S AG,j—n,k)=B@i—1,j—n,k)
end for
end for
end for
FIGURE 5. CDA transformation for partial loop distribution.
forall i =1,n forall i =1,n
for j=1,n for j=1,n
A, j)=AG,j— 1)+ BG, j)... A, j)=AG, j— 1D+ BG, j)...
end for end for
end for end for
forall i =1,n forall i =0,n
Jor j=1.n = for j=1,n
B, j)=... @>0) B j)=...
AG—-1,))=AG—-1,j-2)... i<n) AG, j) =AU, j—2)...
end for end for
end for end for

Loop 9. CDA transformation to improve access affinity across loops.

However, the advantage of CDA is that it does not change
the layout of the data globally and only affects this one loop;
i.e. it is a local optimization. Note that array padding is
often avoided by robust compilers for the sake of program
correctness, especially when the program accesses the same
array in different shapes. In such situations, CDA becomes
an effective alternative transformation.

In order to show the duality between CDA and array
padding transformations with respect to improving cache
efficiency, consider conflicts in a direct-mapped cache as
depicted in Figure 6a.

We represent the number of elements in an array between
the first element and a chosen element of the array using an

integer vector, which we call a mapping vector. A mapping
vector, V.= (vy, ..., Un)T, is such that v; is the size of the m-
dimensional array along array dimension i + 1, and vy, is 1.
Then, the array element accessed using reference matrix r in
iteration I isrI-V array elements away from the first element
of the array. As an instance, the mapping vector for a two-
dimensional n x n array is V = (n, 1)T and reference A(i, j)
in iteration (10, 5) accesses an element which is 10n + 5
elements away from element A(1, 1).

We can now use the mapping vector to represent the
mapping of array accesses onto cache and memory. An
array access in iteration I with reference matrix R; maps
to memory location M; = C; + R;I -V, where C; is a

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




384

D. KULKARNI AND M. STUMM

forall i =1,n
=0,
forall i =1,n for j "
for j=1 for k=1,n
or j=1,n . ..
ff o (i < m TGj + 3k =
or k=1,n
o ) . D10 Bixc, j+1,k)
A, j k)= _ B(i=*c,j, k = . .. .
() R) = 2o Bl e J ) _ (i >0) AG.jk) = TG j+2.hk+
end for L=
B(i+1,j,k)
end for
d for end for
en C
end for
end for
Loop 10. CDA transformation to eliminate cache conflict misses.
ci+Rav | ci+Rav [ ci+Rav |
7/ Padding . i — %
— (M elements) —
Co+R,l.V = L Cs+ RV E/ K
L Cs+Ral.V g/
] il C+Ry 1.V
— Cache : Cache — Cache
Memory Memory Memory

(a) Conflicting array accesses
in an iteration

(b) Conflict removal by
array (interBra y) padding

(c) Conflict removal by
CDA transformation

FIGURE 6. Reducing cache conflicts with modification to array layout and CDA.

constant and V is the mapping vector. A second array access
in iteration I with reference matrix R, maps to memory
location M, = C, + RyI - V.19 A cache conflict occurs for
these two accesses if the cache geometry is such that both
M, and M, map to the same cache line.

The cache conflict shown can be eliminated by suitably
modifying the number of elements between M; and M,,
so that the accessed data elements map to different cache
lines (Figure 6b). Modifying V changes the array sizes,
and is referred to as intra-array padding; this is achieved
by changing the declaration of the arrays to become larger
along one or more dimensions. Modifying the C; changes
the placement of the arrays in memory and is referred to
as inter-array padding; this is achieved by inserting dummy
variables between the array declarations.

The main idea behind using CDA to reduce the number
of cache conflicts is to spread the conflicting accesses of
an iteration into different iterations. While modification
to array layout moves conflicting array accesses apart in
space, CDA moves conflicting array accesses apart in time.

Owithout loss of generalization we can assume here that arrays have the
same size.

