Appeared in Proc. Intl. Symposium on Memory Management,

PATH: Page Access Tracking to

Reza Azimi, Livio Soares, Michael Stumm

Department of Electrical and Computer Engineering
University of Toronto

{azimi,livio,stumm}Qeecg.toronto.edu

Abstract

Traditionally, operating systems use a coarse approximabf
memory accesses to implement memory management algorithm
by monitoring page faults or scanning page table entriegsh Wi
finer-grained memory access information, however, theatjvey
system can manage memory much more effectively. Previods wo

has proposed the use of a software mechanism based on virtual

page protection and soft faults to track page accesses ayfae-
ularity. In this paper, we show that while this approach feaive
for some applications, for many others it results in an ueptably
high overhead.

We propose simple Page Access Tracking Hardware (PATH) to
provide accurate page access information to the operaystgrs.
The suggested hardware support is generic and can be used-by v
ious memory management algorithms. In this paper, we shew ho
the information generated by PATH can be used to implemént (i
adaptive page replacement policies, (ii) smart processaneai-
location to improve performance or to provide isolation aetter
process prioritization, and (iii) effectively prefetchrivial memory
pages when applications have non-trivial memory acceserpat
Our simulation results show that these algorithms can diiaaily
improve performance (up to 500%) with PATH-provided infarm
tion, especially when the system is under memory pressuge. W
show that the software overhead of processing PATH infaonat
is less than 6% across the applications we examined (less3ta
in all but two applications), which is at least an order of miagde
less than the overhead of existing software approaches.

1. Introduction

Computer system physical memory sizes have increasedseonsi
tently over the years, yet counter to popular conceptiotinop-

S

October 2007, pp. 31-42.

Improve Memory Management

Thomas Walsh, Angela Demke Brown

Department of Computer Science
University of Toronto

{tom,demke}@cs.toronto.edu

coarse granularity, either by monitoring page faults or byiquli-

cally scanning page table entries for specific bits set byg\aare.
While these approaches provide a coarse approximatioregéth
cencyof page accesses, important information aboutstsguence

of accesses, which is required by most sophisticated memary
agement algorithms, is absent.

In systems with software-managed TLBs, page accesses can be
recorded and processed on each TLB miss. While this approach
can provide significantly more fine-grained information age
accesses, it adds prohibitively large overhead to a softwaiB

miss handler, which is already a performance-critical congnt.

A software-only alternative in which virtual pages are ded
into anactive setand aninactive sethas been suggested by recent
researchl[30.33]. Pages in the inactive set are protectegbjbro-
priately setting page-table bits, so that every accessdm twill
generate an exception so that the operating system cardréwor
access. Pages in the active set are not protected, and aglta res
accesses to these are efficient and not directly tracked:sPag
moved from the inactive set to the active set on access, aimd-a s
ple replacement algorithm such as CLOCK [5] is used to maale st
pages out of the active set. The active set, although muchesma
than the inactive set, is meant to absorb the majority of @age
cesses, thus greatly reducing the software overhead cedhpar
raising an exception on every access.

Although this software approach is shown to be effectivéhwit
certain types of applications, its overhead for many memory
intensive applications is unacceptably high. Adaptivezieg of
the active set can be used to control the overhgad [30]. Henvev
the larger the active set, the more accesses it absorbsenat, lthe
lessaccuratethe sequence of recorded page accesses will be, mak-
ing the memory management algorithms less effective. Ameia
of such a case is shown in Figlie 1. On the left, the performanc

ing the allocation and management of memory continues to be of LIRS [I3], a well-known memory management algorithm, is

important. Numerous scientific and engineering applicetiexist
that can exhaust even large physical membI[[[B, 31]. M@&reo
while physical memory is generally considered to be inespen

it continues to be one of the dominant factors in the cost ddys
medium to large scale computer systems, and also a major fact
energy consumption.

To use memory effectively, accurate information about the

memory access pattern of applications is needed. Tradltjpop-
erating systems track application memory accesses attivegla

compared against LRU assuming no overhead for collectigg pa
access information. The graph on the right shows how the per-
formance of LIRS degrades as the active set size increasds, w
the overhead of recording page accesses naturally desrebse
achieve LIRS’ potential in improving performance, a hightime
overhead must be paid, otherwise, much of the advantageRs LI
over LRU disappears.

To cope with this potentially large overhead, custom hardwa
is suggested by Zhou et al_133]. While their approach eiffebt
tracks physical memoryliss Ratio Curvest does not provide raw
page access information to the operating system, and thumta
be used for memory management algorithms other than the one
for which it is intended. Moreover, the hardware requiredthig
approach is substantial and grows with the size of physieahary.

In this paper, we propose Page Access Tracking Hardware
(PATH) to be added to the processor micro-architecture ta-mo
itor application memory access patterns at fine granulamtgt
with low overhead. Similar to the software approach, PATldds

450

Global LRU
LIRS --@--

400
350
300

200
150

100

Projected Exec. Time(billion cycles)

50

0
450 500 550 600 650

Memory Size (MB)

(a) Performance of LIRS vs. LRU

700 750 800

Projected Exec. Time (billion cycles)

130

Exec. Time —&—
Overhead ---©--

k200

120

110

100

20

Software Overhead (%)

80

y

0
512 2K 4K 8K 16K 32K
Active Set Size (# of Pages)

(b) The effect of active seesi

70
128

Figure 1. Graph (a) shows how LIRS manages to outperform LRU for difitmemory sizes f@&FT. Graph (b) shows, for a fixed memory
size (703Mbytes), how LIRS’ performance changes as theeasét size increases, while the runtime overhead of maingathe active set
deceases (the projected execution time does not includeriiene overhead).

signed based on two observations. First, a relatively ssealbfhot
pages are responsible for a large fraction of the total pagesses.
Second, the exact order of page accesses within the hotisgtis
portant since these pages should always be in memory. Byiigno
accesses to hot pages, we can vastly reduce the number sfasce
that must be tracked, while focusing on the set of pages tieat a
interesting candidates for memory management optimizstio

The key innovation with PATH lies in the tradeoff betweendun
tionality assigned to hardware and functionality assigtwedoft-
ware. The hardware we propose is (i) small and simple, (&)-sc
able, in that it is independent of system memory size, aiddiv
overhead, imposing no delays on the common execution paiie of
micro-architecture. We delegate to software (specificatyexcep-
tion handler) the online maintenance of data structuregtoded
by the memory manager when making policy decisions.

