Appeared in Proc. Supercomputing 92, Minneapolis, MN USA, November 1992, pp. 348-357.

Cache Consistency in Hierarchical-Ring-Based Multiprocessors'

Keith Farkas

Zvonko Vranesic

Michael Stumm

Department of Electrical Engineering
University of Toronto
Toronto, Ontario, Canada M5S 1A4

email: farkasaeecg.toronto.edu

EECG TR-92-09-01

Abstract

A cache consistency scheme s presented for a class
of multiprocessors based on a hierarchy of rings. By
taking advantage of the natural broadcast and ordering
properties of rings, cache consistency is achieved via a
simple, selective-broadcast based protocol requiring no
complex hardware. Using address-trace driven simula-
tions of the Hector shared-memory multiprocessor, it
1s shown that the scheme performs well.

1 Introduction

The design of cache consistency protocols for large-
scale shared-memory multiprocessors is complicated
because of several factors. First, due to limited band-
width of a single bus, large-scale multiprocessors have
more complex interconnection networks. These net-
works use split-cycle protocols and allow concurrent
memory accesses. In some cases these networks are
not race-free [13], which makes it difficult to impose a
global ordering on accesses.

The second complication pertains to the increased
potential for contention at some of the system nodes
such as network links or memory modules. Contention
for such resources requires that requests for them be
either queued in some fashion, or refused by returning
a negative acknowledgment to the requester. Since us-
ing infinite queues can be impractical, the unsuccessful
requesters may be allowed to retry the request later.
As a result, consistency protocols must be capable of
gracefully handling rejected requests and retries, as
well as permitting the queuing of requests.

1To appear in ”Supercomputing ‘92", November 1992.

Finally, growing memory sizes and increasing num-
ber of processors imposes limits on the scalability of
consistency protocols. All protocols require some state
information to be kept and the amount of this infor-
mation increases with the number of processors and
memory size. Moreover, a particular data item may
be shared by a large number of processors, all of which
must be notified when a change to the data item is
made. This notification process can inflict a large de-
lay on the source of the update and can consume a
significant portion of the available network bandwidth,
depending on the implementation details of the pro-
tocol.

A number of cache consistency protocols have been
proposed, all of which address the above three com-
plications in various ways. Limited-map directory
schemes attempt to address the issue of bandwidth
consumption by limiting the broadcasts of cache con-
trol messages to only those processors which have
a copy of the accessed item, while at the same
time reducing the amount of state information. The
MIT Alewife multiprocessor [3] implements a ver-
sion of such a protocol in which the broadcasting
is handled by the hardware if the degree of sharing
is small and otherwise by software. In using this
hardware/software approach, the poor scalability of
limited-directory schemes is avoided [3]. A related ap-
proach is implemented by the DASH multiprocessor
[14], which uses a full-map directory but the amount
of state information is reduced by grouping processors
into clusters. Consistency within a cluster is main-
tained via snooping.

A third cache-consistency scheme, implemented by
the IEEE SCI protocol [9], uses linked lists as opposed
to the directories used in the DASH and Alewife sys-
tems. The linked lists, maintained by pointers in each

cache block frame, are used to identify the nodes with
a copy of a given data item. Consistency is main-
tained by traversing the list anytime this data item
i1s modified. Traversing a list, however, can result in
messages flowing over the same network links several
times, especially in networks without point-to-point
interconnections between all modules. For example,
in a ring-connected system a message may have to
traverse the entire ring n times in the worst case, if
there are n active copies of the data to be invalidated.
Barroso and Dubois [1] have proposed a scheme for
a system of processors interconnected by a unidirec-
tional ring that relies on snooping and thus avoids the
multiple-traversal problem of the SCI protocol.

In this paper, we propose a selective-broadcast
based cache consistency protocol that addresses the
three complications listed above for a class of mul-
tiprocessors based on hierarchical rings. Ring-based
networks have been investigated [1, 6, 10, 11, 16]
as a means for implementing high performance in-
terconnection backplanes because they offer a num-
ber of advantages. Having point-to-point intercon-
nections, large rings can be driven at very high clock
rates. Rings also exhibit natural broadcast and or-
dering properties that facilitate the implementation
of cache consistency protocols. The proposed proto-
col can easily be used to achieve various consistency
models, including sequential consistency [12] and pro-
cessor consistency [8].