In the example we are considering, the time (in number
of iterations) between the access to M; and access to M,
can be changed by aligning the statement containing R,
relative to the statement containing R;. In other words,
the statements containing R; and R, can be aligned so that
R, and the aligned R,, R), do not access M; and M, in
the same iteration; in iteration I, R; would continue to
access M, whereas R}, would access a new location M.
In Figure 6¢c, R, is changed to R} so that the new memory
location M, = C, + R,I -V and M, map to different cache
lines.

5.5. Transforming imperfect loop nests

Although transformation of unconstrained imperfectly
nested loops is still an open issue, some imperfectly nested
loops can be successfully transformed using linear loop and
CDA transformations.

Simple cases of imperfect nests are created, for example,
in order to perform boundary computations or initializations.
The cause of imperfectness is often a single assignment
statement interspersed between the loop statements of an

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




LINEAR AND EXTENDED LINEAR TRANSFORMATIONS 385

otherwise perfectly nested loop. In this case, the imperfect
nest can be transformed into a perfect nest by moving the
single assignment statement S; into the loop and using
guards to prevent the execution of S; in some of the
iterations [28, 29]. In the transformed loop, S; is executed
only when j = 1 because of the guard. This new loop can
now be applied to a linear loop transformation. An example
transformation of this type is shown as Loop 11.

Another imperfectly nested loop structure that occurs
frequently is illustrated by Loop 12, where the loop body
of a perfectly nested loop contains a sequence of perfect
subnests. Nested loops similar to Loop 12 can be linearly
transformed only in a hierarchical fashion—each of the
perfect subnests can be linearly transformed, and the loop
nest containing the sequence of subnests can be linearly
transformed. However, the entire loop nest cannot be
transformed by a linear transformation.

With CDA, it is possible to transform this type of
imperfect loop nest. For an example, the imperfect nest of
Loop 12 can be CDA transformed to the loop nest on the
right. CDA treats all computations of S; (in the i and j
loops) as one computation space, while all computations of
S, in i and j loops are treated as the second computation
space. The transformation first aligns the computation space
of S, by an offset of —1 along the j dimension and then
skews both computation spaces so that the dependences are
internalized to the inner loop. In the transformed loop,
the flow dependence from S; to S, is loop independent,
and the flow dependence from S, to S is carried only by
the j iterations. Therefore, the iterations of the outer loop
are independent, so that the outer loop can be executed in
parallel. Transformations of this type can expose additional
optimization opportunities that linear loop transformations
alone cannot.!!

5.6. Automatic derivation of CDA transformations

The search space for legal CDA transformations of a
nested loop is considerably larger than that for legal linear
loop transformations. The increased difficulty in deriving
CDA transformations is because one has to derive both
a decomposition of the iteration space into computation
spaces and a separate linear transformation for each of the
computation spaces. Therefore, good heuristics are the key
to efficient derivation of CDA transformations. Fortunately,
we find that it is possible to design efficient algorithms
for deriving CDA transformations in many optimization
contexts using the knowledge of the optimization context in
hand. In our recent work, we have designed two algorithms:
one for automatically deriving CDA transformations to
reduce the number of cache conflicts, and another to
reduce the number of remote memory accesses and
ownership tests [26]. The algorithms use the duality

1A linear loop transformation cannot be applied to internalize the
dependence and expose parallelism in the outer loop, because the loop
is imperfectly nested. Linearly transforming the i loop or the j loops
alone cannot expose parallelism either, since the dependences are across
j subnests.

between CDA transformations and array padding, and CDA
transformations and data alignment respectively, to derive
the transformations automatically. The derivation of CDA
transformations for other optimization contexts is an open
problem.

An undesirable effect of applying CDA transformations
is that the transformed loops may have a computational
and spatial overhead, which a simple linearly transformed
loop may not have. In our recent work we have
designed techniques to reduce these overheads significantly
and improve the efficiency of the CDA transformed
loops [26]. These techniques are especially effective for
CDA transformations, where a significant number of the
transformed iterations execute all statements in the loop
body.