Sectior® presents our hardware design for PATH and Sddtion 3
shows how key low-level data structures can be construcyed b
software. We show in Sectid) 4 that the operating system san u
PATH-generated information to enhance memory management b
(i) implementing more adaptive page replacement poliigsal-
locating memory to processes or virtual machines so as togeo
better isolation and to enforce process priorities moreipedy,
and (iii) prefetching pages from virtual memory swap space o
memory-mapped files when applications have non-trivial mrym
access patterns. Sect[dn 5 describes our experimentabdudtiyy.
Our simulation results, presented in Secfibn 6, show thasdtan-
tial performance improvements (up to 500% in some caseshean
achieved, especially when the system is under memory peessu
While the algorithms based on PATH have different time aratsp
overhead tradeoffs, the basic overhead of providing firéngd
page-access information to the operating system is lessGd@a
across all the applications we examined (less than 3% inuall b
two applications) — at least an order of magnitude less thandf
existing software approaches.

2. Design of PATH Architecture

Memory management algorithms are often first describec étieo
cally under the assumption that a complete page accessrseqjige
available. Later, they are implemented using a coarse ajmpao
tion of this sequence, collected by system software. Fomeie,
the well-known least-recently-used (LRU) page replaceraégo-
rithm requires the complete access sequence to implemact!ygx
but is commonly approximated by the CLOCK algorithm which
coarsely groups pages into recently-used, somewhat heceseid,
and not recently used categories. Optimizations to thechaRU

Interface to Higher Le)vel Algorithms

Updating MRC | Software Layer
Updating LRU Stack

Exception Handler|

.PAL pointer

| Softivare
Lookup

PAL Overflow
peerenmteseres R : I

Exception

K
[[[TTiPage Access Log (PAL}

Virtual

CPU
CORE

i Lookup
iPage Access
i Tracking
: Hardware

Figure 2. Page Access Tracking Hardware (PATH) Architecture.

algorithm, and other sophisticated memory managemeréegies,
require more detailed page access information than systems
rently provide. Trackingll accesses, however, is prohibitively ex-
pensive and generates too much information for online @sing.
The key question, then, is how to reduce the volume of infeiona
to a manageable level, while retaining sufficient detaillwndrder
of page accesses.

Current memory management hardware already contains an
effective filter to catch accesses to the hottdspages, namely
the Translation Lookaside Buffer (TLB). Thus, one way tckra
page accesses is to augment existing hardware or softwaBe TL
miss handlers to record a trace of all TLB misses. Aside from
the overhead that this would add to the critical path of askire
translation, the primary problem with this strategy is first-level
TLBs are too small (with up to 128 entries) to capture the bbb
pages, leading to traces that are still too large for onlg® Simply
increasing the size of the first-level TLB is not a viable optisince
the size is limited by fast access requirements.

Thus, we propose the addition of a new hardware structute tha
essentially functions as a significantly larger TLB for thegmose
of filtering out accesses to hot pages, while recording @tohac-
cesses to all other pages. We call this strucRage Access Track-
ing Hardware (PATH)Figurd2 depicts the three major components
of PATH. ThePage Access Buff¢PAB) and theAssociative Filter

work together to remove accesses to hot pages from the tlfice;
other accesses are recorded in Bage Access Lo@PAL) which
raises an exception to allow for software processing whdret
comes full.

The Page Access Buffer (PAB) contains the set of recently
accessed virtual pages, augmented with an address spatifiéde
to distinguish between pages from different processes PRiis
structurally similar to a TLB except that (i) it is updatedlypon
a TLB miss, (ii) it need not contain the physical addressethef
pages it holds, and (iii) it is significantly larger than aityg TLB.

As the PAB size increases, more pages are considhatethd more
accesses are filtered out of the trace, thus reducing botiegsing
overhead and accuracy. In Sect[on] 6.4, we examine in déil t
tradeoff between overhead and usefulness of the tracesavitmg
PAB sizes. Our experiments show that a PAB with 2048 entries
is a good point in this tradeoff. Moreover, with a 2K-entry BPA
PATH will have a very small chip footprint. Finally, some sting
architectures such as IBM POWER and AMD Opteron already
have a fairly large (e.g. 512 to 1024 entry) second-level flie

can envision integrating PATH with a slightly larger versiaf such

a second-level TLB. We show in Sectibnl6.5 that using the same
2K size for the active set in the software approach will resul
unacceptably high overhead.

A page access is considered for recording only if it misséiseén
PAB. However, because of the limited associativity of theBPA
can be susceptible to repeated conflict misses from the saalé s
set of (hot) pages. To deal with this problem, PATH includes a
Associative Filter that functions somewhat like a victinelea. The
associative filter is a small (e.g., 64 entries), fully-asative table
with an LRU replacement policy that is updated on every PABsmi
Its purpose is to prevent the recording of accesses to hatspag
caused by short term conflict misses in the PAB.

Misses in the associative filter are recorded in the Pagesscce
Log (PAL) which is a small (e.g., 128 entries) buffer. Whee kbg
becomes full, an exception is raised, causing an operayistgs
exception handler to read the contents of the PAL and markjitye
by resetting the PAL pointer.

Given this architecture, PATH provides a fine-grained apipro
mation of the sequence of pages that are accessed. Hot pdlges w
always reside in the PAB, while sequential or looping acqeds
terns over an area larger than that covered by the PAB (&) 8
are very likely to be completely recorded by PATH in their peo
order. For “less hot” pages, the reuse distance can alsabestely
captured by PATH due to the subsequent PAB misses it causes. |
the following section, we show how system software can us@ith
formation recorded in PAL to construct a variety of datacines
useful for memory management.

Finally, PATH must also include an interface for the opemti
system to control it and to perform lookup operations on fie T
operating system can also dynamically turn off PATH when the
system is not under memory pressure, thereby reducing beth t
processing overhead and power consumption.

3. Low-level Software Structures

The benefits of having LRU stacks and/or Miss Rate Curves (MRC
available are well recognize@[33]. In this section we artjua
these data structures can be constructed efficiently iwaodtfrom
the information obtained by PATH. Specifically, we show how

both LRU stacks and Miss Rate Curves can be maintained on-

line by the PAL overflow exception handler. Both structuras,én

turn, be used by memory management software to make informed

decisions. By delegating the maintenance of these stegtto

11BM POWERs first level address translation cache is 128iemtand is
called the Effective-to-Real Address Table (ERAT).

software, our design provides greater flexibility and cosmability
than previous proposed hardware support.

3.1 LRU Stack

The LRU stack maintains a recency order among the pageswithi
an address range. The top of the stack is the most recentgsat
page, while the bottom of the stack is the least recently ssexk
page. In our scheme, each page accessed (as recorded byLjhe PA
is moved from its current location in the stack to the top & th
stack. The LRU stack is updated for every entry recorded én th
PAL.