In the next section, we define the class of machines
for which the protocol is targeted. Section 3 presents
the new protocol. Section 4 discusses several perfor-
mance issues and enhancements to the basic protocol.
Finally, in Section 5, we analyze the performance of
the protocol through address trace driven simulations.

2 The Architecture of the Target Mul-
tiprocessor

The protocol presented in this paper has been de-
veloped for general multiprocessors that are based on
hierarchical rings. In order to clarify the presentation,
we will describe without loss of generality the protocol
as 1t would apply to the Hector multiprocessor archi-
tecture [16].

The target architecture consists of clusters of pro-
cessor and memory modules, interconnected by rings.
In Hector, a cluster is called a station, within which a
split-cycle bus is used as the interconnection medium.
The hierarchical multiprocessor is formed by intercon-
necting sets of stations by local rings, which are then

interconnected by higher level rings. While the pro-
posed scheme is scalable to an arbitrary number of
levels, for simplicity we will assume the two-level ring
hierarchy shown in Figure 1, comprising local rings
interconnected by a single central ring.

Each memory module occupies a unique contiguous
portion of a flat, global (physical) address space. The
processor modules can transparently access all mem-
ory locations. The modules consist of a processor,
cache memory, a cache controller and a communica-
tion submodule.

Information is transferred between processor and
memory modules using a packetized synchronous
transfer protocol. The interconnection network traf-
fic consists of request packets and response packets.
Communication submodules associated with each pro-
cessor and memory module handle the sending and re-
ceiving of the packets. The transfer of packets between
modules is managed by station controllers and inter-
ring interfaces. Fach station controller is responsible
for controlling on-station transfers as well as the traffic
on the local ring in the vicinity of its station.

Each ring can be thought of as consisting of mul-
tiple segments in which, in any given cycle, a single
packet may reside. Packets travel around the ring
by being synchronously transferred from one ring seg-
ment to the next; packets are assumed to travel in the
counter-clockwise direction. As long as a packet on a
particular segment is not destined for the associated
station, on-station and local ring transfers may occur
concurrently. If a ring packet is to be delivered to a
module on a station, its delivery takes precedence over
on-station transfers. Packets destined for another sta-
tion are switched onto the station bus and local ring if
the local ring segment does not contain a valid packet.

The inter-ring interfaces require FIFO buffers to
store packets due to the possibility of packet collisions.
A collision will occur if in a given cycle, input packets
from both rings are to be routed to the same output.
A simple interface is shown in Figure 2. As with the
delivery of packets to a station from a local ring, pack-
ets on the central ring have priority over those on the
local ring.

3 The Cache-Consistency Protocol

In this section, we present a consistency protocol
in the context of the target multiprocessor. The pro-
tocol exploits the broadcast capability of rings and
uses snooping within stations to maintain the caches
consistent. Packet filters within each network node

Station B

station controller B

inter-ring
interface B

Station A

station controller A

inter-ring

interface A °

central ring

Figure 1: Structure of the Target Multiprocessor

are used to limit the scope of the broadcast messages
and thereby improve the scalability of the protocol.
The presentation describes the protocol in the target
system with no packet filtering and with invalidating
caches that use a write-through policy; packet filters
and alternative cache strategies are then discussed in
Section 4. Cache consistency is maintained whenever
shared data i1s modified by writing the change through
to main memory and invalidating all cached copies of
the data. It should be noted that reads of shared data
require no consistency actions because they are pro-
cessed in the same manner as reads of private data.
Moreover, it 1s assumed that the issuing processor is
blocked until the requested data is returned.