6. EFFECTIVENESS OF THE
TRANSFORMATIONS

Transformations for improving data access behaviour and
parallelism of applications are obviously important for
achieving good performance, and the frameworks we have
presented play a crucial role in automating the search
for and the application of suitable transformations. The
examples we presented demonstrate the power of the
transformations, achieving substantial improvements on a
KSR-1 with 28 processors. While these examples may seem
somewhat artificial—the codes were chosen specifically
to isolate a particular feature of a transformation—
comparable performance improvements can be obtained, in
practice, when applying these same transformations on real
application code. This is shown in Table 2 which lists the
speedup obtained on a number of well-known application
kernels. Here again, the speedup is measured as the ratio of
the transformed code to the original code, both running fully
parallel (except for Mva).

The loop and data transformation frameworks and their
recent extensions presented here are effective on their
own, but they are still separate frameworks. We believe
they would be even more effective if they could be
unified into a single meta-framework. Unifying them
would offer additional opportunities for automatic program
optimization, because of the duality that exists among
the frameworks. In many cases, an objective can be
achieved through either a data transformation or a loop
transformation. For example, cache performance can be
improved or the number of remote memory accesses can
be reduced with both loop and data transformations.'?
Similarly, either array padding, extended linear array
transformation or CDA transformations can be used to
eliminate cache conflicts. This duality is exhibited in Table 2
where four of the five kernels are optimized within two
frameworks. In a unified meta-framework, duality could be
exploited to resolve conflicting optimization objectives, and
to compensate for the limitations of constituent frameworks.

12Cierniak and Li used this property for an improved locality model of
loops [30].

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




386

D. KULKARNI AND M. STUMM

for i=1,n
S A(G,0=C
for j=1,n
St A, j))=AG,j—-1+D
end for
end for

for i=1,n
for j=1,n
(G=1S8: AGO=C
S A(,j)=AG,j—1D+D
end for
end for

Loop 11. Converting a simple imperfectly nested loop into a perfectly nested loop.

for i =0,n for i =0,2n+1
for j=0,n for j=max0,i —n — 1), min(n, i)
St AU, H=AC—-1, )+ T Sy (i <2n, max(0,i —n) < j <min(i, n))
end for A(j,i— H=AG—-1,i— )+ T
for j=0,n = S (i > 1, max(0,i —n—1) < j <min(i — 1,n))
S AGH=AGJ+D+ 1D A(ji—j—D=A(,i— )N+
end for end for
end for end for

Loop 12. CDA transformation of an imperfectly nested loop.

TABLE 2. Speedup due to transformations on application kernels
running on a 28-processor KSR-1. The speedup is measured as
the ratio of the execution time of the original loop to that of the
transformed loop. Except for Mva, all original loops are fully
parallelized. The optimization performed is similar to that applied
to the loop listed in the last column. Wanal in the last row was
data tiled. The kernels are: Mva, mean value analysis; Mm, matrix
multiplication; Mg, the main loop in a multigrid solver; Wanal,
a perfect club benchmark loop and Syr2k, a BLAS3 loop that
manipulates banded matrices (of width 160 here).

Relative
Kernel n speedup  Transformation  Optn. as in
Mva 1600 20.25 LLT Loop 1
Mm 320 4.62 LLT Loop 2
Mm 320 5.47 LAT Loop 4
Syr2k 1600 3.65 LLT Loop 3
Syr2k 1600 10.74 LAT + LLT Loop3 & 5
Mg 256 3.15 ELAT Loop 6
Mg 256 2.90 CDA Loop 10
Wanal 1600 7.22 CDA Loop 8
Wanal 1600 4.84 ELAT

7. CONCLUDING REMARKS

The transformation frameworks are powerful because they
are based on a mathematical foundation. This foundation
provides a basis for effectively representing sets of
transformations in a concise and uniform way, reasoning
about and comparing transformations and their effects using
formal methods, automatically deriving transformations
that achieve specific optimization objectives and applying
transformations to the program code in an automated way.
Without formal frameworks, reasoning about the effects
of transformations is ad hoc, which not only may leave
opportunities for performance improvements unexplored,

but also makes the design of algorithms to automatically
derive transformations that optimize applications difficult.