To enable fast page lookup and efficient update in the LRU
stack, we suggest using a structure similar to those useditdam
page tables. Each element in this structure representtiaipage
and contains two references: one to the previous page inRhe L
stack and one to the next page in the LRU stack. Concepttiady,
LRU stack is a doubly-linked list, and elements are reposéd
within the stack by adjusting references to neighboringnelets.
Thus, a virtual page can be looked up with a few (usually 2 or 3)
linear indexing operations, and moving a page to the top ef th
LRU stack involves updating at most 6 reference fields in taeks
2 references associated with the page being moved, 2 o&itgois
neighbors, 1 at the previous head of the list, and the hedubdist
itself.

The LRU stack has an element for each page that was ever
accessed (not just the pages currently in memory). Assuring
KB virtual pages, 32-bit page references can be used foreaddr
ranges up to 16 TB, resulting in a space overhead of 8 bytes per
virtual page used. The working set size of the LRU stack igtyu
proportional to the working set size of the address rangeckle
a working set size of several GB implies that several MB wal b
consumed by the LRU stack.

3.2 Miss Rate Curve (MRC)

An MRC depicts the page miss rate for different memory sizes,
given a page replacement strategy. More formally, MRC isna-fu
tion A\, (M), defined for address rangeand page replacement
policy p, identifying the number of page misses the process will
incur onr over a certain time period ¥/ physical pages are avail-
able. Often, the slope of at a given memory size is of more inter-
est than its actual value. If the slope is flat then making taafdil
pages available will not significantly reduce the miss ratg, if

the slope is steep then even a few additional pages can satiff
reduce the page miss rate.

Our method of maintaining\ on-line is based on Mattson’s
stack algorithm[TI9] and Kinet al’s algorithm [17]. We augment
the elements of the LRU stack described in Seclioh 3.1 with a
rank field used to record the distance of the element from the
top of the stack (i.e., the reuse distance). Eacls maintained
as a histogram. Conceptually, whenever a page is accessed, t
histogram values corresponding to memory sizes smaller ttia
rank of the accessed page are incremented by one. In addfi®n
page is moved to the top of the stack, while setting its rand fie
zero and decrementing the rank field of every element betieen
original position of the page and the previous top of stachiingy.

Time is divided into a series adpochs(e.g., a few seconds).
At the end of each epoch, the value ofs saved and reset. Each
process may store a history of values bffor several epochs
to be able to make more accurate decisions about the memory
consumption of that process.

To reduce overhead, page groups of gjzean be defined and
the rank field can be redefined to record the distance to thef tbp
stack in terms of the number of page groups. By keeping ag afra
references to the head of each page group, the cost of ugdhén
rank fields can be reduced by a factorgofigurel® shows how the

Group, Boundary

Stack
Bottom

"+ Group Rank

LRU Group Headers

Figure 3. The LRU stack with group headers.

Algorithm 1. UpdateArru and the LRU stack on each recorded
pageViadr-
¢ lruRank < Stack[V addr].rank
: moveVaddr element to the top of the LRU stack
¢ Stack[Vaddr].rank = 0
{update group headers and page ranks for groups lower than
lruRank}
. for i = 0to lruRank do
GroupH eaders[i] < Stack|GroupH eadersl[i]].prev
Stack|[GroupH eaders[i]].rank + +
end for
{update MRC for LRY
: for j = 0tolruRank do
Arrulj] ++
: end for

Size

Stack
Bottom

......................................

LRU Group Headers

Figure 4. The optimized structure for LRU group headers.

group header array is used to find the group boundaries, sirige
the elements at these boundaries need to be updated. Amg@lit
shows the basic steps that must be taken for every page eetiord
the PAL to maintainm\ histograms for the LRU replacement policy.
Note that the group size is defined by software and can change
according to the desired level of precision far

A further optimization is possible based on the observatia
at any instance in time, we are only interested\imt the point
corresponding to the amount of physical memory allocatetthe¢o
virtual address range under study and the slopa afound that
point. Hence, the LRU stack can be divided into 4 groups assho
in Figure[4: the topV/ — g pages, wheré/ is the current physical
memory allocated to the address range, two groupg mdges on
both sides of\/, and all the remaining pages at the bottom of the
LRU stack. With this optimization, only four entries needke
updated on each page access to maintain

4. Example Use Cases

In this section we describe several ways that the informapio-
vided by PATH, and the LRU stacks and MRC curves that are con-
structed by software, can be used to implement sophisticagm-

ory management strategies, including adaptive page replaat,
improved process memory allocation, and virtual memorjgbce-

ing. In Sectiorfb we evaluate their effectiveness.

4.1 Adaptive Replacement Policies
There is a large body of research on page replacement o[&jie

[2,[9,[10 TP 14,16, 20.12B.16.] 32]. Many of the algorithms
proposed are approximations of LRU with extensions to degd w
sequential and looping patterns for which LRU performs poor
The effectiveness of most of these algorithms has only beenrs

in the context of file system caching, where precise inforomadn

the timing and order of accesses is available.

Using information from PATH, we have implemented two adap-
tive page replacement algorithms. The first oRegion-Specific
Replacementattempts to automatically apply the appropriate re-
placement policy on a per-region basis for different menmmery
gions defined in the application’s virtual address space. Jét-
ond one is the recently proposed adaptive policy cdlled Inter—
Reference Set (LIR$L3]. We chose to implement LIRS because
it is fairly simple and, for file system caching, has proverb®
competitive with the best algorithms.

We should note that the algorithms or models that can exploit
information provided by PATH are not limited to the examples
presented in this section. For instance Vilayannur ef 8l. peesent
a model to proactively predict when a page is not activelyl sl
hence is ready to be replaced. The model is based on acguratel
measuring the distance between consecutive accesses @ea pa
which can easily be provided by PATH.

4.1.1 Region-Specific Replacement

The rationale behind region-specific page replacemeneidéikire

to be able to react individually to the specific access padterf
each large data structure within a single application. i8tuih the
context of file system cachin@[7] have shown that by anatyzin
the accesses to individual files separately, one can moelekttess
pattern of the applications more accurately. We argue tleatony-
consuming data structures (e.g., multidimensional arrhgsh-
tables, graphs) usually have stable access patterns, ateddsting
these patterns, one can optimize the caching scheme forafach
these data structures individually.