A write of shared-data begins with the source pro-
cessor module sending a write-request packet to the
destination memory module, say memory module M1
in Figure 1. If the destination cannot accept the
packet, a write-nack packet is returned to the source
and the source will later reissue the write request. If
the destination can accept the write-request packet,

multiplexer \ local ring Vs demultiplexer
fifo
local ring local ring
central
ring fifo
1 —
central ring central ring

Figure 2: Inter-ring Interface

the addressed location is locked, and a write-invalidate
(WT) packet is formed and broadcast to all processor
modules. The broadcast is performed by first prop-
agating the WI packet to the highest-level ring (i.e.,
the central ring in Figure 1), where it circulates around
the entire ring and is switched back onto the destina-
tion’s local ring (local ring 2 in Figure 1). At each
inter-ring interface, a copy of the packet is made and
passed down one level where it continues to propagate
via the lower-level rings to all stations. When the WI
packet returns to memory module M1, the updated
location is unlocked; when the WI packet arrives for
the third time at inter-ring interface B, it is removed.

From the time a memory location is locked until it 1s
unlocked, other accesses to the same location are not
accepted. This locking of the memory location pre-
vents two processors from observing updates to two
different memory locations in different orders. This
ordering requirement is necessary to ensure sequential
consistency (discussed later in this section), although
it 18 not necessary for some weaker forms of consis-
tency. In the appendix we illustrate how this locking
enforces the necessary ordering for sequential consis-
tency.

To illustrate the protocol in more detail, consider
the following example. Assume that in Figure 1, pro-
cessor module P1 issues a write to memory module M1
located on another station. Then, P1 is blocked from
making further requests until it receives an acknowl-
edgment from the destination. The write-request
packet travels to the destination via local ring 1, the

central ring, local ring 2, and station bus B. If the
destination memory module accepts the write-request
packet, it forms a WI packet. This packet then visits
each station in the system using the broadcast scheme
described above. As the WI packet flows around the
local rings, each station controller switches a copy of
the packet onto its station bus to allow snooping and
invalidation by the on-station caches. The only excep-
tion occurs at the source processor module where no
invalidation occurs. Instead, the source is unblocked
and as far as it is concerned the access is completed.
When the WI packet returns to station B, the des-
tination memory module M1 notes the return of the
WI packet and unlocks the location to which this WI
packet corresponds.

It 1s important to note the following details concerning
the invalidation process:

e The WI packet on a local ring is removed by the
associated inter-ring interface. The WI packet on
the central ring is removed by the inter-ring in-
terface through which it entered the central ring.

e The WI packet returns to the destination only af-
ter 1t has circulated around the entire central ring.
The unlocking of the memory location, however,
may occur before all cached copies of the corre-
sponding data have been invalidated.

e The source of the write request is unblocked when
the WI packet visits its station rather than when
the memory location is unlocked.

e Any copies of the data item resident on the sta-
tion on which the source is located are invalidated
when the WI packet visits that station.

In summary, the invalidating protocol entails two dis-
tinct phases:

1. In phase one, the write request is sent to the des-
tination and a decision is made whether or not to
accept the request. Until the request is accepted
by the destination, only the source is aware of the
existence of the pending write.

2. If the request is accepted, the second phase is
begun with the formation of a WI packet. This
packet is broadcast to all modules to effect both
the invalidation of cached copies of the location
and the unblocking of the source. As far as the
destination is concerned, this phase ends with the
WI packet “visiting” the destination’s station re-
sulting in the unlocking of the memory location.

Sequential Consistency

It is essential to be able to demonstrate that a
cache-consistency protocol correctly enforces the de-
sired memory model. To do so entails showing that the
necessary ordering of shared-memory accesses is pre-
served. Methods for demonstrating consistency have
been put forth by a number of researchers [4, 7, 13, 15],
where a set of memory-model specific conditions are
specified that must be met by each processor in the
multiprocessor system. If it can be shown that each
processor adheres to these conditions, then the system
correctly enforces the desired memory model. Using
the conditions proposed by Scheurich, it can be shown
that the proposed invalidation protocol enforces se-
quential consistency [5]. Three features of the Hector
architecture guarantee that the necessary ordering of
shared accesses is preserved. These features are: (1)
there is a unique path between any two modules; (2)
it is impossible for two packets to overtake each other;
and (3) packets are processed at each network node in
the order in which they arrive.

4 Extensions and Enhancements

This section discusses several performance issues
and enhancements to the invalidating protocol that
was presented in the previous section.

