Proc. Intl. Conf. on Parallel Processing, 1993.

A Fair Fast Scalable Reader-Writer Lock

Orran Krieger, Michael Stumm, Ron Unrau, and Jonathan Hanna
Department of Electrical and Computer Engineering
University of Toronto, Toronto, Canada, M5S 1A4

1 INTRODUCTION

A reader-writer (RW) lock allows either multiple
readers to inspect shared data or a single writer exclu-
sive access for modifying that data. On shared mem-
ory multiprocessors, the cost of acquiring and releasing
these locks can have a large impact on the performance
of parallel applications. A major problem with naive
implementations of these locks, where processors spin
on a global lock variable waiting for the lock to become
available, is that the memory containing the lock and
the interconnection network to that memory will also
become contended when the lock is contended.

Several researchers have shown how to implement
scalable exclusive locks, that is, exclusive locks that
can become contended without resulting in memory
or interconnection network contention [1, 2, 5]. These
algorithms depend either on cache hardware support
or on the existence of local memory, where accesses to
local memory involve lower latency than accesses to
remote memory (and involve no network traffic).

Mellor-Crummey and Scott[6] recognized the need
for scalable RW locks and developed an imple-
mentation for the BBN TC2000. Their results
indicate that their algorithm performs well, how-
ever, it depends on the rich set of atomic opera-
tions provided by the BBN TC2000. In particu-
lar: 1) atomic write operations for 8, 16 and 32
bit quantities, 2) atomic fetch_and store instruc-
tions, 3) atomic compare_and swap instructions, and
4) atomic_increment and atomic_decrement instruc-
tions.

In this paper we describe a new fair RW locking algo-
rithm with similar goals to that developed by Mellor-
Crummey and Scott. However, our algorithm has
three major advantages over their algorithm. First,
in the common case of an uncontended lock, our algo-
rithm is faster since it requires fewer atomic operations
and memory references. Second, their algorithm de-
pends on three global variables that must be accessed

a) the Mellor-Crummey and Scott scalable exclusive lock

[[next " next | next

[spin | [spin | [spin |

ni |
b) the Mellor—-Crummey and Scott scalable reader—writer lock

tail)f—\'
reader

count state _ | state state
next) next next

first spin spin spin
witer
ni'l

Figure 1: The Mellor-Crummey and Scott scalable locks

atomically while our algorithm depends on only one
such variable. Therefore, we believe that our algo-
rithm will scale to larger numbers of processors. Fi-
nally, the only atomic operation required by our algo-
rithm is fetch_and _store. Therefore, it can be used
on multiprocessors that do not support the rich set of
atomic operations provided by the BBN TC2000.

2 BACKGROUND

Mellor-Crummey and Scott’s scalable RW lock is de-
rived from their exclusive lock [6], which uses atomic
operations to build a singly linked list of waiting pro-
cessors (Fig. la). The processor at the list head has
the lock and new processors add themselves to the list
tail. Rather than spinning on a global lock variable,
each processor spins on a variable in its local memory.
A processor releases the lock by zeroing the variable
on which the next processor in the queue is spinning.

For the RW variant of this algorithm, each queue el-
ement contains an additional variable to maintain the
state of the request. When a new reader request ar-
rives, the state of the previous element in the queue is
examined to determine if the new request must block.

With a RW lock, readers must be able to release

state state state
next 1 next 1 next
spin spin spin
prev = prev prev
f 1 ock 1 ock | ock

nil nil
Figure 2: Our RW lock with two active readers and a
single blocked writer.

the lock in any order. Hence, the singly linked list
used in the Mellor-Crummey and Scott algorithm be-
comes discontinuous as readers dequeue. To allow for
this, two global variables were added to their exclusive
lock, namely: 1) a count of the number of active read-
ers, and 2) a pointer to the first writer in the queue.
As readers acquire and release the lock they keep the
global count of active readers up to date. When releas-
ing the lock, if a reader discovers that the reader count
is zero, it unblocks the writer pointed to by the global
variable. The structure of a list with two readers and
a single blocked writer is shown in Fig. 1b.

3 OUR ALGORITHM

We have developed a new fair scalable RW locking
algorithm which is also derived from Mellor-Crummey
and Scott’s exclusive locking algorithm. The key ad-
vantage of this new algorithm is that, rather than
adding more global state (that can become contended),
we distribute the extra state needed for a RW lock
across the list associated with the lock. In particular,
readers are maintained in a doubly linked list (Fig. 2).

With a doubly linked list, instead of synchronizing
on a global variable, a reader that is releasing the
lock can synchronize with its nearest neighbors to re-
move itself from the queue. This allows readers to
dequeue in any order without the list becoming dis-
continuous. Hence, it is not necessary to keep either a
global pointer to the first writer or a global count of
the number of active readers.

We have developed two versions of this algorithm.
The simpler (and more efficient) version requires that
the hardware support atomic compare_and swap op-
erations. The more complicated version requires only
fetch_and_store operations.