Most large data structures either reside in contiguousonsyi
in the virtual address space (e.g., arrays), or could redsprpe
made to do so. For example, one can use custom allocatoralthat
locate correlated data from a pre-allocated pool of virtnamory.
Lattner and Advel[18] show how to cluster individually akted,
but correlated, memory items automatically. As a resulgdalata
structures (e.g., a graph of millions of nodes) have a highagiil-
ity of being located in a large contiguous region of addrgsss.
The contiguity of data structure memory is not an esserdizbf,
but it simplifies the implementation of region-specific s@ment.
For our simulation study, we have assigned a separate région
each large static data structure as well as any largeped areas.

We choose the replacement policy by separately, but simedta
ously, computing\ for each region for both LRU and MRU poli-
cies; and picking the policy that would result in a lower nriate.

To computeAyry We use the same scheme shown in Fiddre 4
and Algorithm[d, but with pages ranked in reverse order. ldenc
for each page, we maintain two ranks, one for LRU and the other
for MRU. Given that the rank value is at most 4, the rank can be
represented by two bits, so the space overhead is negligible

We switch to a new policy only if it is consistently better tha
the current policy. The default policy is LRU. If a region isibg
accessed in a looping pattern, it will have lower valuesXgt: v,
but if the region is being accessed in temporal clusterg,; will
have lower value.

With region-specific page replacement, it is necessary ¢iide
how many physical pages to allocate to each region. At theoénd
each epoch, we use the computedhlues for the epoch to calculate

how much memory each region actually needs. We déjiinefit
and penalty functions for each region as follows:

benefit,.(9) = Ar,p(M — g) — Ar,p(M)
penalty,.(g) = Ar,p(M) — Ar,p(M + g)

and balance memory among regions within a process addrass sp
by taking pages away from regions with low penalty and awaydi
them to the regions with higher benefit. The number of regions
an application is typically small (e.g., usually less th&). TThus,
balancing memory within a single application at the end ahea
epoch is not a costly operation.

4.2 Process Memory Allocation

In most general-purpose operating systems today, memaifiois
cated to a process on-demand, in response to a page faaitafro
global pool of pages. All pages are equal candidates foacepl
ment, irrespective of the process to which they belong. Taah
amount of memory allocated to each process is a direct fumoti
its page fault rate and the page replacement policy in useeBses
that access more pages than others over a period of timeendl-b
located a larger number of pages, since they fault on morespag
and keep their own pages recent. Global page replacemetwbas
major advantages. First, it is simple and easy to implemétit w
little overhead. Second, for workloads in which applicatidvave
similar access patterns, global page replacement natuiealds to
minimize the total number of page-faults. Despite its wideg
tion, global page replacement has two significant shortogmi
Sub-optimal System Throughput: Global page replacement
assumes each application receives the same benefit whenagive
extra page. In reality, however, one application’s thrqughmay

o 1 .4 ——>EIIIIIIIIIIIII

Set 1

Pl -8, e I
oo ;
- —21

Figure 5. Page Proximity Graph. The shaded area shows the
prefetch set for page P1 when traversing to a depth of 2.

A simple operating system-level prefetching approach seta
onspatial locality pages adjacent to the faulted page in the virtual
address space are candidates for prefetching on the assnmpt
that they will be accessed soon. More precisely, whenevaga-p
fault happens, the nexi pages in the address space are prefetched
from the swap space, whetecould be either fixed or dynamically
adjusted based on how accurately the prefetching policyobas
performing. This scheme is effective in many cases, singgela
memory-consuming applications often access pages ingranis
chunks that are much larger than a virtual page. Howevenre tre
important classes of applications that have stable acassrips,
but with little or no spatial locality.

As an alternative, we have implemented a prediction model
similar to a Markov predictor [15] that incorporates the pamal
proximity of accesses to pages as the key factor. We use the LR
stack to find temporal proximity among pages, similar to nege

rise sharply as it is given more pages, whereas others may seddased prediction models, such as the one proposed by Saulsbu

no performance gains. If the goal is to maximize overall esyst
throughput, pages should be taken away from processesetinat d
little benefit from them and given to processes that benefitrtbst.

Lack of Isolation and Unfair Prioritization: Global page re-
placement does not guarantee any level of service for agtjaits.
So-called “memory hogs” can starve applications with evemall
working set sizell4]. Similarly, in a system under memorysgree,
process prioritization done only through CPU scheduling loe-
come ineffective. Chapin identified the prioritization plem due
to lack of memory isolation in operating systems, and métiva
the concept ofemory prioritizatior6.

Our approach to optimizing throughput is similar to the grsee
algorithm used by Zhoat al.[33] with a different level of hardware
integration. In this approach, each process is initiallgcted an
equal amount of physical memory. At each memory allocatiep,s
A is calculated for all processes, apénalty , and benefit , for
processP are calculated as follows:

benefitp(g) = Ap(M) — Ap(M + g)
penalty p(g) = Ap(M — g) — Ap(M)

The greedy algorithm takespages away from the process with the
least value fompenalty »(g), and assigns them to the process with
the highest value fobenefit »(g).

To address unfair prioritization, different policies canimple-
mented using\. For example, physical memory may be partitioned
to balance the miss rates of concurrently running appticati We
are continuing to explore different schemes for fairnessmncess
isolation using fine-grained memory access informatiorvigliexd
by PATH.

4.3 Virtual Memory Prefetching

Increases in I/O bandwidth over the years now allow for agrgre
sive and speculative prefetching of memory pages. An agyees
prefetching scheme, however, risks replacing pages teatare
valuable (to the same or other applications) than those{mteéd.

et al. [25]. Note that the LRU stack must be precise to provide
accurate information on the proximity of page accesses. As w
showed in Sectiof 3.1, the LRU stack is accurately mainthine
using the PATH-generated information.

Our model uses a weighted graph, called Bage Proximity
Graph (PPG), which identifies how often two virtual pages are
accessed shortly after each other. For each page maintain a
Proximity Set X,,, where| X,,| is at mostD pages. FigurEl5 shows
a simple example of a PPG whefeis equal to 8.

The PPG is updated on each page fault as follows. A window
of Wscan pages in the LRU stack is considered, starting from the
current location of the faulted page,towards the top of the stack.

If any page,q, in the scan window is already i, the weight

on (p, q) is incremented by one. Otherwisg|s considered as a
candidate to be added 5,. The weight to all other nodes i,

that do not appear in the scan window is decremented to decay
obsolete proximity information. If the weight on any ed@e s)
reaches zerag; is removed fromX,.