4.1 Alternative Cache Strategies

We have described a consistency protocol for inval-
idating caches. This protocol can also be extended to
work with updating caches, but now the cache lines
being updated must be locked during the time that
the copies are being updated. To implement this lock-
ing, the protocol is augmented by a third phase. In
the second phase of the protocol, the cached copies
are updated and are also locked, thus preventing read
or write accesses to the data item. Then, in the third
phase, all copies are unlocked [5]. As in the case of the
invalidation protocol, the locking of the cache lines is
required to prevent two processors from observing up-
dates to different locations in different orders.

The proposed invalidating protocol can be extended
for use with the copy-back cache policy, but at the
cost of more complex hardware. This policy requires
first detecting that an access to an item that is dirty
has been made and second guaranteeing that for a
read request, the requester gets a copy of the valid
data; the difficulties with this approach are discussed
in more detail in [5]. For single bus-based systems,

these two requirements are easily accommodated as all
data transfers are simultaneously visible to all proces-
sor modules. However, for systems in which multiple
data transfers can occur concurrently, but invisibly to
some of the processor modules, these two requirements
are more difficult to meet.

4.2 Relaxing the Consistency Model

While the sequential consistency memory model is
conceptually simple, it imposes restrictions on the per-
missible outstanding memory accesses of a processor.
In so doing, it prevents many hardware optimizations
that could increase system performance. For these
reasons, weaker memory models have been consid-
ered. Omne such model is the processor consistency
model [8] provided by several commercial multiproces-
sors, including the VAX 8800 and the Silicon Graphics
POWER Station [7] which both employ a single bus
thus rendering the consistency protocol simpler that
the one we propose.

The processor consistency memory model stipulates
that the write operations issued by a processor be ob-
served 1n the order in which they were issued, but the
writes issued by different processors may be observed
in different orders. It is in this last point that the se-
quential consistency and processor consistency mem-
ory models differ. The protocol for processor consis-
tency is very similar to the invalidating protocol, de-
scribed in Section 3, but it does not require the mem-
ory to be locked during the second phase.

4.3 Scalability

Scalability of the proposed protocol is predomi-
nantly influenced by the bandwidth consumed by con-
sistency messages which are broadcast to all processor
modules. As the number of processors in the system
increases, the broadcast traffic will also increase cor-
respondingly. To prevent the broadcast traffic from
swamping the interconnection network, it is necessary
to either limit the number or the scope of the broad-
casts.

An attractive possibility is to use a filter mech-
anism. Filters are located at each node in the
ring-hierarchy to limit the propagation of the write-
invalidate packets to only those sections in the system
where a cached copy of the data exists. Each station
controller and inter-ring interface has two filters, one
to restrict broadcast packets from going farther up in
the hierarchy, the other to restrict broadcast packets
from entering the subsystem below. The hardware
costs of such filters can be reduced by providing the

filtering on a per page basis (as opposed to on a per
cache line basis). With the page-based granularity, it
is easy for the operating system to manage these filters
along with the page tables it already must manage.

5 Evaluation of the Proposed Protocol

Using address driven simulations, we have investi-
gated the effects of the proposed invalidating protocol
on the performance of the target system. Because a
meaningful evaluation demands that a detailed simu-
lation model be employed, we decided to model the
Hector multiprocessor at the register level. The Hec-
tor multiprocessor [16] is similar to the target system,
with the most important differences being that in Hec-
tor the memory is distributed among the processor
modules instead of residing in separate modules. Be-
cause of the differences, the invalidating protocol de-
scribed in Section 3 had to be slightly modified. These
modifications and the simulator are described in [5].

5.1 Simulation Methodology

A number of different system topologies were sim-
ulated for 32 processor and 64 processor systems. In
each system, processor modules comprised 64-Kbyte
instruction and 64-Kbyte data caches, a processor, and
16 Mbytes of the global memory. To reduce the num-
ber of lock bits required for locking memory locations
during phase two of the invalidating protocol, the lock-
ing was done on a per (physical) page basis!. Packet
filtering was employed in the 64 processor systems.