The frameworks presented in this paper do, however,
have limitations. Although algorithms exist capable of
deriving optimal transformations given a single optimization
objective,'? it is not yet known how to find the optimal trans-
formation given a set of multiple optimization objectives.
In general, the search space of possible transformations
is very large, and the techniques will have to rely on
heuristics to find good, near-optimal approximations within
areasonable time [3-5,7]. We believe that algorithms which
derive optimal transformations for multiple objectives will
ultimately require the use of an abstract model of the target
hardware to realistically evaluate the performance trade-
offs between candidate transformations. This remains a
challenging goal.

Furthermore, the transformation frameworks assume
extremely regular loop and data structures. In fact, it is the
assumption of regular structure that has allowed a relatively
simple mathematical formulation of the problem and
indirectly the development of algorithms for automatically
deriving transformations. The frameworks are thus suitable
for optimizing scientific numerical applications with regular
loop and array structures, but it is unreasonable to expect
these frameworks to carry over to the optimization of non-
numeric applications. Because non-numeric applications
tend to use dynamic data structures and have irregular loop
structures (or other dynamic control flows), they are less
amenable to mathematical formalization at compile time and
are much more challenging to optimize.

While there have been some advances in deriving de-
pendence information on pointer-based dynamic structures
(i.e. memory disambiguation), it is still not clear how to
use this information to transform irregular codes. Run-

BIn some limited cases, optimal transformations can be derived that
optimize a pair of objectives such as outer loop parallelism and cache
locality.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




LINEAR AND EXTENDED LINEAR TRANSFORMATIONS 387

time optimization techniques may be more promising. For
example, speculative dependence analysis and code paral-
lelization, where either the sequential or a parallel version is
conditionally chosen at run time, is a possibility. A related
research direction is designing run-time strategies that are
directly embedded in the program, so that the dependence
information could be collected during execution. Non-
numerical applications also have optimization opportunities
from techniques orthogonal to frameworks discussed here.
For instance, prefetching techniques can sometimes hide the
remote memory access latencies [31].

Although we have listed a number of limitations and much
work is clearly still needed, the transformation frameworks
we presented here have enormously advanced compiler
technology over the past few years. These advances
have brought us close to the point where parallelizing
compilers can automatically generate efficient parallel code,
at least within the domain of numerical applications.
The technology described here is starting to appear in
commercial compiler implementations by companies such
as IBM and SGI.

REFERENCES

[1] Banerjee, U. (1988) Dependence Analysis for Supercomput-
ing. Kluwer Academic Publishers, Dordrecht.

[2] Banerjee, U. (1990) Unimodular transformations of double
loops. In Proc. 3rd Workshop on Programming Languages
and Compilers for Parallel Computing, Irvine, CA, August.

[3] Kulkarni, D., Kumar, K. G., Basu, A. and Paulraj, A. (1991)
Loop partitioning for distributed memory multiprocessors as
unimodular transformations. In Proc. 1991 ACM Int. Conf.
on Supercomputing, Cologne, June.

[4] Kumar, K. G., Kulkarni, D. and Basu, A. (1992) Deriving
good transformations for mapping nested loops on hierarchi-
cal parallel machines in polynomial time. In Proc. 1992 ACM
Int. Conf. on Supercomputing, Washington, DC, July.

[5] Li, W. and Pingali, K. (1994) A singular loop transformation
framework based on non-singular matrices. Int. J. Parallel
Program., 22.

[6] O’Boyle, M. and Hedayat, G. (1992) A transformational ap-
proach to compiling SISAL for distributed memory architec-
tures. In Proc. 1992 ACM Int. Conf. on Supercomputing,
Washington, DC.

[7] Wolf, M. and Lam, M. (1991) A loop transformation theory
and an algorithm to maximize parallelism. [EEE Trans.
Parallel Distrib. Syst., 2, 452-471.

[8] Feautrier, P. (1991) Dataflow analysis of array and scalar
references. Int. J. Parallel Program., 20, 23-53.

[9] Maydan, D., Hennessy, J. and Lam, M. (1991) Efficient and
exact data dependence analysis. SIGPLAN Notices, 26, 1-14.

[10] Pugh, W. (1992) A practical algorithm for exact array
dependence analysis. Commun. ACM, 35, 102-114.

[11] Pugh, W. and Wonnacott, D. (1993) An Exact Method for
Analysis of Value-based Array Data Dependences. Technical
Report CS-TR-3196, University of Maryland, MD.