The simple version of our algorithm is shown in Fig-
ures 3 to 5. The per-processor list element structure
used by our algorithm contains: 1) a state variable
that indicates if the processor is an active reader, an
intended reader, or a writer, 2) a local spin variable,
3) pointers to the next and previous queue elements,
and 4) a spin lock used for dequeuing read requests.

type Lelem = record // list element

state : (READER, WRITER, ACTIVE_READER)
spin : int // a local spin variable
next, prev : "Lelem // neighbor pointers
EL : lock // a spin lock
type RWlock : ~“Lelem // list tail pointer
procedure writerLock(L : “RWlock, I : "Lelem)
var pred : "Lelem
I->state := WRITER
I->spin := 1
I->next := 0
pred := fetch_and_store(I, L)
if pred != nil
pred->next := I
repeat until I->spin = O
procedure writerUnlock(L : "RWlock, I : ~“Lelem)

var pred : "Lelem

if I->next = nil and
compare_and_swap(0, I, L) ==
return
repeat until I->next != nil
I->next->prev := 0
I->next->spin := 0

Figure 3: Routines for write lock and unlock

The writerLock and writerUnlock operations
(Fig. 3) are nearly identical to the acquire lock
and release_lock operations of Mellor-Crummey and
Scott’s exclusive lock algorithm. The only difference
is that writerUnlock zeroes the next element’s previ-
ous pointer field to signal that processor that it is now
at the head of the queue. This is needed if the next
processor is a reader.

On executing readerLock, the requesting processor
constructs a doubly linked list by saving the pointer to
the previous element (in the list) into its local struc-
ture and then placing a pointer to its local structure in
the previous element’s next pointer. After enqueueing

procedure readerLock(L : "RWlock, I : "Lelem)
var pred : "Lelem
I->state := READER
I->spin :=1
I->next := I->prev =0
pred := fetch_and_store(I, L)

if pred != nil
I->prev := pred
pred->next := 1T
if pred->state != ACTIVE_READER
repeat until I->spin = O
if I->next !'= nil and I->next->state = READER
I->next->spin := 0
I->state := ACTIVE_READER

Figure 4: The read lock routine

procedure readerUnlock(L : "RWlock, I : “Lelem)
var prev : "Lelem := I->prev
if prev != nil
exclusiveLock(&prev->EL)
repeat until prev == I->prev
exclusiveUnlock(&prev->EL)
prev := I->prev
if prev = nil break
exclusiveLock(&prev->EL)
if prev != nil
exclusiveLock(&I->EL)
prev->next := nil
if I->next =
compare_and_swap(I->prev,I,L) != I
repeat until I->next != nil
if I->next != nil
I->next->prev =

nil and

I->prev

— Scalable Locks X
-- Simple Locks %
a- No delay /i/
x- 25 usec delay £
3001 - 250 usec delay /X
Lock
Time
(usec)
150+

I->prev->next =

exclusiveUnlock(
exclusiveUnlock(

I->next
&I->EL)
&prev->EL)

return
exclusiveLock(&I->EL)
if I->next = nil and
compare_and_swap(0, I, L) !=1I
repeat until I->next != nil
if I->next !'= nil
I->next->spin = 0
I->prev->prev = 0
exclusiveUnlock(&I->EL)

Figure 5: The read unlock routine

itself, the requesting processor checks if its predeces-
sor has acquired a reader lock, in which case it can
also acquire the reader lock without having to block.
After acquiring the lock (and before modifies its state
variable to indicate that it has done so), the requester
checks to see if it has a successor that is also a reader
request and if so unblocks that processor (by zeroing
its spin variable).

As with writerUnlock, readerUnlock releases the
lock by removing its local structure from the queue. To
remove itself from the queue, the releasing processor
must synchronize with both its queue neighbors. Since
the order of elements in the queue is unique, it is easy
to do this in a deadlock free fashion by having the re-
leasing processor first acquire its predecessor’s lock and
then its own. After both these locks are acquired, the
releasing processor can simply dequeue itself by modi-
fying the previous and next fields of its neighbors in the
linked list. If the releasing reader processor is at the
end of the queue it swaps the pointer to its predeces-
sor into the lock structure. (Note that readerUnlock
differs from writerUnlock in that it does not unblock
the next processor unless the releasing processor is at
the head of the queue.)

While the algorithm described above is simple and
efficient, it is not portable to all hardware bases be-
cause 1t depends on compare_and swap operations.

Number of Processors

Figure 6: RW locks with only read requests.

Since most multiprocessors support fetch_and _store
operations, we developed a more complicated version
of the algorithm that depends only on these opera-
tions. The main added overhead with this version is
that a global exclusive (spin) lock is required on unlock
if no succeeding elements are in the linked list.

The complexity with this version arises from the fact
that with only fetch_and store there is no way to
atomically dequeue an element at the tail of the list.
That is, there is no way for an unlocking processor
to atomically 1) detect that its local structure is the
tail element and 2) dequeue that element. With the
singly linked list used by Mellor-Crummey and Scott’s
exclusive lock, this problem can be solved at the cost
of some requests occasionally being served out of or-
der [5]. However, with our doubly linked list the prob-
lem becomes much more difficult to handle.