The processor was modeled using an event genera-
tor to emulate the execution of a number of multipro-
cessor applications. We will show the results for four
of these applications running on a 32 processor system
and the results for a fifth running on a 64 processor
system. This latter application, SOR?, is an itera-
tive method for solving partial differential equations.
The simulation of this application involved 5 million
iterations over the array, during which the memory
references and inter-reference timings were generated
using a state machine.

For the other four applications, the memory ref-
erences were obtained from address traces that, as
shown in Table 1, exhibit a varied distribution of mem-
ory operations. The first three of these are part of
the SPLASH parallel benchmark set of traces that is
available from Stanford University; a description of

1The contention for these locks is shown in the next section.
2Successive Over-Relaxation

Number Distribution of Memory Operations
Application | of Memory | % Instruc- | % Atomic | % Private Data | % Shared Data
References tions Operations | Reads | Writes | Reads | Writes
LocusRoute 7T7TM 51.4 0.0 32.5 11.3 4.2 0.6
SA-TSP 7T1M 46.5 0.0 29.1 5.0 18.3 1.1
PTHOR 7T1M 49.7 0.0 254 9.6 14.0 1.3
Speech 4.7 M - - - - 78.2 21.8

Table 1: Address Trace Characteristics. LocusRoute is a global router for VLSI standard cells, SA-TSP solves
the traveling salesman problem using simulated annealing, PTHOR is a parallel logic simulator and Speech
implements the lexical decoding stage of a speech interpretation language.

7.9

6.7

@] 6.1 6.3 60

) - 5.8 H

8 5.3 .o] _

< 47 2 s 47 44 45 43 47 4.6 8

» = L = =] &] i 5 £

Q e

o a3
2235
£ 5 2
§=2 7

1x32x1

2x16x1

2x8x2

4x4x2

2x4x4

4x2x4

instructions M private data [shared data read{] shared data writes

Figure 3: Average memory latency for the concurrent execution of the SA-TSP and LocusRoute applications,
measured at the time the first processor completed its task.

the applications and the methods used to acquire the
traces was presented by Weber and Gupta [17]. A
description of the fourth application and the method
used to acquire the trace was presented by Chaiken et
al. [2]. This is a pure data trace that contains only
shared-data accesses.

To investigate the performance impact of the in-
validating protocol on the run-time behavior of the
benchmarks, three different scenarios were simulated:
(1) shared data is not cached; (2) shared data is
cached using the proposed invalidating protocol; and
(3) shared data is cached using a zero-cycle overhead
cache consistency scheme. The last scenario, in which
all copies of a location are assumed to be invalidated
in a single cycle with no messages transmitted, is pro-
vided to gauge the overhead due to the use of the
invalidating protocol.

For each system size, six different system topologies
were simulated. However, for the 32-processor system,
since the SPLASH address traces include references
for only 16 processors, we chose to simulate the con-
current execution of two SPLASH applications. The
Speech address trace contains references for each of
the 32 processors, so concurrent execution of it was not
simulated. Various memory page distribution schemes
were implemented, all of which gave virtually identical
results. For the results presented below, round-robin
distribution was used to evenly distribute the pages
across all processor modules.

Because the address traces listed in Table 1 were ac-
quired from machines dissimilar to Hector, it is only
meaningful to compare the results for the different
caching strategies and topologies; the absolute num-
bers are not meaningful. In addition, the traces con-
tain only memory references with no inter-reference
timing information®. Also lacking from the traces is
sufficient information to allow the efficient mapping of
the address streams to the processors so as to guaran-
tee that cooperating processors are located physically
close to each other. A similar comment applies to the
virtual to physical page allocation. Hence, the results
presented are pessimistic.

5.2 Results

Figure 3 presents the average memory access la-
tency for the concurrent execution of the SA-TSP and
LocusRoute applications. It shows the latency at-
tributable to each access type. The ordered triples
labeling the horizontal axis specify the topology sim-
ulated: the first coordinate indicates the number of

3In the simulations, a one cycle delay between memory ref-
erences was assumed.

processors per station, the second the number of sta-
tions per local ring and the third the number of local
rings. Because the cache hit rates for instruction and
private-data accesses were very high, the contribution
to the average latency by these access types is con-
stant.