[12] O’Boyle, M. and Hedayat, G. (1992) Load balancing of
parallel affine loops by unimodular transformations. In Proc.
Eur. Workshop on Parallel Computing, Barcelona.

[13] Lam, M., Rothberg, E. and Wolf, M. (1991) The cache
performance and optimizations of block algorithms. In

4th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, Santa Clara, CA, April,
pp. 63-74.

[14] Ramanujam, J. and Sadayappan, P. (1990) Tiling of iteration
spaces for multicomputers. In Proc. 1990 Int. Conf. on
Parallel Processing, pp. 179-186.

[15] Dowling, M. (1990) Optimum code parallelization using
unimodular transformations. Parallel Comput., 16, 155-171.

[16] O’Boyle, M. and Hedayat, G. (1992) A new program
transformation to minimise communication on distributed
memory architectures. In Proc. PARLE’92 Parallel
Architectures and Languages Europe.

[17] Kumar, K. G., Kulkarni, D. and Basu, A. (1991) Generalized
unimodular loop transformations for distributed memory
multiprocessors. In Proc. Int. Conf. on Parallel Processing,
Chicago, MI, July.

[18] Li, J. and Chen, M. (1991) The data alignment phase in
compiling programs for distributed memory machines. J.
Parallel Distrib. Comput., 13, 213-221.

[19] O’Boyle, M. and Hedayat, G. (1992) Data alignment:
transformations to reduce communication on distributed
memory architectures. In Proc. Scalable High Performance
Computing Conf. IEE Press, Williamsburg.

[20] Bacon, D., Chow, J., Ju, D., Muthukumar, K. and Sarkar, V.
(1994) A compiler framework for restructuring data
declarations to enhance cache and TLB effectiveness. In
Proc. CASCON’94, Toronto, November.

[21] Bacon, D., Graham, S. and Sharp, O. (1994) Compiler
transformations for high-performance computing. Comput.
Surveys, 26, 345-420.

[22] Mace, M. (1987) Memory Storage Patterns in Parallel
Processing. Kluwer Academic Publishers, Dordrecht.

[23] Knobe, K. Lucas, J. and Dally, W. (1992) Dynamic alignment
on distributed memory systems. In Proc. 3rd Workshop on
Compilers for Parallel Computers, Vienna, pp. 394-404.

[24] Kelly, W. and Pugh, W. (1992) A Framework for Unifying
Reordering Transformations. Technical Report UMIACS-
TR-92-126, University of Maryland.

[25] Torres, J. and Ayguade, E. (1993) Partitioning the statement
per iteration space using non-singular matrices. In Proc. 1993
Int. Conf. on Supercomputing, Tokyo, July.

[26] Kulkarni, D. (1997) CDA: Computation Decomposition and
Alignment. Ph.D. Thesis, Department of Computer Science,
University of Toronto, Toronto, Canada.

[27] Kulkarni, D. and Stumm, M. (1995) CDA loop transfor-
mations. In Szymanski, B. K. and Sinharoy, B. (eds), Lan-
guages, Compilers and Run-time Systems for Scalable Com-
puters, Boston, May, Chapter 3, pp. 29-42. Kluwer Academic
Publishers, Dordrecht.

[28] Abu-Sufah, W. (1978) Improving the Performance of Virtual
Memory Computers. Ph.D. Thesis, University of Illinois at
Urbana-Champaign.

[29] Wolfe, M. (1990) Optimizing Supercompilers for Supercom-
puters. The MIT Press, Cambridge, MA.

[30] Cierniak, M. and Li, W. (1995) Unifying data and control
transformations for distributed shared memory machines. In
Proc. ACM SIGPLAN ’95 Conf. on Programming Language
Design and Implementation, La Jolla, CA, June, Vol. 30,
pp- 205-217.

[31] Mowry, T. and Gupta, A. (1991) Tolerating latency
through software-controlled prefetching in shared-memory
multiprocessors. J. Parallel Distrib. Comput., 12, 87-106.

THE COMPUTER JOURNAL,

Vol. 40, No.6, 1997