Prefetching is initiated whenever a page fault occurs onge pa
such asp. To generate the set of pages to prefetch, the PPG is
traversed, starting from, in a breadth-first fashion, and all pages
encountered are added to the prefetch set. If a page in thetqire
set is already resident in memory, it will be artificially thed
to prevent the page replacement algorithm from evictingriger
the assumption that it will likely be accessed soon. In Fediy
the gray region shows the prefetch set when starting ffanand
traversing to a depth of 2. The deeper the breadth-first isale
the more speculative prefetching will be. One can dynanyical
adjust the depth of the traversal according to the currezfeprhing
effectiveness and available 1/0 bandwidth.

5. Experimental Framework

We used Bochg]3], a widely used full-system functional dator
for the IA-32 architecture, to run the applications and rddbeir

1200

U —a—
1 LIRS -0
3 0 Region-based ---@-
'S 1000
[
c 900
2 e
3 800y,
= N
" 600 o
g 500
e 400
£ 300
3
2 200

100

300 350 400 450 500 550 600 650 700 750 800

Memory Size (MB)

(a) LU cont. (FMM, MG, and SP)

1000 Global LRU
. LIRS --©-
E 900 Region-based ---®-
S 800
[
§ 700
S 600
£
E 500
8 400
£
w
5 300
2
& 200
o
< 100

0

100 200 300 400 500 600 700 800

Memory Size (MB)

(c) BT (FFT and MrBayes)

8000 Global LRU —a—
R

7000

Region-based ---®-

6000

5000

4000

3000

2000

Projected Exec. Time (billion cycles)

1000

0 N
450 500 550 600 650 700 750 800 850 900
Memory Size (MB)

(b) Ocean cont. (Ocean non-gont
3500

Global LRU
LIRS --O--

.-.' Region-based ---®-

3000
2500
2000
1500

1000

Projected Exec. Time (billion cycles)
a
=
3

0
500 550 600 650 700 750 800 850 900 950 1000 1050
Memory Size (MB)

(d) SPECJbb (LU non-cont. and CG)

Figure 6. Projected execution time of selected applications witfed#nt replacement policies. The applications in paresishare those

with similar behavior.

memory accesses. This memory trace was then fed to a simula-6.

tor that simulates the memory-management algorithms inlé-mu
programmed environment to obtain the page fault rate. Tmat
execution time, we first timed the execution of all workloadsan
AMD Athlon 1.5GHz system with enough memory to ensure that
no page faults occurred. Then, we calculatgrtgected execution
timegiven the page fault rate determined by simulation.

The projected execution time is calculated as follows:

Projected_Ezec_Time = Ezxec_Timeg + Waitpp
Waitpp = Average_Latencypage raul * Total_Page_Faults

whereEzec_Timeg is the execution time measured when no page
fault occurs. We assume that once a process faults on a pagié, i
be blocked forAverage_Latencypage rauir CyCles; we use a fixed
value of one million CPU cycles fotlverage_Latencypage Fauit-
This value conservatively underestimates the cost of pagjéesfas
the average disk access latency of even fast disks is on dee of

a few milliseconds.

5.1 Applications

We evaluated the effectiveness of PATH on a set of memory-
consuming applications that we chose from various bendhmar
suites: six applications from SplashEZ][29], four from theNPar-
allel Benchmark (NPB) suit&22], SPECjbb20001[27], MMQutpi
from the lllimine data mining suité[11], and MrBayes, a Bsigs
inference engine for phylogenf_[21]. We did not include SPEC
CPU benchmarks, since they have fairly small memory footgri
We ran the applications with large problem sizes within the
practical limits of the simulation environment (e.g., or thrder
of a few hundred megabytes). However, all of these applinati
will consume up to tens of gigabytes of memory for large bilit st
realistic problem sizes. For our experiments, we colleatedhory
traces that cover the execution of a few hundred billiorrirettons
for each application. Avarm uptime is considered at the beginning
of the simulation in which no measurement is done.

Experimental Results
6.1 Adaptive Replacement Policies

Figure[® shows the effect of using different replacementcjes
on execution time as memory size is varied. Due to spacealimit
tions, we show the results only for a set of four applicatioith
representative behavior.

For the great majority of applications, using one of the &dap
policies resulted in a significant improvement in the pragdexe-
cution time (e.g., around 500% fob cont.). Comparing region-
specific and LIRS policies, in some cases one performs light
better than the other and vice versa, but generally thderéifice is
not significant. There are also rare cases in which one ofdap-a
tive policies performs slightly worse than the basic LRUoaithm
(e.g.,0cean for LIRS andSPECJbb for region-specific). Note that
most of the benefit of both LIRS and region-specific policies a
the result of having accurate page access information frhidP

6.2 Process Memory Allocation

To demonstrate the benefits of fine-grained memory accesspat
information for local (per-process) page replacement mese we
show that total system throughput (in terms of InstructiBes Cy-
cle) can be improved over a traditional global replacemtategy.

In this experiment, we simulate two applications runningudia-
neously:SPECIbb andBT. Without loss of generality, to make the
experiment more clear, we assumed that the IPC of both @pplic
tions is 1 when running in isolation. As noted in Sectidn Shea
page fault is assumed to have a fixed latency of one milliofesyc
We used a warm-up time of 30 billion instructions and a rugnin
time of 60 billion instructions combined.

FigurelT (a) shows the average IPC for both applications when
run with global LRU replacement; Figuig 7 (b) shows the ayera
IPC when the applications run with local LRU replacement and
memory allocation set to maximize throughput. The trendA@ |
is similar for both setups; however, our local allocatiodigo
achieves higher overall IPC, needing roughly 18% fewerezycl

Multi-Process Global LRU

Local Allocation (Performance)

o o
[[
(] 20 40 60 80 100 120 140 160 60 80 100 120 140 160
Cycles (billion) Cycles (billion)
(a) Global LRU (IPC) (b) Local (Maximizing Throughput) (IRC
Figure 7. Global and Local Allocation policy in multi-programmed segio: SpecJBB and BT
500 A A A A N I —h 6000 No Prefetching —a— 3500 No Prefetching —a—
= 450 Spatial Localjty --O--- —_ Spatial Locality --O--- —_ Spatial Locality --O---
2 Temporal Locality ---®- A Temporal Locality ---@- 2 3000 Temporal Locality ---@-
5 S 5000 3
g g g
é 350 é 2000 é 2500
2 300 E E 2000
£ 250 (g £ 3000 £
§ 200 o g g 1500
3 150 O g 200 3 1000
K g T "O-e. . K K
§'” M RS T o g 1000 S 500
o 50 a IS
0 b L 0

0
300 350 400 450 500 550 600 650 700 750 800 150 200 250

Memory Size (MB)

(a) LU Non-cont. (MMCubing, and MrBayes)

300
Memory Size (MB)

(b) MG (SP, LU comT, FFT, and Ocean)

600 650 700 750

Memory Size (MB)