Figure 4 presents similar results for the concurrent
execution of two instances of the PTHOR application.
Both Figures 3 and 4 show that the average latency is
reduced with a cache-consistency scheme and that the
invalidating protocol performs within 20% of the ideal
zero-cycle overhead scheme. However, the zero-cycle
overhead scheme performs much better than the inval-
idating protocol for the Speech application, as shown
in Figure 5. This result is not surprising since the
Speech application essentially contains only shared-
data accesses.

The difference in performance between the pro-
posed cache consistency scheme and the zero-overhead
scheme is due to the broadcast traffic (which is zero
in the zero-overhead case). Another reason for this
difference is the locking of the memory location dur-
ing the second phase of the protocol. The effects of
locking can be diminished by locking at a finer gran-
ularity than on a per page basis. However, it should
be noted that finer-grain locking is not necessary for
many applications. Asseen in Figure 6, the percentage
of unsuccessful shared-data accesses due to a locked
memory page was low in our simulation runs. The de-
pendence on topology exhibited by the unsuccessful-
access rates 1s attributable to the length of time that
a given location is locked while waiting for the return
of the WI packet. In the single-ring topologies, this
time is equivalent to the time required to traverse the
ring once. On the other hand, for the multiple-ring
topologies, this time will be less than the time for the
single-ring topologies due to the hierarchical broadcast
scheme.

The results in Figures 3 to b are based on hardware
configurations that do not make use of the filter mech-
anism discussed in Section 4.3. It is apparent that in a
Hector machine with up to 32 processors, the utiliza-
tion of the interconnection network is low enough so
that broadcast traffic generated by the proposed cache
consistency scheme will not have a significant impact
on normal memory accesses. However, as the num-
ber of processors increases, there will be much more
broadcast traffic, resulting in poor performance. Our
simulations have shown that with 64 processors the
broadcast traffic may dominate to the extent that the
interconnection network approaches saturation. This
phenomenon was observed in our simulations of the

10.6
» 8.5
@ M
o 7.2 72
o = 6.8 —
< 6.4 - 3
- H -
1% o
Q 8 &
3] ° o
6‘ 3.6 a1 s g
3 o @ £
2.9 2.7 29 55 27 55 29 96 28,5 2 E£%
T 2
22 ?
S g o
- , ; , ; ;
ﬁ' [[[F F 2 g8
1x32x1 2x16x1 2x8x2 4x4x2 2x4x4 4x2x4

instructions accessesM private data accessed] shared data read{] shared data writes

Figure 4: Memory latency for the concurrent execution of two instances of the PTHOR, application, measured at
the time the last processor completed its task.

68.6
P w82 559 55
o | H >
o 472
) I | | | | e 448 —
< 3
- | 5 2
%] 1 o
8 Es
S 27 <] %
(6] e 9
20 18.8 o o £
17 16.3 15.5 cE £ 0
c T =2
gz 9
5.8 49 4.9 45 47 44 © 8 8
5 - - >
O O | | | O 2&X
1x32x1 2x16x1 2x8x2 4x4x2 2x4x4 4x2x4

| private data accesses O shared data reads [shared data writes

Figure 5: Memory latency for the execution of the Speech application, measured at the time the last processor
completed 1ts task.

35

read access refusal rate
write access refusal rate

Refusal Rate (in %)

1x32x1 2x16x1 2x8x2 4x4x2 2x4x4 4x2x4 1x32x1 2x16x1 2x8x2 4x4x2 2x4x4 4x2x4

(a) Concurrent execution of SA-
TSP and LocusRoute Applica-

tions

(b) Speech Application

Figure 6: Unsuccessful shared-data accesses due to a locked memory page.

4.35 4.43

4.05

Cycles/Access

64x1x1 1x64x1

4x16x1 8x4x2

[instruction accesses

[] shared data reads

invalidating protocol
zero—-overhead protocol

no caching

2x16x2 4x8x2 4x4x4

H shared data writes

Figure 7: Average memory latency for the SOR application with the use of filters to limit the scope of invalidation
packets, for a 64 processor system. In this application, 75% of memory accesses are instruction fetches, 20% are

shared-data reads and 5% are shared-data writes.