4 PERFORMANCE

The variant of our algorithm that uses only
fetch_and store was implemented in C code on the
Hector multiprocessor [8]. The particular system used
is a 16 processor system that runs at 16 MHz and uses
MCB88100 processors.
formed as regular user programs running on a fully
configured Hurricane operating system [7].

The experiments where per-

Figure 6 compares the performance of our scalable
RW lock to a simple exponential backoff RW lock when
p processors continuously acquire and release locks for
reading. The different curves for each lock type show
the performance when the locks are held for varying
amounts of time. This lock hold time is subtracted
away in the times presented. The scalable RW lock
performs much better than the simple RW lock under

a- Readers/Writers 3:1
x- Readers/Writers 7:1
300 - Readers/Writers 15:1
|- Readers Only

Lock
Time
(usec)

150+

Number of Processors

Figure 7: Scalable RW lock with various reader/writer ratios

any significant load. With a lock hold time of 0, the
simple lock causes the memory containing the lock to
saturate with just a small number of processors (i.e. 3
or 4) at which point the lock begins to perform very
poorly. Even with a lock hold time of 250 usec, the
performance of the spin lock begins to degenerate after
about 11 processors.

For small numbers of processors and with a lock hold
time of 0, as the number of requesting processors in-
creases the scalable RW lock initially increases in cost
quite quickly. This is because optimizations in our im-
plementation for the uncontended lock no longer apply.
However, the curve flattens as the number of proces-
sors increase further. The response time continues to
increase, mainly because the memory that contains the
pointer to the tail of the list becomes more contended.
With a lock hold time of just 25 usec, the degrada-
tion of performance for the scalable lock is much more
gradual. With a lock hold time of 250 usec, the curve
for the scalable lock remains flat for all 16 processors.

The performance of the scalable RW lock with dif-
ferent ratios of read and write requests (and a lock hold
time of 0) is shown in Figure 7.1 Acquiring and releas-
ing the lock for writing is (in the uncontended case)
less expensive than for reading. The figure shows this,
since for a small load performance is better if the ratio
of readers to writers is low. However, after 5 processors
contend for the lock, the greater the ratio of readers to
writers the better the performance of the lock. This
is expected, since the readers can acquire and release
the lock concurrently. The advantage of a high ratio of
readers to writers is even larger with some lock delay,
hence this is a worst case experiment for readers.

1TAn off-line pseudo-random number generator was used to
generate request sequences in which readers outnumbered writes
according to the required ratio.

5 CONCLUDING REMARKS

We have developed a new scalable RW lock for
shared memory multiprocessors. We believe that this
lock is an improvement over Mellor-Crummey and
Scott’s RW lock in that 1) it involves fewer memory
and atomic operations in the absence of contention;
2) it uses less global state that must be modified atom-
ically; and 3) it requires only fetch_and store oper-
ations, and hence can be used on most current mul-
tiprocessors. A full description of this algorithm is
contained in [4].

To verify both versions of our algorithm, we used a
state space searching tool [3] to do a full search of the
state space for small numbers of requesters, and a par-
tial search for larger numbers of requesters. Although
partial searches cannot prove correctness, our tests
have found all of our (previous) errors very quickly.

Acknowledgements

We would like to thank Benjamin Gamsa for his con-
tribution in improving the presentation of this paper.

REFERENCES

[1] T. E. Anderson. The performance of spin lock
alternatives for shared-memory multiprocessors.
IEEE Tran. on Par. and Dis. Sys., 1(1):6-16, 1990.

[2] G.Graunke and S. Thakkar. Synchronization Algo-
rithms for Shared-Memory Multiprocessors. IEEE
Computer, 23(6):60-69, June 1990. 1990.

[3] Gerard J. Holzmann. Design and Validation of
Computer Protocols. Prentice Hall, 1991.

[4] Orran Krieger, Michael Stumm, Ron Unrau, and
Jonathan Hanna. A fair fast scalable reader-writer
lock. CSRI, University of Toronto, 1993.

[5] J. M. Mellor-Crummey and M. L. Scott. Algo-
rithms for Scalable Synchronization on Shared-
Memory Multiprocessors. ACM Trans. on Comp.
Sys., 9(1), Feb. 1991.

[6] J. M. Mellor-Crummey and M. L. Scott. Scal-
able Reader-Writer Synchronization for Shared-
Memory Multiprocessors. In Third ACM SIG-
PLAN Symp. on PPOPP, 1991.

[7] M. Stumm, R. Unrau, and O. Krieger. Designing
a Scalable Operating System for Shared Memory
Multiprocessors. In Useniz Workshop on Micro-
kernels and Other Kernel Architectures, 1992.

[8] Zvonko G. Vranesic, Michael Stumm, Ron White,
and David Lewis. “The Hector Multiprocessor”.
IEEE Computer, 24(1), January 1991.