(c) SPECJbb (FMM)

350 400 450 500 500 550 800 850 900

Figure 8. The effect of prefetching on the projected execution timgdrenthesis are applications which present similar hehav

300

250

No Prefetching —a— 160
Spatial Locality --O--- [
Temporal Locality ---@- 140

200
120

150 100

80

100 60

1/O (MB in a billion instrs)
1/O (MB in a billion instrs)

40

50
20

No Prefetching —a—
Spatial Locality --©---
Temporal Locality ---@-

No Prefetching —a—
Spatial Locality --©---
Temporal Locality ---@- 250

1/O (MB in a billion instrs)

0 k 0
300 350 400 450 500 550 600 650 700 750 800 200 250 300

Memory Size (MBytes)

(a) LU Non-cont. (MMCubing, and MrBayes)

350
Memory Size (MBytes)

(b) MG (SP, LU comT, FFT, and Ocean)

850

0
550 600 650 700 750 900

Memory Size (MBytes)

(c) SPECJbb (FMM)

400 450 500 800

Figure 9. The effect of prefetching on the required 1/0 bandwidth. &mgmthesis are applications which present similar behavio

to execute the same number of instructions (145 billioneyefs.
178 billion cycles for the global strategy). This is mainkydause
SPECJbb derives a higher benefit from extra pages tAaywhile a
global scheme considers the utility of each page to be the $am
both applications.

6.3 Virtual Memory Prefetching

For a selected set of applications, we show the effects &fatang
on projected execution time and on required I/O bandwidtkéh
page-in and page-out operations in Figules 8 Bhd 9, respbcti
The rest of the applications we examined perform similaslyhie
ones of shown here, and are, again, classified based on ritynila
and listed in parenthesis in the figures.

For the spatial locality-based policy, we set the initiafptch-
ing window, w, to 64, which can dynamically grow depending on
achieved precision. For the temporal locality-based pplie set

the size of the proximity set for each page to 10 and the scan wi
dow sizeWs..n t0 64 pages. The depth of the breadth—first traver-
sal in the PPG graph was limited to 3. Finally, for both altoris

we set the size of the pool of the pages that are prefetchédobu
accessed yet, to be at most 10% of physical memory.

For many applications, such B6 andFFT, the spatial locality-
based policy is quite effective, both in terms of recall aretjsion.
The temporal locality-based algorithm (that monitors theuence
of the accessed pages) is also able to detect regularityeiath
cess pattern with similar effectiveness. There are apjits, such
asLU non-cont. andMMCubing, however, for which the tempo-
ral locality-based algorithm significantly outperforms thpatial
locality-based one, both in terms of improving performaace be-
ing precise. Note that the temporal-locality based approseds
fine-grained information on the sequence of page acces$ésh w
in our setup is produced by PATH. Remarkably, temporal ibcal

900 1.4 800 1.8

E!);ec. Iim: — | o E!);ec. Iim: — L
—_ verhead ---© - verhead ---©
g 800 12 Z 0 1.6
S Lo S g 14
3 3 .
: - 1 s : 600 <
2 600) 2 ' 12 &
H 3 3 500 E]
@ 500 08 3 . , 3
E ol H £ 40 a H
H 400 .B"’-«». 06 g 8 300 o8 g
& 300 O] & o 06 &
g 04 & 2 00 *
g 200 g RN 0.4
& 100 02 g 100 o 0.2

[0 [0

128 256 512 1K 2K 4K 8K 16K 32K 128 256 512 1K 2K 4K 8K 16K 32K

PAB Entries PAB Entries
(a) LU Contiguous LIRS (575 MB) (b) Ocean Contiguous LIRSQT8B)
400 - 60 500 1.6

Exec. Time —a— Exec. Time —a—
Overhead --©

350 A © 450

400

300
20 350
250 4

300

Projected Exec. Time (billion cycles)
PATH Overhead (%)
Projected Exec. Time (billion cycles)
PATH Overhead (%)

200 30 250 2 08
150 20 200 0.6
150
100 . 0.4
10 100 N e o N

50 50 0.2
0 2 0 0 0
128 256 512 1K 2K 4K 8K 16K 32K 128 256 512 1K 2K 4K 8K 16K 32K

PAB Entries PAB Entries

(c) FFT Region-Specific Replacement (576 MB) (d) BT Regi@edfic Replacement (515 MB)

Figure 10. The effect of PAB size on the projected execution time andimenoverhead for page replacement algorithms.

300 Exec. Time —A— 7 200 Exec. Time —A— L 7

Ovethead O | I o I Overhead O

- 7 1 0
H 250 P 6 K] 50 g O © 6
S) S 160 B
3 3 y
c = c p =
2 200 g g 140 N N N . a a H e
3 - 3 3 B 3
by e.. 4 3 3 B 4 3
£ ’ 3 E 100 H
F 150 . g F g
S .. 3 O S 3 O
£ £ g 8 -
100 O g [: 5
3] 2 a 3 12 e
o ", o 1
8 : 8 40 B
e %0 AR 3 31
a a 20

0 5 0 0 0

128 256 512 1K 2K 4K 8K 16K 32K 128 256 512 1K 2K 4K 8K 16K 32K

PAB Entries PAB Entries

(a) MMCubing Prefetching (234 MB) (b) LU Non Contiguous Ratehing (312 MB)

Figure 11. The effect of PAB size on the projected execution time andimanoverhead for prefetching algorithms.

based prefetchingeducesthe 1/0 bandwidth requirements fau 6.5 Analysis of Overhead
non-cont. because artificially touching pages in the prefetched set
prevents them from being replaced. Finally, for some appbos
such assPECJbb, neither prefetching algorithm is effective.

In this section, we compare PATH’'s runtime overhead to the
software-only approach. To measure PATH’s basic overhead,
emulatedexceptions generated by PATH in a real environment us-
6.4 Effect of PAB Size ing a 1.5GHz AMD Athlon processor. For each application, we
collected a trace of PAL overflow exceptions along with tha-co
tent of the PAL at the time of exception. Each overflow event is
time-stamped using the number of instructions retired esithe
start of the application. We theaplayedthese traces by artificially

. . : generating exceptions at the same rate as in the trace hy hesid-
rithms, respectively. In these experiments, we vary the sfahe ware performance counter overflow exceptions. At each ¢ixrep
PAB from 128 to 32K entries. As the PAB size increases, We@Xpe e read the contents of the PAL from the trace and updated the

that an increased number of page accesses are filtered by@KkTH | p; stack and MRC data structures. To calculate the overlvead
thus the page access information generated becomes I@B818CC 1055 re the total number of CPU cycles needed to execute a cer

At the same time, we expect processing overhead to decrsase 3tain number of application instructions (e.g. a few tensitibs),
fewer page accesses are recorded. N with and without PATH exceptions.