SOR, application. While this application is character-
ized by a large number of writes, any part of shared
data is accessed by at most two processors. Without
the filtering mechanism on a 64-processor machine,
this application showed very poor performance, reach-
ing a point where it would have been better not to use
caching at all. Using a filter on the same machine
improves the performance dramatically. As shown in
Figure 7, the performance obtained is close to the zero-
overhead case.

Finally, it is interesting to note that the results pre-
sented in this section suggest that the topology of the
multiprocessor machine has a significant impact on
performance. In the figures, the best topologies are
those that are balanced in terms of the number of
processors, stations and rings.

6 Conclusions

A key characteristic of cache consistency protocols
is the one-to-many relationship between a shared-data
update and the resulting consistency messages that
are directed to all copies of the updated location.
Thus, while cache consistency protocols seek to the
reduce access latency for shared data, their use may
degrade the overall system performance by increas-
ing the interconnection network utilization, and con-
tention for other system resources. Owing to this one-
to-many relationship, no consistency protocol can be
truly scalable. Nevertheless, a high degree of scalabil-
ity can be achieved especially if the protocol seeks to
minimize the number and frequency of the consistency
messages without imposing additional costs on shared

data accesses.

In this paper, we have presented such a cache con-
sistency protocol that is targeted for shared-memory
multiprocessors consisting of processor and mem-
ory modules interconnected by a hierarchy of ring-
connected buses. By making use of two key features
of the architecture, the scalability of the protocol is
greatly enhanced. First, the hierarchical nature of the
interconnection network offers a simple way to imple-
ment a packet filtering mechanism. And secondly, due
to the natural broadcast property of rings, the num-
ber of consistency messages appearing in the network
is usually far less than the number of cached copies.
That is, it is not necessary to send individual messages
to all processors with cached copies of the location.
The results presented in Section 5.2 show that such
a scheme noticeably improves the performance of the
system.

Finally, the cache consistency scheme presented en-
forces sequential consistency with simple hardware
and protocols, and it is easily extendible to systems
employing updating caches or a less strict processor
consistency memory model.

Appendix: Enforcing Sequential Consis-
tency

Sequential consistency requires the imposition of
a system-wide order on all accesses to shared mem-
ory locations. In multiprocessors, updates issued to
shared-memory locations are said to occur when they
are observed by the other processors. Thus, of con-
cern is the order in which updates are observed rather

Processor A write(x)

Processor B

Processor C

Processor D write(y)

new <- read(x)
old <- read(y)

old <-read(x) =~
new <- read(y)

Figure 8: This diagram illustrates how two processors B and C might observe updates to two different memory
locations in different orders when the locations being updated are not locked. The directed line segments represent
the write-invalidate packets. It is assumed that processors A and B are located close together in the network, as

are C and D.

than the system-wide order in which they are issued.
For sequential consistency, the observed order must
be the same for all processors. The multiphase proto-
cols discussed in this paper enforce this requirement
by locking updated memory locations during the in-
validation (updating) phase.

We will illustrate by an example why locking is nec-
essary to impose a global ordering on the updates. A
more formal discussion on locking and on the require-
ments for sequential consistency is given in [5]. Invali-
dating caches are assumed, although the discussion is
also applicable to updating caches.

Consider four processors A,B,C and D which share
two locations X and Y. Assume that processor A is
close to B in the network, and processor C is close to
D. Each processor initially has a cached copy of both
locations. Then, suppose that processor A updates
location X, processor D updates location Y and pro-
cessors B and C read both locations. The absence of
locking can lead to a non-global ordering as illustrated
in Figure 8. In this figure, the directed line segments
represent the write-invalidate packets resulting from
the updates to X and Y. Processor C issues a read
of location Y, and because its cached copy has been
invalidated, the new value is acquired from the main
memory. Processor C then issues a read of location
X, and receives the old value of X since processor C’s
cached copy has not yet been invalidated. A similar
scenario is possible for processor B resulting in it ac-
quiring the new value of location X and the old value
of Y. Clearly the update orderings observed by B and
C are not the same, and thus a global ordering does
not exist.