As we see in these graphs, runtime overhead drops signlficant — tpe goftware-only approach was implemented in Linux-%6.1
as PAB size increases. At the same time, the projected é8BCUt \ye measure only the cost of maintaining the active set which
time does not seem to be very sensitive as the PAB size isisede jnc|ydes the cost of extra page protection faults, pages tablks
from 128 to 2K entries. One exceptionHBT with LIRS (shown to set the protection bits, flushing the corresponding TLBies,
in Figure[1). Overall, a 2K-entry PAB seems to be a good trfideo and occasionally trimming the active set using CLOCK.
between overhead and accuracy.

For some of the applications that benefit from fine-graineykzec-
cess information, we evaluate the effect of different PABzsion
the projected execution time and the runtime overhead.r&sil
andTl show this effect for page replacement and prefetcigw

] []128
20 | 512
]
I 2K
X80 -
< M 4K
T 70 W 8K
960 | W 16K
< W 32K
950+
371
€30
-
=20 -
I~
10 |
T T+ £ TF T©F == ToTF TF <o ToF Tk T
g Eg E8 o E& £6 k8 Eg £S5 s 58 Eg
22 8 g0 o0 &0 £33 &0 a2 £3 &5 a2 a2l
P ~ i ~ n ~ ~ o K = ~ mm Q_ﬂ-
sg 22 22 ¢¢ 88 22 LKk 5§ =2 Eh Ba &0
8 o S S = T © = B (I S 9 s = = =
o © iy o @ =3 45 T Q9
— = O]
20 = = %% - %%

Figure 12. Runtime overhead of PATH-generated information compaceth¢ software-only approach (SOFT). To help visualize the
comparison, all runtime overhead numbers larger than 10@%rancated.

Figure[I2 shows the runtime overhead of both PATH and the heap size accordingly. To reduce overhead, CRAMM dynaigical
software-only approach across the selected set of applisaias a adjusts the size of the active set by monitoring runtime lovad.
function of active set size (PAB size in PATH). There are a hum Such an approach is presumably effective in tracking MRC for

ber of important observations. First, the overhead of tlisveoe- JVM’s heap size. However, our results show that for many mem-
only approach is high for a number of applications (eRFT, ory intensive applications, increasing the size of thevaciet will
LU-nonc., MMCubing andSPECJbb) even with a fairly large ac- result in significant performance degradation of memory agen

tive set size. Second, the runtime overhead of PATH is vegllsm ment algorithms.

all applications if a large PAB (e.g., 32K) is used. For theigeed Tracking memory accesses at the hardware level has been sug-

2K size, the overhead of the PATH remains less than 3% in &ll bu gested by other researchers, although to address diffar@niems.
two applicationsiU-nonc., and SPECJbb for both of which the For instance, Qureshi et &l]24] suggested the use of haedwi&
overhead is less than 6% with a 2K-entry PAB). Such a smaltove ity monitorsto monitor memory accesses solely to compute MRC
head is easily paid off by the substantial performance ingrent at the granularity of individual CPU cache lines.

achieved by the PATH-generated information when the syssem
under memory pressure. Note that the OS can turn off PATH when

the system is not under memory pressure, and as a resuliihere 8. Concluding Remarks

not be any unwanted runtime overhead. Traditionally, operating systems track application meyramrcesses
either by monitoring page faults or by periodically scamgnpage
7 Related Work table entries. With this approach, important informatiam tbe

reuse distance and temporal proximity of virtual page &=Ees
Zhou et al. [B3] suggest the use of a custom-designed hardware that can be used for improving memory management algorithms
monitor on memory bus to efficiently calculate MRC online. In is unavailable. Previous work has suggested the use of dypure
their approach much of the overhead of computing MRC can be software-based approach that uses virtual page protetctivack

avoided by offloading to hardware almost completely. In st page accesses more accurately. While this software-bapeosech

we argue in favor of having a simpler hardware that providest- is effective for some applications, for many applicationscurs
level but more generic information about page accessesctrat unacceptably high overhead.

be used to solve many problems including the memory allogati In this paper, we proposed novel Page Access Tracking Hard-

problem. We have shown that with the use of fine-grained page ware (PATH) that records page access sequences in a rBlative
access information the operating system can make bettesiales accurate yet efficient way. We showed how the operating syste

on at least three different problems. In terms of hardwaseurces can exploit the information provided by PATH to improve mem-

required, the data structures in PATH are simpler and smaitel ory management in three different ways: adaptive page cepla

unlike the MRC monitor in Zhowet al’s approach, do not grow ment, process memory allocation, and virtual memory pcafay.

proportionally with the size of system physical memory. Our experimental analysis showed that with this hardwapeasnt,
Cooperative Robust Automatic Memory Management(CRAMM) significant performance improvements, as high as 500%, ean b

collects detailed memory reference information to be usexdijust achieved for applications under memory pressure. Unlikevsoe-

the heap size of a Java virtual machine dynamically in ormere- only approaches, the runtime overhead of PATH remains gonal|

vent a severe performance drop during garbage collectientalu der 3%-6%) across a wide range of applications.

paging [30]. The authors have used the software-only apprta We believe that additional uses of information provided by

track MRC in order to predict memory usage and adjust the JVM PATH will become apparent over time, as we experiment with

a wider variety of memory intensive applications. Two pbigsi

ideas are super page management and page placement in a NUMA

architecture.

An important extension is to explore the use of PATH in a
multiprocessor setup. There are important open issue$, asic
how to collectively use PATH traces of parallel applicaahat
are generated on multiple processors. Similarly, work agede
done in perfecting PATH support for multithreaded applorad.
Currently, the PATH trace generated for an application ingion

a CPU is processed into a single LRU stack or the Page Prgximit

Graph. If the application is multithreaded, this approaebuits
in intermingling traces of several threads into a singleregate
data structure. As a result, important information abouhlveuse
distance and temporal proximity of page accesses on a pEdhr
basis is lost. To solve this problem, simple extensions eamade
to the software layer to keep track of multiple LRU stacks qea
thread basis.

References

[1] D. A. Bader, U. Roshan, and A. Stamatakis. Computatigmahd
challenges in assembling the tree of life: Problems andtisokt
Proc. of ACM/IEEE conference on Supercomputing (SC), ialtor
session2005.