With locking, processor C will not be able to ac-

quire the new copy of location Y before processor B’s
copy of Y is invalidated. Similarly, processor B cannot
acquire the new copy of location X before Processor
(’s. Thus, it 1s impossible for Processors B and C to
observe the updates to X and Y in different orders.
This example demonstrates why the locking of mem-
ory locations prevents updates from being seen out of
order and thereby preserves sequential consistency.

References

[1] Luiz Barroso and Michel Dubois. Cache co-
herence on a slotted ring. Proc. of the Inter-
national Conference on Parallel Processing, 1

(Architecture):230-237, 1991.

[2] D. Chaiken, C. Fields, K. Kurihara, and A. Agar-
wal. Directory-based cache coherence in large-
scale multiprocessors. Computer, 23(6):49-58,
1990.

[3] D. Chaiken, J. Kubiatowicz, and A. Agarwal.
Limitless directories: A scalable cache coher-
ence scheme. Proceedings of the Fourth Inter-
national Conference on Architectural Support for

Programmang Languages and Operating Systems,
pages 224-234, 1991.

[4] Michel Dubois, Christoph Scheurich, and Fayé A.
Briggs. Memory access buffering in multiproces-
sors. Proc. of the 13th Annual International Sym-
postum on Computer Architecture, pages 434-

442, 1986.

[5]

Keith 1. Farkas. A decentralized hierarchi-
cal cache-consistency scheme for shared-memory
multiprocessors. Master’s thesis, University of
Toronto, April 1991. April.

M. Ferrante. Cyberplus and map v interprocessor
communications for parallel and array processor
systems. Proc. of Third Conference on Multipro-
cessors and Array Processors, pages 45-54, 1987.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gib-
bons, A. Gupta, and J. Hennessy. Memory con-
sistency and event ordering in scalable shared-
memory multiprocessors. Proc. of the 17th An-

nual International Symposium on Computer Ar-
chitecture, pages 15-26, 1990.

James Goodman. Cache consistency and sequen-
tial consistency. Technical Report 61, SCI Com-
mittee, 1989.

D.B. Gustavson. The scalable coherent inter-
face and related standards projects. IFEE Micro,
12(1):10-22, 1992.

Robert Halstead, Jr., Thomas 1. Anderson,
Randy B. Osborne, and Thomas L. Sterling. Con-
cert: Design of a multiprocessor development sys-
tem. Proc. of the 13th Annual International Sym-
postum on Computer Architecture, pages 40-48,
1986.

David V. James, Anthony T. Laundrie, Stein
Gjessing, and Gurindar S. Sohi. Scalable coherent
interface. Computer, 23(6):74-77, June 1990.

Leslie Lamport. How to make a multiproces-
sor computer that correctly executes multiprocess
programs. [EEE Transactions on Computers, c-

28(9):690-691, Sep 1979.

A. Landin, E. Hagersten, and S. Haridi. Race-
free interconnection networks and multiproces-
sor consistency. Proc. of the 18th Annual Inter-
national Symposium on Computer Architecture,

pages 106115, 1991.

A. D. Lenoski, J. Laudon, K. Gharachorloo,
A. Gupta, and J. Hennessy. Directory-based
cache coherence protocol for the DASH mul-
tiprocessor. Proc. of the 17th Annual Inter-
national Symposium on Computer Architecture,

pages 148-158, 1990.

Christoph Ernst Scheurich. Access Ordering and
Coherence in Shared Memory Multiprocessors.

[17]

PhD thesis, University of Southern California,
May 1989. Tech Report no. CENG 89-19.

Zvonko G. Vranesic, Michael Stumm, David M.
Lewis, and Ron White. Hector: A hierarchically
structured shared-memory multiprocessor. Com-

puter, 24(1):72-79, Jan 1991.

Wolf-Dietrich Weber and Anoop Gupta. Analysis
of cache invalidations patterns in multiprocessors.
Proceedings of the Third International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems, pages 243—
255, 1989.

	Text20: Appeared in Proc. Supercomputing 92, Minneapolis, MN USA, November 1992, pp. 348-357.