[2] S. Bansal and D. S. Modha. CAR: Clock with adaptive rephaent.
In Proc. of the USENIX Conference on File and Storage Techiesog
(FAST) 2004,

[3] Bochs. An open source 1A-32 emulatbittp://bochs.sourceforge.net/

[4] A. D. Brown and T. C. Mowry. Taming the memory hogs: Using
compiler-inserted releases to manage physical memorjigetetly.
In Proc. of the 4th Symposium on Operating System Design and
Implementation (OSDJ)San Diego, CA, 2000.

R. W. Carr and J. L. Hennessy. WSCLOCK: a simple and effect
algorithm for virtual memory management. Pmoc. of the 8th ACM
symposium on Operating systems principles, (SOB&jific Grove,
CA, 1981.

J. Chapin. A fresh look at memory hierarchy managemem®rbc.
of the 6th Workshop on Hot Topics in Operating Systems (H&t)S
page 130, 1997.

[7] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. Towards applioatfile-
level characterization of block references: a case for dirséned
buffer management. IRroc. of the 2000 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Goenp
SystemsSanta Clara, CA, 2000.

M. Cox and D. Ellsworth. Application-controlled demapdging
for out-of-core visualization. IrProc. of the 8th conference on
Visualization '97 (VIS)1997.

G. Glass and P. Cao. Adaptive page replacement based omorye
reference behavior. IRroc. of ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems
Seattle, WA, 1997.

[10] G. Gniady, A. R. Butt, and Y. C. Hu. Program-counteréasittern
classification in buffer caching. roc. of the 6th Symp. on Operating
System Design and Implementation(OSBn Francisco, CA, 2004.

[5

—

[6

—

[8

—_

9

—

[11] Illimine. An open-source data mining toolskttp://illimine.cs.uiuc.edu/

[12] S. Jiang, F. Chen, and X. Zhang. CLOCK-Pro: an effective
improvement of the clock replacement. Rroc. of the Usenix
Technical Conference (USENIX'Q%naheim, CA, 2005.

[13] S. Jiang and X. Zhang. LIRS: an efficient low inter-refece
recency set replacement policy to improve buffer cacheopedince.
SIGMETRICS Performance Evaluation Revi&@(1), 2002.

[14] T. Johnson and D. Shasha. 2Q: a low overhead high peafocen
buffer management replacement algorithm. Piroc. of the 20th
International Conference on Very Large Databases (VL32antiago,
Chile, 1994.

[15] D. Joseph and D. Grunwald. Prefetching using markodipters.
IEEE Transactions on Computes8(2):121-133, 1999.

[16] S. F. Kaplan, L. A. McGeoch, and M. F. Cole. Adaptive daghfor
demand prepaging. IRroc. of the 3rd International Symposium on
Memory Management (ISMMBerlin, Germany, 2002.

[17] Y. H. Kim, M. D. Hill, and D. A. Wood. Implementing stack
simulation for highly-associative memories. Bmoc. of the 1991
ACM SIGMETRICS Conference on Measurement and Modeling of
Computer SystemSan Diego, CA, 1991.

[18] C. Lattner and V. Adve. Automatic pool allocation: inoping
performance by controlling data structure layout in thephéa Proc.
of the 2005 ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDKChicago, IL, 2005.

[19] R. L. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Ewdilon
techniques and storage hierarchi¢é8M Systems Journab(2):78—
117, 1970.

[20] N. Megiddo and D. S. Modha. ARC: A self-tuning, low oveed
replacement cache. Proc. of the 2nd USENIX Conference on File
and Storage Technologies (FASEpan Francisco, CA, 2003.

[21] MrBayes. Bayesian inference of phylogehttp://mrbayes.csit.fsu.edu

[22] NASA Advanced Supercomputing. NAS Parallel Benchrsark
http://www.nas.nasa.gov/Software/NPB/

[23] V. Phalke and B. Gopinath. An inter-reference gap mddel
temporal locality in program behavior. IRroc. of the ACM
SIGMETRICS International Conference on Measurement and
Modeling of Computer Systep@ttawa, Canada, 1995. ACM Press.

[24] M. K. Qureshiand Y. N. Patt. Utility-based cache péaotitng: A low-
overhead, high-performance, runtime mechanism to partiéhared
caches. IrProc. of the 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICROpages 423-432, Washington,
DC, USA, 2006.

[25] A. Saulsbury, F. Dahlgren, and P. Stenstrom. Recemsgth TLB
preloading. InProc. of the 27th Intl. Symposium on Computer
Architecture (ISCA)Vancouver, Canada, 2000.

[26] Y. Smaragdakis, S. Kaplan, and P. Wilson. The EELRU tdap
replacement algorithm.Performance Evaluatign53(2):93-123,
2003.

[27] Standard Performance Evaluation Corporation (SPEEECjbb2000.
http://www.spec.org/jpbb2000

[28] M. Vilayannur, A. Sivasubramaniam, and M. Kandemir. oPr
active page replacement algorithm for scientific applarati A
characterization. IProc. IEEE Intl. Symposium on Performance
Analysis of Systems and Software (ISPAB83tin, TX, 2005.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: characterization and methodabgic
considerations.SIGARCH Computer Architecture Nev23(2):24—
36, 1995.

[30] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAM
Virtual memory support for garbage-collected applicatiom Proc.
of the Symposium on Operating System Design and Implenoentat
(OSDI), Seattle, WA, 2006.

[31] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler, M
Langston, and N. F. Samatova. Genome-scale computational
approaches to memory-intensive applications in systeoiedy. In
Proc. of the ACM/IEEE conference on Supercomputing (S€attle,
WA, 2005.

[32] F. Zhou, R. von Behren, and E. Brewer. AMP: Program cdnte
specific buffer caching. IRroc. of the USENIX Technical Conference
(USENIX'05) Anaheim, CA, 2005.

[33] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Yu,Zad
S. Kumar. Dynamic tracking of page miss ratio curve for mgmor
management. IRroc. of the 11th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
Boston, MA, 2004.

	Introduction
	Design of PATH Architecture
	Low-level Software Structures
	LRU Stack
	Miss Rate Curve (MRC)

	Example Use Cases
	Adaptive Replacement Policies
	Region-Specific Replacement

	Process Memory Allocation
	Virtual Memory Prefetching

	Experimental Framework
	Applications

	Experimental Results
	Adaptive Replacement Policies
	Process Memory Allocation
	Virtual Memory Prefetching
	Effect of PAB Size
	Analysis of Overhead

	Related Work
	Concluding Remarks

	undefined:
	undefined_2:
	undefined_3:
	Software Overhead: Off
	undefined_4: Off
	Text6: Appeared in Proc. Intl. Symposium on Memory Management, October 2007, pp. 31-42.

